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assumption and thereby extend recent results on the one-point generating function

of the free energy to two points. It is established that in the long time limit the
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1. Introduction

Directed polymer in a random medium is a widely studied model in the statistical

mechanics of disordered systems [1, 2]. The polymer chain is immersed in a static

random potential. In the directed version there is a singled out direction, also referred to

as “time”, such that the polymer is constrained to move forward along the time direction.

Prominent realizations are domain walls in two dimensional disordered magnets [3], tear

lines for paper sheets [4] and vortex lines in disordered superconductors [5]. For spatial

dimension d ≤ 2, the polymer is superdiffusive at any coupling strength, while for d > 2,

there is a weak coupling phase with diffusive behavior and a still little explored strong

coupling phase, see [6, 7] and references therein to earlier work.

Recently there has been considerable progress [8, 9, 10, 11, 12, 13, 14] for a

particular continuum version of the directed polymer in 1 + 1 dimension with both

endpoints fixed (point-to-point directed polymer). The free polymer is modeled by a

continuum Brownian motion with bending coefficient γ. Then, in the presence of a

disorder potential V , the point-to-point partition function of the polymer at inverse

temperature β reads

Z(x, t) =

∫ x(t)=x

x(0)=0

D[x(τ)] exp
(

−β
∫ t

0

dτ
[

1
2γ(∂τx(τ))

2 + V (x(τ), τ)
]

)

. (1.1)

The partition function is the sum over all possible paths x(τ) of the polymer, starting

at position 0 at time 0 and ending at position x at time t. The energy of the polymer

is the sum of the elastic bending energy, proportional to γ, and the potential energy

obtained from summing the external potential V along the polymer chain. The partition

function Z(x, t) is random as inherited from the randomness of the potential V , which

is assumed to have a Gaussian distribution with mean 0 and covariance

〈V (x, τ)V (x′, τ ′)〉 = D δ(x− x′)δ(τ − τ ′) . (1.2)

The particular choice of the covariance (1.2) allows to express the n-th moment of Z as

a propagator matrix element of an n-particle attractive δ-Bose gas on the line, a model

which can be solved exactly by the Bethe ansatz. As will be explained in more detail

below, the progress alluded to refers to an exact computation of the generating function

for the partition sum Z(x, t). In our contribution, this result will be extended to the

generating function jointly of Z(x1, t) and Z(x2, t), i.e. for two distinct positions x1 and

x2 of the endpoint of the polymer at the same time t.

An additional interest in the continuum directed polymer comes from the connection

to the Kardar-Parisi-Zhang (KPZ) equation [15], which is a stochastic evolution for a

growing surface. If we denote the height profile by h(x, t), then, in the conventional

units, the one-dimensional KPZ equation reads

∂th(x, t) =
1
2λ(∂xh(x, t))

2 + ν ∂2xh(x, t) + η(x, t) . (1.3)

Here, λ is the strength of the nonlinear growth velocity, ν is the parameter governing

the surface relaxation, and η is a white noise with strength
√
D modeling the random

nucleation and deposition events at the surface.
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The partition function of the directed polymer Z(x, t) given in Eq. (1.1) satisfies

∂tZ(x, t) =
1

2βγ
∂2xZ(x, t)− β V (x, t)Z(x, t) , (1.4)

from which it follows that the free energy, defined by

F (x, t) = − 1

β
logZ(x, t) , (1.5)

is a solution of the KPZ equation (1.3) under the identification

h = −F , λ = γ−1 , ν = (2βγ)−1 , η = −V . (1.6)

In the context of surface growth, the joint distribution of the free energy is a natural

quantity of interest: for given time t, it is the joint height statistics at the two spatial

reference points x1 and x2, which in particular determines the height-height correlations

at time t.

Our considerations are somewhat formal, since taken literally 〈Z(x, t)〉 = ∞. In

dimension d = 1, this divergence can be easily taken care of by a suitable free energy

renormalization, as discussed in detail in [16]. After renormalization one finds that

〈Z(x, t)〉 = (βγ/2π t)−1/2 exp
(

−βγ x
2

2t

)

. (1.7)

Our paper is organized as follows. In Section 2, we recall the replica method and

the mapping to the δ-Bose gas. To provide some background, we explain the one-point

generating function for the partition sum and the corresponding Fredholm determinant.

The extension to two points is discussed and the long-time limit is obtained. The

technical derivation is carried out in Sections 3 and 4 with supporting material in the

Appendices.

2. Main results

2.1. Scale invariance, stationarity

To have a short hand the Brownian motion average in (1.1) is denoted by E
βγ
(x,t). To

define it we first introduce the Gaussian average E
βγ with mean 0 and covariance

E
βγ(x(τ)x(τ ′)) = (βγ)−1min(τ, τ ′) , (2.1)

which corresponds to the Brownian motion starting at 0, and set

E
βγ
(x,t)( · ) = E

βγ( · δ(x(t)− x)) . (2.2)

In particular

E
βγ
(x,t)(δ(x(t)− x)) = (βγ/2π t)−1/2 exp

(

−βγ x
2

2t

)

. (2.3)

Let us denote the partition function (1.1) by Zβ,γ,D(x, t) to indicate explicitly the

parameter dependence. From the scale invariance of white noise, V (ax, bt) has the
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same distribution as (ab)−1/2V (x, t), and of the free directed polymer, x(at) has the

same distribution as a1/2x(t), one obtains

Zβ,γ,D(x, t) = β3γD Z1,1,1

(

β3γD x, β5γD2 t
)

. (2.4)

Thus, it suffices to consider the case when all parameters are equal to one, and from

now on we adopt the convention

β = 1 , γ = 1 , D = 1 , Z(x, t) = Z1,1,1(x, t) , E
βγ
(x,t) = E(x,t) . (2.5)

The free energy (1.5) has a systematic upward curvature of x2/2t, compare with (1.7).

However the distribution of F (x, t)− x2/2t is independent of the position x. This fact

can be seen by performing a linear change of variables in the functional integration (1.1)

defining Z(x, t). One obtains

〈Z(x+ a, t)〉−1Z(x+ a, t) = 〈Z(x, t)〉−1
E(x,t)( exp

(

−
∫ t

0

dτV (x(τ) + aτ/t, τ)
)

)

= 〈Z(x, t)〉−1Z(x, t) , (2.6)

where in the second equality we used that the white noise V (x, τ) is statistically

translation invariant in the spatial argument. Hence the distribution of Z(x, t)/〈Z(x, t)〉
is independent of x. More general, the stochastic process x 7→ Z(x, t)/〈Z(x, t)〉 is

stationary in x, and correlation functions of the form

〈f1(Z(x1, t)/〈Z(x1, t)〉) . . . fn(Z(xn, t)/〈Z(xn, t)〉)〉 (2.7)

are invariant under a global translation of all the arguments. In particular, the joint

distribution of Z(x1, t)/〈Z(x1, t)〉 and Z(x2, t)/〈Z(x2, t)〉 depends only on the separation

x2 − x1.

For our computation of the two-point generating function it will be of advantage

to keep the dependence on x1, x2 separately. The final result will confirm the parabolic

free energy shift and the dependence on x2 − x1 only.

2.2. Replicas

The n-point correlation function of Z(x, t) can be computed by introducing the replicas

x1(τ), . . . , xn(τ), which are simply independent copies of the free directed polymer x(τ).

More specifically, using the explicit form of the generating function for a Gaussian,

〈Z(x1, t) . . . Z(xn, t)〉 = 〈
n
∏

j=1

E(xj ,t)( exp
(

−
∫ t

0

dτV (xj(τ), τ)
)

)〉

=
(

n
∏

j=1

E(xj ,t)

)

( exp
(

− 1
2

∫ t

0

dτ
n
∑

i 6=j=1

δ(xi(τ)− xj(τ))
)

) , (2.8)

where in the second line the average is over all replicas, the j-th replica starting at 0

and ending at xj at time t. It should be noted that the literal Gaussian average would

also include the self-interaction term −1
2

∑n
i=1 δ(xi − xi). Thus, for the moments of Z,

the free energy renormalization needed to properly define (1.1) simply corresponds to

subtract the self-energy.
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The Feynman-Kac formula implies that the n-point correlation function

〈Z(x1, t) . . . Z(xn, t)〉 satisfies the imaginary time Schrödinger equation

− ∂t 〈Z(x1, t) . . . Z(xn, t)〉 = Hn 〈Z(x1, t) . . . Z(xn, t)〉 (2.9)

with the initial condition Z(xj , 0) = δ(xj). Here Hn is the Lieb-Liniger quantum

Hamiltonian of n particles on the line with an attractive δ-interaction,

Hn = −1

2

n
∑

i=1

(∂xi
)2 − 1

2

n
∑

i 6=j=1

δ(xi − xj) (2.10)

[17, 18]. In this representation the free energy renormalization corresponds to the normal

ordering of Hn. “Solving” (2.9), the n-point correlation function is given by

〈Z(x1, t) . . . Z(xn, t)〉 = 〈x1, . . . , xn|e−tHn |0〉 . (2.11)

Here |0〉 is the state where all particles are at 0 and |x1, . . . , xn〉 is the one where the

j-th particle is at xj . Since |0〉 is symmetric under the exchange of particle labels, one

can symmetrize in the final state. Thus the propagator e−tHn is needed only in the

symmetric sector and the replicas are expressed by the attractive δ-Bose gas on the line.

As first shown by Mc Guire [18], the ground state energy E0(n) of Hn is given by

E0(n) = − 1

24
(n3 − n) . (2.12)

The term linear in n translates to the free energy shift t/24, which in fact equals the

bulk free energy per unit time. For later use, we introduce the parameter

α = (t/2)1/3 . (2.13)

In the lowest order approximation, ignoring all excited states,

〈0|e−tHn|0〉 ≈ e−tE0(n) . (2.14)

The cubic term of E0(n) leads to the decay of the left tail of F (0, t) as

Prob
(

F (0, t)− 1
24 t ≤ u

)

≈ exp
[

−4
3 (α|u|)

3/2
]

(2.15)

for u → −∞ and t−1/3|u| = O (1) [19, 20], see also [9]. This result confirms that the

fluctuations of the free energy are of order t1/3. In fact, the tail behaviour (2.15) agrees

with the exact tail, see [21].

2.3. One-point generating function of the free energy

To go beyond (2.14), one needs the excited states of the attractive δ-Bose gas. They

can be computed from the Bethe ansatz as has been recently worked out in great detail

by Dotsenko and Klumov [22, 14]. In brackets, we remark that on a ring, the complex

momenta are solutions of the nonlinear Bethe equations on which little information is

available. Already to determine the ground state energy requires ingenious computations

[23]. A corresponding situation has been found for the asymmetric simple exclusion

process. On a ring, while the ground state and the large deviations for the current have

been extensively investigated [24, 25, 26, 27], the Bethe equations for excited states have
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been analyzed only partially [28, 29, 30, 31]. In contrast, for the infinite lattice there

is a reasonably concise formula for the transition probability with any given number of

particles [32].

Using the complete eigenfunction expansion forHn, a particular generating function

can be expressed as a Fredholm determinant [12, 13, 14]. More precisely, we define

G(s; x, t) =
〈

exp
(

−e−se−F (x,t)
)〉

. (2.16)

Then G is equal to the Fredholm determinant

G
(

s− 1
24t− 1

2tx
2; x, t

)

= det(1−M) . (2.17)

The operatorM does not depend on the position x and depends on time t only through

the parameter α defined in (2.13). M acts on L2(R) and has the integral kernel

〈u|M |v〉 = eαu−s

1 + eαu−s
〈u|K|v〉 . (2.18)

Here K is the Airy operator with integral kernel

〈u|K|v〉 =
∫ ∞

0

duAi(u+ z)Ai(z + v) , (2.19)

called Airy kernel. K is related to the Airy Hamiltonian

H = −(∂u)
2 + u , (2.20)

as K projects onto all negative eigenstates of H . In particular K∗ = K and K2 = K,

see Appendix B for details. One easily checks that tr |M | < ∞. Hence the Fredholm

determinant in (2.17) is well defined.

The mathematical status of (2.17) is somewhat tricky. One cannot simply verify

(2.17) as the solution of some equation. The derivation relies on the replica method.

Since log〈Z(x, t)n〉 ≈ n3, the moments do not uniquely determine the distribution of

Z(x, t). To derive (2.17), one is forced to work with divergent series and has to make

a reasonable choice for the analytic extension of 〈Zn〉, n ∈ N, to the complex plane

[12, 13]. However, the generating function G(s; x, t) fixes the distribution of F (x, t),

which is known by other means [10, 8] Thus a posteriori one can verify directly that

(2.17) is a valid identity.

Eq. (2.17) together with (2.18) establishes that F is of order α. Rescaling s as αa

and taking α→ ∞, we note that the right side of (2.16) and the multiplicative prefactor

in (2.18) both converge to a step function. Hence in the long time limit one obtains

lim
t→∞

Prob
(

F (x, t)− 1
24 t− 1

2tx
2 < −αa

)

= det (11− PaKPa) = F2(a) , (2.21)

where Pa projects on [a,∞). In the long time limit, the free energy fluctuations are

thus of order t1/3. The function F2 is the celebrated Tracy-Widom distribution function

[33], which first appeared as the distribution for the maximal eigenvalue of large random

Hermitian matrices in the Gaussian unitary ensemble (GUE).

By a more sophisticated argument [12] one also deduces the finite time probability

density from (2.17) with the result

Prob
(

F (x, t)− 1
24 t− 1

2tx
2 < −αs

)

=

∫ ∞

−∞

du exp
(

−eα(s−u)
)

gt(u) , (2.22)
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where

gt(u) = det (11− Pu(Bt − PAi)Pu)− det (11− PuBtPu) . (2.23)

The operators PAi and Bt are defined respectively by

〈z|PAi|z′〉 = Ai(z)Ai(z′) , (2.24)

and

〈z|Bt|z′〉 =
∫ ∞

−∞

dv
1

1− eαv
Ai(z + v)Ai(v + z′) . (2.25)

There is another model for which the one-point generating function is available [34]:

one replaces the Brownian motion by a continuous time random walk on the lattice Z

with forward jumps only. The white noise is correspondingly discretized in the spatial

direction. The partition function is Zβ(N, t) with the polymer starting at 0 and ending

at (N, t), N ≥ 0. Note that this model has less scale invariance than our case because

of the lattice. The long time behavior of the free energy remains to be studied.

For the directed polymer at zero temperature, results are available for a lattice

discretization in case the random potential has either a one-sided exponential or

geometric distribution [35].

2.4. Two-point generating function and long time limit

Our novel contribution is the extension of (2.17) to two reference points by using the

replica method. In analogy to (2.16), let us define the generating function

G(s1, s2; x1, x2, t) =
〈

exp
(

−e−s1e−F (x1,t) − e−s2e−F (x2,t)
)〉

. (2.26)

From the mapping of the directed polymer to the δ-Bose gas, the generating function G

can be expanded in a sum over eigenstates of the Lieb-Liniger Hamiltonian (2.10). Using

results from [14], under a natural factorization assumption the sum over the eigenstates

can be written again as a Fredholm determinant. However even then it is difficult to

extract any useful information from this representation. By a sequence of miraculous

transformations we arrive at an alternative expression for the Fredholm determinant,

which turns out to be rather similar to (2.18) in structure and from which the long

time limit can be read off easily. To distinguish from the true generating function, we

introduce the sharp superscript ♯ for generating functions with factorization assumption.

Let us first define the function Φ by

Φ(u, v) =
eu + ev

1 + eu + ev
(2.27)

and the operator Q through the kernel

〈u|Q|v〉 = Φ(αu− s1, αv − s2)〈u|e−(2α2)−1|x1−x2|H |v〉 . (2.28)

Then

G♯(s1 − 1
24 t− 1

2tx
2
1, s2 − 1

24t− 1
2tx

2
2; x1, x2, t) = det (11−Q e(2α

2)−1|x1−x2|HK) . (2.29)
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Recall that 〈u|e−(2α2)−1|x1−x2|H|v〉 is the propagator of the Airy Hamiltonian and note

that

〈u|e(2α2)−1|x1−x2|HK|v〉 =
∫ ∞

0

dz e−(2α2)−1|x1−x2|z Ai(u+ z)Ai(z + v) . (2.30)

In particular, e(2α
2)−1|x1−x2|HK is a bounded operator.

From (2.29) it is obvious that for long times F scales as α ∼ t1/3 and the two-point

distribution has a non-degenerate limit only if x scales as α2 ∼ t2/3. So let us substitute

s1 by αa, s2 by αb, and introduce

|x1 − x2| = 2α2y . (2.31)

Then as t → ∞ the left hand side of (2.29) converges to the characteristic function

of the rectangle [−αa,∞) × [−αb,∞), while the operator Q converges to Pae
−|y|H +

e−|y|HPb − Pae
−|y|HPb. With y, a and b held fixed, we arrive at

lim
t→∞

Prob
(

F (x1, t)− 1
24t− 1

2tx
2
1 > −αa, F (x2, t)− 1

24t− 1
2tx

2
2 > −αb

)

= F2(a, b; y) , (2.32)

where the function F2(a, b; y) is given in terms of the Fredholm determinant

F2(a, b; y) = det (11−
(

Pa + e−|y|HPbe
|y|H − Pae

−|y|HPbe
|y|H
)

K) . (2.33)

The function F2(a, b; y) is two-point distribution of the Airy process in a form written

down first in Eq. (5.8) of [21], where the two-point distribution function of the height in

the polynuclear growth droplet model was studied. For the single step growth model the

corresponding result was achieved in [36]. Thus apparently the factorization becomes

exact in the long time limit.

As shown in [21] the function F2(a, b; y) can also be expressed as the Fredholm

determinant of a 2× 2 operator kernel,

F2(a, b; y) = det
[

11−
(

Pa 0

0 Pb

)(

K e−|y|H(K − 1)

e|y|HK K

)

]

. (2.34)

This form arises naturally when one studies the top most line in Dyson’s Brownian

motion. In the large N limit it converges to the Airy process, which can be viewed as

the top line of an underlying extended determinantal random field. In particular, the

n-point distribution is defined most directly through an operator with a n × n matrix

structure. While we were searching for a corresponding matrix structure, it came as a

surprise that the replica route apparently prefers the expression (2.33).

From (2.34) one can read of properties of F2(a, b; y). Obviously it is symmetric in

a and b. In the limits y → 0 and y → ∞, the expression of F2(a, b; y) simplifies and one

obtains

lim
y→0

F2(a, b; y) = F2(min(a, b)) and lim
y→∞

F2(a, b; y) = F2(a)F2(b) , (2.35)

with F2 of a single argument denoting the Tracy-Widom distribution (2.21). Using

(2.33) and [H,K] = 0 one finds

lim
b→−∞

F2(a, b; y) = 0 and lim
b→∞

F2(a, b; y) = F2(a) . (2.36)
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Since F2(a, b; y) is a distribution function, see (2.32), it is an increasing function of a, b.

It tends to 0 when a, b→ −∞, and to 1 when a, b→ ∞.

3. Replica Summation

3.1. Two-point generating function

We start from the expression (2.26) of the generating function G(s1, s2; x1, x2, t) and

define

G1 = G
(

s1 − 1
24t, s2 − 1

24 t; x1, x2, t
)

=
〈

exp
(

−et/24e−s1Z(x1, t)− et/24e−s2Z(x2, t)
)〉

, (3.1)

subtracting the linear order of the free energy. Expanding the exponential, G1 is written

in terms of n-point correlations of the partition function. After decomposing as

X =
x1 + x2

2
, x =

x2 − x1
2

, (3.2)

we obtain

G1 = 1 +

∞
∑

N=1

(−1)NetN/24

N !

∑

σ1,...,σN=±1

(

N
∏

i=1

e−
1
2
[(1−σi)s1+(1+σi)s2]

)

× 〈Z(X + σ1x, t) . . . Z(X + σNx, t)〉 . (3.3)

We use the expression (2.11) for the N -point correlations in terms of the δ-Bose gas.

These matrix elements can be expanded as a sum over the orthornormal basis of

eigenstates, ψr, of the Lieb-Liniger Hamiltonian HN with the result

〈Z(x1, t) . . . Z(xN , t)〉 =
∑

r

e−tEr〈x1, . . . , xN |ψr〉〈ψr|0〉 , (3.4)

where Er is the corresponding energy eigenvalue. Combining (3.3) and (3.4), one obtains

the following expression for the generating function G1,

G1 = 1 +

∞
∑

N=1

(−1)NetN/24

N !

∑

r

e−tEr |ψr(0, . . . , 0)|2

×
∑

σ1,...,σN=±1

(

N
∏

i=1

e−
1
2
[(1−σi)s1+(1+σi)s2]

)ψr(X + σ1x, . . . , X + σNx)

ψr(0, . . . , 0)
. (3.5)

3.2. Summation over the eigenstates of the δ-Bose gas

We have to perform the summation over the eigenstates in the expression (3.5) of the

generating function G1, for which we follow [14] with some improvements. To ease the

comparison our notation will be as close as possible to the one in [14].

The eigenfunctions of the N -particle attractive δ-Bose gas are labelled by the

complex wave numbers ξa, a = 1, . . . , N . To write them down, we pick positive integers

nα, α = 1, . . . ,M ≤ N such that
M
∑

α=1

nα = N . (3.6)
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We also introduce the running indices rα = 1, . . . , nα and set

n(α) =
α
∑

β=1

nβ , n(0) = 0 , n(M) = N . (3.7)

Then, for arbitrary vectors q = (q1, . . . , qM) ∈ R
M and n = (n1, . . . , nM), one has

ξa = qα − i

2
(nα + 1− 2rα) for a = n(α−1) + rα , (3.8)

with α = 1, . . . ,M . According to [14], Eq. (B.21), the eigenfunction with labels q,n is

given by

ψ(M)
q,n (x1, ..., xN )

= C(M)
q,n

∑

p∈P

sgn(p)
∏

1≤a<b≤N

(ξp(a) − ξp(b) + isgn(xa − xb)) exp
[

i

N
∑

c=1

ξp(c)xc

]

. (3.9)

The normalization constant C
(M)
q,n is computed in [14]. The sum is over the set P of

all N -long permutations and sgn(p) is the signature of the permutation p. ψ
(M)
q,n is

continuous and symmetric in x1, . . . , xN . Each eigenstate of the δ-Bose gas is made

up of M clusters, where the α’s cluster consists of nα bound particles and has center of

mass momentum qα.

In the following transformation we invoke a combinatorial identity (we owe the

proof to P. Di Francesco).

Lemma 1. Let f(a, b) be arbitrary complex coefficients and let

D(ξ1, . . . , ξN) =
∑

p∈P

sgn(p)
∏

1≤a<b≤N

(ξp(a) − ξp(b) + f(a, b)) . (3.10)

Then D equals the Vandermonde determinant,

D(ξ1, . . . , ξN) = N !
∏

1≤a<b≤N

(ξa − ξb) . (3.11)

Proof. D is a polynomial of total degree N(N − 1)/2 with leading coefficient

N !
∏

1≤a<b≤N (ξa − ξb). Hence, to prove (3.11) one only has to establish that D is

antisymmetric, since any antisymmetric polynomial is divisible by the Vandermonde

determinant.

It suffices to study the interchange of a specific pair, say ξ1 and ξ2. Let p be some

permutation such that p(c) = 1, p(d) = 2 and c < d. Then the product in (3.10)

decomposes into a factor C(p) independent of ξ1, ξ2 and a second factor as

sgn(p)C(p)(ξ1 − ξ2 + f(c, d))
∏

a<c

(ξp(a) − ξ1 + f(a, c))
∏

a < d
(a 6= c)

(ξp(a) − ξ2 + f(a, d))

×
∏

b > c
(b 6= d)

(ξ1 − ξp(b) + f(c, b))
∏

b>d

(ξ2 − ξp(b) + f(d, b)) . (3.12)
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Let p̃ be the permutation with 1 and 2 interchanged. Then C(p̃) = C(p), sgn(p̃) =

−sgn(p), p̃(c) = 2, p̃(d) = 1 and the decomposition as in (3.12) reads

− sgn(p)C(p)(ξ2 − ξ1 + f(c, d))
∏

a<c

(ξp(a) − ξ2 + f(a, c))
∏

a < d
(a 6= c)

(ξp(a) − ξ1 + f(a, d))

×
∏

b > c
(b 6= d)

(ξ2 − ξp(b) + f(c, b))
∏

b>d

(ξ1 − ξp(b) + f(d, b)) . (3.13)

It is now obvious that the sum of the two terms is antisymmetric in ξ1 and ξ2, and hence

D(ξ1, ξ2, . . . , ξN) = −D(ξ2, ξ1, . . . , ξN).

We first compute ψ
(M)
q,n (0) by taking the limit ε → 0 of xj = εj. Then sgn(xa−xb) =

−1 for all a < b and by Lemma 1

ψ(M)
q,n (0) = C(M)

q,n N !
∏

1≤a<b≤N

(ξa − ξb) . (3.14)

Secondly we have to evaluate (3.9) at xj = X + xσj and to perform the sum over

all “spin” configurations σ = {σ1, ..., σN}, for which purpose we use that (3.9) can be

written more compactly by using the special structure of the complex wave numbers,

see [14], Sect. B.2. We introduce the cluster counting function α : [1, ..., N ] → [1, ...,M ]

by

α(a) = β for n(β−1) < a ≤ n(β) , β = 1, ...,M , (3.15)

and the β-th cluster by

Ωβ(p) = {a |α(p(a)) = β} . (3.16)

Then, working out the derivatives in [14], Eq. (B.28),

ψ(M)
q,n (x1, ..., xN ) = C(M)

q,n

∑

p∈P

′
sgn(p)

∏

1 ≤ a, b ≤ N
α(p(a)) 6= α(p(b))

(qα(p(a)) − qα(p(b)) + iη(xa, xb))

× exp
[

i

M
∑

α=1

qα
∑

c∈Ωα(p)

xc −
1

4

M
∑

α=1

∑

c,c′∈Ωα(p)

|xc − xc′|
]

. (3.17)

Here the sum over permutations is understood modulo permutations inside each cluster,

as indicated by ′, and η is defined by

η(xa, xb) = sgn(xa − xb) +
1

2

(

∑

c ∈ Ωα(p)
c 6= a ∈ Ωα(p)

sgn(xa − xc)−
∑

c ∈ Ωα(p)
c 6= b ∈ Ωα(p)

sgn(xb − xc)
)

. (3.18)

We spread the particle configuration as

xa = X + xσa + εa . (3.19)

Then
∑

σ

(

N
∏

i=1

e−
1
2
[(1−σi)s1+(1+σi)s2]

)

ψ(M)
q,n (X + σ1x+ ε, . . . , X + σNx+Nε)

= C(M)
q,n

∑

σ

∑

p∈P

′
sgn(p)

∏

1 ≤ a, b ≤ N
α(p(a)) 6= α(p(b))

(qα(p(a)) − qα(p(b)) + iη(xa, xb)) e
φ(σ,p) . (3.20)
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The phase φ(σ, p) is given by

φ(σ, p) =

M
∑

α=1

(

− 1
2(s1 + s2)nα + 1

2(s1 − s2)mα(σ, p)

+ iqα(Xnα + xmα(σ, p))− 1
2 |x|(n2

α −mα(σ, p)
2)
)

, (3.21)

where we introduced

mα(σ, p) =
∑

c∈Ωα(p)

σc . (3.22)

Inserting in (3.20) one arrives at

∑

σ

(

N
∏

i=1

e−
1
2
[(1−σi)s1+(1+σi)s2]

)

ψ(M)
q,n (X + σ1x+ ε, . . . , X + σNx+Nε)

= C(M)
q,n

∑

σ

∑

p∈P

′
sgn(p)

∏

1 ≤ a, b ≤ N
α(p(a)) 6= α(p(b))

(qα(p(a)) − qα(p(b)) + iη(σa + εa, σb + εb))

×
M
∏

α=1

∏

c∈Ωα(p)

exp [− 1
2(s1 + s2)nα + 1

2(s1 − s2)mα(σ, p)

+ iqα(Xnα + xmα(σ, p))− 1
2 |x|(n2

α −mα(σ, p)
2)] . (3.23)

Let us shorthand the right hand side of Eq. (3.23) as
∑

σ

∑

p∈P

f1(σ, p)f2(σ, p) . (3.24)

By Lemma 1
∑

p∈P

f1(σ, p) = ψ(M)
q,n (0) (3.25)

not depending on σ and, since f2(σ, p) depends on σ only through the mα(σ, p)’s,

correspondingly
∑

σ

f2(σ, p) = c̃ (3.26)

with c̃ not depending on p. Unfortunately we could not discover any further

simplification. To proceed anyhow a natural step is to factorize (3.23) either with

respect to p or with respect to σ, both leading in approximation to

∑

σ

(

N
∏

i=1

e−
1
2
[(1−σi)s1+(1+σi)s2]

)

(ψ(M)
q,n (X + σ1x+ ε, . . . , X + σNx+Nε)/ψ(M)

q,n (0))

≃
∑

σ

M
∏

α=1

exp [− 1
2(s1 + s2)nα + 1

2(s1 − s2)mα(σ)

+ iqα(Xnα + xmα(σ, p))− 1
2 |x|(n2

α −mα(σ)
2)] , (3.27)

where

mα(σ) =
nα
∑

rα=1

σn(α−1)+rα . (3.28)

For small cluster sizes we checked that (3.27) is indeed not a strict equality.
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4. Two-point generating function

4.1. Linearization and “spin” summation

We linearize the terms quadratic in nα and in mα(σ) in the exponential of (3.27), so to

be able to perform the summation over the σi’s and the nα’s. For this purpose we use

the identity

eau+bv+cuv = ec∂a∂beau+bv , (4.1)

which can be checked by expanding both sides of the equation as a formal power series

in c, and obtain

∑

σ

(

N
∏

i=1

e−
1
2
[(1−σi)s1+(1+σi)s2]

)

ψ(M)
q,n (X + σ1x, . . . , X + σNx)/ψ

(M)
q,n (0)

≃
∑

σ

M
∏

α=1

e−x∂1∂2 exp [− s1
2 (nα −mα(σ))− s2

2 (nα +mα(σ)) + iqα(Xnα + xmα(σ))] .

(4.2)

Here we introduced the convention

∂1 = ∂s1 , ∂2 = ∂s2 , (4.3)

which will be used onwards. We note that the exponential inside the product over α

depends only on the σa with n(α−1) < a ≤ n(α). Thus, the summation over the σa can

be performed independently for each α. Recalling (3.2), we find

∑

σ

M
∏

α=1

e−x∂1∂2 exp [− s1
2 (nα −mα(σ))− s2

2 (nα +mα(σ)) + iqα(Xnα + xmα(σ))]

=
M
∏

α=1

e−x∂1∂2
(

eix1qα−s1 + eix2qα−s2
)nα

. (4.4)

4.2. Fredholm determinant

We now return to the generating function G1 of (3.5), denoting by G♯
1 its approximation

under the factorization assumption (3.27). The eigenfunctions ψ
(M)
q,n are normalized in

such a way that they form an orthonormal basis in the symmetric subspace of L2(RN).

With this normalization, and using (3.14),

|ψ(M)
q,n (0, . . . , 0)|2 = N ! det

(

1
1
2
(nj + nk) + i(qj − qk)

)

j,k=1,...,M

, (4.5)

see Eqs. (B.58) and (34) of [14]. From Eq. (B.29) of [14], the energy E
(M)
q,n of the

eigenstate ψ
(M)
q,n is

E(M)
q,n =

1

2

M
∑

j=1

njq
2
j −

1

24

M
∑

j=1

(n3
j − nj) . (4.6)
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Finally, the properly normalized sum over the eigenstates is given by

∑

r

≡
∞
∑

M=1

1

M !

M
∏

j=1

(

∫ ∞

−∞

dqj
2π

∞
∑

nj=1

)

11n=
∑M

j=1 nj
, (4.7)

see Eqs. (B.53) and (B.60) of [14]. Combining all, we obtain for G♯
1 the following

expression

G♯
1 = 1 +

∞
∑

M=1

1

M !

M
∏

j=1

(

∫ ∞

−∞

dqj
2π

∞
∑

nj=1

)

det

(

1
1
2
(nj + nk) + i(qj − qk)

)

j,k=1,...,M

×
M
∏

j=1

etn
3
j/24e−x∂1∂2 [− e−tq2j /2

(

eix1qj−s1 + eix2qj−s2
)

]nj . (4.8)

We observe that (4.8) can be rewritten as a Fredholm determinant (see Appendix A for

a few basic facts about Fredholm determinants). Indeed, if one introduces the kernel R

as

R(q, n; q′, n′) =
1

2π

etn
3/24e−x∂1∂2 [− e−

t
2
q2
(

eix1q−s1 + eix2q−s2
)

]n

1
2
(n + n′) + i(q − q′)

, (4.9)

then the generating function G♯
1 is given by

G♯
1 = det(11 +R) . (4.10)

More explicitly, it holds

G♯
1 = 1 +

∞
∑

M=1

1

M !

∫ ∞

−∞

dq1 . . .dqM

∞
∑

n1,...,nM=1

det (R(qj , nj; qk, nk))j,k=1,...,M . (4.11)

We perform the summation over the nj’s and the integration over the qj’s. For this

purpose the integrated version for the denominator in (4.9) is used,

1
1
2
(n+ n′) + i(q − q′)

=

∫ ∞

0

dz e−z[ 12 (n+n′)+i(q−q′)] . (4.12)

The operator R can then be written as a product of two operators, R = R1R2,

R(q, n; q′, n′) =

∫ ∞

−∞

dz R1(q, n; z)R2(z; q
′, n′) , (4.13)

with

R1(q, n; z) = 11z>0 e
−iqzetn

3/24e−x∂1∂2 [− e−
1
2
ze−tq2/2

(

eix1q−s1 + eix2q−s2
)

]n , (4.14)

and

R2(z; q
′, n′) = 11z>0

1

2π
e−

1
2
n′zeiq

′z . (4.15)

Using det(11 + R1R2) = det(11 +R2R1), the generating function G♯
1 becomes equal to a

Fredholm determinant of the new operator N ,

G♯
1 = det(11 +N) , (4.16)
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where N = R2R1 with kernel

N(z, z′) =

∫ ∞

−∞

dq

∞
∑

n=1

R2(z; q, n)R1(q, n; z
′) . (4.17)

The variables qj and nj , which were previously the variables corresponding to the

definition of the Fredholm determinant, are now inside the kernel N .

In Appendix C, the summation over n and the integration over q in (4.17) is

performed explicitly. Most of the steps are rather similar to the computations done

in [13, 12, 14] in case of the one-point generating function. Note that on face value the

sum over n is badly divergent. In terms of the parameter α = (t/2)1/3 (equal to 22/3λ

in the notation of [14]) and of the function Φ defined in equation (2.27), the kernel of

N equals

N(z, z′) = −α−1Ñ(α−1z, α−1z) , (4.18)

with

Ñ(z, z′) = 11z,z′>0

∫ ∞

−∞

du e−x∂1∂2e−(2α)−1(x1∂1+x2∂2)(∂z−∂z′)

Φ(αu− s1, αu− s2)Ai(z + u)Ai(u+ z′) . (4.19)

The generating function G♯
1 is now given by

G♯
1 = det(11− Ñ) . (4.20)

We will simplify the kernel Ñ and express it in terms of the Airy Hamiltonian H and

of the Airy operator K.

4.3. Subtraction of the parabolic profile

The following transformations are guided to have the shift by x2/2t manifestly visible in

G♯
1. Using the definition (3.2) of X and x, the expression (4.19) of the kernel Ñ rewrites

as

Ñ(z, z′) = 11z,z′>0 e
−x∂1∂2e

x
2α

(∂1−∂2)(∂z−∂z′)

∫ ∞

−∞

du e−
X
2α

(∂1+∂2)(∂z−∂z′)Φ(αu− s1, αu− s2)Ai(z + u)Ai(u+ z′) . (4.21)

We note that ∂1 + ∂2 in (4.21) can replaced by −α−1∂u, where the derivative ∂u acts

only on Φ(αu − s1, αu − s2) and not on the product of Airy functions. One can then

make ∂u to act only on the product of Airy functions by integrating by parts. Thereby

Ñ(z, z′) = 11z,z′>0 e
−x∂1∂2e

x
2α

(∂1−∂2)(∂z−∂z′)

∫ ∞

−∞

duΦ(αu− s1, αu− s2)e
−(2α2)−1X∂u(∂z−∂z′)Ai(z + u)Ai(u+ z′) . (4.22)

Since the Airy function is a solution of the differential equation Ai′′(u) = uAi(u), we

have

∂u(∂z − ∂z′)Ai(z + u)Ai(u+ z′) = (z − z′)Ai(z + u)Ai(u+ z′) (4.23)
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and hence

ea[∂u(∂z−∂z′)−(z−z′)]Ai(z + u)Ai(u+ z′) = Ai(z + u)Ai(u+ z′) . (4.24)

The commutator of ∂u(∂z − ∂z′) and (z− z′) is equal to 2∂u and it commutes with both

∂u(∂z − ∂z′) and (z − z′). Thus the Baker-Campbell-Hausdorff formula terminates and

e−a∂u(∂z−∂z′ )Ai(z + u)Ai(u+ z′) = e−a(z−z′)ea
2∂uAi(z + u)Ai(u+ z′) . (4.25)

We use this property in the expression of the kernel Ñ , and integrate by parts to make

∂u act again on Φ(αu− s1, αu− s2) with the result

Ñ(z, z′) = 11z,z′>0 e
−x∂1∂2e

x
2α

(∂1−∂2)(∂z−∂z′)

∫ ∞

−∞

du e−(2α2)−1X(z−z′)Ai(z + u)

× Ai(u+ z′)e−(4α4)−1X2∂uΦ(αu− s1, αu− s2) . (4.26)

Using the commutation relation

ea(∂z−∂z′)e−b(z−z′) = e−2abe−b(z−z′)ea(∂z−∂z′) , (4.27)

one obtains

Ñ(z, z′) = 11z,z′>0 e
−(2α2)−1X(z−z′)e−x∂1∂2e

x
2α

(∂1−∂2)(∂z−∂z′)

∫ ∞

−∞

duAi(z + u)

×Ai(u+ z′)e−(2α3)−3Xx(∂1−∂2)e−(4α4)−1X2∂uΦ(αu− s1, αu− s2) . (4.28)

Since ea∂ acts as a shift operator, we arrive at

Ñ(z, z′) = 11z,z′>0 e
−(2α2)−1X(z−z′)e−x∂1∂2e

x
2α

(∂1−∂2)(∂z−∂z′)e−(4α3)−1x2
2(∂1+∂2)

×
∫ ∞

−∞

duAi(z + u)Ai(u+ z′) Φ
(

αu− s1 − 1
2tx

2
1, αu− s2 − 1

2tx
2
2

)

. (4.29)

The factor exp ( − (2α2)−1X(z − z′)) can be eliminated by a similarity transformation

of the kernel, it does not contribute to the Fredholm determinant. We define the shifted

generating function

G♯
2(u, v; x, t) = G♯

1(u− 1
2tx

2
1, v − 1

2tx
2
2; x1, x2, t) . (4.30)

and find that G♯
2 can be written as

G♯
2 = det(11− L) , (4.31)

where the kernel L is given by

L(z, z′) = 11z,z′>0 e
−x∂1∂2e

x
2α

(∂1−∂2)(∂z−∂z′)e−(4α3)−1x2(∂1+∂2)

×
∫ ∞

−∞

duAi(z + u)Ai(u+ z′) Φ (αu− s1, αu− s2) . (4.32)

In this form, the kernel depends only on x (and t), as to be expected from the discussion

in the introduction.
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4.4. Rewriting of the kernel L in terms of the Airy Hamiltonian

The next step is to eliminate the operator ∂1∂2 from the expression (4.32) for the kernel

L, for which purpose one writes

L(z, z′) = 11z,z′>0

∫ ∞

−∞

du e
x
2
(∂2

1+∂2
2)e−

x
2
(∂1+∂2)2e−(4α3)−1x2(∂1+∂2)e

x
2α

(∂1−∂2)(∂z−∂z′)

× Φ(αu− s1, αu− s2)Ai(z + u)Ai(u+ z′) . (4.33)

In this expression, we can replace (∂1 + ∂2)
2 by α−2∂2u, where ∂u acts only on

Φ(αu − s1, αu − s2) and not on the product of Airy functions. Then, integrating by

parts, ∂u acts on the product of Airy functions instead. Thereby

L(z, z′) = 11z,z′>0

∫ ∞

−∞

du e
x
2
(∂2

1+∂2
2)e−(4α3)−1x2(∂1+∂2)e

x
2α

(∂1−∂2)(∂z−∂z′)

× Φ(αu− s1, αu− s2)e
−(2α2)−1x∂2

uAi(z + u)Ai(u+ z′) . (4.34)

But ∂u acting on Ai(z + u)Ai(u + z′) is the same as ∂z + ∂z′. Thus, one can replace

exp( − (2α2)−1x∂2u) by exp( − (2α2)−1x∂u(∂z + ∂z′)). After integrating by parts again,

we replace exp((2α2)−1x∂u(∂z + ∂z′)) by exp(− x
2α
(∂1 + ∂2)(∂z + ∂z′)) and obtain

L(z, z′) = 11z,z′>0

∫ ∞

−∞

du e
x
2
(∂2

1+∂2
2)e−(4α3)−1x2(∂1+∂2)e−

x
α
(∂1∂z′+∂2∂z)

× Φ(αu− s1, αu− s2)Ai(z + u)Ai(u+ z′) . (4.35)

We now introduce a dummy integration to achieve that αu− s1, αu− s2, Ai(z+ u) and

Ai(u+ z′) do not all depend on the same variable u. It holds

L(z, z′) = 11z,z′>0

∫ ∞

−∞

du dv δ(u− v)e
x
2
(∂2

1−
2
α
∂1∂z′)e

x
2
(∂2

2−
2
α
∂2∂z)e−(4α3)−1x2(∂1+∂2)

× Φ(αu− s1, αv − s2)Ai(z + v)Ai(u+ z′) . (4.36)

Note that
[(

∂21 − 2α−1∂1∂z′
)

+ α−2(z′ +Hu)
]

Φ(αu− s1, αv − s2)Ai(z + v)Ai(u+ z′) = 0 , (4.37)

where Hu = −∂2u + u denotes the Airy Hamiltonian acting on the variable u. The

commutation relation

[(∂21 − 2α−1∂1∂z′), α
−2(z′ +Hu)] = −2α−3∂1 (4.38)

together with the Baker-Campbell-Hausdorff formula implies

e
x
2
(∂2

1−
2
α
∂1∂z′ )Φ(αu− s1, αv − s2)Ai(z + v)Ai(u+ z′)

= e−(2α2)−1x(z′+Hu)e(4α
3)−1x2∂1 Φ(αu− s1, αv − s2)Ai(z + v)Ai(u+ z′) . (4.39)

A corresponding relation is obtained by interchanging the roles of z, s1, u and of z′, s2,

v. Using both the kernel L becomes

L(z, z′) = 11z,z′>0

∫ ∞

−∞

du dv δ(u− v)e−(2α2)−1x(z+z′)e−(2α2)−1x(Hu+Hv)

× Φ(αu− s1, αv − s2)Ai(z + v)Ai(u+ z′) . (4.40)



Two-point function of the free energy for a directed polymer 18

A final integration by parts over u and v yields

L(z, z′) = 11z,z′>0

∫ ∞

−∞

du dv 〈u|e−α−2xH |v〉

× Φ(αu− s1, αv − s2)e
−(2α2)−1x(z+z′)Ai(z + v)Ai(u+ z′) . (4.41)

This last expression is an operator product of the form ABA. Hence using the cyclicity

of the determinant one arrives at

G♯
2 = det(11− L) = det(11− L̃) , (4.42)

where

〈u|L̃|v〉 = 〈u|e−α−2xH|v〉Φ(αu− s1, αv − s2)〈u|eα
−2xHK|v〉 . (4.43)

We conclude that L̃ = Q eα
−2|x|HK, as to be shown.

5. Finite time probability density function

The two-point free energy fluctuations can be written as

F (xj, t) =
1

24
t+

1

2t
x2j + ξj(t), j = 1, 2 , (5.1)

with random amplitudes ξj(t). In the factorization approximation, we know already that

ξj(t) = O
(

t1/3
)

. The joint distribution depends only on |x1 − x2|, and nondegenerate

correlations occur for a separation of order t2/3. Following the procedure in [12], we

would like to extract the underlying pdf from the generating function G♯. Let us denote

by ρ♯t(w1, w2) the approximate joint pdf of ξ1(t) and ξ2(t), and write it as the convolution

with two independent Gumbel densities F ′
Gu:

ρ♯t(w1, w2) =

∫ ∞

−∞

dv1 dv2 F
′
Gu(w1 − v1)F

′
Gu(w2 − v2)gt(v1, v2) , (5.2)

where

FGu(w) = exp(−e−w) , (5.3)

compare with the one-point distribution (2.22). Eq. (5.2) defines the yet to be

determined function gt, which is normalized to 1 by construction. From numerical

solutions in the one-point case, we know that gt of (2.23) is in general not everywhere

positive. This implies that gt of (5.2) will not be a pdf, in general.

The generating function G♯
2 reads

G♯
2 =

∫ ∞

−∞

dw1 dw2 ρt(w1, w2) exp(−e−s1−w1 − e−s2−w2) . (5.4)

Inserting (5.2) and performing the integration over w1 and w2 yields

G♯
2 =

∫ ∞

−∞

dv1 dv2 gt(v1, v2)
ev1

ev1 + e−s1

ev2

ev2 + e−s2
. (5.5)
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We analytically continue on both sides from e−sj to −eaj − iσjε, ε > 0, j = 1, 2. From

the identity

lim
ε→0

∑

σ=±1

σev

ev − ea − iσε
= 2iπδ(v − a) , (5.6)

the left side of (5.5) multiplied by σ1σ2 and summed over σ1, σ2 = ±1 yields in the limit

ε→ 0

− 4π2gt(a1, a2) . (5.7)

On the right side of (5.5), using G♯
2 = det(1− L) with L given by (4.41), we obtain the

sum of four Fredholm determinants with operators Lσ1,σ2, σj = ±1. To compute these

kernels, we have to take the limit ε→ 0 of
∫ ∞

−∞

du1 du2 h(u1, u2)
−eαu1+a1 − eαu2+a2 − iε(σ1e

αu1 + σ2e
αu2)

1− eαu1+a1 − eαu2+a2 − iε(σ1eαu1 + σ2eαu2)
, (5.8)

with h general at this stage. Using

1

y − iσε
= P

(1

y

)

+ iσπδ(y) , (5.9)

one obtains

Lσ1,σ2(z, z
′) = 11z,z′>0

∫ ∞

−∞

du dv 〈u|e−α−2xH |v〉e−(2α2)−1x(z+z′)Ai(z + u)Ai(v + z′)

×
(

P
( −eαu1+a1 − eαu2+a2

1− eαu1+a1 − eαu2+a2

)

+ iπsgn(σ1e
αu1 + σ2e

αu2)

× (−eαu1+a1 − eαu2+a2)δ(1− eαu1+a1 − eαu2+a2)
)

, (5.10)

and

gt(a1, a2) = −(2π)−2
∑

σ1,σ2=±1

σ1σ2 det(1− Lσ1,σ2) . (5.11)

In the one-point case, inserting the corresponding analytic continuation in (2.18)

yields a one-dimensional projection. This further simplifies the expression for the pdf,

compare with (2.23). For the two-point case, no further simplification seems to be

available.

6. Conclusions

Recently the probability distribution of the free energy of the point-to-point continuum

directed polymer has been computed exactly, using the approximation through the

weakly asymmetric simple exclusion process [10, 11]. This result could be reproduced

by using replicas and the complete eigenfunction expansion of the propagator of the

attractive δ-Bose gas on the line [12, 13].

In our contribution we studied the joint pdf of F (x1, t), F (x2, t). In this case

the approximation through the weakly asymmetric exclusion process, while still valid,

is no longer computable and we have to rely on the replica method, which yields a
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particular generating function. Invoking a specific factorization, the result is expressed

as a Fredholm determinant. In fact, the corresponding operator has a structure rather

similar to the case of one point, compare (2.17) and (2.29).

Equipped with this information, we established the large time limit of the pdf

yielding a result in agreement with lattice directed polymers at zero temperature. In

1+1 dimensions all models with a short range disorder potential are expected to flow to

the zero temperature fixed point. Our result further supports this claim.

The free energy of the point-to-point continuum directed polymer is isomorphic

to the solution of the KPZ equation with sharp wedge initial data. Thus we have

automatically determined the joint pdf of the heights h(x1, t), h(x2, t) of the KPZ

equation for large times, in particular the height-height correlation function. This

function has been measured recently for droplet growth in a thin film of turbulent liquid

crystal [37]. The experimental curve agrees very well with the theoretical prediction in

the limit t→ ∞.
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Appendix A. Fredholm determinants

Let us first consider the case of a finite n × n matrix A. The Taylor expansion of the

determinant of 11 + zA is given by the von Koch formula [38] in terms of the minors of

A. It holds

det(11 + zA) =

n
∑

m=0

zm

m!

n
∑

i1,...,im=1

det (Aij ,ik)1≤j,k≤m . (A.1)

If the matrix A is now replaced by an integral operator A with kernel A(u, v) = 〈u|A|v〉,
von Koch formula (A.1) formally rewrites as

det(11 + zA) ≡
∞
∑

m=0

zm

m!

∫

du1 . . . dum det (A(uj , uk))1≤j,k≤m . (A.2)

Of course, du could mean a more general summation procedure. In particular, it could

refer to summation over some discrete index and integration over R. (A.2) can be used

as the definition of the Fredholm determinant det(11 + zA). In order for this definition

to make sense, the operator A is required to be trace-class, we refer to [39] for details.

If so, the logarithm of the Fredholm determinant is given by

log det(11 + zA) = tr log(11 + zA)

=

∞
∑

m=1

(−1)m−1zm

m

∫

du1 . . . dumA(u1, u2)A(u2, u3) . . . A(um, u1) . (A.3)
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Another useful identity for Fredholm determinants is the cycle property. If A and B are

Hilbert-Schmidt operators (i.e. trAA∗ <∞ and trBB∗ <∞), then

det(11 + AB) = det(11 +BA) . (A.4)

This property allows to exchange the roles of integrations which are inside the defining

kernel of AB with the integration corresponding to the Fredholm determinant. We

emphasize that the two kernels AB and BA do not necessarily act on the same space.

Numerical evaluations of Fredholm determinants can be performed by discretizing

the integrals in (A.2). Using the von Koch formula (A.1), the evaluation of a Fredholm

determinant is thereby reduced to the computation of the determinant of a finite matrix.

We refer to [38, 40] for an illuminating discussion and precise error estimates.

Appendix B. Airy operator and Airy Hamiltonian

We recall the definition of the Airy Hamiltonian H and of the Airy operator K. We

work in the space of complex-valued square integrable functions L2(R) with the scalar

product

〈f |g〉 =
∫ ∞

−∞

du f(u)∗g(u) . (B.1)

The Airy Hamiltonian H is defined by

H = −(∂u)
2 + u . (B.2)

If necessary, we write H as Hu to indicate the variable on which the Airy operator is

acting. The Airy function is the solution of the differential equation

Ai′′(u) = uAi(u) (B.3)

such that Ai(u) → 0 as u→ ∞. Setting

φz(u) = Ai(u− z) , (B.4)

one notes that φz satisfies the eigenvalue equation

Hφz = zφz . (B.5)

In addition,
∫ ∞

−∞

dzAi(u− z)Ai(u′ − z) = δ(u− u′) . (B.6)

In Dirac notation this completeness relation reads

11 =

∫ ∞

−∞

dz |φz〉〈φz| . (B.7)

Hence the Airy Hamiltonian has the spectral representation

H =

∫ ∞

−∞

dz z |φz〉〈φz| . (B.8)
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The projection to all negative energy states defines the Airy operator

K =

∫ 0

−∞

dz |φz〉〈φz| . (B.9)

In particular, one has K = K∗, K2 = K, and obviously [K,H ] = 0. In position

representation, the Airy kernel writes

〈u|K|v〉 =
∫ ∞

0

dzAi(u+ z)Ai(z + v) =
Ai(u)Ai′(v)− Ai′(u)Ai(v)

u− v
. (B.10)

We also define the projection onto the spatial interval [a,∞) by

Pa =

∫ ∞

a

du |u〉〈u| . (B.11)

The operator PaKPa is trace class for all a > −∞. F2(a) = det(11 − PaKPa) is by

definition the Tracy-Widom distribution [33] corresponding to the Gaussian Unitary

Ensemble of random matrices.

Appendix C. Integration over q and summation over n in the kernel N

We start from the explicit expression

N(z, z′) = 11z,z′>0

∫ ∞

−∞

dq

2π

∞
∑

n=1

eiq(z−z′)etn
3/24e−x∂1∂2

× [− e−
1
2
(z+z′)e−tq2/2

(

eix1q−s1 + eix2q−s2
)

]n . (C.1)

In order to perform the summation over n and the integration over q, we insert the

classical relation

etn
3/24 =

∫ ∞

−∞

duAi(u)e(t/8)
1/3nu . (C.2)

Besides the Airy function there are infinitely many other functions which satisfy (C.2).

One concrete example would be

Ai(u) + sin(πu)e−u2/2 . (C.3)

Our choice is determined by being the only one which provides the correct one-point

result. Using the binomial theorem to expand the term of power n, one obtains

N(z, z′) = 11z,z′>0

∫ ∞

−∞

dq du

2π

∞
∑

n=1

n
∑

k=0

Ai(u)eiq[z−z′+x1k+x2(n−k)]

×
(

n

k

)

(

−e(t/8)
1/3ue−

1
2
(z+z′)e−tq2/2

)n

e−x∂1∂2e−s1k−s2(n−k) . (C.4)

We introduce the parameter α = (t/2)1/3 and perform the change of variable u →
u+ 22/3α2q2 + 2−1/3α−1(z + z′) in the integral. This results in

N(z, z′) = 11z,z′>0

∫ ∞

−∞

dq du

2π

∞
∑

n=1

n
∑

k=0

Ai
(

u+ 22/3α2q2 + 2−1/3α−1(z + z′)
)

× eiq[z−z′+x1k+x2(n−k)]

(

n

k

)

(−1)ne2
−2/3αune−x∂1∂2e−s1k−s2(n−k) . (C.5)
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Using the relation
∫ ∞

−∞

dq

2π
Ai(aq2 + b)eicq

= 2−1/3a−1/2Ai
(

2−2/3
(

b+ a−1/2c
))

Ai
(

2−2/3
(

b− a−1/2c
))

, (C.6)

see [41], the integration over q can be performed. One obtains

N(z, z′) = 11z,z′>0

∫ ∞

−∞

du
∞
∑

n=1

n
∑

k=0

(

n

k

)

(−1)ne2
−2/3αune−x∂1∂2e−s1k−s2(n−k)

× 2−2/3α−1Ai
(

2−2/3u+ α−1z + (2α)−1[x1k + x2(n− k)]
)

×Ai
(

2−2/3u+ α−1z′ − (2α)−1[x1k + x2(n− k)]
)

. (C.7)

We change variables as u → 22/3u, z → αz, and use the relation

f(z + a) = exp[a∂z]f(z) (C.8)

to move n and k out of the Airy functions. In preparation for the summation over n

and k, one finds

αN(αz, αz′) = 11z,z′>0

∫ ∞

−∞

du

∞
∑

n=1

n
∑

k=0

(

n

k

)

(−1)neαune−x∂1∂2e−s1k−s2(n−k)

× e(2α)
−1(x1k+x2(n−k))(∂z−∂z′ )Ai(u+ z)Ai(u+ z′) . (C.9)

Noticing the identity

e(2α)
−1(x1k+x2(n−k))(∂z−∂z′ )e−s1k−s2(n−k) = e−(2α)−1(x2∂2+x1∂1)(∂z−∂z′ )e−s1k−s2(n−k) , (C.10)

the summations over k and n finally yield the expression (4.18), (4.19) for the kernel N

with Φ is defined as in Eq. (2.27).
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