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Some considerations on exponential flights
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In this paper we elucidate the relation between the Boltzmann equation, which governs the evolu-
tion of many random transport phenomena in Physics (such as the propagation of neutrons, or the
migration of chemical and biological species), and the underlying stochastic process, the so-called
exponential flights. After introducing a general framework for d-dimensional setups, we analyze in
detail the case d = 1, 2, 3, and 4. In particular, we derive a number of exact or asymptotic results,
providing a link between the space and time evolution of the transported particles, and the statis-
tics of collisions each particle undergoes in a given bounded or unbounded, as well as scattering or
absorbing domain. Monte Carlo simulations are performed so as to support our findings.

I. INTRODUCTION

Random walks are widely used in Physics so as to
model the features of transport processes where the mi-
grating (possibly massless) particle undergoes a series of
random displacements as the effect of repeated collisions
with the surrounding environment [1–4]. While much
attention has been given to random walks on regular Eu-
clidean lattices, and to the corresponding scaling limits,
less has been comparatively devoted to the case where
the direction of propagation can change continuously at
each collision: for a review, see, e.g., [5]. Such processes,
which have been named random flights, play nonethe-
less a prominent role in the description of, among others,
neutron or photon propagation through matter [6–8], and
chemical and biological species migration [9].

Within the simplest formulation of this model, which
was originally proposed by Pearson (1905) and later ex-
tended by Kluyver (1906) and Rayleigh (1919) [5], it is
assumed that particles perform random displacements
(‘flights’) along straight lines, and that at the end of
each flight (a ‘collision’ with the surrounding medium)
the direction of propagation changes at random.

When the number of transported particles is much
smaller than the number of the particles of the interacting
medium, so that inter-particles collisions can be safely ne-
glected, it is reasonable to assume that the probability of
interacting with the medium is Poissonian. For the case
of neutrons in a nuclear reactor, e.g., the ratio between
the number of transported particles and the number of in-
teracting nuclei in a typical fuel/moderator configuration
is of the order of 10−11, even for high flux reactors [8]. It
follows that flight lengths between subsequent collisions
are exponentially distributed (hence we will call this pro-
cess exponential flights in the following). We assume that
collisions can be either of scattering or absorption type.
At each scattering collision, the flight direction changes
at random, whereas at absorption events the particle dis-
appears and the flight terminates. Each flight can be seen
as a random walk in the phase space of position r and
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direction ω in a d-dimensional setup.
The particle density Ψ(r, ω, t) represents the probabil-

ity density of finding a transported particle at position
r having direction ω at a time t, up to an appropriate
normalization factor. In many applications, the actual
physical observable is the average of the density Ψ(r, ω, t)
over the directions ω, namely

Ψ(r, t) =
1

Ωd

∫

Ψ(r, ω, t)dω, (1)

where Ωd =
∫

dω = 2πd/2/Γ (d/2) is a normalization fac-
tor corresponding to the surface of the unit d-dimensional
sphere and Γ() is the Gamma function [10].
The aim of our work is to investigate some properties

of exponential flights in a generic d-dimensional setup.
This issue has attracted a renovated interest in recent
years, in that many theoretical questions remain without
an answer, despite the deceivingly simple formulation of
the problem; see, e.g., [11–14]. In particular, it has been
emphasized that the dimension d deeply affects the na-
ture of Ψ(r, t) and prevents in some cases from obtaining
explicit results. Here, we will mostly focus on establish-
ing insightful relationships between space, time and the
statistics of particle collisions within a given volume. A
number of new results will be derived, concerning un-
bounded, bounded, scattering as well as absorbing do-
mains.
This paper is structured as follows. In Sec. II we recall

the mathematical formalism, introduce the physical vari-
ables and derive their inter-dependence for any d. Then,
in Sec. III we examine the distinct cases d = 1, 2, 3 and 4
and provide a comparison between analytical (or asymp-
totic) findings and Monte Carlo simulations. The pre-
sented results will concern both the spatial and temporal
evolution of the particle ensemble. Conclusions will be
finally drawn in Sec. IV.

II. GENERAL SETUP

Within the natural framework of statistical mechan-
ics, the evolution of the particle density Ψ(r, ω, t) for
exponential flights is governed by the linear Boltzmann
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FIG. 1: The free propagator Ψ(z|n) in the transformed space.
Left: Ψ(z|1) for increasing values of the dimension, d = 1
(blue), 2 (red), 3 (green), and 4 (black). Right: Ψ(z|n) for
d = 3 and increasing number of collisions, n = 1 (blue), 2
(red), 3 (green), and 10 (black).

equation [8]. Linearity stems from the fact of neglect-
ing inter-particle collisions. In the hypothesis that an
average particle energy can be defined (the so called one-
speed transport), and that the physical properties of the
medium do not depend on position nor time, the Boltz-
mann equation for the density Ψ(r, ω, t) reads [8, 11]

1

v

∂

∂t
Ψ(r, ω, t) + ω · ∇rΨ(r, ω, t) =

= −σtΨ(r, ω, t) + σ

∫

k(ω′, ω)Ψ(r, ω′, t)dω′ +
Q
v
, (2)

where σt is total cross section of the traversed medium
(carrying the units of an inverse length), σ is the scat-
tering cross section, v is the particle speed, and Q is
the source. The total cross section σt is such that 1/σt

represents the average flight length between consecutive
collisions (the so-called mean free path), and is related
to the scattering cross section σ and to the absorption
cross section σa by σt = σ + σa. The quantity k(ω′, ω)
is the scattering kernel, i.e., the probability density that
at each scattering collision the random direction changes
from ω′ to ω.

Denoting by Ψ(r, ω, t) the solution of the Boltzmann
equation (2) for a medium without absorptions (σa = 0),
the complete solution with absorption Ψa(r, ω, t) can be
easily obtained by letting

Ψa(r, ω, t) = Ψ(r, ω, t)e−vσat, (3)

thanks to linearity [11]. This allows primarily addressing
a purely scattering medium (σt = σ), without loss of
generality.

At long times, i.e., far from the source, the direction-
averaged particle density Ψ(r, t) is known to converge to
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FIG. 2: The free propagator Ψ(r|n) for d = 1, with n =
1 (blue), 5 (red), 10 (green), and 50 (black). Monte Carlo
simulation results are displayed as symbols. The solid line
is the theoretical result, Eq. (53). The dashed line is the
diffusion limit, Eq. (16).

a Gaussian shape, namely,

Ψ(r, t) ≃ e−
|r|2

4Dt

(4πDt)d/2
, (4)

the quantity D = v/(dσ) playing the role of a diffusion
coefficient [8]. However, Eq. (4) is approximately valid
for rσ ≫ 1, and can not capture the particle evolution at
early times, nor the finite-speed propagation effects. In-
deed, diffusion implicitly assumes a non-vanishing prob-
ability of finding the particles at arbitrary distance from
the source.
In the following, we outline the relation between Ψ(r, t)

and the underlying exponential flight process.

A. The free propagator without absorptions

Consider a d-dimensional setup. A particle, originally
located at position r0 in a given domain, travels along
straight lines at constant speed v, until it collides with the
medium. The position of a particle at the n-th collision
can be expressed as a random walk rn = r0 +

∑n
i=1 ri,

i.e., a sum of random variables ri. The flight lengths
ℓ = |ri − ri−1| are assumedly identically distributed and
obey an exponential probability density

ϕ(ℓ) = σte
−ℓσt , (5)

with σt > 0.
At each collision, the particle randomly changes its di-

rection according to the scattering kernel k(ω′, ω). For
the sake of simplicity, we assume here that the scattering
is isotropic, so that k(ω′, ω) has a uniform distribution,
independent of the incident direction ω′.
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FIG. 3: The collision density with absorptions Ψa(r) for d =
1, with p = 0.01 (blue), 0.1 (red), 0.5 (green), 0.9 (cyan), and
0.99 (black). Monte Carlo simulation results are displayed in
symbols. The solid lines are the theoretical formula, Eq. (57).

Once a flight length has been sampled from ϕ(ℓ), the
new direction ω is therefore uniformly distributed on the
d-sphere of surface ℓd−1Ωd. Hence, by virtue of the ap-
parent spherical symmetry the transition kernel, i.e., the
probability density of performing a displacement from
ri−1 to ri, depends only on ℓ = |ri − ri−1|, and reads

πd(ℓ) =
ϕ(ℓ)

ℓd−1Ωd
. (6)

We initially neglect absorptions, so that σt = σ: in
one-speed transport, this condition can be either seen
as the particles been scattered, or equivalently being ab-
sorbed and then re-emitted (with the same speed) at each
collision. This latter interpretation would correspond,
e.g., to a criticality condition in multiplicative systems
for neutron transport.
We define then the free propagator Ψ(r|n) as the prob-

ability density of finding a particle at position r at the
n-th collision, for an infinite medium, i.e., in absence of
boundaries. We adopt here the convention that the parti-
cle position and direction refer to the physical properties
before entering the collision; for instance, the index n = 1
refers to uncollided particles, i.e., particles coming from
the source and entering their first collision.
Assuming that all the particles are isotropically emit-

ted at r0 = 0, the particle density Ψ(r|n) must depend
only on the variable r = |r|, because of the spherical sym-
metry. On the basis of the properties exposed above, the
particle propagation as a function of the number of col-
lisions is a Markovian process in the variable rn, where
for each collision i = 1, ..., n the new propagator is given
by the convolution integral

Ψ(r|i) =
∫

πd(|r− r
′|)Ψ(r′|i− 1)dr′, (7)
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FIG. 4: The collision density Ψ(r) with boundaries at r =
R for d = 1, with R = 0.5 (blue), 1 (red), 2 (green), and
4 (black). Monte Carlo simulation results are displayed in
symbols. The solid lines are the theoretical formula, Eq. (60).

with initial condition Ψ(r|0) = δ(r). In particular, by di-
rect integration we immediately get the uncollided prop-
agator

Ψ(r|1) = πd(r). (8)

It is convenient to introduce the d-dimensional Fourier
transform of spherical-symmetrical functions, as in the
subsequent analysis this will allow easier deriving of
the properties of the exponential flights. Denoting by
z the transformed variable with respect to r, for any
spherical-symmetrical function f(r) we have the follow-
ing transform and anti-transform pair f(z) = Fd {f(r)}
and f(r) = F−1

d {f(z)} [5]

f(z) = z1−d/2 (2π)
d/2

∫ +∞

0

rd/2Jd/2−1(zr)f(r)dr

f(r) = r1−d/2 (2π)
−d/2

∫ +∞

0

zd/2Jd/2−1(rz)f(z)dz, (9)

where Jν() is the modified Bessel function of the first
kind, with index ν [10]. It is apparent from Eqs. (9)
that the dimension d of the system plays a fundamental
role, in that it affects both the transition kernel and the
Fourier transform kernel itself.
The convolution integral in Eq. (7) in Fourier space

gives the algebraic relation

Ψ(z|i) = πd(z)Ψ(z|i− 1), (10)

i ≥ 1, with initial condition Ψ(z|0) = 1. By recursion, it
follows that in the transformed space

Ψ(z|n) = πd(z)
n. (11)
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FIG. 5: The free propagator Ψ(r|n) for d = 2, with n =
1 (blue), 5 (red), 10 (green), and 50 (black). Monte Carlo
simulation results are displayed in symbols. The solid line
is the theoretical result, Eq. (65). The dashed line is the
diffusion limit, Eq. (16).

It turns out that the Fourier transform of the transition
kernel πd(z) can be explicitly performed in arbitrary di-
mension, and gives

πd(z) = 2F1

(

1

2
, 1,

d

2
;− z2

σ2

)

, (12)

where 2F1 is the Gauss hypergeometric function [10].
Hence, we finally obtain

Ψ(z|n) =
[

2F1

(

1

2
, 1,

d

2
;− z2

σ2

)]n

. (13)

The quantity πd(z) is positive for d ≥ 1; moreover,
πd(z = 0) = 1, which ensures normalization and posi-
tivity of the propagator. In Fig. 1 we visually represent
the effects of dimension and number of collisions on the
shape of Ψ(z|n). Remark in particular that the spread
of Ψ(z|n) increases with d, for a given n. On the con-
trary, Ψ(z|n) becomes more peaked around the origin
with growing n, for a given d.

Formally, performing the inverse Fourier transform of
Eq. (13) gives the propagator Ψ(r|n) = F−1

d {Ψ(z|n)}
for an arbitrary d-dimensional setup. Actually, in some
cases this task turns out to be non-trivial. Nonetheless,
even in absence of an explicit functional form for the
propagator, information can be extracted by resorting
to the Tauberian theorems. In particular, the expansion
of Ψ(z|n) for z/σ ≪ 1 gives the behavior of Ψ(r|n) for
rσ ≫ 1, i.e., far from the source, in the so-called diffusion

limit [3, 4]; viceversa, the expansion of Ψ(z|n) for z/σ ≫
1 gives the behavior of Ψ(r|n) for rσ ≪ 1, i.e., close to
the source. We recall that 2F1 is defined through the
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FIG. 6: The collision density Ψ(r) with boundaries at r = R

for d = 2, with R = 0.5 (blue), 1 (red), 2 (green), and 4
(black). Monte Carlo simulation results are displayed in sym-
bols. The solid lines are the theoretical formula in Eq. (68).

series [10]

2F1

(

1

2
, 1,

d

2
;− z2

σ2

)

=

∞
∑

k=0

Γ
(

d
2

)

Γ
(

1
2 + k

)

√
πΓ

(

d
2 + k

)

(

i
z

σ

)2k

.

(14)
At the leading order for z/σ → 0 we therefore have

πd(z) ≃ 1− 1

d

( z

σ

)2

+ ... (15)

Observe that Eq. (15) can be viewed as the expansion
of an exponential function. Then, the inverse Fourier
transform gives the Gaussian shape

Ψ(r|n) ≃ e−
r
2

4nD

(4πDn)
d/2

, (16)

which is valid for rσ ≫ 1, D = 1/(dσ2) playing the role of
a diffusion coefficient. This stems from the exponential
flights having finite-variance increments, 〈ℓ2〉 < +∞, so
that their probability density Ψ(r|n) falls in the basin of
attraction of the Central Limit Theorem [3]. Remark the
close analogy between Eqs. (4) and (16): in particular,
D and D differ by a factor σv, which roughly speaking
represents the average number of collisions per unit time.
Moreover, at the leading order for z/σ → ∞ we have

the expansion

πd(z) ≃
√
πΓ

(

d
2

)

Γ
(

d−1
2

)

(σ

z

)

+ (2− d)
(σ

z

)2

+ ..., (17)

where the first term vanishes for d = 1. By inverse
Fourier transforming, we have for rσ ≪ 1

Ψ(r|n) ≃ cn,d1 + cn,d2 (rσ)n−d, (18)
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FIG. 7: The free propagator Ψ(r|n) for d = 3, with n =
1 (blue), 5 (red), 10 (green), and 50 (black). Monte Carlo
simulation results are displayed in symbols. The dashed line is
the diffusion limit, Eq. (77). The solid line is the approximate
propagator, Eq. (73).

when d > 1, and Ψ(r|n) ≃ cn,11 + cn,12 (rσ)2n−1 when

d = 1. Here cn,d1 and cn,d2 are constants depending on n
and d. It can be shown that the divergence at the origin
in Ψ(r|n) due to the Dirac delta source disappears after
n > d collisions for d > 1, and n ≥ 1 for d = 1.

B. Relation between collision number and time

Assume again that σt = σ, i.e., that there are no
absorptions. The free propagator Ψ(r|n) gives informa-
tion on the position of a transported particle at the mo-
ment of entering the n-th scattering collision. The link
between the travelled distance, the flight time and the
number of collisions is provided by the velocity v. In-
deed, once a flight of length ℓ between any two collisions
has been sampled from ϕ(ℓ), the flight time must sat-
isfy tℓ = ti − ti−1 = ℓ/v. Hence, the transition kernel,
i.e., the probability density of performing a displacement
from ri−1 at ti−1 to ri at ti, will be given by

πd(ℓ, tℓ) = πd(ℓ)δ

(

tℓ −
ℓ

v

)

. (19)

It follows that inter-collision times are exponentially dis-
tributed

w(tℓ) =

∫

πd(ℓ, tℓ)Ωdℓ
d−1dℓ =

e−tℓ/τ

τ
, (20)

where τ = 1/(σv) represents the average time between
collisions. Moreover, the number of collisions n each par-
ticle undergoes in a time span t obeys a Poisson distri-
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FIG. 8: The collision density Ψ(r) for d = 3, with increasing
number of summed collisions, N = 102 (blue), 103 (red), 104

(green), and 105 (black). The dashed lines are the asymptotic
limits close (Eq. (82)) and far (Eq. (81)) from the source.

bution, namely,

P(n; t) =

(

t
τ

)n
e−t/τ

n!
. (21)

We define the propagator Ψ(r, t|n) as the probability
density of finding a particle at position r at time t at the
n-th collision. From the Markov property of the process,
at each collision i = 1, ..., n we have

Ψ(r, t|i) =
∫

dr′
∫

dt′πd(|r− r
′|, t− t′)Ψ(r′, t′|i− 1),

(22)
with initial condition Ψ(r, t|0) = δ(r)δ(t/τ) = τQ(r, t).
In particular, by direct integration we immediately get
the uncollided propagator

Ψ(r, t|1) = πd(r, t) = τΨ(r|1)δ
(

t− r

v

)

. (23)

We denote the Laplace transform of a function g(t) by
its argument, i.e.,

g(s) = L{g(t)} =

∫ +∞

0

e−stg(t)dt. (24)

Then, from the double convolution integral in Eq. (22)
we have the algebraic product in the Fourier and Laplace
space

Ψ(z, s|i) = πd(z, s)Ψ(z, s|i− 1), (25)

i ≥ 1, with Ψ(z, s|0) = τ . By recursion, it follows that in
the transformed space we have

Ψ(z, s|n) = τπd(z, s)
n. (26)
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FIG. 9: The collision density Ψ(r) for d = 3, with leakages at
R = 1 (blue), 4 (red), and 10 (green). Monte Carlo simula-
tion results are displayed in symbols. The solid lines are the
asymptotic limits close to and far from the source, as provided
by the method of images.

It turns out that the Fourier and Laplace transform of
the transition kernel πd(z, s) can be explicitly performed
in arbitrary dimension, and gives

πd(z, s) =
2F1

(

1
2 , 1,

d
2 ;− z2

ζ2

)

1 + sτ
, (27)

where ζ(s) = σ(1 + sτ). Hence, we finally obtain

Ψ(z, s|n) = τ





2F1

(

1
2 , 1,

d
2 ;− z2

ζ2

)

1 + sτ





n

. (28)

Moreover, the following relation follows: Ψ(z, s =
0|n) = τΨ(z|n), so that

Ψ(r|n) = 1

τ

∫ +∞

0

Ψ(r, t|n)dt, (29)

i.e., Ψ(r|n) can be intepreted as the time average of
Ψ(r, t|n). Finally, the propagator Ψ(r, t) will be given by
the sum of the contributions Ψ(r, t|n) at each collision,
namely

Ψ(r, t) =

∞
∑

n=1

Ψ(r, t|n). (30)

Taking the Fourier and Laplace transform of Eq. (30),
we then have

Ψ(z, s) =

∞
∑

n=1

Ψ(z, s|n) = τ
πd(z, s)

1− πd(z, s)
, (31)

with Ψ(r, t) = L−1F−1
d {Ψ(z, s)}.
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FIG. 10: The propagator Ψ(r|n) for d = 4, with n = 1 (blue),
3 (red), and 5 (green). Monte Carlo simulation results are dis-
played in symbols. The solid lines are the theoretical formula
in Eq. (91).

C. Absorptions

In presence of absorptions (σa > 0), the propagator
Ψa(r, t) can be obtained from Eq. (3) by integrating over
directions. This relation holds true at each collision, so
that we have

Ψa(r, t|n) = Ψ(r, t|n)e−t/τa , (32)

where τa = 1/(σav). Hence, from Eq. (29), by replacing
σ with σt we get for the propagator Ψa(z|n)

Ψa(z|n) =
1

τt

∫ +∞

0

Ψa(z, t|n)dt =
1

τt
Ψ(z, s =

1

τa
|n),
(33)

where τt = 1/(σtv) represents the average flight time be-
tween any two collisions. Now, observe that from Eq. (28)
we have

Ψ

(

z, s =
1

τa
|n
)

= τΨ

(

z
σ

σt
|n
)(

σ

σt

)n

, (34)

where the quantity p = σ/σt, 0 < p < 1, can be inter-
preted as the the probability of being scattered, i.e., not
being absorbed, at any given collision. Then, by remark-
ing that τ/τt = 1/p, it follows that

Ψa(z|n) = Ψ (pz|n) pn−1. (35)

The propagator in Eq. (35) is then given by the prod-
uct of the free propagator, with the total cross section σt

replacing the scattering cross section σ, times the prob-
ability of having survived up to entering the n-th colli-
sion. Remark that the total cross section and the non-
absorption probability are related by σ = pσt. When
the absorption length is infinite, σa → 0, p → 1 and
we recover the free propagator for pure scattering, with
σt = σ.
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FIG. 11: The collision density Ψ(r) for d = 4, with increasing
number of summed collisions, N = 102 (blue), 103 (red), 104

(green), and 105 (black). The solid lines are the theoretical
formula in Eq. (94).

D. Boundary conditions

So far, we have assumed that the medium where par-
ticles are transported has an infinite extension, hence
the name free propagator. More realistically, we might
consider finite-extension media with volume V enclosing
the source, so that boundary conditions come into play
and affect the nature of the propagator. Several bound-
ary conditions can be conceived according to the spe-
cific physical system, among which the most common
are reflecting and leakage. Here we will focus on leak-
age boundary conditions, where particles are considered
lost as soon as their trajectory has traversed the outer
boundary ∂V of the domain. While the volume V is in
principle totally arbitrary, in the subsequent calculations
for the sake of convenience we will assume that V = V(R)
is a sphere of radius R centered in r0 = 0.

From the point of view of the propagator, leakages
can be taken into account by assuming that the popu-
lation density Ψ(r|n) at any n vanishes at the so-called
extrapolation length re, i.e., Ψ(r = re|n) = 0 [6–8].
Because trajectory do not terminate at the boundary,
but rather at the first collision occurred outside the vol-
ume, the extrapolation length is expected to be larger
than the physical boundary of V(R) and can be deter-
mined from solving the so-called Milne’s problem associ-
ated to the volume [16, 17]. In general, re is of the kind
re = R [1 + ud/(Rσ)], the dimensionless constant ud > 0
depending on the dimension of the system [16]. When the
scattering length is much smaller than the typical size of
the volume, i.e., σR ≫ 1, the extrapolation length coin-
cides with the physical boundary, re → R. This means
that the inter-collision length is so small as compared to
the total travelled distance that the first collision out-

10
−2

10
−1

10
0

10
1

10
−4

10
−2

10
0

10
2

10
4

10
6

r

Ψ
R
(r

)

FIG. 12: The collision density Ψ(r) for d = 4, with leakages
at R = 1 (blue), 4 (red), and 10 (green). Monte Carlo sim-
ulation results are displayed in symbols. The solid lines are
the theoretical results from the method of images.

side the domain will actually be very close to the last
collision inside the domain, which corresponds to Ψ(r|n)
vanishing at R [3, 8].

E. Spatial moments of the propagator

The moments of the propagator provide an estimate
of the spatial evolution of the particles ensemble, as a
function of the number of collisions or time. Due to the
supposed spherical symmetry, we expect all the odd mo-
ments to vanish. We define the m-th moment of f(r)
over the spherical shell rd−1Ωddr as

〈rm〉 = Ωd

∫ +∞

0

rm+d−1f(r)dr. (36)

Performing the integral in Eq. (36) would require explic-
itly knowing f(r). However, as shown in the Appendix A,
the m-th spatial moment f(r) of can be expressed as a
function of the m-th derivative of f(z) with respect to z

〈rm〉 =
√
πΓ

(

d+m
2

)

Γ
(

d
2

)

Γ
(

1+m
2

)

∂m

∂(iz)m
[f(z)]z=0 (37)

when m is even, and 〈rm〉 = 0 otherwise. By setting
f(z) = Ψ(pz|n)pn−1 in Eq. (37) we then have 〈rm〉(n) as
a function of the number of collisions. Analogously, by
setting f(z) = Ψa(z, s) = Ψ(z, s+ 1/τa) we get 〈rm〉(s),
which gives the evolution as a function of time, upon in-
verse Laplace transforming. In particular, for the spread
m = 2 of the propagator with absorptions we get

〈r2〉(n) = 2

σ2
t

pn−1n, (38)
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and

〈r2〉(t) = 2

σ2

[

e−t/τ − 1 +
t

τ

]

e−t/τa. (39)

In absence of absorptions, τa → ∞ and p → 1, the par-
ticle spread 〈r2〉(n) is linear with respect to n. On the
contrary, 〈r2〉(t) has a ballistic behavior (∝ t2) at earlier
times (where transport is dominated by velocity), and a
diffusive behavior (∝ t) at later times (where transport
is dominated by scattering). The transition between the
two regimes is imposed by the time scale τ . A remark-
able feature is that in either case the spread does not
explicitly depend on the dimension d. Intuitively, this
can be understood by considering that (independently of
the dimension d of the embedding setup) the vectors ri
and ri+1 define a plane with random orientation, so that
space is explored by plane surfaces at each collision. This
is in analogy, e.g., with the beahvior of d-dimensional
Brownian Motion [3].

F. Collision density

In many physical problems, one is interested in assess-
ing the statistics of the time tV or the collision number nV
spent inside a given domain V . In Reactor Physics, for
instance, the average number of neutron collisions within
a region would be related to such issues as the nuclear
heating or nuclear damage in fissile as well as structural
materials [6, 7]. We introduce the collision density Ψ(r),
which is defined as

Ψ(r) = lim
N→∞

N
∑

n=1

Ψ(r|n). (40)

From Eq. (30), it follows that Ψ(r) can be equivalently
obtained from the propagator Ψ(r, t) as

Ψ(r) = lim
T→∞

1

τ

∫ T

0

Ψ(r, t)dt. (41)

For an infinite ‘observation time’ T , the m-th moments
of the residence time tV within V can be expressed in
terms of the collision density Ψ(r) in the same domain
by slightly adapting an argument due to Kac [18]

〈tmV 〉
τm

= m!

∫

V
drm...

∫

V
dr1Ψ(rm)...Ψ(r1), (42)

where ri = |ri − ri−1|. From Eq. (42) it is then apparent
that performing repeated integrals of the collision density
Ψ(r) allows computing all the moments 〈tmV 〉, which in
turn allows reconstructing the full distribution Q(tV) of
the residence time within the domain.
Moreover, by virtue of the counting statistics of

Eq. (21), we are able to characterize the moments of the
collision number nV within V in terms of the associated

〈tmV 〉. Indeed, we have

〈nm
V 〉tV =

+∞
∑

n=1

nmP(n; tV), (43)

which depends on the stochastic realizations of the res-
idence times tV . Now, by taking the average of 〈nm

V 〉tV
with respect to Q(tV), we obtain

〈nm
V 〉 = 〈〈nm

V 〉tV 〉 = 〈Bm

[

tV
τ

]

〉. (44)

Here Bm[x] =
∑m

k=1 Sm,kx
k are Bell polynomials, whose

coefficients are given by the Stirling numbers of second
kind

Sm,k =
1

k!

k
∑

i=0

(−1)i
(

k

i

)

(k − i)m . (45)

These quantities commonly arise in computing the mo-
ments of Poisson distributions [10]. Thanks to linearity,
Eq. (44) allows expressing 〈nm

V 〉 as a combination of m
moments 〈tkV〉, k = 1, ...,m, each given from Eq. (42).
In particular, since S1,1 = 1, we have that

〈n1
V〉 =

〈tV〉
τ

=

∫

V
dr1Ψ(r1), (46)

i.e., the integral of the collision density over a volume
V gives the mean number of collisions within that do-
main, hence the name given to Ψ(r). Furthermore,
S2,1 = S2,2 = 1, so that

〈n2
V〉 =

〈t2V〉
τ2

+
〈tV〉
τ

=

∫

V
dr2

∫

V
dr1Ψ(r2)Ψ(r1) + 〈n1

V〉.
(47)

Remark that both 〈tmV 〉 and 〈nm
V 〉 depend on the

boundary conditions imposed on ∂V , which in turn affect
the functional form of the propagator, and then Ψ(r). Us-
ing a free propagator corresponds to defining a fictitious
volume V , whose boundaries ∂V are ‘transparent’, so that
particles can indefinitely cross ∂V back an forth. On the
contrary, the use of leakage boundary conditions leads
to the formulation of first-passage problems, i.e., deter-
mining the distribution of the time, or collision number,
required to first reach the boundary [15].
The previous discussion shows that Ψ(r) is key in de-

termining residence times and collisions statistics. After
formally carrying out the summation in Eq. (40), we have
Ψ(z) = πd(z)/[1− πd(z)], so that Ψ(r) for a free propa-
gator in absence of absorptions is defined in terms of the
following Fourier integral

Ψ(r) =
r1−d/2

(2π)
d/2

∫ +∞

0

zd/2Jd/2−1(rz)
πd(z)

1 − πd(z)
dz, (48)

whose convergence depends on the dimension d of the sys-
tem. It turns out that convergence is ensured for d > 2,
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which means that for 1d and 2d finite-size domains with
transparent boundaries 〈n1

V〉 and 〈t1V〉 diverge asN → ∞.
This result is in analogy with Pólya’s theorem, which
states that random walks on Euclidean lattices are re-
current for d ≤ 2 [3]. As shown in the following, we can
nonetheless provide an estimate of such divergence as a
function of N , i.e., single out a singular term from a func-
tional form. For finite domains with leakage boundary
conditions and/or absorptions (σa > 0), Ψ(r) is defined
also for 1d and 2d systems. For d > 2, Tauberian the-
orems show that the asymptotic behavior of Eq. 48 is
given by

Ψ(r) ≃ Γ
(

d
2

)

2πd/2
(rσ)2−d (49)

for large r, and

Ψ(r) ≃ Γ
(

d
2

)

2πd/2
(rσ)1−d (50)

close to the source.

III. ANALYSIS OF d-DIMENSIONAL SETUPS

In the following, we detail the results pertaining to
specific values of d. We choose 1/σt as length scale and
we work with dimensionless spatial variables r = rσt.
Remark that in absence of absorptions the length scale
is 1/σ, since p = 1.

A. One-dimensional setup, d = 1

The case d = 1 allows illustrating the general structure
of the calculations. The transition kernel is

π1(ℓ) =
e−ℓ

2
, (51)

whose Fourier transform is

π1(z) =
1

1 + z2
. (52)

Starting from Ψ(z, 0) = 1, the free propagator Ψ(r|n) can
be explicitly obtained by performing the inverse Fourier
transform of Ψ(z|n) = π1(z)

n, and reads

Ψ(r|n) =
2

1
2
−nr−

1
2
+nK− 1

2
+n (r)√

πΓ (n)
, (53)

where Kν() is the modified Bessel function of the sec-
ond kind, with index ν [10]. The same formula has
been recently derived, e.g., in [14] as a particular case
of a broader class of random flights. In Fig. 2 we pro-
vide a comparison between Monte Carlo simulation re-
sults (symbols), the analytical formula Eq. (53) (solid
lines), and the diffusion limit, Eq. (16) (dashed lines),

for different values of n. Remark in particular that the
diffusion limit is not accurate for small n, and becomes
progressively closer to the exact result for increasing n,
as expected. At intermediate n, the tails of the propa-
gator (53) are always fatter than those predicted by the
diffusion approximation.
In a 1d setup, the collision density Ψ(r) for the free

propagator diverges. Nonetheless, it is possible to single
out the divergence as follows

Ψ(z) = lim
N→∞

N
∑

n=1

Ψ(z|n) = lim
N→∞

1−
(

1 + z2
)−N

z2
. (54)

For fixed N , the inverse transform can be explicitly per-
formed in terms of hypergeometric functions. Retaining
the non-vanishing terms for large N , we have

Ψ(r) ≃ Γ
(

1
2 +N

)

Γ (N)
√
π

− r

2
≃

√
N√
π

− r

2
, (55)

which is composed of a term diverging with
√
N (not

depending on r), and a functional part which is linear in
r (not depending on N).
For the propagator with absorptions, from Eq. (35) we

have

Ψa(z) = lim
N→∞

N
∑

n=1

Ψ(z|n) pn−1 =
1

1− p+ z2
. (56)

Then, performing the inverse Fourier transform, we get

Ψa(r) =
e−

√
1−pr

2
√
1− p

. (57)

Remark that Eq. (57) has been derived, e.g., in [19] by
solving the stationary Boltzmann equation in 1d. In
Fig. 3 we compare Monte Carlo simulation results (sym-
bols) with Eq. (57) (solid line). When p → 0, the parti-
cles are almost surely absorbed at the first collision, and
we have the expansion

Ψa(r) ≃
e−r

2

(

1 +
p

2
+

pr

2

)

+ ..., (58)

so that at the first order the collision density has the
same functional form as the uncollided propagator. At
the opposite, when p → 1 the particles are almost surely
always scattered (σt → σ), and we have the expansion

Ψa(r) ≃
1

2
√
1− p

− r

2
+ ..., (59)

and Ψa(r) diverges as the collision density associated to
the free propagator, as expected.
The case of leakage boundary conditions can be dealt

with by imposing that the propagator Ψ(r|n) must vanish
for any n at the extrapolated boundary re. For d = 1,
the extrapolated length is given by re = R [1 + ud/R]
with u1 = 1 [16], i.e., the propagator must vanish at one
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scattering length outside the physical border R of the do-
main. By resorting to the method of images [3], which
allows solving for the propagator in presence of bound-
aries in terms of the propagator in absence of boundaries,
we therefore have for the collision density

ΨR(r) =
re − r

2
, (60)

for r ≤ R, and Ψ(r) = 0 elsewhere. In Fig. 4 we compare
the Monte Carlo simulation results with the theoretical
formula in Eq. (60).
The moments of the number of collisions within a

sphere of radius R can be explicitly computed based on
Eq. (44). The moments associated to the free propaga-
tor clearly diverge. Here we separately analyze the prop-
agator with absorption (in an infinite domain) and the
propagator with leakages at the boundary r = re ≥ R
(without absorptions). For the case of absorptions, the
average number of collisions within a (fictitious) sphere
of radius R reads

〈n1
R〉 =

1− e−
√
1−pR

1− p
, (61)

assuming that particles can cross the boundaries of the
sphere an infinite number of times. When the radius of
the sphere is large as compared to the typical particle
displacement, we have 〈n1

R〉 ≃ 1/(1 − p), which gives
〈n1

R〉 ≃ 1 when p → 0, and diverges for p → 1. For the
case of leakages, the average number of collisions reads

〈n1
R〉 =

R (2re −R)

2
. (62)

When the radius of the sphere is large as compared to
the typical particle displacement, re → R, and we have
〈n1

R〉 ≃ R2/2.

B. Two-dimensional setup, d = 2

The case d = 2 has a key interest in assessing, e.g.,
the dynamics of chemical and biological species on sur-
faces [9]. The transition kernel reads

π2(ℓ) =
e−ℓ

2πℓ
, (63)

whose Fourier transform is

π2(z) =
1√

1 + z2
. (64)

Starting from Ψ(z, 0) = 1, the free propagator Ψ(r|n) can
be explicitly obtained by performing the inverse Fourier
transform of Ψ(z|n) = π2(z)

n, and reads

Ψ(r|n) =
2−

n

2 r−1+ n

2 K−1+n

2
(r)

πΓ
(

n
2

) . (65)

This result was previously established by [21], and more
recently has appeared, e.g., in [14, 22]. In Fig. 5 we
compare the Monte Carlo simulation results (symbols)
with the theoretical formula in Eq. 65, for different values
of n. The diffusion limit, Eq. 16 is also shown in dashed
lines. Remark that the diffusion limit is not accurate for
small n, and becomes progressively closer to the exact
result for increasing n. At intermediate n, the tails of the
propagator (65) are always fatter than those predicted by
the diffusion approximation.

In a 2d setup, the collision density Ψ(r) diverges.
Nonetheless, analogously as done for the 1d case, it is
possible to single out the divergence as follows

Ψ(z) = lim
N→∞

N
∑

n=1

Ψ(z|n) = lim
N→∞

1−
(

1 + z2
)−N/2

√
1 + z2 − 1

.

(66)
For fixed N , the inverse transform can be explicitly per-
formed. Details of the rather cumbersome calculations
are left to the Appendix B. Retaining the non-vanishing
terms for large N , we have

Ψ(r) ≃ log (N)

2π
+

e−r

2πr
+

Ei (−r) − 2 log (r)

2π
, (67)

where Ei is the exponential integral function [10]. To
the authors’ best knowledge, the formula for the colli-
sion density Ψ(r) has not appeared before, and might
then provide a useful tool for describing the migration of
species on 2d environments. Similarly as in the 1d case,
Ψ(r) is composed of a term diverging with logN (not de-
pending on r), and a functional part in r (not depending
on N). In deriving Eq. (67) we have neglected a con-
stant term which is small compared to log(N), namely,
[log(2)−γ/2]/π, where γ ≃ 0.57721 is the Euler’s gamma
constant [10].

The collision density with leakages at r = re can be
obtained again by the method of images, whence

ΨR(r) =
e−r

2πr
− e−re

2πre
+

Ei (−r)− Ei (−re)− 2 log
(

r
re

)

2π
,

(68)
where re = R [1 + u2/R] and the Milne’s constant u2 ≃
1− 2/π2 [16].

The moments associated to the free propagator clearly
diverge. For the propagator with leakages at the bound-
ary r = re ≥ R the average number of collisions within a
sphere of radius R reads

〈n1
R〉 =

1− e−R +Re−R +R2 − R2e−re

re

2
+

+
R2Ei (−R)−R2Ei (−re)− 2R2 log( R

re
)

2
. (69)

When R ≫ 1, we have re ≃ R, and we get 〈n1
R〉 ≃

(1 +R2)/2 in the diffusion limit.
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As for the collision density with absorptions, calcula-
tions analogous to the 1d case lead to

Ψa(r) =
pK0

(

r
√

1− p2
)

π
+

1

2π

∫ +∞

0

zJ0 (rz)√
1 + z2 + p

dz.

(70)
We could not find an explicit expression for the latter
integral in terms of elementary functions. However, the
limits for small and large scattering probability can be
easily obtained, and read

Ψa(r) ≃
e−r

2πr
+

pK0 (r)

π
, (71)

when p → 0, and

Ψa(r) ≃
log

(

1
1−p

)

2π
+

e−r

2πr
+

Ei (−r)− 2 log(r)

2π
, (72)

when p → 1, respectively. The former expression gives
the uncollided propagator at the leading order, whereas
the latter diverges logarithmically as p → 1.

C. Three-dimensional setup, d = 3

The case d = 3 plays a prominent role, among others,
in Reactor Physics, in that it concerns the transport of
neutrons and photons through matter [6–8]. On the basis
of the strikingly similar form of Eqs. (53) and (65), it
would be tempting to postulate an analogous expression
for the propagator in 3d. For d = 1 we have indeed
the functional form Ψ(r|n) ∝ r−1/2+nK−1/2+n(r), and

for d = 2 Ψ(r|n) ∝ r−1+n/2K−1+n/2(r). Then we could
conjecture an exponent −d/2 + n/d, so that

Ψ∗(r|n) = r−1/2+nK−1/2+n(r)

2
1
2
+n

3 π
3
2Γ

(

n
3

) , (73)

by imposing normalization. Unfortunately, this is not the
case, and Ψ∗(r|n) is not the true 3d propagator. Actu-
ally, few explicit results can be derived, and much of the
analysis is therefore devoted to the asymptotic behavior.
The transition kernel reads

π3(ℓ) =
e−ℓ

4πℓ2
, (74)

whose Fourier transform is

π3(z) =
arctan (z)

z
. (75)

The propagator Ψ(r|n) with initial condition Ψ(z, 0) = 1
involves then the following integral

Ψ(r|n) = 1

2π2r

∫ +∞

0

z sin (rz)

[

arctan (z)

z

]n

dz, (76)

which can not be carried out explicitly for arbitrary n.
In the diffusion limit z ≪ 1 we have [arctan(z)/z]n ≃
1− nz2/3, so that

Ψ(r|n) ≃ 3
√
3e−

3r2

4n

8n3/2π3/2
, (77)

as expected from Eq. (16). In Fig. 7 we compare the
Monte Carlo simulation results (symbols) with the diffu-
sion limit, Eq. (77) (dashed lines), and with the approx-
imate propagator, Eq. (73) (solid lines). Remark that
Eq. (73) provides a fairly accurate approximation of the
simulation results, except close to the source.
After carrying out the sum over n, the collision density

Ψ(r) is given by the following integral

Ψ(r) =
1

2π2r

∫ +∞

0

z sin (rz)
arctan (z)

z − arctan (z)
dz, (78)

which again can not be performed explicitly. As be-
fore, we consider then the asymptotic behavior. Denoting
h(z) = arctan(z)/[z − arctan(z)], we have

h(z) ≃ 3

z2
+

4

5
− 36

175
z2 + ... (79)

in the diffusion limit z ≪ 1, and

h(z) ≃ π

2z
+

(

π2 − 4

4z2

)

+

(

π3 − 8π

8z3

)

+ ... (80)

close to the source. Similar expansions appear, e.g.,
in [20], as derived from the analysis of the Boltzmann
equation. Correspondingly, by performing the respective
integrations we have

Ψ(r) ≃ 3

4πr
(81)

for r ≫ 1, i.e., far from the source, and

Ψ(r) ≃ 1

4πr2
+

(

π2 − 4

16πr

)

+

(

8− π2

16π

)

[log (r) + γ − 1]+...

(82)
for r ≪ 1, i.e., close to the source. Remark that for
d = 3 Ψ(r) does not diverge even for infinite domains
without absorptions. In Fig. 8 we compare the Monte
Carlo simulation results (symbols) with the asymptotic
limits close to and far from the source, Eqs. (82) and (81),
respectively (dashed lines). The simulation results pro-
gressively approach the asymptotic limits as the number
N of summed collisions increases.
Eqs. (82) and (81) can provide asymptotic estimates

for the collision density with leakages at the boundary
r = R. By the method of images, we have that the col-
lision density with boundaries is ΨR(r) = Ψ(r) − Ψ(re),
with re = R [1 + u3/R] and u3 ≃ 0.7104 [17]. In Fig. 9
we compare the Monte Carlo simulation results (sym-
bols) with the prediction of the method of images (solid
lines): an excellent agreement is found.
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The moments of the number of collisions within a
sphere of radius R can be explicitly computed based on
Eq. (44) for the free propagator Ψ(r|n), i.e., when parti-
cles can freely cross the surface of the sphere. We have

〈n1
R〉 ≃

3

2
R2 (83)

when R ≫ 1, and

〈n1
R〉 ≃ R+

π2 − 4

8
R2 (84)

for R ≪ 1. Moreover, for leakage boundary conditions
at the surface, from ΨR(r|n) we have

〈n1
R〉 ≃

R2

re

(

3

2
re −R

)

(85)

when R ≫ 1, and

〈n1
R〉 ≃ R+R2π

2 − 4

8
+

R2

r2e

re(4− π2)− 4

12
(86)

for R ≪ 1.

D. Four-dimensional setup, d = 4

The case d = 4 is briefly presented here for the sake of
completeness. The transition kernel reads

π4(ℓ) =
e−ℓ

2π2ℓ3
, (87)

whose Fourier transform is

π4(z) =
2

1 +
√
1 + z2

. (88)

We could not find an explicit representation for the in-
verse Fourier transform of Ψ(z|n) = π4(z)

n. Nonetheless,
the propagator Ψ(r, t|n) is known and reads

Ψ(r, t|n) = n

Γ (n− 1)

e−vt

π2(vt)1+n

[

(vt)2 − r2
]n−2

(89)

for vt ≥ r [11]. Hence, it follows that the propagator
Ψ(r|n) =

∫

Ψ(r, t|n)dt/τ can be obtained from solving
the integral

Ψ(r|n) = n

π2Γ (n− 1)

∫ +∞

r

e−zz−1−n
(

z2 − r2
)n−2

dz.

(90)
This integral can be performed, and gives

Ψ(r|n) = 1

24π3/2
[A+B + C] , (91)

where

A = −n2n Γ(2−n)

Γ( 5−n

2 )Γ( 6−n

2 ) 1F2

(

2− n, 5−n
2 , 6−n

2 ; r2

4

)

,

B = −24rn−4 Γ( 2−n

2 )
Γ( 1

2 )Γ(
−2+n

2 ) 1F2

(

−n
2 ,

1
2 ,

−2+n
2 ; r

2

4

)

,

C = 22nrn−3 Γ( 1−n

2 )
Γ( 3

2 )Γ(
n−1

2 ) 1F2

(

1−n
2 , 3

2 ,
−1+n

2 ; r2

4

)

,(92)

1F2() being an hypergeometric function [10]. In Fig. 10
we compare the Monte Carlo simulation results (symbols)
with the formula in Eq. (91) (solid lines).
As for the collision density Ψ(r), we have

Ψ(r) =
1

2π2r

∫ +∞

0

J1(rz)
(

1 +
√

1 + z2
)

dz, (93)

which can be computed explicitly and gives

Ψ(r) =
e−r

2π2r3
+

1

π2r2
. (94)

In Fig. 11 we provide a comparison between Monte Carlo
simulation results (symbols) and the theoretical formula
in Eq. (94) (solid line). The simulation results progres-
sively approach the functional form of Eq. (94) as the
number N of summed collisions increases.
Finally, the collision density in presence of leakages at

the boundary r = R can be obtained by resorting to the
method of images, whence ΨR(r) = Ψ(r) − Ψ(re), with
re = R [1 + u4/R]. The constant u4 has been estimated
by running a Monte Carlo simulation and determining
the extrapolation length, and reads u4 ≃ 0.5. In Fig. 12
we compare the Monte Carlo simulation results (symbols)
and the prediction of the method of images (solid lines).
An excellent agreement is found.
The moments of the number of collisions within a

sphere of radius R can be explicitly computed based on
Eq. (44) for the free propagator Ψ(r|n), namely,

〈n1
R〉 = 1 +R2 − e−R. (95)

Moreover, for leakage boundary conditions at the surface,
from ΨR(r|n) we have

〈n1
R〉 = 1 +R2 − e−R − R4e−re

4r3e
− R4

2r2e
. (96)

IV. CONCLUSIONS

In this paper, we have examined the dynamics of ex-
ponential flights and their relation with the linear Boltz-
mann equation, a subject that arises in many areas of
Physics or Biology. In particular, we have focused on
i) the propagator Ψ(r, n), which describes the ensemble
evolution of the transported particles as a function of the
number of collisions, and ii) the collision density Ψ(r),
which is related to the particle equilibrium distribution.
Moreover, the connection between the number of colli-
sions and time has been examined.
We have provided the framework for a generic d-

dimensional setup, which allows emphasizing the key role
of d in determining the properties of Ψ(r, n) and Ψ(r). In
this context, we have shown that knowledge of Ψ(r) for-
mally allows deriving the moments of the residence times
and number of collisions within a given volume. The role
of boundary conditions has been explored by considering
leakages from a given domain.
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We have then provided specific results for d = 1, 2, 3
and 4 for infinite as well as bounded domains, and for
absorbing or purely scattering media. A number of new
results have been derived. The case d = 1 has been con-
sidered as a prototype model of exponential flights along
a straight line, where only two directions (forward or
backward) are possible. Due to this simplification, most
quantities can be explicitly derived. The case d = 2 could
provide a realistic description of migration on a surface,
and has been analyzed in detail: despite the calculations
being non trivial, in some cases explicit analytical results
can be obtained. In particular, we have provided an ex-
pression for the collision density, which, coupled with the
method of images, may be useful for describing the spread
of chemical and biological species on unbounded as well
as bounded surfaces. The case d = 3 is key in most real-
world applications, such as the propagation of neutrons
or photons in matter. Unfortunately, this case turns out
to be hardly amenable to closed-form analytical formu-
las, and most results concern the asymptotic behavior of
the particles, either close to or far from the source. Fi-
nally, the case d = 4 has been considered for the sake of
completeness. In all such cases, Monte Carlo simulations
have been performed so as to validate the proposed re-
sults and support the analysis of the asymtotic behavior.
A good agreement is found between theoretical predic-
tions and numerical simulations.
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Appendix A: Spatial moments

We begin by computing the m-th coefficient of the
Taylor expansion of z1−d/2Jd/2−1(rz) with respect to z,
which reads

1

m!

∂m

∂zm

[

z1−d/2Jd/2−1(rz)
]

z=0
=

im
(

r
2

)
d

2
+m−1

Γ
(

1 + m
2

)

Γ
(

d+m
2

) ,

(A1)
for even m, and zero otherwise. Apply now the m-th
derivative to a function f(z) such that f(r) has a spher-
ical symmetry. Recalling then the definition of the mo-
ment 〈rm〉 from Eq. (36), we have

1

m!

∂m

∂zm
[f(z)]z=0 =

im21−
d

2
−m(2π)

d

2

Γ
(

1 + m
2

)

Γ
(

d+m
2

)

〈rm〉
Ωd

. (A2)

Rearranging the coefficients, we can finally express the
spatial moments of f(r) in terms of the m-th z-derivative
of f(z), namely,

〈rm〉 =
√
πΓ

(

d+m
2

)

Γ
(

d
2

)

Γ
(

1+m
2

)

∂m

∂(iz)m
[f(z)]z=0 . (A3)

Appendix B: Collision density for d = 2

In order to find the collision density associated to the
free propagator, we begin by decomposing the sum over
the collisions n into even and odd index, i.e.,

Ψ(r) = lim
N→∞

[

∑

n even

Ψ(r|n) +
∑

n odd

Ψ(r|n)
]

. (B1)

Then, by remarking that for even n

Ψeven(z) =
∑

n even

Ψ(z|n) = 1−
(

1 + z2
)−N

z2
, (B2)

we get

Ψeven(r) ≃
log(

√
N)− log(r)

2π
(B3)

for large N . We have neglected a constant term of the
kind [log(2) − γ/2]/(2π), which is small compared to
log(N).
For odd n, we can use the series representation

Ψ(r|nodd) =
∑

k even

2−2−kΓ(2−n

2 )Γ(−1+n

2 )
πΓ(1+ k

2 )Γ(2+
k

2
−n

2 )Γ(
n

2 )
rk +

∑

(n−k) even
k≥n−2

2−2−kΓ(2−n

2 )
πΓ(1+ k

2 )Γ(2+
k

2
−n

2 )
rk. (B4)

Now, carrying out the double sum over odd n and over
k, from Eq. (B4) we get

Ψodd(r) ≃
log(

√
N) + e−r

r + Ei (−r)− log(r)

2π
, (B5)

for large N . Again, to obtain this result we have ne-
glected a constant term of the kind [log(2) − γ/2]/(2π),
which is small compared to log(N).
Hence, by summing up we finally obtain

Ψ(r) ≃ log (N) + e−r

r + Ei (−r)− 2 log (r)

2π
. (B6)
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