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ON THE DUAL OF THE MOBILE CONE.
SUNG RAK CHOI

ABSTRACT. We prove that the cone of mobile divisors and the cone of curves bira-
tionally movable in codimension 1 are dual in the (K + B)-negative part for a klt
pair (X/Z, B). We also prove the structure theorem and the contraction theorem
for the expanded cone of curves birationally movable in codimension 1. The duality
of the cones gives a partial answer to the problem posed by Sam Payne.
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1. INTRODUCTION

Let X — Z be a projective morphism of Q-factorial normal algebraic varieties
defined over an algebraically closed field k (of characteristic 0). It is well-known that
the cone of nef divisors Nef(X/Z) in N'(X/Z) and the cone of curves NE(X/Z) (often
called the Mori cone) in N1(X/Z) are dual to each other. The cone of pseudoeffective
divisors Eff(X/Z) € N'(X/Z) and the cone of movable curves NM(X/Z) C NY(X/Z)
are dual to each other (Theorem [L.8):

Eff(X/2) D Nef(X/Z)

dualI dualI

NM(X/Z) € NE(X/Z).

The next most important cone in N'(X/Z) is probably the cone Mob(X/Z) of mobile
divisors. Mobile divisors are the divisors WhO& R-base loci are of codimension > 2.
The mobile cone Mob(X/Z) is a subcone of Eff(X/Z) which contains the nef cone

Nef(X/Z): Nef(X/Z) C Mob(X/Z) C Eff(X/Z). It is natural to think about the the
1



http://arxiv.org/abs/1011.4646v1

dual in N1(X/Z) of the cone Mob(X/Z). In this paper, we study the duality between
these two cones.

Let f: X --+ X'/Z be a small birational map between Q-factorial normal pro-
jective varieties X, X’/Z. Since it is known that N*(X/Z) and N'(X'/Z) are iso-
morphic under f, [17, 12-2-1], their dual spaces N;(X/Z) and N;(X'/Z), respec-
tively, are also isomorphic: Ny(X/Z) = Ny(X’/Z). Under this isomorphism, a class
a = [C] € Ny(X'/Z) defined by a mov!(movable in codimension 1)-curve C' in X'/Z
can be pulled back to Ni(X/Z) and we can simply consider « as a class in N;(X/Z).

The mov'-curve C' in X'/Z is called a b-mov'(birationally movable in codimension
1)-curve of X/Z. (See Section [l)
We define

NMI(X, X'/Z) € Ny(X/2)
as the image of the convex cone NM'(X’/Z) in N;(X/Z) under the isomorphism
N1 (X/Z) = Ny(X'/Z). We define
PNM'(X/Z) = > NM'(X,X'/Z)
X--»X'

where the summation is taken over all Q-factorial X’ isomorphic to X in codimension
1.
We have the following partial duality result.

Theorem 1.1. Let (X/Z, B) be a Q-factorial klt pair. Then
NE(X/Z) k4550 + Mob(X/Z)" = NE(X/Z) 1550 + BNM .
In other words, the dual cone Mob(X/Z)V is spanned by the b-mov'-curves of X/Z

in the (K + B)-negative part.
We also have the following cone theorem for bN Ml(X /7).

Theorem 1.2. (The Cone Theorem for bNMl(X/Z)) Let (X/Z, B) be a Q-factorial
klt pair. There exists a countable set of b-mov*-curves {C;}icr of X/Z such that

NE(X/Z) 1550+ DNM (X/Z) = NE(X/Z) k530 + D Rso - [Ci]
iel
and for any ample H and any € > 0, there exists a finite subset J C I such that
NE(X/Z)k+psems0 + DNM (X/Z) = NE(X/Z) s paerrzo + 3 Rso - [C5).
jeJ

The rays { R; = R>o[C] }ier in the first equality can accumulate only at the hyperplanes

supporting both NE(X/Z) k>0 and bNMl(X/Z).
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Note that this is actually a structure theorem for the expanded cone NE(X/Z) +
bNMl(X/Z) (cf. Figure[lin Section[5]) and we cannot replace NE(X/Z) by bNMl(X/Z)
to have the genuine form of the cone theorem as in the original cone theorem for
NE(X/Z). See Example 5.4 or [16, Section 6.

We also prove the following contraction theorem, inspired by the result in [I] and

[16]. We call an extremal ray R of bNMl(X/Z) a mov'-extremal ray for (X/Z, B) if
it is (K + B)-negative and it is also an extremal ray for the cone NE(X/Z)kp>0 +

bNMl(X/Z). See Section
Theorem 1.3. (Contraction Theorem for mov'-extremal rays) Let (X/Z, B) be a Q-

factorial kit pair. Let R be a mov*-extremal ray of bNMl(X/Z) for (X/Z,B). Then
the following hold;

(1) there exists a small birational map ¢ : X --+ X' and a contraction ) : X' =Y
which is either a divisorial contraction or a Mori fibration such that the mov*-
extremal ray R is spanned by a mov'-curve C on X' if and only if C is con-
tracted by 1, and

(2) the composition map 1 o ¢ is uniquely determined by R.

These results give a partial answer to the duality problem posed in [19]. See Section

Gl

This paper is organized as follows:

In section 2, we recall some basic notions used throughout the paper. In section
Bl we review the necessary results from the papers [4],[7]. In section M we review
the definitions and properties of the non-ample locus B, (D), non-nef locus B_(D),
and volume function vol(D) of divisors D. The proof of Theorem [[T]is given in this
section. In section [l we prove Theorem and Theorem [1.3]

I would like to thank S. Boucksom and Z. Ran for pointing out an error in the
preliminary version of this paper. I also would like to thank V. Shokurov for the
encouragement.

2. PRELIMINARIES

Let X be a Q-factorial normal projective variety and X — Z be a projective
morphism to another variety Z. We simply denote this by X/Z throughout the paper.
The relations =, ~g and the properties such as ampleness, nefness, = 0, bigness for
divisors on X/Z will be considered relatively over Z.

We define the cones in the numerical space N'(X/Z):

Amp(X/Z) ={[D]e N (X/Z)|C-D >0 for any curve C on X/Z },
Mob(X/Z) ={[D] € N(X/Z)| D = D’ for some R-mobile D'},
Ef(X/Z) ={[D]eNYX/Z)| D = D’ for some effective D'}.
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The closures Nef(X/Z) = Amp(X/Z), Mob(X/Z), and Eff(X/Z) are called the nef
cone, mobile cone, and pseudoeffective cone, respectively. They satisfy the inclusion:
Nef(X/Z) C Mob(X/Z) C Eff(X/Z). For a cone V. C Ni(X/Z), a divisor D and
Oe {=,<,>,>, <}, we define

Voo =V N {C € Nl(X/Z) | D - CDO}

An extremal face F of a closed convex cone V satisfies the two conditions; 1)if v € F,
then rv € F for any r > 0, and 2)if v +u € F for u,v € V, then u,v € F. A one
dimensional extremal face is called an extremal ray.

We use the standard notions of singularities of pairs (X, B) in the log minimal
model program (LMMP, for short) [I3] [12]. We briefly recall the basics of LMMP.

Let (X/Z, B) be a Q-factorial lc pair and let ¢ : X --» Y be a birational map. The
log birational transform of B on Y is Bl{ﬁg := By + > E;, where By is a proper trans-
form of B on Y and FE; are ¢~ '-exceptional prime divisors on Y. For an exceptional
prime divisor F over X/Z, a(F, X/Z, B) denotes the log discrepancy of (X/Z, B) at
E.

Definition 2.1. Let the notations be as above.

(1) A pair (Y/Z, BY®) is called a wlc model of (X/Z, B) if the pair (Y/Z, BY?) is
le, Ky + B2 is nef, and the inequality 1 — multy B < a(E,Y, BY8) holds for
any @-exceptional prime divisor E. If, furthermore, Ky + Bl{ﬁg 15 ample, then
the pair (Y/Z, BY®) is called the 1c model of (X/Z, B).

(2) A pair (Y/Z, BY®) equipped with a fibration Y — T/Z is called a Mori log
fibration of (X/Z, B) if (Y, By®) is le, dimT < dimY, the relative Picard
number p(Y/T) = 1, —(Ky + BY2) is ample over T and the inequality 1 —
multy B < a(E,Y, Blﬁg) holds for any p-exceptional prime divisor E.

(3) A resulting model of (X/Z, B) is either a wlc model (1) or a Mori log fibration
(2).

If a resulting model (Y/Z, BY®) in (1),(2) is a projective Q-factorial It pair and the
strict inequalities 1 —multy B < a(E,Y, Blﬁg) hold for p-exceptional divisors F, then
it is called a strictly lt(slt) resulting model. A slt wlc model is called a log terminal
model [4]. By the LMMP, any Q-factorial kit pair (X/Z, B) is expected to have a
resulting model and it cannot have both resulting models simultaneously [21, 2.4.1].

We will use the following lemma often.

Lemma 2.2. Let (X, B) be a kit pair and H be an ample divisor on X. Then there
exists an effective divisor H' ~g H such that (X, B+ H') is klt.

Proof. See [15, Example 9.2.29]. O



If the pairs (X, B), (X, B’) are kIt and B ~g B’, then (X, B) and (X, B’) have
the same resulting models by the LMMP. Therefore by Lemma 2.2] given a klt pair
(X/Z, B) and an ample divisor H, we may assume that (X/Z, B+ H) is klt in order
to run the LMMP or to study the resulting models of (X/Z, B+ H).

3. GEOGRAPHY

In this section, we review some necessary results from [7],[4]. First, we state an
important result about the decomposition of the following set:

Ex:={Be€V|B>0and K + A+ B is klt and pseudo-effective }

where V' is a finite dimensional subspace of real Weil divisors and A is an ample
divisor on X.

Theorem 3.1. ([4, Theorem 1.1, Theorem 1.1.5]) Let (X, By) be a kit pair and sup-
pose that By € E4. Then for any B € E4, the pair (X, B) has a log terminal model.
Furthermore, there exist finitely many birational maps ¢; : X --+ X; (1 <i<p) and
the set £ is decomposed into finitely many rational polytopes;

p
£a=Jws

satisfying the following condition: if, for B € 4, there exists a birational contraction
v : X ==+ Y which is a log terminal model of (X, B), then ¢ = ¢; for some 1 <i < p.

In [7], the similar decomposition problem (which we call the geography) is studied
in detail in terms of b-divisors. The polytopes W; in Theorem B.1] correspond to the
~wie classes (countries) in [7].

Definition 3.2. Let (X/Z, B) be an lc pair and H a fized ample divisor such that
K + B+ H is R-Cartier. We define the following thresholds:

o effective threshold
en(X/Z,B)(=ey) :==sup{t > 0| t(K + B) + H € Eff(X/Z)}
e mobile threshold (or mobility)
mpu(X/Z, B)(=mpyg) :=sup{t > 0| t(K + B) + H € Mob(X/Z)}
e nef threshold
ny(X/Z,B)(=ng) :=sup{t > 0| t(K + B) + H € Nef(X/Z)}

If K+ B € Nef(X/Z) (resp. Mob(X/Z),Eff(X/Z)), then we define ny = oo (resp.
my = 00,eg = o0 ). Clearly, ey > my > ny.

The mobile threshold and effective threshold are invariant under certain birational

modifications in the LMMP with scaling.
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Lemma 3.3. Let ¢ : X --» X' be a birational map which is either a log flip or a
divisorial contraction in the LMMP on (X, B) with scaling of H. Let

m = mH(Xa B)> m' = mH’(X/a B/)>
6:6H(X, B), 6/:6H/(X/,B/)
where H' = f,H and B' = f.B. Then
(1) e=¢€, and
(2) m=m' if ¢ is a log flip of (X, B).

Proof. (1): See [1, Lemma 5.1].
(2): This immediately follows from the fact that a log flip ¢ induces an isomorphism
of the cones Mob(X/Z) = Mob(X'/Z) and NY(X/Z) 2 NY(X'/Z). O

See Section [l for the definitions of co-extremal rays and mov!-extremal rays.

Theorem 3.4. Let (X/Z, B) be a Q-factorial kit pair. Then the following hold;

(1) if K+ B ¢ Eff(X/Z), then there exists a birational map o : X --+ X'/Z and
a Mori fibration ¢ : X' = Y/Z, and

(2) if K+ B € Eff(X/Z) but ¢ Int Mob(X/Z), then there exists a small birational
map ¢ : X --+» X'/Z and a map ¢ : X' — Y/Z which is either a divisorial
contraction or a Mori fibration.

Proof. (1): Since K + B ¢ Eff(X/Z), there exists a co-extremal ray of NM(X/Z) for
(X/Z, B) and an ample divisor H such that K + B+ A is co-bounding for the ray [16,
Lemma 4.2] and (X/Z, B+A) is klt. (Note that by our definition, co-bounding divisors
define supporting planes away from NE(X/Z) k. p~o.) Since K+ B+ A € 0Eff(X/2),
it follows from [4, Corollary 1.3.2].

(2): This can be proved in a way parallel to the proof of [I, Theorem 3.9]. Since K +

B ¢ Mob(X/Z), there exists a mov'-extremal ray of bNMl(X/Z) for (X/Z,B). By
Lemma[5.5] there exists an ample divisor A such that K+ B+ A is nef and K+ B+tA
(0 <t=ma(X/Z, B)"! < 1) is mov'-bounding for the ray and (X/Z, B+ A) is klt. If
we first run the LMMP on the pair (X, B4+tA = A) with scaling of H = (1—%)A asin
[1, 3.8] with the same notations, we obtain a log terminal model ¢ : X --» X' = X, /7
of (X/Z, B+tA). Since K+ B+t'A for t' > t is R-mobile by Lemma[£.2] the map ¢ is
small. By Lemma [33] the mobile threshold is unchanged: ma/ (X', B') = ma(X, B)
where A’ = ¢, A and B' = ¢, B. Now let X| = X', B = B, H| = tA’" and run
the LMMP on (X;/Z, By) with scaling of Hy. The divisor Kx; + B; is not nef since
K + B ¢ Mob(X/Z) and ¢, preserves the numerical class in N'(X/Z) = NY(X'/Z).
Note that 1 = Ay = inf{\ € [0,1] | Kx; + By + AH; is nef } (see Lemma [4.2]
Definition-Lemma [A.1)). Thus there exists a (Kx + B’)-negative extremal ray R,
such that R - (Kx; + By + Hg) = 0. We may assume that the ray R is of divisorial
type. Indeed, first of all, it is not of fibering type because K + B is big. Suppose

that the birational map associated to Rj is small and let ¢f : X --» X{/Z be the
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associated log flip. Then Ky, + B} = ¢.(Kx;+ By) € Mob(X/Z) and K x; + Bj is not
nef. Inductively, we see that possibly after finitely many log flips ¢’ : X --» X!/Z,
we must have an extremal ray R. of divisorial type with a divisorial contraction
Y X{ = Y/Z, otherwise Ky + B; does not become nef. Therefore, we have a small
birational map ¢’ o ¢ : X --» X//Z and a divisorial contraction ¢ : X! —Y/Z. O

4. MOVABLE CONE

For a Z-divisor D, its base locus Bs(D) is defined as the support of the intersection
of the elements in the usual Z-linear system |D| = {D’ € Divy(X/Z) | D ~ D" > 0}.
For a Q-divisor D, the stable base locus of D is defined as B(D) := (), Bs(mD)
where the intersection is taken over the positive integers m such that mD is integral.
It is known that there exists an integer mq such that mgD is integral and for all large
positive integers n, B(D) = Bs(nmgD) [18]. For an R-divisor D, the R-linear system
is defined as |D|g := {D’ € Divg(X/Z) | D ~g D’ > 0} and its R-stable base locus
as Br(D) := (N|D|g)wea- A big divisor D is R-mobile if the set Bg(D) of divisorial
components in Br(D) is empty. Clearly, Bg(D) C B(D) for a Q-divisor D. From
now on, we always use R-divisors unless otherwise stated.

For a big R-divisor D, we define the non-ample locus (or augmented base locus) of
D as
B.(D):= ()] B(D-A4)
ample A

where the intersection is taken over all ample divisors A such that D—A are Q-divisors.
We define B, (D) := X if D is not big. It is known that B, (D) = B, (D — A) for
any sufficiently small ample divisor A. As the name suggests, D is ample if and only
it B.(D)=0.

For a pseudoeffective divisor D, we define the non-nef locus of D as

B_(D) := | JBL(D +¢4)

e>0

for any fixed ample divisor A. Of course, the definitions is independent of the choice
of A. If D is not pseudoeffective, then we define B_(D) := X. Since B (D +¢’A) C
B, (D+¢eA) for 0 < e < &, it is enough to take only small ¢ > 0: for any fixed r > 0,
B_(D) = U,»ex0Bi(D+eA). Tt is easy to see that D is nef if and only if B_(D) = 0.
See [5],[9],[10],[15] for more details about the non-ample loci and non-nef loci.

Let D be a big divisor in X/Z. We let BL(D) (resp. BL(D)) be the set of
divisorial components of B (D) (resp. B_(D)). Let Mob, (X) (resp. Mob_(X))
be the cone in N'(X) spanned by the big divisors D such that BY (D) = @ (resp.
B_(D) =0). Since B_(D) C B4(D), Mob,(X) C Mob_(X). It is easy to see that
B_(D) C Bgr(D) C B, (D). Therefore Mob(X/Z) C Mob(X/Z) C Mob_(X/Z).
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Definition-Lemma 4.1. The cone Mob, (X/Z) is open and dense in Mob_(X/Z).
In particular, the cone Mob_(X/Z) is closed and

Mob, (X/Z) = Mob(X/Z) = Mob_(X/Z).
We call Mob(X) the mobile cone.

Proof. Fix a divisor D € Mob, (X/Z). To show that Mob, (X/Z) is open, it is
enough to show that for any sufficiently small divisor /', D + F' € Mob, (X/Z). For
an ample divisor A, we may assume that A — F' is also ample. We may also assume
that A — F' is sufficiently small so that B, (D) = B,(D — (A — F)). Therefore,
B,(D+F)CB.(D+F—A)=B,(D). Since B{(D) =0, D+ F € Mob,(X/Z).

Now suppose that Mob, (X/Z) C Mob_(X/Z). Then there exists an open set
U C Mob_(X/Z)\ Mob(X/Z). Let D € U. Then for a small ample divisor A such
that D+ A € U, there exists a divisorial component £ C B, (D + A). However, since
B.(D+ A) CB_(D), it is a contradiction. O

Lemma 4.2. Let D be a big divisor such that D € OMob(X/Z) and fix an ample
divisor A on X/Z. Then (1) D + A is R-mobile, and (2) D — A is not R-mobile. In
particular, there exists an irreducible divisorial component E C B, (D).

Proof. Since D is in the boundary dMob, (X/Z), there exists an arbitrarily small
divisor D" such that BL (D + D’) = (. By taking a positive number r small and
choosing D’ sufficiently small, we may assume that rA — D’ is a sufficiently small
ample divisor such that B, (D+A) =B (D+A—(rA—D")). Then (1) follows from
the following inclusion:

Br(D+A) CB.(D+A) =B.(D+(1-r)A+ D) CB.(D+D).

Since D is in the boundary dMob, (X/Z), there also exists an arbitrarily small
divisor D’ such that BY(D + D’) # 0. We may assume that A + D’ is ample. Then
(2) follows from the following inclusion:

Bp(D—-A)2B_(D-A)=|JB(D-A+c(A+ D)) 2B (D+ D).

e>0

U

Note that for a big divisor D in 9Mob(X/Z), B! (D) may be empty. In dimension
2, the nef cones and the mobile cones coincide. Therefore, if D is a big and nef divisor
which is not ample, then B (D) = (), but B (D) # 0.

Proposition 4.3. Let f : X --» X'/Z be a small birational map between Q-factorial
projective varieties X, X'/Z. Suppose that for a big divisor D, there ezists an irre-
ducible divisorial component V in B, (D). Then Vx, C B, (D'), where Vxr = f.V
and D' = f.D.
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Proof. Let D' = A’ + E’ be a decomposition into an ample divisor A" and an ef-
fective divisor E’. Then since f is small and the numerical classes are preserved in
NYX/Z) = NYX'/Z) under f, (and f;'), D = f7'A" + f7'E' is a decomposition
into an ample divisor f_ 1A’ and an effective divisor f;'E’. Since V is an irreducible
component of B (D), V C Supp f,'E’". Therefore, V' C Supp £’. This implies that
V' CBL (D). O

Definition 4.4. For a Q-divisor D on X/Z of dimension d, we define the volume as
H°(X,mD)
md/d!

where lim sup s taken over the positive integers m such that mD is integral.

vol(D) := lim sup

For a nef divisor D, the volume vol(D) can be defined as the self intersection
number (D?) and D is big if and only if (D?) > 0. Volume vol(D) depends only on
the numerical class of D. Furthermore, it extends uniquely to a continuous function:

vol : NY(X/Z) — R.

In particular, vol defines a nonnegative function on the pseudoeffective cone Eff(X/2)
and vol(D) = 0 on the boundary OEff(X/Z). For more detailed properties of vol, see
[14]. For an irreducible closed subvariety E C X of positive dimension d’ such that
E ¢ B4 (D), we can also define the restricted volume volx|g(D) of a divisor D on E

9]
dimg Im (HO(X, mD) — HO(E, mD\E))

md /d'!
where lim sup is taken over the positive integers m such that mD is integral. For an
ample divisor H, the three notions coincide: voly(H) = vol(H|g) = HY™¥. E. The

restricted volume extends uniquely to a continuous function on the set Big”(X/Z) of
R-divisor classes £ such that E is not properly contained in any irreducible component

of B (§):

volx|g(D) := limsup

volyp : Bigh(X/Z) — R
having the property that volx|z({) = 0 if and only if E is an irreducible component
of B4 (§) [9]. In particular, we have the following continuity property.

Theorem 4.5. Let E' be an irreducible component of B (D), then
515% volx|e(§) =0,
where the limit is taken over & € Bigf(X/Z) such that ¢ approaches the numerical
class of D.
Proof. See Theorem 5.6 and Remark 5.7 in [9]. O

We will need the following result restricted on some subvariety.
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Theorem 4.6 ([14, Theorem 1.6.1)). Let X be a variety of dimension d and D; be
nef divisors. Then

Dy - Dy~ Dy > vol(Dy)d - vol(Dy)d - - - vol(Dg).

We define the following three types of curves.

Definition 4.7. Let X/Z be a Q-factorial normal algebraic variety of dimension d.

o A curve C on X/Z is called a movable curve if it is a member of a family of
curves covering X/Z.

o A curve C on X/Z is called a mov!(movable in codimension 1)-curve if it is
a member of a family of curves covering a subvariety of codimension 1.

o A mov'-curve C on some Q-factorial X'/Z which is isomorphic to X/Z in

codimension 1 is called a b-mov' (birationally movable in codimension 1)-curve
of X/Z.

Note that a b-mov'-curve C defines a class o = [C] € Ny(X/Z) even though
the curve C' may not be defined in X/Z. Thus we may define a b-mov'-curve C
as a class in Ni(X/Z). We let NM(X/Z), NM'(X/Z) be the cones in Ny(X/Z)
that are spanned by the movable curves and mov!-curves in X/Z, respectively. We
define NM'(X, X’/Z) as the image in N;(X/Z) of the cone NM(X’/Z) under the
isomorphism Ny (X'/Z) = Ny(X/Z). Lastly, we define HNM ' (X/Z) as the cone in
N,(X/Z) defined by b-mov'-curves of X/Z. It is easy to see that

bNM' (X/Z)= > NM'(X,X'/Z)
X--» X!
where the summation is taken over all Q-factorial X’/Z which is isomorphic to X/Z
in codimension 1.
By definition, a movable curve is mov! and a mov
NM(X/Z) C NM ' (X/Z) C BNM (X/Z).

The second inclusion above is not an equality in general. See [19, Example 1] for a
counterexample.

L_curves is b-mov'. Thus

Theorem 4.8. The following hold:
(1) Nef(X/Z) = NE(X/Z)".
(2) Eff(X/Z) = NM(X/Z)".

Proof. (1) It is a well known result in algebraic geometry. See [14], Proposition 1.4.28].
(2) It is the main result of [6]. O

According to Theorem [IT] the cones Mob(X/Z) and bN MI(X /7)) are dual to each
other at least in some part of the cones. In order to prove Theorem [Tl we prove the

following equivalent dual statement:
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the cones Mob(X/Z) and bNMl(X/Z)V coincide inside the conver cone
We start with an easy observation.

Lemma 4.9. We have the following nonnegative intersection pairing:
(o, B) € Mob(X/Z) x BNM (X/Z) — a- 8 > 0.

Proof. Let D be an R-mobile divisor and C' be a b-mov'-curve in X/Z. Since the
numerical classes in N;(X/Z) are preserved under a small birational map, we may
assume that C is a mov'-curve in X/Z. Then since C' moves in a family of curves
covering a subvariety of codimension 1, we may assume that C' is disjoint from the
base locus of D which is of codimension> 2. Thus C'- D > 0. The classes a and
are the limits of the classes of such curve C' and divisor D. Therefore a- 8 > 0 by
continuity. 0

Proof. of Theorem 11
(Step 1. Dualizing) As we stated above, we prove its dual statement. We use the argu-

ment used in [6 Theorem 2.2]. By Lemma [£.9] we have Mob(X/Z) C bNMl(X/Z)V.
This in particular implies

Mob(X/Z)n P C bNM (X/2)" N P,
where P = Nef(X/Z) + Rsq - [K + B]. Suppose that the strict inclusion ¢ holds.
Note that since BNM (X/Z) D NM(X/Z), BNM (X/Z)" C Eff(X/Z) holds by (2)
of Theorem [£.8 Note also that bNMl(X/Z)v - ﬂml(X, X'/Z)V, where the inter-
section is taken over all Q-factorial X’/Z which are isomorphic to X/Z in codi-

mension 1. Therefore, if the strict inclusion holds, then there exists a big divi-
sor D € OMob(X/Z) N Int P and a small open neighborhood of D contained in
NM' (X, X'/Z) for any Q-factorial X'/Z which are isomorphic to X/Z in codimen-
sion 1.

(Step 2. MMP) There exists an ample divisor H such that rD = K + B + H for
some r > 0. By rescaling, we may assume that D = K + B + H. By Lemma 2.2]
we may assume that (X/Z, B+ H) is klt. By running the LMMP on (X/Z, B+ H)
with scaling of 7" H for some sufficiently large ' > 0, we obtain a log terminal model
f:X --Y/Z of (X/Z,B). Note that since D € 0Mob(X/Z), K + B+ H + aH is
R-mobile for any a > 0. Therefore, the modification f is small.

(Step 3. Approximation by restricted volume) Since small modifications preserve
the numerical classes of N'(X/Z) = NY(Y/Z), Dy — cA € NM (Y/Z)" for a fixed
ample divisor A and for all sufficiently small € > 0. In particular, this implies that
(Dy —€A) - C >0 for any mov'-curve C' on Y/Z, i.e.,

Dy -C S

k) g ze
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Now since D = K + B + H € 0Mob(X/Z) and D is big, there exists an irreducible
divisorial component £ C B, (D) by Lemma A2l Since f is small, Ey is also an
irreducible divisorial component Ey C B, (Dy) by Proposition .3l Furthermore,
since Dy is nef, Dy + AA is ample for any A\ > 0. We may assume that D + A is a
Q-divisor and let M, be a general member of the linear system defined by an integral
divisor m(Dy + AA) for some integer m > 0. Let C' = Ey N M{~? be a mov!-curve
on Y/Z covering Fy. Then

mDy -C =mDy - M{?. Ey

<m(Dy + NA) - M{™2 . By

=M, - Mf\l_2 - By

= M\ Ey

= VOlY\Ey (MA)
By the inequality of Theorem restricted on Fy, we also have

A-C=A- M;\l_2 . Ey 2 VOly|EY(14)ﬁ VOly|EY(M)\)%.

Combining the above two inequalities, we obtain

Dy . C %VOIY‘EY(M)\) V01y|EY(]W)\)ﬁ
’ VOly‘EY (A) d-1 VOly‘EY (M)\)d*1 VOly‘EY (A) d—1

Note that Ey ¢ B, (Dy + AA)(= () because Dy + AA is ample. In particular,

Dy + MA € Big" (Y/Z). Since Ey is an irreducible component of B (Dy ), we have

voly g, (M) = voly|g, (Dy + AA) =0 as A =0

by Theorem L5 Thus we can make ZY_'CC in (#x) arbitrarily small, but it is a contra-

diction to (k). O

5. CONE THEOREMS

We now study the structure of the cone bN Ml(X /7). We prove Theorem [[.2] and
Theorem [[.3]in this section.

Let (X/Z, B) be a Q-factorial klt pair. In the numerical space N'(X/Z), we consider
the following two convex cones:

V(X/Z,B)(=V) :

VI(X/Z,B)(=V') :

NE(X/Z)x+520 + DNM (X/Z)
N

= NE(X/Z) k18>0 + NM(X/2)

An extremal face F' of bN—Ml(X /7) is called a mov'-extremal face for the pair
(X/Z, B) if F'is a (K + B)-negative extremal face of V. A divisor D which is positive
on NE(X/Z) k>0 \ {0} and such that the plane {a € N{(X/Z)|a - D = 0} supports
the cone V exactly at F is called a mov'-bounding divisor of F. An extremal face
F' of NM(X/Z) is called a co-extremal face for the pair (X/Z, B) if F' is a (K + B)-
negative extremal face of V. A divisor D which is positive on NE(X/Z) g >0 \ {0}

12



and such that the plane {a € N{(X/Z)|a- D = 0} supports the cone V' exactly at
F" is called a co-bounding divisor of F'.

Vk+B>0 K+B=0 Vi peo K+B=0
BNM ' (X/Z)
NM(X/Z)
~— NE(X/Z—
V = NE(X/Z) k420 + DNM (X/2) V' =NE(X/Z)k+p>0 + NM(X/Z)
FIGURE 1

As illustrated in Figure [l an extremal face of BNM' (X/Z) (resp. NM(X/Z)) in
NEg, p<o(X/Z) is not necessarily a mov'-extremal face (resp. a co-extremal face)
because it may not be exposed in the cone V' (resp. V’). Note also that a co-extremal
face of NM(X/Z) can coincide with a mov!-extremal face of BNM ' (X/Z).

It is easy to see that the cone bN—Ml(X /7Z) has a mov'-extremal ray if and only if
K + B € Mob(X/Z) by Theorem [T and the cone NM(X/Z) has a co-extremal ray
if and only if K + B ¢ Eff(X/Z) by (2) of Theorem A8

We have the following cone theorem for NM(X/Z) and the contraction theorem for
co-extremal rays.

Theorem 5.1 (Cone Theorem for NM(X/Z)). [I, Theorem 1.1], [16, Theorem 1.1]
Let (X/Z,B) be a dlt pair. There are countably many (K + B)-negative movable
curves {C;}ier such that

NE(X/Z) k4520 + NM(X/Z) = NE(X/Z)kc4p20+ Y Rso - [Ci].
i€l
The rays R>o:|C;] can accumulate only along the hyperplanes supporting both NM(X/Z)
and NE(X/Z)K—i-BZO

Theorem 5.2 (Contraction theorem for co-extremal faces). [16, Theorem 1.3] Let

(X/Z,B) be a dlt pair. Suppose that F' is a co-extremal face of NM(X/Z) and D be
13



a co-bounding divisor of F'. Then there exists a birational morphism ¢ : W — X
and a contraction h : W — Z such that

(1) Every movable curve C on W with [p.C] € F' is contracted by h.
(2) For a general pair of points in a general fiber of h, there is a movable curve
C' through the two points with [p.(C)] € F.

These properties determine the pair (W, h), up to a birational equivalence. In fact,
the map we construct satisfies a stronger property:

(3) There is an open set U C W such that the complement of U has codimension
2 in a general fiber of h and a complete curve C' in U is contracted by h if and
only if [p.C| € F".

Remark 5.3. If K+B € OEff(X/Z), then NM(X/Z) C NE(X/Z) k1 >0 by Theorem
[4.8 Thus there are no co-extremal faces for the pair (X/Z, B). However, there exists
an extremal face F' of NM(X/Z) in NE(X/Z)k1p—o. If B is big, then K + B — eB
is not pseudoeffective for any € > 0 because F' is (K + (1 — €)B)-negative. Thus
there exists a co-extremal ray of NM(X/Z) for the pair (X/Z,(1 — ¢)B) and since
(X/Z,(1—¢€)B) is kit for small e > 0, the above theorems can be applied to this pair.

In particular, some extremal rays of F' are contractible on some birational model of
X/Z.

We prove the analogous results for the cone bN Ml(X /7). Before we prove Theorem
L2, we note the following.

Example 5.4. As explained in [16, Example 6.2], a Cutkosky’s example [8] shows
that the genuine form of the cone theorem does not hold for NM(X/Z), that is, we
cannot replace NE(X/Z) in Theorem [51 by NM(X/Z). The same is true for the
cone theorem for Wl(X/Z). For readers’ convenience, we construct the example
following [16, Example 6.2]. Let Y be an abelian surface with Picard number p > 3.
Then the three cones coincide: Eff(Y) = Mob(Y) = Nef(Y) and the cone is circular
in NYY'). Let L be a divisor on'Y such that —L is ample and let X = Py (O & O(L))
be the P-bundle over Y with m : X — Y. If S is the section of m such that S|g ~ L,
then any divisor on X has the form aS + n*D and K = —25 + «n*L. It is shown in
[16] that the cone Bff(X) is spanned by S and m*Ef(Y'), which implies that —K is big.
It is also easy to see that Eff (X) coincides with the nef cone Nef(X). Therefore —K
is also mobile. Since BNM' (X) is K-negative and it has circular part in ObN—Ml(Y),

Theorem [L2 fails when NE(X) is replaced by bNMl(X). Similarly, Theorem[21l also
fails when NE(X) is replaced by NM(X) as explained in [16, Example 6.2].

To prove Theorem [L.2] we start with a lemma.

Lemma 5.5. Let (X/Z, B) be a Q-factorial kit pair. Let K+ B ¢ Mob(X/Z) and D

be a mov*-bounding divisor for a mov'-extremal face F of bNMl(X/Z) for (X/Z, B).
14



Then there exists an ample divisor H such that K + B + H is ample and oD =
K + B+ cH for somea >0 and 0 <c<1.

Proof. Let G be the 2-dimensional closed cone in N'(X/Z) spanned by D and —(K +
B). It is enough to prove that the ) # G N Amp(X/Z)\ {0}. Indeed, a sufficiently
large ample divisor H € G N Amp(X/Z) satisfies the conditions with § = my (X, B).

Suppose that G N Amp(X/Z) = {0}. Then there exists a curve class C' which
separates the two cones: L - D" < 0 for all D’ € G\ {0} and L- D" > 0 for all D" €
Amp(X/Z)\ {0}. By the second inequality, L € NE(X/Z). The first inequality with
D' = —(K + B) gives L € NE(X/Z)k p>0. However the first inequality with D’ = D
also gives L- D < 0, contradicting the fact that D is positive on NE(X/Z)gypso. O

Conversely, it is easy to see that the divisors of the form D = K + B + H for
an ample divisor H which are in OMob(X/Z) are mov'-bounding divisors of some
mov'-extremal face.

Proposition 5.6. Let (X/Z, B) be a Q-factorial kit pair. Consider the cone
NE(X/Z) k451150 + DPNM (X/Z2)

for some ample divisor H such that (X/Z, B + H) is klt. There exists a finite set

{Ci} of b-mov'-curves of X/Z such that for any mov'-bounding divisor D for a mov'-

extremal face of the cone bNMl(X/Z) for (X/Z,B+ H), [C;] - [D] =0 for some C;.

Proof. Let D be a mov'-bounding divisor as in the statement. Then by Lemma
(.5 there exists an ample divisor A such that K + B+ H + A is ample and aD =
K+B+H+cAfora>0and0 < ¢ < 1. By Lemmal2.2] we may assume that the pair
(X/Z,B+ H + A) is klt. By Theorem 3.4] running the LMMP on (X/Z, B+ H +cA)
with scaling of (1 — ¢)A, we obtain a birational map ¢ : X --» X'/Z which is
an isomorphism in codimension 1 and a contraction v : X’ — Y which is either a
divisorial contraction or a Mori fibration. If K+ B+ H +cA is big, then 1 is divisorial
and there exists a mov!-curve C’ on X’/Z contracted by . If K+ B+ H+cA is in the
boundary OEff(X/Z), then the curve C’ is movable. Thus, in either case, we obtain
a b-mov'-curve C’ of X/Z. By the finiteness of geography (Theorem B.1)), as we vary
D in OMob(X/Z) N €4, we obtain only finitely many maps 1 o ¢ and consequently
finitely many b-mov'-curves. U

Proof. of Theorem [1.2 We may assume that (X/Z, B + H) is klt. Let {¢;} be a
strictly decreasing positive sequence converging to 0. Let {Cj;}icz, be the finite set of
all b-mov'-curves obtained by running the LMMP on (X/Z, B+¢;H) as in Proposition
.6l Then clearly,

— . L -
NE(X/Z)K+B+EJ-H20 +bNM (X/Z) D NE(X/Z)K—i-B-i-eszO + ZRZO [Cyil.
i€l
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Suppose that the strict inclusion 2 holds. Then there exists a mov!-extremal ray R
such that R\ {0} is disjoint from W(X/Z)KJFBHJ.HZO + Zielj Rso-[Cyi]- EDis a
mov'-bounding divisor of R for (X/Z, B+ ¢;H), then by Lemma [5.5] there exists an
ample divisor A such that K + B +¢;H + A is ample and aD = K + B +¢;H 4+ cA
for a > 0 and 0 < ¢ < 1. Since we may assume that (X/Z, B +¢;H + A) is klt, by
running the LMMP on (X/Z, B+ ¢;H + cA) with scaling of (1 — ¢)A, we obtain a
b-mov'-curve C' of X/Z (see the proof of Proposition [(.6)) such that R = R - [C].
Since C' ¢ {C;}, it is a contradiction.

Suppose that the set Ujenl; is infinite. By removing €,y such that I; = I;4;
from the sequence {¢;}, we may assume that I; C ;. for all j. By taking the limit
lim;_,,, we obtain the second equality of the cones and the last statement. O

Proof. of Theorem T3 If K + B € Mob(X/Z), then NE(X/Z) 450 2 bBNM (X/Z)
and there are no mov!-extremal rays. Thus statements are vacuous. Suppose that
K + B ¢ Mob(X/Z). By Lemma B35, there exists an ample divisor H such that
K+ B+ H is ample and D = K + B+ cH (0 < ¢ < 1) is a mov!-bounding
divisor for R. We may also assume that (X/Z, B + H) is klt by Lemma By
Theorem B4, we can run the LMMP on (X/Z, B 4+ ¢H) with scaling of (1 — ¢)H
to obtain a resulting log terminal model ¢ : X --+ X'/Z of (X/Z, B+ cH). Since
D = K + B+ cH € OMob(X/Z), the divisors K + B + cH +rH for 0 < r < 1 are
R-mobile. Thus the birational map ¢ : X --» X’ is small.

If D € OEff(X/Z), then the ray R is a co-extremal ray of NM(X/Z) for (X/Z, B).
By Theorem B4l there exists a Mori fibration X’ — Y and the statements follow
from Theorem (.21

Assume that D € Int Eff(X/Z). Then the ray R is spanned by a mov!-curve C’
in X’'/Z (which is a b-mov'-curve of X/Z). Its associated contraction ¢ : X’ — Y
is divisorial by Theorem [B.4l Therefore, by applying the usual Contraction Theorem
([13, Theorem 3.6]), we obtain the statements (1) and (2). O

Remark 5.7. As illustrated in the Figure [, there may be an extremal ray R of
HNM ' (X/Z) which is not mov'-extremal, but co-extremal. This ray is not necessary
in the expression NEg p>o(X/Z) + Y i1 Rsq - [Ci] because it is not exposed in this
cone. However, the statements in Theorem[I.3 also hold for this ray by Theorem[5.2

In the statements of Theorem [[.3] if K + B is not big, then ¢ : X’ — Y is a
Mori fibration and this is a resulting model of the given pair (X/Z, B). Note that
if K+ B € OEff(X/Z), then Ky + By is -trivial and Y is the lc litaka model of
(X/Z,B). If K+ B is big and K + B € OMob(X/Z), then (X'/Z, Bx) is a resulting
model which is a log terminal model of (X/Z, B) and the contraction ¢ : X’ — Y is

the lc contraction to the lc model Y = X, of (X/Z, B). For all other cases, namely,
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when K + B is big but not in Mob(X/Z), the divisorial contraction % is only one of
the intermediate modifications of the LMMP.

emark 5.8. + € Mo , then the cone oes not have
R k If K + B € Moh(X/Z), th h BNM ' (X/Z) d h

any mov*-extremal faces. However, if K + B € OMob(X/Z), then bN—Ml(X/Z) has
extremal faces in NE(X/Z)k4p—o. If K+ B is big or B € Int Mob(X/Z), then some
of such faces F' are mov'-extremal for some pair and Theorem[1.3 holds for these rays
too. Indeed, suppose Mob(X/Z) C NE(X/Z) k>0 and let F be an extremal face of
WI(X/Z) in NE(X/Z)kyp=o- If K+ B is big, then K + B = H + E for some
ample H and effective E. For small e > 0, K + B 4+ ¢E is big and (X/Z, B + €FE)
is still klt. However, K + B + ¢E ¢ Mob(X/Z) since we can easily check that F is
(K + B +¢E)-negative and NE(X/Z) g+ p1+ep=0 does not intersect with the supporting
plane {[C] € Ny(X/Z) | C - (K + B) = 0}. Therefore, F is a mov'-extremal face of
bN—Ml(X/Z) for the pair (X/Z,B + ¢E) and K + B is a mov'-bounding divisor for
F. Since the extremal rays of F' are mov'-extremal rays, Theorem [I.4 and Theorem

[.3 can be applied to this case. The similar argument works for the case when B €
Int Mob(X/Z) (cf. Remark[53).

Lastly, we give a partial answer to the problem posed in [19].

A Q-factorial variety X/Z is said to be Fano type(FT) if there exists a boundary
divisor B on X/Z such that (X/Z, B) is klt and K + B ~g 0/Z (see [20, Lemma-
Definition 2.8] for equivalent definitions).

Corollary 5.9. For an FT(Fano type) variety X/Z, the following duality holds:
Mob(X/Z)" = bNM  (X/Z).

Furthermore, the cones Mob(X/Z) and bNMl(X/Z) are closed convex and rational
polyhedral.

Proof. There exists a boundary divisor B such that (X/Z, B) is klt, K + B ~g 0
and the components of B generate N*(X/Z) (cf. [20, Lemma-Definition 2.8]). There
exists an ample divisor A such that Supp A = Supp B. The pair (X/Z, B — cA) is
klt for sufficiently small ¢ > 0 and —(K + B — ¢A) is ample. Therefore, the cone
NE(X/Z) is (K + B —A)-negative and it follows immediately from Theorem [T and
Theorem [L.2] O

The second part of Corollary also follows from the rational polyhedral property
and the finiteness of the Geography. See [7, Corollary 3.5].

Remark 5.10. Corollary giwes an affirmative answer to the problem posed in
[19] for the Fano type varieties X with the case k = dim X — 1. It is also easy to

see from the proof of Theorem [I1 that the same result holds for Mori dream spaces
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[1]. Indeed, the duality holds in the portion of the cone Mob(X/Z) where we can
run the MMP. In [19], it is shown that for complete Q-factorial toric varieties X and
0 < k < dim X, the duality holds between the closed cone in N'(X/Z) spanned by
divisors that are ample in codimension k and the closed cone in N1(X/Z) spanned by
the curves that are birationally movable in codimension k. (see [19, Theorem 2|). It
is also explained that considering only the mov'-curves in Theorem [T 1l is not enough
(see [19, Example 1]).

Question 5.11. In [3], Batyrev conjectured that the extremal rays R; = Rxq - [Cy] in
Theorem [5.1) do not accumulate away from NE(X/Z)kyp—o. Similarly, we can ask
whether the mov'-extremal rays in R; = Rsq - [C;] in Theorem [L.2 can accumulate
away from NE(X/Z) g p—o. For the results related to the conjecture of Batyrev or
the cone NM(X/Z), see [11,[2],[3],[22].
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