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Tiling a convex body into possibly similar pieces
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Abstract

Generalizing results by Valette, Zamfirescu and Laczkovich, we will here prove that the tiling

of any convex body K into convex subsets contains some information on K itself, namely if many

tiles are similar to K, K must be a polytope.

Consider a convex body (a compact convex set with nonempty interior) K in Rn, which is tiled into

a finite number of convex bodies. A tiling T , as a formal object, will here be the set consisting of all

its tiles, and all tiles will be assumed to be convex bodies. Also, this investigation will only consider

proper tilings, that is, tilings which are not trivial (meaning they consist of more than just one tile).

Let there be tiles similar to K. Does it follow that K is a polytope?

For dimension 2, M. Laczkovich ([1]) could show that if one tile is similar to K, and if the tiling is

proper, K is in fact a polytope. He generalized a remark by G. Valette and T. Zamfirescu in [2].

Now the question arises: is this extendable for dimension 3? Already the original paper by Lazckovich

contained a remark by Zamfirescu that this must be wrong, since a circular cone can easily be tiled

in such a way that one tile is similar to the cone by just cutting near the apex. It was therefore

conjectured: Consider a convex body K in 3-space which is tiled in such a way such that 2 tiles are

similar to K. Then K is a polytope.

This will turn out to be true, and is a very special case of the general theorem, because in dimensions

higher than 3, a condition only on the number of similar tiles will never be sufficient (see the example

at the end of this paper). The additional condition will encode some information on how the tiles

are located relative to the convex body itself. In consistency with our observations, the condition will

degenerate in dimensions 2 and 3.

Let us state the theorem:

Theorem 1. Let K be a n-dimensional convex body, and let Ti , {1, 2, 3, ..., n − 1} be n − 1 proper

tilings of K, each of which contains a tile Li similar to K.

If the convex hull of the fixed points xLi forms a nondegenerate n− 2-dimensional simplex, then K is

a polytope.

Here, the point xL is the fixed points of the similarity fL from K to L. If there is more than one

similarity from K to L, choose one.
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The simplex referred to in theorem 1 will be called the tip simplex of K with respect to the tilings

involved.

Often, one is in the situation to have a single tiling, and several tiles are similar to K. This is

a special case of above theorem, which is a bit harder to prove, since then one has to deal with

interdependencies between the tiles similar to K when deforming tilings.

Corollary 2. Let K be a n-dimensional convex body, which is properly tiled into a finite number of

convex bodies, n − 1 of which are similar to K. Denote these particular tiles by Li .

If the convex hull of the fixed points xLi forms a nondegenerate (n − 2)-dimensional simplex, then K

is a polytope.

In dimensions 2 and 3, the condition on the tip simplex is automatically fulfilled, giving the following

theorem:

Corollary 3. Let K be a convex body in Rn, n ≤ 3, which is properly tiled into a finite number of

convex bodies, n − 1 of which are similar to K. Then K is a polygon/ a polyhedron.

Even more, in dimension 3, symmetry also plays a role in this calculation:

Corollary 4. Let K be a convex body in R3, which is properly tiled into a finite number of convex

bodies, 1 of which is similar to K. If the fixed point xL is dependent on the similarity from K to L, K

is a polyhedron.

Denote by bd(M), int(M), E (M), conv(M) the the boundary/ the interior/ set of extremal

points/ the convex hull of a set M. Also, Bε(x) denotes the set of all points in Rn with distance less

than ε to x .

Consider the general situation of a convex body K tiled into convex bodies Pj . Since we are considering

tilings K into convex bodies, the intersection of any two tiles Pj ∩ Pj ′ , j 6= j
′ is a n − 1-dimensional

convex compact set. There are only finitely many of these intersections, and any element of E (Pj )∩

int(K) will lie in one of these. Intersecting these sets again, we can further precise the position of

these extremal points, until we know that E (Pj) ∩ int(K) is always of finite cardinality.

Let us, from now on until the end of the paper, suppose that K is not a polytope, then K has infinitely

many extremal points. We will deduce a contradiction from this, which will show that K must be a

polytope.

Given a tiling T , denote the tile(s) similar to K by L(i). E (L) ∩ int(K) is a finite set. This in turn

implies that the similarity mapping fL from K to L preserves infinitely many extremal points in bd(K),

in particular E (f dL (K)) ∩ bd(K) is nonempty for each natural number d . Thus,

xL ∈ bd(K).
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Adapting a tiling

In this section, we focus on adapting tilings until they have features that come handy in the later

proof. The first feat we would like to see in our tilings is that we want the similarity from K to L to

be a homothety. After that, we want to make sure we can move the fixed point, at least as long as

we stay in the tip simplex with it. Along the way, we will find out about a structural property of K

supposing it fulfills the conditions of theorem 1.

Before we begin, let us state our methods to deform a tiling:

Let K be a convex body, and let T be a tiling of K, containing a tile L similar to K. Let fL be a

similarity mapping from K to L. Define fL(T ) to be the function fL applied to all the tiles of T , and

thus a tiling of L. The idea is that we can refine the tiling T to T ′ by defining T ′ := fL(T )∪T \ {L}.

In this situation, we will also write T ′ = fL(T )+T . The similarity mappings of newly created tiles will

be defined by the composition of the similarities involved. We call this procedure iterating a tiling.

In a related situation, suppose we are given two tilings T1 and T2, we could form the tiling T1 ∗ T2 :=

{P ∩ Q| P ∈ T1, Q ∈ T2}. If T1 tiled a set K1, and T2 tiled K2, then T1 ∗ T2 is a tiling of the

intersection of K1 and K2. In particular, if K1 = K2, then T1 ∗ T2 is a (possibly refined) tiling of K1.

Let us apply the above methods to concrete tilings to show that simplifications are indeed possible.

Lemma 5. Let K be a convex body as above, T a tiling which contains a tile L similar to K. Then

there is a tiling T ′ of K which contains a homothetic copy of K whose fixed point coincides with xL.

Proof. Let L be given as above, and fL the similarity with respect to K. Note that because fL is an

affine linear mapping, we can speak of eigenvectors and eigenvalues of (the linear part of) fL.

All eigenvalues of fL are of equal absolute value, however, some might be complex. Still, because we

can iterate tilings as described above, we easily dispose of complex eigenvalues if their argument is a

rational multiple of π. We can therefore assume that all eigenvalues either have argument 0 or an

argument that is an irrational multiple of π.

Dirichlet’s theorem on simultaneous approximation by real numbers tells us that by iterating the

similarity we can get it as close to a homothety as we want: Let ML be the matrix representing the

linear part of fL, and let λ be the absolute value of an eigenvalue of fL. Then, we can get
Md
L

λd
as close

to the identity matrix as we please by adjusting d ∈ N (with respect to some matrix norm).

Obviously, the solid tangent cones of later iterations of f dL (K) are included in earlier:

TCxL(K) ⊃ TCxL(L) ⊃ TCxL(f
2
L (K)) ⊃ TCxL(f

3
L (K))...,

where TCxL(K) denotes the solid tangent cone of K at xL. But since we can get fL as close to a

homothety as we want, we can get Bε(x)∩TCxL(f
d
L (K)) as close to Bε(x)∩ TCxL(K) (with respect

to, for example, the Pompeiu-Hausdorff metric and a fixed ε > 0) as we want by choosing d ∈ N.

Thus, the solid tangent cones of K and f dL (K), d ∈ N at xL coincide. In particular, because all tiles
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are compact, convex and have nonempty interior, their tangent cones are never degenerate, and it

follows that L is the only tile of T which contains xL. Then there is an ε > 0 such that

Bε(xL) ∩K = Bε(xL) ∩ L = Bε(x) ∩ TCxL(K)

In particular, xL is not an accumulation point of extremal points of K.

Next, choose d ∈ N large enough so that

f dL (K) ⊂ Bε(x) ∩ TCxL(K).

Then bd(f dL (K))\bd(TCxL(K)) ⊂ int(K) and can thus be written as a finite union of n−1-dimensional

compact convex sets. We will state this as a separate Lemma:

Lemma 6. K can be written as

conv({xL}
⋃

i

Bi),

where the Bi ∈ bd(K) are finitely many convex compact n − 1-dimensional manifolds with boundary

(which can be chosen to be disjoint from {xL}). We will call these manifolds a base of K.

Introduce the isometry g := λd(fL − xL)
−d + xL, where λ is the absolute value of an eigenvector

of fL, and define h = g ◦ f dL , which is a homothety. Still,

bd(h(K)) \ bd(TCxL(K)) ⊂ int(K)

holds. Apply g to the tiling given by

T ′ = T +
∑

i ∈{1,2,3,...,d}

f iL(T ).

g(T ′) contains h(K) as one of its tiles (and thus, it contains a homothetic copy of K), but it may

not be a tiling of K.

Enlarging g(T ′) by a factor α using the homothety Hα(x) = α(x − xL) + xL, we get a new tiling

T ′′α. If α is large enough, T ′′α ∗ {K} will be a proper tiling of K into a finite set of convex bodies, and

Hα(h(K)) will be a tile. Since we haven’t changed the fixed point during the process, it still coincides

with xL.

Now that the tiles are directed nicely, we want to turn to adjusting their position.

Lemma 7. Let K be a convex body as above, Ti tilings fulfilling the conditions of theorem 1, S the

tip simplex, x0 a point in the tip simplex. Then there is a tiling T ′ which fulfills the conditions of

theorem 1, with a tile L similar to K such that xL = x0.

Proof. If the tip simplex is just a point, the Lemma is trivial. Suppose therefore that there are at

least two tilings with T1 and T2 with tiles L1 respectively L2 which are similar to K and have distinct
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fixed points, and suppose the corresponding similarities are chosen to be homotheties. Then the

tiling T1 + fL1(T2) will contain a homothetic copy of K: L3 = fL1(L2). L3 is new to us, because

the corresponding fixed point will not coincide with xL1 or xL2 , but will lie in their convex hull. By

iterating this procedure, we see that there is a dense subset M of conv({xL1 , xL2}) we can make the

fixed points of similarities lie in.

Next, suppose x0 ∈ conv({xL1 , xL2}) \ M. Find a tiling T with a similar copy L of K such that

xL ∈ conv({xL1 , x0}), and denote the eigenvalue of the homothety from K to L by λ. (Again, we

assume the similarities to be homotheties.) Define α :=
|x0−xL1 |

|λ(x0−xL)+xL−xL1 |
, H(x) := α(x − xL1) + xL1

and T ′ := H(T ). T ′ ∗ {K} is a tiling of K with tile H(L) which has fixed point x0. With higher

dimensional simplices, this construction works just in the same way.

Conclusion

We will prove theorem 1 by induction. In dimension 1, it is trivial, in dimension 2, it was proven by

Laczkovich.

Let us assume theorem 1 is proven in dimension n − 1. Let K be a convex body fulfilling the

conditions of the theorem 1 in Dimension n, let x be some point in the relative interior of the tip

simplex S, and let H be some n − 1-dimensional affine subspace of Rn containing x . H ∩ K is a

n− 1-dimensional convex set. It could even be of smaller dimensions, so let us just assume H ∩K is

not a point. Let T ′i be proper tilings of K whose similarities are homotheties and whose fixed points

coincide with the extremal points of the n − 3-dimensional simplex S ∩H.

H ∩K inherits a tiling structure from K by means of intersection: T ′i induces the tiling {H} ∗ T ′i on

H ∩ K. Note that because L′i is a homothetic copy of K whose fixed point lies in H, H ∩ L′i will be

an element of T ′i which is a homothetic copy of H ∩K. The fixed point of H ∩ L′i in H ∩K coincides

with the fixed point of L′i in K and is therefore an extremal point of S ∩ H. Since x is a relative

interior point of S, S ∩ H is a nondegenerate n − 3-dimensional simplex spanned by the fixed points

of H ∩ L′i , which in turn are elements of proper tilings {H} ∗ T ′i of H ∩K.

Using the induction hypothesis, we see that H ∩K must be a polytope.

Proposition 8. Let K be a convex body in Rn, which is tiled as in the description of theorem 1. Let S

be the tip simplex, x a point in the relative interior of this simplex, and let H be some n−1-dimensional

affine subspace of Rn containing x . Then H ∩K is a polytope.

We are almost done, it seems, and turn to the proof of theorem 1 in Dimension n, which in turn

will prove proposition 8 in Dimension n + 1 and so on.

Proof of theorem 1. As already stated, K is the convex combination of a finite number of n − 1

dimensional compact convex manifolds and a point x in the relative interior of the tip simplex. Since

we supposed K is not a polytope, one of these manifolds has infinitely many extremal points which
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coincide with extremal points of K. Call this manifold B, and recall that B ⊂ bd(K). Pick another

point y in the relative interior of the tip simplex of K. Choose a n − 1-dimensional affine subspace

H parallel to B and containing y . If H ∩ conv({x} ∪ B) = ∅, interchange the roles of y and x . If H

contains x , tilt H just a little such that it intersects conv({x} ∪ B) but neither {x} nor the base B.

The intersection of H and K is, as we know from proposition 8, a polytope. But H ∩ B will have

infinitely many extremal points, as it is a (possibly dilated, if we tilted H) homothetic copy of B. Thus,

K and B can only share a finite number of extremal points, in contradiction with the assumption.

Sharpness of results

We could now ask if the above results are optimal, and indeed, they are. First note that as soon as

we have constructed (in any dimension) a tiling T of a convex body K which contains (at least) 2

similar copies L, L′ of K, then we could create a tiling with more similar copies by regarding the tiling

fL(T ) + T . Note however that we can never make a degenerate tip simplex nondegenerate using

this method. The tip simplex is thus the real condition to make K a polytope, a feat not visible in

dimensions 2 or 3.

Using induction on dimensions, we can construct a convex body which even allows us to see that the

condition on the tip simplex is optimal, in particular, n−3-dimensional tip simplices are not enough to

conclude that K is a polytope. Figuratively speaking, we take a circular cone, which shows theorem

1 to be sharp in dimension 3, and take it as a base for a 4-dimensional cone, which in turn forms a

base of a five-dimensional cone etc. This example is an extension of an example Zamfirescu gave for

dimension 3.

To make a concrete example with n− 3 dimensional tip simplex in dimension n > 2, use the following

construction: Regard the convex body K which is the set of all points

√

x21 + x
2
2 +

∑

i∈{3,4,5,...,n}

xi ≤ 1; xi ≥ 0 ∀i ∈ {3, 4, 5, ..., n}

where the xi are coordinates with respect to some base {e1, e2, e3, ..., en} of Rn. We will show that

the tip simplex S is conv(
⋃

i∈{3,4,5,...,n}{ei}).

We regard the homotheties

fi(x) =
1

2
(x − ei) + ei

for i ∈ {3, 4, 5, ..., n}. Their fixed points span the said tip simplex, and the interior of the images of

K does not intersect. Thus, it remains to show that the remaining tile is convex. But this is simple,

since it can be written as intersection of the convex sets K and Xi , i ∈ {3, 4, 5, ..., n},

Xi := {x ∈ R
n|xi ≤

1

2
}

6



References

[1] M. Laczkovich; Decomposition of convex figures into similar pieces, Discrete and Comp. Geom-

etry Vol. 13, 143-148, 1995

[2] G. Valette, T. Zamfirescu; Les partages d’un polygone convexe en 4 polygones semblambes au

premier, J. Combin. Theory Ser. B, Vol 16, 1-16, 1974

7


