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ON THE DUAL OF THE MOBILE CONE.

SUNG RAK CHOI

Abstract. We prove that the cone of mobile divisors and the cone of curves bira-
tionally movable in codimension 1 are dual in the (K + B)-negative part for a klt
pair (X/Z,B). We also prove the structure theorem and the contraction theorem
for the expanded cone of curves birationally movable in codimension 1. The duality
of the cones gives a partial answer to the problem posed by Sam Payne.
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1. Introduction

Let X → Z be a projective morphism of Q-factorial normal algebraic varieties
defined over an algebraically closed field k (of characteristic 0). It is well-known that
the cone of nef divisors Nef(X/Z) in N1(X/Z) and the cone of curves NE(X/Z) (often
called the Mori cone) in N1(X/Z) are dual to each other. The cone of pseudoeffective
divisors Eff(X/Z) ⊆ N1(X/Z) and the cone of movable curves NM(X/Z) ⊆ N1(X/Z)
are dual to each other (Theorem 4.8):

Eff(X/Z) ⊇ Nef(X/Z)

NM(X/Z)
��

dual

OO

⊆ NE(X/Z).
��

dual

OO

The next most important cone in N1(X/Z) is probably the cone Mob(X/Z) of mobile
divisors. Mobile divisors are the divisors whose R-base loci are of codimension ≥ 2.
The mobile cone Mob(X/Z) is a subcone of Eff(X/Z) which contains the nef cone
Nef(X/Z): Nef(X/Z) ⊆ Mob(X/Z) ⊆ Eff(X/Z). It is natural to think about the the
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dual in N1(X/Z) of the cone Mob(X/Z). In this paper, we study the duality between
these two cones.

Let f : X 99K X ′/Z be a small birational map between Q-factorial normal pro-
jective varieties X,X ′/Z. Since it is known that N1(X/Z) and N1(X ′/Z) are iso-
morphic under f∗ [17, 12-2-1], their dual spaces N1(X/Z) and N1(X

′/Z), respec-
tively, are also isomorphic: N1(X/Z) ∼= N1(X

′/Z). Under this isomorphism, a class
α = [C] ∈ N1(X

′/Z) defined by a mov1(movable in codimension 1)-curve C in X ′/Z
can be pulled back to N1(X/Z) and we can simply consider α as a class in N1(X/Z).
The mov1-curve C in X ′/Z is called a b-mov1(birationally movable in codimension
1)-curve of X/Z. (See Section 4.)

We define

NM1(X,X ′/Z) ⊆ N1(X/Z)

as the image of the convex cone NM1(X ′/Z) in N1(X/Z) under the isomorphism
N1(X/Z) ∼= N1(X

′/Z). We define

bNM
1
(X/Z) :=

∑

X99KX′

NM
1
(X,X ′/Z)

where the summation is taken over all Q-factorial X ′ isomorphic to X in codimension
1.

We have the following partial duality result.

Theorem 1.1. Let (X/Z,B) be a Q-factorial klt pair. Then

NE(X/Z)K+B≥0 +Mob(X/Z)∨ = NE(X/Z)K+B≥0 + bNM
1
.

In other words, the dual cone Mob(X/Z)∨ is spanned by the b-mov1-curves of X/Z
in the (K +B)-negative part.

We also have the following cone theorem for bNM
1
(X/Z).

Theorem 1.2. (The Cone Theorem for bNM
1
(X/Z)) Let (X/Z,B) be a Q-factorial

klt pair. There exists a countable set of b-mov1-curves {Ci}i∈I of X/Z such that

NE(X/Z)K+B≥0 + bNM
1
(X/Z) = NE(X/Z)K+B≥0 +

∑

i∈I

R≥0 · [Ci]

and for any ample H and any ε > 0, there exists a finite subset J ⊆ I such that

NE(X/Z)K+B+εH≥0 + bNM
1
(X/Z) = NE(X/Z)K+B+εH≥0 +

∑

j∈J

R≥0 · [Cj ].

The rays {Ri = R≥0[Ci]}i∈I in the first equality can accumulate only at the hyperplanes

supporting both NE(X/Z)K+B≥0 and bNM
1
(X/Z).
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Note that this is actually a structure theorem for the expanded cone NE(X/Z) +

bNM
1
(X/Z) (cf. Figure 1 in Section 5) and we cannot replace NE(X/Z) by bNM

1
(X/Z)

to have the genuine form of the cone theorem as in the original cone theorem for
NE(X/Z). See Example 5.4 or [16, Section 6].

We also prove the following contraction theorem, inspired by the result in [1] and

[16]. We call an extremal ray R of bNM
1
(X/Z) a mov1-extremal ray for (X/Z,B) if

it is (K + B)-negative and it is also an extremal ray for the cone NE(X/Z)K+B≥0 +

bNM
1
(X/Z). See Section 5.

Theorem 1.3. (Contraction Theorem for mov1-extremal rays) Let (X/Z,B) be a Q-

factorial klt pair. Let R be a mov1-extremal ray of bNM
1
(X/Z) for (X/Z,B). Then

the following hold;

(1) there exists a small birational map ϕ : X 99K X ′ and a contraction ψ : X ′→ Y
which is either a divisorial contraction or a Mori fibration such that the mov1-
extremal ray R is spanned by a mov1-curve C on X ′ if and only if C is con-
tracted by ψ, and

(2) the composition map ψ ◦ ϕ is uniquely determined by R.

These results give a partial answer to the duality problem posed in [19]. See Section
5.

This paper is organized as follows:
In section 2, we recall some basic notions used throughout the paper. In section

3, we review the necessary results from the papers [4],[7]. In section 4, we review
the definitions and properties of the non-ample locus B+(D), non-nef locus B−(D),
and volume function vol(D) of divisors D. The proof of Theorem 1.1 is given in this
section. In section 5, we prove Theorem 1.2 and Theorem 1.3.

I would like to thank S. Boucksom and Z. Ran for pointing out an error in the
preliminary version of this paper. I also would like to thank V. Shokurov for the
encouragement.

2. Preliminaries

Let X be a Q-factorial normal projective variety and X → Z be a projective
morphism to another variety Z. We simply denote this by X/Z throughout the paper.
The relations ≡,∼R and the properties such as ampleness, nefness, ≡ 0, bigness for
divisors on X/Z will be considered relatively over Z.

We define the cones in the numerical space N1(X/Z):

Amp(X/Z) = {[D] ∈ N1(X/Z) | C ·D > 0 for any curve C on X/Z },
Mob(X/Z) = {[D] ∈ N1(X/Z) | D ≡ D′ for some R-mobile D′},
Eff(X/Z) = {[D] ∈ N1(X/Z) | D ≡ D′ for some effective D′}.

3



The closures Nef(X/Z) = Amp(X/Z), Mob(X/Z), and Eff(X/Z) are called the nef
cone, mobile cone, and pseudoeffective cone, respectively. They satisfy the inclusion:
Nef(X/Z) ⊆ Mob(X/Z) ⊆ Eff(X/Z). For a cone V ⊆ N1(X/Z), a divisor D and
� ∈ {=, <,>,≥,≤}, we define

VD�0 = V ∩ {C ∈ N1(X/Z) | D · C�0}.

An extremal face F of a closed convex cone V satisfies the two conditions; 1)if v ∈ F ,
then rv ∈ F for any r > 0, and 2)if v + u ∈ F for u, v ∈ V , then u, v ∈ F . A one
dimensional extremal face is called an extremal ray.

We use the standard notions of singularities of pairs (X,B) in the log minimal
model program (LMMP, for short) [13] [12]. We briefly recall the basics of LMMP.

Let (X/Z,B) be a Q-factorial lc pair and let ϕ : X 99K Y be a birational map. The

log birational transform of B on Y is Blog
Y := BY +

∑

Ei, where BY is a proper trans-
form of B on Y and Ei are ϕ

−1-exceptional prime divisors on Y . For an exceptional
prime divisor E over X/Z, a(E,X/Z,B) denotes the log discrepancy of (X/Z,B) at
E.

Definition 2.1. Let the notations be as above.

(1) A pair (Y/Z,Blog
Y ) is called a wlc model of (X/Z,B) if the pair (Y/Z,Blog

Y ) is

lc, KY +Blog
Y is nef, and the inequality 1−multE B ≤ a(E, Y,Blog

Y ) holds for

any ϕ-exceptional prime divisor E. If, furthermore, KY +Blog
Y is ample, then

the pair (Y/Z,Blog
Y ) is called the lc model of (X/Z,B).

(2) A pair (Y/Z,Blog
Y ) equipped with a fibration Y → T/Z is called a Mori log

fibration of (X/Z,B) if (Y,Blog
Y ) is lc, dimT < dimY , the relative Picard

number ρ(Y/T ) = 1, −(KY + Blog
Y ) is ample over T and the inequality 1 −

multE B ≤ a(E, Y,Blog
Y ) holds for any ϕ-exceptional prime divisor E.

(3) A resulting model of (X/Z,B) is either a wlc model (1) or a Mori log fibration
(2).

If a resulting model (Y/Z,Blog
Y ) in (1),(2) is a projective Q-factorial lt pair and the

strict inequalities 1−multE B < a(E, Y,Blog
Y ) hold for ϕ-exceptional divisors E, then

it is called a strictly lt(slt) resulting model. A slt wlc model is called a log terminal
model [4]. By the LMMP, any Q-factorial klt pair (X/Z,B) is expected to have a
resulting model and it cannot have both resulting models simultaneously [21, 2.4.1].

We will use the following lemma often.

Lemma 2.2. Let (X,B) be a klt pair and H be an ample divisor on X. Then there
exists an effective divisor H ′ ∼R H such that (X,B +H ′) is klt.

Proof. See [15, Example 9.2.29]. �
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If the pairs (X,B), (X,B′) are klt and B ∼R B′, then (X,B) and (X,B′) have
the same resulting models by the LMMP. Therefore by Lemma 2.2, given a klt pair
(X/Z,B) and an ample divisor H , we may assume that (X/Z,B +H) is klt in order
to run the LMMP or to study the resulting models of (X/Z,B +H).

3. Geography

In this section, we review some necessary results from [7],[4]. First, we state an
important result about the decomposition of the following set:

EA := {B ∈ V | B ≥ 0 and K + A+B is klt and pseudo-effective }

where V is a finite dimensional subspace of real Weil divisors and A is an ample
divisor on X .

Theorem 3.1. ([4, Theorem 1.1, Theorem 1.1.5]) Let (X,B0) be a klt pair and sup-
pose that B0 ∈ EA. Then for any B ∈ EA, the pair (X,B) has a log terminal model.
Furthermore, there exist finitely many birational maps ϕi : X 99K Xi (1 ≤ i ≤ p) and
the set EA is decomposed into finitely many rational polytopes;

EA =

p
⋃

i

Wi,

satisfying the following condition: if, for B ∈ EA, there exists a birational contraction
ϕ : X 99K Y which is a log terminal model of (X,B), then ϕ = ϕi for some 1 ≤ i ≤ p.

In [7], the similar decomposition problem (which we call the geography) is studied
in detail in terms of b-divisors. The polytopes Wi in Theorem 3.1 correspond to the
∼wlc classes (countries) in [7].

Definition 3.2. Let (X/Z,B) be an lc pair and H a fixed ample divisor such that
K +B +H is R-Cartier. We define the following thresholds:

• effective threshold

eH(X/Z,B)(= eH) := sup{t ≥ 0| t(K +B) +H ∈ Eff(X/Z)}

• mobile threshold (or mobility)

mH(X/Z,B)(=mH) := sup{t ≥ 0| t(K +B) +H ∈ Mob(X/Z)}

• nef threshold

nH(X/Z,B)(= nH) := sup{t ≥ 0| t(K +B) +H ∈ Nef(X/Z)}

If K + B ∈ Nef(X/Z) (resp. Mob(X/Z),Eff(X/Z)), then we define nH = ∞ (resp.
mH = ∞, eH = ∞ ). Clearly, eH ≥ mH ≥ nH .

The mobile threshold and effective threshold are invariant under certain birational
modifications in the LMMP with scaling.
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Lemma 3.3. Let ϕ : X 99K X ′ be a birational map which is either a log flip or a
divisorial contraction in the LMMP on (X,B) with scaling of H. Let

m = mH(X,B), m′ = mH′(X ′, B′),
e = eH(X,B), e′ = eH′(X ′, B′)

where H ′ = f∗H and B′ = f∗B. Then

(1) e = e′, and
(2) m = m′ if ϕ is a log flip of (X,B).

Proof. (1): See [1, Lemma 5.1].
(2): This immediately follows from the fact that a log flip ϕ induces an isomorphism

of the cones Mob(X/Z) ∼= Mob(X ′/Z) and N1(X/Z) ∼= N1(X ′/Z). �

See Section 5 for the definitions of co-extremal rays and mov1-extremal rays.

Theorem 3.4. Let (X/Z,B) be a Q-factorial klt pair. Then the following hold;

(1) if K +B 6∈ Eff(X/Z), then there exists a birational map ϕ : X 99K X ′/Z and
a Mori fibration ψ : X ′ → Y/Z, and

(2) if K+B ∈ Eff(X/Z) but 6∈ IntMob(X/Z), then there exists a small birational
map ϕ : X 99K X ′/Z and a map ψ : X ′ → Y/Z which is either a divisorial
contraction or a Mori fibration.

Proof. (1): Since K +B 6∈ Eff(X/Z), there exists a co-extremal ray of NM(X/Z) for
(X/Z,B) and an ample divisor H such that K+B+A is co-bounding for the ray [16,
Lemma 4.2] and (X/Z,B+A) is klt. (Note that by our definition, co-bounding divisors
define supporting planes away from NE(X/Z)K+B>0.) Since K+B+A ∈ ∂Eff(X/Z),
it follows from [4, Corollary 1.3.2].
(2): This can be proved in a way parallel to the proof of [1, Theorem 3.9]. Since K +

B 6∈ Mob(X/Z), there exists a mov1-extremal ray of bNM
1
(X/Z) for (X/Z,B). By

Lemma 5.5, there exists an ample divisor A such that K+B+A is nef and K+B+tA
(0 < t = mA(X/Z,B)−1 < 1) is mov1-bounding for the ray and (X/Z,B+A) is klt. If
we first run the LMMP on the pair (X,B+tA = ∆) with scaling of H = (1−t)A as in
[1, 3.8] with the same notations, we obtain a log terminal model ϕ : X 99K X ′ = Xn/Z
of (X/Z,B+tA). Since K+B+t′A for t′ > t is R-mobile by Lemma 4.2, the map ϕ is
small. By Lemma 3.3, the mobile threshold is unchanged: mA′(X ′, B′) = mA(X,B)
where A′ = ϕ∗A and B′ = ϕ∗B. Now let X ′

0 = X ′, B′
0 = B′, H ′

0 = tA′ and run
the LMMP on (X ′

0/Z,B
′
0) with scaling of H ′

0. The divisor KX′
0
+ B′

0 is not nef since

K + B 6∈ Mob(X/Z) and ϕ∗ preserves the numerical class in N1(X/Z) ∼= N1(X ′/Z).
Note that 1 = λ′0 = inf{λ ∈ [0, 1] | KX′

0
+ B′

0 + λH ′
0 is nef } (see Lemma 4.2,

Definition-Lemma 4.1). Thus there exists a (KX′ + B′)-negative extremal ray R′
0

such that R′
0 · (KX′

0
+B′

0 +H ′
0) = 0. We may assume that the ray R′

0 is of divisorial
type. Indeed, first of all, it is not of fibering type because K + B is big. Suppose
that the birational map associated to R′

0 is small and let ϕ′
0 : X ′

0 99K X ′
1/Z be the
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associated log flip. Then KX′
1
+B′

1 = ϕ∗(KX′
0
+B′

0) 6∈ Mob(X/Z) and KX′
1
+B′

1 is not
nef. Inductively, we see that possibly after finitely many log flips ϕ′ : X ′

0 99K X ′
i/Z,

we must have an extremal ray R′
i of divisorial type with a divisorial contraction

ψ : X ′
i → Y/Z, otherwise KX′

i
+B′

i does not become nef. Therefore, we have a small
birational map ϕ′ ◦ ϕ : X 99K X ′

i/Z and a divisorial contraction ψ : X ′
i → Y/Z. �

4. Movable cone

For a Z-divisor D, its base locus Bs(D) is defined as the support of the intersection
of the elements in the usual Z-linear system |D| = {D′ ∈ DivZ(X/Z) | D ∼ D′ ≥ 0}.
For a Q-divisor D, the stable base locus of D is defined as B(D) :=

⋂

m Bs(mD)
where the intersection is taken over the positive integers m such that mD is integral.
It is known that there exists an integer m0 such that m0D is integral and for all large
positive integers n, B(D) = Bs(nm0D) [18]. For an R-divisor D, the R-linear system
is defined as |D|R := {D′ ∈ DivR(X/Z) | D ∼R D

′ ≥ 0} and its R-stable base locus
as BR(D) := (∩|D|R)red. A big divisor D is R-mobile if the set B1

R(D) of divisorial
components in BR(D) is empty. Clearly, BR(D) ⊆ B(D) for a Q-divisor D. From
now on, we always use R-divisors unless otherwise stated.

For a big R-divisor D, we define the non-ample locus (or augmented base locus) of
D as

B+(D) :=
⋂

ample A

B(D − A)

where the intersection is taken over all ample divisors A such thatD−A areQ-divisors.
We define B+(D) := X if D is not big. It is known that B+(D) = B+(D − A) for
any sufficiently small ample divisor A. As the name suggests, D is ample if and only
if B+(D) = ∅.

For a pseudoeffective divisor D, we define the non-nef locus of D as

B−(D) :=
⋃

ε>0

B+(D + εA)

for any fixed ample divisor A. Of course, the definitions is independent of the choice
of A. If D is not pseudoeffective, then we define B−(D) := X . Since B+(D+ ε′A) ⊆
B+(D+ εA) for 0 < ε < ε′, it is enough to take only small ε > 0: for any fixed r > 0,
B−(D) = ∪r>ε>0B+(D+εA). It is easy to see that D is nef if and only if B−(D) = ∅.
See [5],[9],[10],[15] for more details about the non-ample loci and non-nef loci.

Let D be a big divisor in X/Z. We let B1
+(D) (resp. B1

−(D)) be the set of
divisorial components of B+(D) (resp. B−(D)). Let Mob+(X) (resp. Mob−(X))
be the cone in N1(X) spanned by the big divisors D such that B1

+(D) = ∅ (resp.
B−(D) = ∅). Since B−(D) ⊆ B+(D), Mob+(X) ⊆ Mob−(X). It is easy to see that
B−(D) ⊆ BR(D) ⊆ B+(D). Therefore Mob+(X/Z) ⊆ Mob(X/Z) ⊆ Mob−(X/Z).
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Definition-Lemma 4.1. The cone Mob+(X/Z) is open and dense in Mob−(X/Z).
In particular, the cone Mob−(X/Z) is closed and

Mob+(X/Z) = Mob(X/Z) = Mob−(X/Z).

We call Mob(X) the mobile cone.

Proof. Fix a divisor D ∈ Mob+(X/Z). To show that Mob+(X/Z) is open, it is
enough to show that for any sufficiently small divisor F , D + F ∈ Mob+(X/Z). For
an ample divisor A, we may assume that A− F is also ample. We may also assume
that A − F is sufficiently small so that B+(D) = B+(D − (A − F )). Therefore,
B+(D + F ) ⊆ B+(D + F − A) = B+(D). Since B+(D) = ∅, D + F ∈ Mob+(X/Z).

Now suppose that Mob+(X/Z) ( Mob−(X/Z). Then there exists an open set
U ⊂ Mob−(X/Z) \Mob+(X/Z). Let D ∈ U . Then for a small ample divisor A such
that D+A ∈ U , there exists a divisorial component E ⊆ B+(D+A). However, since
B+(D + A) ⊆ B−(D), it is a contradiction. �

Lemma 4.2. Let D be a big divisor such that D ∈ ∂Mob(X/Z) and fix an ample
divisor A on X/Z. Then (1) D +A is R-mobile, and (2) D −A is not R-mobile. In
particular, there exists an irreducible divisorial component E ⊆ B+(D).

Proof. Since D is in the boundary ∂Mob+(X/Z), there exists an arbitrarily small
divisor D′ such that B1

+(D + D′) = ∅. By taking a positive number r small and
choosing D′ sufficiently small, we may assume that rA − D′ is a sufficiently small
ample divisor such that B+(D+A) = B+(D+A− (rA−D′)). Then (1) follows from
the following inclusion:

BR(D + A) ⊆ B+(D + A) = B+(D + (1− r)A+D′) ⊆ B+(D +D′).

Since D is in the boundary ∂Mob+(X/Z), there also exists an arbitrarily small
divisor D′ such that B1

+(D +D′) 6= ∅. We may assume that A +D′ is ample. Then
(2) follows from the following inclusion:

BR(D − A) ⊇ B−(D − A) =
⋃

ε>0

B+(D −A + ε(A+D′)) ⊇ B+(D +D′).

�

Note that for a big divisor D in ∂Mob(X/Z), B1
−(D) may be empty. In dimension

2, the nef cones and the mobile cones coincide. Therefore, if D is a big and nef divisor
which is not ample, then B1

−(D) = ∅, but B1
+(D) 6= ∅.

Proposition 4.3. Let f : X 99K X ′/Z be a small birational map between Q-factorial
projective varieties X,X ′/Z. Suppose that for a big divisor D, there exists an irre-
ducible divisorial component V in B+(D). Then VX′ ⊆ B+(D

′), where VX′ = f∗V
and D′ = f∗D.

8



Proof. Let D′ ≡ A′ + E ′ be a decomposition into an ample divisor A′ and an ef-
fective divisor E ′. Then since f is small and the numerical classes are preserved in
N1(X/Z) ∼= N1(X ′/Z) under f∗ (and f−1

∗ ), D ≡ f−1
∗ A′ + f−1

∗ E ′ is a decomposition
into an ample divisor f−1

∗ A′ and an effective divisor f−1
∗ E ′. Since V is an irreducible

component of B+(D), V ⊆ Supp f−1
∗ E ′. Therefore, V ′ ⊆ SuppE ′. This implies that

V ′ ⊆ B+(D
′). �

Definition 4.4. For a Q-divisor D on X/Z of dimension d, we define the volume as

vol(D) := lim sup
H0(X,mD)

md/d!

where lim sup is taken over the positive integers m such that mD is integral.

For a nef divisor D, the volume vol(D) can be defined as the self intersection
number (Dd) and D is big if and only if (Dd) > 0. Volume vol(D) depends only on
the numerical class of D. Furthermore, it extends uniquely to a continuous function:

vol : N1(X/Z) −→ R.

In particular, vol defines a nonnegative function on the pseudoeffective cone Eff(X/Z)
and vol(D) = 0 on the boundary ∂Eff(X/Z). For more detailed properties of vol, see
[14]. For an irreducible closed subvariety E ⊆ X of positive dimension d′ such that
E 6⊆ B+(D), we can also define the restricted volume volX|E(D) of a divisor D on E
[9]:

volX|E(D) := lim sup
dimk Im

(

H0(X,mD) → H0(E,mD|E)
)

md′/d′!

where lim sup is taken over the positive integers m such that mD is integral. For an
ample divisor H , the three notions coincide: volX|E(H) = vol(H|E) = HdimE ·E. The

restricted volume extends uniquely to a continuous function on the set BigE(X/Z) of
R-divisor classes ξ such that E is not properly contained in any irreducible component
of B+(ξ):

volX|E : BigE(X/Z) −→ R

having the property that volX|E(ξ) = 0 if and only if E is an irreducible component
of B+(ξ) [9]. In particular, we have the following continuity property.

Theorem 4.5. Let E be an irreducible component of B+(D), then

lim
ξ→D

volX|E(ξ) = 0,

where the limit is taken over ξ ∈ BigE(X/Z) such that ξ approaches the numerical
class of D.

Proof. See Theorem 5.6 and Remark 5.7 in [9]. �

We will need the following result restricted on some subvariety.
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Theorem 4.6 ([14, Theorem 1.6.1]). Let X be a variety of dimension d and Di be
nef divisors. Then

D1 ·D2 · · ·Dd ≥ vol(D1)
1

d · vol(D2)
1

d · · ·vol(Dd)
1

d .

We define the following three types of curves.

Definition 4.7. Let X/Z be a Q-factorial normal algebraic variety of dimension d.

• A curve C on X/Z is called a movable curve if it is a member of a family of
curves covering X/Z.

• A curve C on X/Z is called a mov1(movable in codimension 1)-curve if it is
a member of a family of curves covering a subvariety of codimension 1.

• A mov1-curve C on some Q-factorial X ′/Z which is isomorphic to X/Z in
codimension 1 is called a b-mov1(birationally movable in codimension 1)-curve
of X/Z.

Note that a b-mov1-curve C defines a class α = [C] ∈ N1(X/Z) even though
the curve C may not be defined in X/Z. Thus we may define a b-mov1-curve C
as a class in N1(X/Z). We let NM(X/Z), NM1(X/Z) be the cones in N1(X/Z)
that are spanned by the movable curves and mov1-curves in X/Z, respectively. We
define NM1(X,X ′/Z) as the image in N1(X/Z) of the cone NM(X ′/Z) under the

isomorphism N1(X
′/Z) ∼= N1(X/Z). Lastly, we define bNM

1
(X/Z) as the cone in

N1(X/Z) defined by b-mov1-curves of X/Z. It is easy to see that

bNM
1
(X/Z) =

∑

X99KX′

NM
1
(X,X ′/Z)

where the summation is taken over all Q-factorial X ′/Z which is isomorphic to X/Z
in codimension 1.

By definition, a movable curve is mov1 and a mov1-curves is b-mov1. Thus

NM(X/Z) ⊆ NM
1
(X/Z) ⊆ bNM

1
(X/Z).

The second inclusion above is not an equality in general. See [19, Example 1] for a
counterexample.

Theorem 4.8. The following hold:

(1) Nef(X/Z) = NE(X/Z)∨.
(2) Eff(X/Z) = NM(X/Z)∨.

Proof. (1) It is a well known result in algebraic geometry. See [14, Proposition 1.4.28].
(2) It is the main result of [6]. �

According to Theorem 1.1, the cones Mob(X/Z) and bNM
1
(X/Z) are dual to each

other at least in some part of the cones. In order to prove Theorem 1.1, we prove the
following equivalent dual statement:
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the conesMob(X/Z) and bNM
1
(X/Z)∨ coincide inside the convex cone

P = Nef(X/Z) + R≥0 · [K +B].

We start with an easy observation.

Lemma 4.9. We have the following nonnegative intersection pairing:

(α, β) ∈ Mob(X/Z)× bNM
1
(X/Z) 7−→ α · β ≥ 0.

Proof. Let D be an R-mobile divisor and C be a b-mov1-curve in X/Z. Since the
numerical classes in N1(X/Z) are preserved under a small birational map, we may
assume that C is a mov1-curve in X/Z. Then since C moves in a family of curves
covering a subvariety of codimension 1, we may assume that C is disjoint from the
base locus of D which is of codimension≥ 2. Thus C · D ≥ 0. The classes α and β
are the limits of the classes of such curve C and divisor D. Therefore α · β ≥ 0 by
continuity. �

Proof. of Theorem 1.1
(Step 1. Dualizing) As we stated above, we prove its dual statement. We use the argu-

ment used in [6, Theorem 2.2]. By Lemma 4.9, we have Mob(X/Z) ⊆ bNM
1
(X/Z)∨.

This in particular implies

Mob(X/Z) ∩ P ⊆ bNM
1
(X/Z)∨ ∩ P,

where P = Nef(X/Z) + R≥0 · [K + B]. Suppose that the strict inclusion ( holds.

Note that since bNM
1
(X/Z) ⊇ NM(X/Z), bNM

1
(X/Z)∨ ⊆ Eff(X/Z) holds by (2)

of Theorem 4.8. Note also that bNM
1
(X/Z)∨ ⊆

⋂

NM
1
(X,X ′/Z)∨, where the inter-

section is taken over all Q-factorial X ′/Z which are isomorphic to X/Z in codi-
mension 1. Therefore, if the strict inclusion holds, then there exists a big divi-
sor D ∈ ∂Mob(X/Z) ∩ IntP and a small open neighborhood of D contained in

NM
1
(X,X ′/Z) for any Q-factorial X ′/Z which are isomorphic to X/Z in codimen-

sion 1.

(Step 2. MMP) There exists an ample divisor H such that rD ≡ K + B + H for
some r > 0. By rescaling, we may assume that D ≡ K + B + H . By Lemma 2.2,
we may assume that (X/Z,B +H) is klt. By running the LMMP on (X/Z,B +H)
with scaling of r′H for some sufficiently large r′ > 0, we obtain a log terminal model
f : X 99K Y/Z of (X/Z,B). Note that since D ∈ ∂Mob(X/Z), K + B +H + aH is
R-mobile for any a > 0. Therefore, the modification f is small.

(Step 3. Approximation by restricted volume) Since small modifications preserve

the numerical classes of N1(X/Z) ∼= N1(Y/Z), DY − εA ∈ NM
1
(Y/Z)∨ for a fixed

ample divisor A and for all sufficiently small ε > 0. In particular, this implies that
(DY − εA) · C ≥ 0 for any mov1-curve C on Y/Z, i.e.,

(∗)
DY · C

A · C
≥ ε.
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Now since D ≡ K + B +H ∈ ∂Mob(X/Z) and D is big, there exists an irreducible
divisorial component E ⊆ B+(D) by Lemma 4.2. Since f is small, EY is also an
irreducible divisorial component EY ⊆ B+(DY ) by Proposition 4.3. Furthermore,
since DY is nef, DY + λA is ample for any λ > 0. We may assume that D + λA is a
Q-divisor and let Mλ be a general member of the linear system defined by an integral
divisor m(DY + λA) for some integer m > 0. Let C = EY ∩Md−2

λ be a mov1-curve
on Y/Z covering EY . Then

mDY · C = mDY ·Md−2
λ · EY

≤ m(DY + λA) ·Md−2
λ · EY

=Mλ ·M
d−2
λ · EY

=Md−1
λ · EY

= volY |EY
(Mλ).

By the inequality of Theorem 4.6 restricted on EY , we also have

A · C = A ·Md−2
λ ·EY ≥ volY |EY

(A)
1

d−1 volY |EY
(Mλ)

d−2

d−1 .

Combining the above two inequalities, we obtain

(∗∗)
DY · C

A · C
≤

1
m
volY |EY

(Mλ)

volY |EY
(A)

1

d−1 volY |EY
(Mλ)

d−2

d−1

≤
volY |EY

(Mλ)
1

d−1

volY |EY
(A)

1

d−1

.

Note that EY 6⊆ B+(DY + λA)(= ∅) because DY + λA is ample. In particular,
DY + λA ∈ BigEY (Y/Z). Since EY is an irreducible component of B+(DY ), we have

volY |EY
(Mλ) = volY |EY

(DY + λA) → 0 as λ→ 0

by Theorem 4.5. Thus we can make DY ·C
A·C

in (∗∗) arbitrarily small, but it is a contra-
diction to (∗). �

5. Cone theorems

We now study the structure of the cone bNM
1
(X/Z). We prove Theorem 1.2 and

Theorem 1.3 in this section.

Let (X/Z,B) be aQ-factorial klt pair. In the numerical space N1(X/Z), we consider
the following two convex cones:

V (X/Z,B)(= V ) := NE(X/Z)K+B≥0 + bNM
1
(X/Z)

V ′(X/Z,B)(= V ′) := NE(X/Z)K+B≥0 +NM(X/Z)

An extremal face F of bNM
1
(X/Z) is called a mov1-extremal face for the pair

(X/Z,B) if F is a (K+B)-negative extremal face of V . A divisor D which is positive
on NE(X/Z)K+B≥0 \ {0} and such that the plane {α ∈ N1(X/Z)|α ·D = 0} supports
the cone V exactly at F is called a mov1-bounding divisor of F . An extremal face
F ′ of NM(X/Z) is called a co-extremal face for the pair (X/Z,B) if F ′ is a (K +B)-
negative extremal face of V ′. A divisor D which is positive on NE(X/Z)K+B≥0 \ {0}
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and such that the plane {α ∈ N1(X/Z)|α · D = 0} supports the cone V ′ exactly at
F ′ is called a co-bounding divisor of F ′.

bNM
1
(X/Z)

NE(X/Z)

K + B = 0VK+B>0

V = NE(X/Z)K+B≥0 + bNM
1
(X/Z)

K + B = 0V ′
K+B>0

NM(X/Z)

V ′ = NE(X/Z)K+B≥0 +NM(X/Z)

Figure 1

As illustrated in Figure 1, an extremal face of bNM
1
(X/Z) (resp. NM(X/Z)) in

NEK+B<0(X/Z) is not necessarily a mov1-extremal face (resp. a co-extremal face)
because it may not be exposed in the cone V (resp. V ′). Note also that a co-extremal

face of NM(X/Z) can coincide with a mov1-extremal face of bNM
1
(X/Z).

It is easy to see that the cone bNM
1
(X/Z) has a mov1-extremal ray if and only if

K + B 6∈ Mob(X/Z) by Theorem 1.1 and the cone NM(X/Z) has a co-extremal ray
if and only if K +B 6∈ Eff(X/Z) by (2) of Theorem 4.8.

We have the following cone theorem for NM(X/Z) and the contraction theorem for
co-extremal rays.

Theorem 5.1 (Cone Theorem for NM(X/Z)). [1, Theorem 1.1], [16, Theorem 1.1]
Let (X/Z,B) be a dlt pair. There are countably many (K + B)-negative movable
curves {Ci}i∈I such that

NE(X/Z)K+B≥0 +NM(X/Z) = NE(X/Z)K+B≥0 +
∑

i∈I

R≥0 · [Ci].

The rays R≥0·[Ci] can accumulate only along the hyperplanes supporting both NM(X/Z)
and NE(X/Z)K+B≥0.

Theorem 5.2 (Contraction theorem for co-extremal faces). [16, Theorem 1.3] Let
(X/Z,B) be a dlt pair. Suppose that F ′ is a co-extremal face of NM(X/Z) and D be
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a co-bounding divisor of F ′. Then there exists a birational morphism ϕ : W → X
and a contraction h : W → Z such that

(1) Every movable curve C on W with [ϕ∗C] ∈ F ′ is contracted by h.
(2) For a general pair of points in a general fiber of h, there is a movable curve

C through the two points with [ϕ∗(C)] ∈ F ′.

These properties determine the pair (W,h), up to a birational equivalence. In fact,
the map we construct satisfies a stronger property:

(3) There is an open set U ⊂W such that the complement of U has codimension
2 in a general fiber of h and a complete curve C in U is contracted by h if and
only if [ϕ∗C] ∈ F ′.

Remark 5.3. If K+B ∈ ∂Eff(X/Z), then NM(X/Z) ⊆ NE(X/Z)K+B≥0 by Theorem
4.8. Thus there are no co-extremal faces for the pair (X/Z,B). However, there exists
an extremal face F ′ of NM(X/Z) in NE(X/Z)K+B=0. If B is big, then K +B − εB
is not pseudoeffective for any ε > 0 because F ′ is (K + (1 − ε)B)-negative. Thus
there exists a co-extremal ray of NM(X/Z) for the pair (X/Z, (1 − ε)B) and since
(X/Z, (1− ε)B) is klt for small ε > 0, the above theorems can be applied to this pair.
In particular, some extremal rays of F ′ are contractible on some birational model of
X/Z.

We prove the analogous results for the cone bNM
1
(X/Z). Before we prove Theorem

1.2, we note the following.

Example 5.4. As explained in [16, Example 6.2], a Cutkosky’s example [8] shows
that the genuine form of the cone theorem does not hold for NM(X/Z), that is, we
cannot replace NE(X/Z) in Theorem 5.1 by NM(X/Z). The same is true for the

cone theorem for NM
1
(X/Z). For readers’ convenience, we construct the example

following [16, Example 6.2]. Let Y be an abelian surface with Picard number ρ ≥ 3.
Then the three cones coincide: Eff(Y ) = Mob(Y ) = Nef(Y ) and the cone is circular
in N1(Y ). Let L be a divisor on Y such that −L is ample and let X = PY (O⊕O(L))
be the P1-bundle over Y with π : X → Y . If S is the section of π such that S|S ∼ L,
then any divisor on X has the form aS + π∗D and K = −2S + π∗L. It is shown in
[16] that the cone Eff(X) is spanned by S and π∗Eff(Y ), which implies that −K is big.
It is also easy to see that Eff(X) coincides with the nef cone Nef(X). Therefore −K

is also mobile. Since bNM
1
(X) is K-negative and it has circular part in ∂bNM

1
(Y ),

Theorem 1.2 fails when NE(X) is replaced by bNM
1
(X). Similarly, Theorem 5.1 also

fails when NE(X) is replaced by NM(X) as explained in [16, Example 6.2].

To prove Theorem 1.2, we start with a lemma.

Lemma 5.5. Let (X/Z,B) be a Q-factorial klt pair. Let K +B 6∈ Mob(X/Z) and D

be a mov1-bounding divisor for a mov1-extremal face F of bNM
1
(X/Z) for (X/Z,B).
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Then there exists an ample divisor H such that K + B + H is ample and αD ≡
K +B + cH for some α > 0 and 0 < c < 1.

Proof. Let G be the 2-dimensional closed cone in N1(X/Z) spanned by D and −(K+
B). It is enough to prove that the ∅ 6= G ∩ Amp(X/Z) \ {0}. Indeed, a sufficiently
large ample divisor H ∈ G∩Amp(X/Z) satisfies the conditions with 1

t
= mH(X,B).

Suppose that G ∩ Amp(X/Z) = {0}. Then there exists a curve class C which
separates the two cones: L ·D′ < 0 for all D′ ∈ G \ {0} and L ·D′′ > 0 for all D′′ ∈
Amp(X/Z) \ {0}. By the second inequality, L ∈ NE(X/Z). The first inequality with
D′ = −(K+B) gives L ∈ NE(X/Z)K+B>0. However the first inequality with D′ = D
also gives L ·D < 0, contradicting the fact that D is positive on NE(X/Z)K+B>0. �

Conversely, it is easy to see that the divisors of the form D ≡ K + B + H for
an ample divisor H which are in ∂Mob(X/Z) are mov1-bounding divisors of some
mov1-extremal face.

Proposition 5.6. Let (X/Z,B) be a Q-factorial klt pair. Consider the cone

NE(X/Z)K+B+H≥0 + bNM
1
(X/Z)

for some ample divisor H such that (X/Z,B + H) is klt. There exists a finite set
{Ci} of b-mov1-curves of X/Z such that for any mov1-bounding divisor D for a mov1-

extremal face of the cone bNM
1
(X/Z) for (X/Z,B +H), [Ci] · [D] = 0 for some Ci.

Proof. Let D be a mov1-bounding divisor as in the statement. Then by Lemma
5.5, there exists an ample divisor A such that K + B +H + A is ample and αD ≡
K+B+H+cA for α > 0 and 0 < c < 1. By Lemma 2.2, we may assume that the pair
(X/Z,B+H+A) is klt. By Theorem 3.4, running the LMMP on (X/Z,B+H+ cA)
with scaling of (1 − c)A, we obtain a birational map ϕ : X 99K X ′/Z which is
an isomorphism in codimension 1 and a contraction ψ : X ′ → Y which is either a
divisorial contraction or a Mori fibration. If K+B+H+cA is big, then ψ is divisorial
and there exists a mov1-curve C ′ on X ′/Z contracted by ψ. If K+B+H+cA is in the
boundary ∂Eff(X/Z), then the curve C ′ is movable. Thus, in either case, we obtain
a b-mov1-curve C ′ of X/Z. By the finiteness of geography (Theorem 3.1), as we vary
D in ∂Mob(X/Z) ∩ EA, we obtain only finitely many maps ψ ◦ ϕ and consequently
finitely many b-mov1-curves. �

Proof. of Theorem 1.2 We may assume that (X/Z,B + H) is klt. Let {εj} be a
strictly decreasing positive sequence converging to 0. Let {Cji}i∈Ij be the finite set of

all b-mov1-curves obtained by running the LMMP on (X/Z,B+εjH) as in Proposition
5.6. Then clearly,

NE(X/Z)K+B+εjH≥0 + bNM
1
(X/Z) ⊇ NE(X/Z)K+B+εjH≥0 +

∑

i∈Ij

R≥0 · [Cji].
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Suppose that the strict inclusion ) holds. Then there exists a mov1-extremal ray R
such that R \ {0} is disjoint from NE(X/Z)K+B+εjH≥0 +

∑

i∈Ij
R≥0 · [Cji]. If D is a

mov1-bounding divisor of R for (X/Z,B + εjH), then by Lemma 5.5, there exists an
ample divisor A such that K +B + εjH +A is ample and αD ≡ K +B + εjH + cA
for α > 0 and 0 < c < 1. Since we may assume that (X/Z,B + εjH + A) is klt, by
running the LMMP on (X/Z,B + εjH + cA) with scaling of (1 − c)A, we obtain a
b-mov1-curve C of X/Z (see the proof of Proposition 5.6) such that R = R≥0 · [C].
Since C 6∈ {Ci}, it is a contradiction.

Suppose that the set ∪j∈NIj is infinite. By removing εj+1 such that Ij = Ij+1

from the sequence {εj}, we may assume that Ij ( Ij+1 for all j. By taking the limit
limj→∞, we obtain the second equality of the cones and the last statement. �

Proof. of Theorem 1.3 If K +B ∈ Mob(X/Z), then NE(X/Z)K+B≥0 ⊇ bNM
1
(X/Z)

and there are no mov1-extremal rays. Thus statements are vacuous. Suppose that
K + B 6∈ Mob(X/Z). By Lemma 5.5, there exists an ample divisor H such that
K + B + H is ample and D = K + B + cH (0 < c < 1) is a mov1-bounding
divisor for R. We may also assume that (X/Z,B + H) is klt by Lemma 2.2. By
Theorem 3.4, we can run the LMMP on (X/Z,B + cH) with scaling of (1 − c)H
to obtain a resulting log terminal model ϕ : X 99K X ′/Z of (X/Z,B + cH). Since
D ≡ K + B + cH ∈ ∂Mob(X/Z), the divisors K + B + cH + rH for 0 < r ≤ 1 are
R-mobile. Thus the birational map ϕ : X 99K X ′ is small.

If D ∈ ∂Eff(X/Z), then the ray R is a co-extremal ray of NM(X/Z) for (X/Z,B).
By Theorem 3.4, there exists a Mori fibration X ′ → Y and the statements follow
from Theorem 5.2.

Assume that D ∈ Int Eff(X/Z). Then the ray R is spanned by a mov1-curve C ′

in X ′/Z (which is a b-mov1-curve of X/Z). Its associated contraction ψ : X ′ → Y
is divisorial by Theorem 3.4. Therefore, by applying the usual Contraction Theorem
([13, Theorem 3.6]), we obtain the statements (1) and (2). �

Remark 5.7. As illustrated in the Figure 1, there may be an extremal ray R of

bNM
1
(X/Z) which is not mov1-extremal, but co-extremal. This ray is not necessary

in the expression NEK+B≥0(X/Z) +
∑

i∈I R≥0 · [Ci] because it is not exposed in this
cone. However, the statements in Theorem 1.3 also hold for this ray by Theorem 5.2.

In the statements of Theorem 1.3, if K + B is not big, then ψ : X ′ → Y is a
Mori fibration and this is a resulting model of the given pair (X/Z,B). Note that
if K + B ∈ ∂Eff(X/Z), then KX′ + BX′ is ψ-trivial and Y is the lc Iitaka model of
(X/Z,B). If K +B is big and K +B ∈ ∂Mob(X/Z), then (X ′/Z,BX′) is a resulting
model which is a log terminal model of (X/Z,B) and the contraction ψ : X ′ → Y is
the lc contraction to the lc model Y = X lcm of (X/Z,B). For all other cases, namely,
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when K +B is big but not in Mob(X/Z), the divisorial contraction ψ is only one of
the intermediate modifications of the LMMP.

Remark 5.8. If K + B ∈ Mob(X/Z), then the cone bNM
1
(X/Z) does not have

any mov1-extremal faces. However, if K + B ∈ ∂Mob(X/Z), then bNM
1
(X/Z) has

extremal faces in NE(X/Z)K+B=0. If K +B is big or B ∈ IntMob(X/Z), then some
of such faces F are mov1-extremal for some pair and Theorem 1.3 holds for these rays
too. Indeed, suppose Mob(X/Z) ⊆ NE(X/Z)K+B≥0 and let F be an extremal face of

bNM
1
(X/Z) in NE(X/Z)K+B=0. If K + B is big, then K + B ≡ H + E for some

ample H and effective E. For small ε > 0, K + B + εE is big and (X/Z,B + εE)
is still klt. However, K + B + εE 6∈ Mob(X/Z) since we can easily check that F is
(K+B+ εE)-negative and NE(X/Z)K+B+εE=0 does not intersect with the supporting
plane {[C] ∈ N1(X/Z) | C · (K + B) = 0}. Therefore, F is a mov1-extremal face of

bNM
1
(X/Z) for the pair (X/Z,B + εE) and K + B is a mov1-bounding divisor for

F . Since the extremal rays of F are mov1-extremal rays, Theorem 1.2 and Theorem
1.3 can be applied to this case. The similar argument works for the case when B ∈
IntMob(X/Z) (cf. Remark 5.3).

Lastly, we give a partial answer to the problem posed in [19].

A Q-factorial variety X/Z is said to be Fano type(FT) if there exists a boundary
divisor B on X/Z such that (X/Z,B) is klt and K + B ∼R 0/Z (see [20, Lemma-
Definition 2.8] for equivalent definitions).

Corollary 5.9. For an FT(Fano type) variety X/Z, the following duality holds:

Mob(X/Z)∨ = bNM
1
(X/Z).

Furthermore, the cones Mob(X/Z) and bNM
1
(X/Z) are closed convex and rational

polyhedral.

Proof. There exists a boundary divisor B such that (X/Z,B) is klt, K + B ∼R 0
and the components of B generate N1(X/Z) (cf. [20, Lemma-Definition 2.8]). There
exists an ample divisor A such that SuppA = SuppB. The pair (X/Z,B − εA) is
klt for sufficiently small ε > 0 and −(K + B − εA) is ample. Therefore, the cone
NE(X/Z) is (K+B−εA)-negative and it follows immediately from Theorem 1.1 and
Theorem 1.2. �

The second part of Corollary 5.9 also follows from the rational polyhedral property
and the finiteness of the Geography. See [7, Corollary 3.5].

Remark 5.10. Corollary 5.9 gives an affirmative answer to the problem posed in
[19] for the Fano type varieties X with the case k = dimX − 1. It is also easy to
see from the proof of Theorem 1.1 that the same result holds for Mori dream spaces

17



[11]. Indeed, the duality holds in the portion of the cone Mob(X/Z) where we can
run the MMP. In [19], it is shown that for complete Q-factorial toric varieties X and
0 ≤ k ≤ dimX, the duality holds between the closed cone in N1(X/Z) spanned by
divisors that are ample in codimension k and the closed cone in N1(X/Z) spanned by
the curves that are birationally movable in codimension k. (see [19, Theorem 2]). It
is also explained that considering only the mov1-curves in Theorem 1.1 is not enough
(see [19, Example 1]).

Question 5.11. In [3], Batyrev conjectured that the extremal rays Ri = R≥0 · [Ci] in
Theorem 5.1 do not accumulate away from NE(X/Z)K+B=0. Similarly, we can ask
whether the mov1-extremal rays in Ri = R≥0 · [Ci] in Theorem 1.2 can accumulate
away from NE(X/Z)K+B=0. For the results related to the conjecture of Batyrev or
the cone NM(X/Z), see [1],[2],[3],[22].

References

[1] C. Araujo, The cone of pseudo-effective divisors of log varieties after Batyrev, Math. Z. 264,
no. 1, 179-193, (2010)

[2] S. Barkowski, The cone of moving curves of a smooth Fano three- or fourfold, manuscripta
mathematica. Vol 131, Numbers 3-4, 305-322, (2010)

[3] V.V. Batyrev, The cone of effective divisors of threefolds, Proceedings of the International
Conference on Algebra, Part 3 (Novosibirsk, 1989), Contemp. Math., 131, Part 3, AMS,
337–352, (1992)

[4] C. Birkar, P. Cascini, C. Hacon, J. McKernan, Existence of minimal models for varieties of
log general type, J. Amer. Math. Soc. 23, no. 2, 405-468, (2010)

[5] S. Boucksom, A. Broustet, G. Pacienza, Uniruledness of stable base loci of adjoint linear
systems with and without Mori Theory, arXiv:0902.1142v2 [math.AG], (2009, Preprint)

[6] S. Boucksom, J.-P. Demailly, M. Paun, T. Peternell, The pseudo-effective cone of a com-
pact Kähler manifold and varieties of negative Kodaira dimension, arXiv:math/0405285v1
[math.AG], (2004, Preprint)

[7] S. Choi, V.V. Shokurov, Geography of models: theory and applications, arXiv:0909.0288v2
[math.AG], (2009, Preprint)

[8] S. Cutkosky, Zariski decomposition of divisors on algebraic varieties, Duke Math. J. 53, no.
1, 149-156, (1986)
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