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STRICHARTZ ESTIMATES ON ASYMPTOTICALLY DE SITTER

SPACES

DEAN BASKIN

Abstract. In this article we obtain two families of weighted Strichartz estimates with
derivative loss for the Klein-Gordon equation on asymptotically de Sitter spaces, one for

nonnegative λ and a stronger one for λ >
n
2

4
. We provide an application of these estimates

to establish small-data global and almost-global existence results for a class of semilinear
equations on these spaces.

1. Introduction

In this paper we prove a family of weighted Strichartz estimates with derivative losses
for the Klein-Gordon equation on asymptotically de Sitter spaces. The estimates improve
significantly in the setting corresponding to positive mass. As an application, we establish
small-data global and almost-global existence results for a class of semilinear equations on
these spaces.

Strichartz estimates are mixed Lp (in time) and Lq (in space) estimates that provide a
measure of dispersion for the wave equation. These estimates first appeared in the works
of Mockenhaupt-Seeger-Sogge [MSS93] and Kapitanskĭı [Kap91] and have been useful for
proving the well-posedness of semilinear wave and Schrödinger equations. In the context of
general relativity, Marzuola-Metcalfe-Tataru-Tohaneanu established Strichartz estimates for
the Schwarzschild black hole background [MMTT10]. If u satisfies the wave equation

�u = 0,

(u, ∂tu)|t=0 = (φ, ψ),

on Minkowski space R × Rn, then for allowable exponents (p, q, s), u satisfies the following
estimate.

(∫

R

‖u(t, ·)‖pW 1−s,q

)1/p

+

(∫

R

‖∂tu(t, ·)‖pW−s,q

)1/p

. ‖φ‖H1 + ‖ψ‖L2

The allowable exponents (p, q, s) must satisfy two conditions: the admissibility condition,
and the scaling condition.

2

p
+
n− 1

q
≤ n− 1

2
(admissibility)

1

p
+
n

q
=
n

2
− s(scaling)

If s is larger than the value indicated by the scaling condition, the Strichartz estimates are
said to have a loss of derivatives.

The main result of this paper is a weighted Strichartz-type estimate on asymptotically de
Sitter spaces. We now describe these spaces.
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De Sitter space is the constant curvature spherically symmetric solution of the vacuum
Einstein equations with a positive cosmological constant. It can be realized as the one-
sheeted hyperboloid {−X2

0+X
2
1+. . .+X

2
n+1 = 1} in Minkowski space and so is diffeomorphic

to R× Sn. In coordinates (τ, θ) given by

X0 = sinh τ,

Xi = θi cosh τ,

where θ ∈ Sn, its metric is

gdS = − dτ 2 + cosh2 τ dθ2.

If we restrict our attention to large τ , then de Sitter space provides a model of a closed but
expanding universe. If we let T = e−τ near τ = +∞, then τ = +∞ is given by T = 0 and
the metric has the form

(1) gdS =
− dT 2 + 1

4
(1 + T 2) dθ2

T 2
,

i.e., the metric is conformally compact with a spacelike boundary at infinity.
The class of asymptotically de Sitter spaces considered in the current paper is the same

as the class studied by Vasy [Vas09]. In particular, we demand that asymptotically de Sitter
spaces be conformally compact in the sense of equation (1). In other words, if X is a compact
manifold with boundary and boundary defining function x, then g is an asymptotically de
Sitter metric on X if it is Lorentzian on the interior of X and, in a collar neighborhood of
∂X , it has the form

g =
− dx2 + h

x2
,

where h is a smoothly varying (in x) family of symmetric (0, 2)-tensors onX , h|∂X is a section
of T ∗∂X ⊗ T ∗∂X (rather than T ∗

Y ∂X ⊗ T ∗
Y ∂X), and is a Riemannian metric on ∂X . After

appealing to Proposition 2.1 of the paper of Joshi and Sá Barreto [JB00], we may assume
that in fact h = h(x, y, dy) (and not merely its restriction) is a section of T ∗∂X⊗T ∗∂X . We
also impose two global assumptions on (X, g) to ensure that the metric is globally hyperbolic.
We state these assumptions precisely in Section 2.

The main result of this paper is the following Strichartz-type estimate.

Theorem 1. Suppose that (X, g) is an asymptotically de Sitter space, λ ≥ 0, and u satisfies
the following “odd” Klein-Gordon equation on X.

(�g + λ)u = 0

(u, ∂tu)|t=t0 = (0, ψ)

Suppose further that ǫ, δ > 0 and that (p, q, s) satisfy the following admissibility and scaling
relationships.

2

p
+
n− 1

q
≤ n− 1

2
1

p
+
n

q
=
n

2
− s+ ǫ

The function u then satisfies a weighted Strichartz-type estimate.

‖∂tu‖e(n+δ)(t−t0)/qLp([t0,∞);W−s,q( dkt))
+ ‖u‖e(n+δ)(t−t0)/qLp([t0,∞);W 1−s,q( dkt))

. ‖ψ‖L2( dkt0 )
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Furthermore, if λ > n2

4
and p, q, s, ǫ, δ are as above, then u satisfies a stronger Strichartz-

type estimate.

‖∂tu‖eδ(t−t0)Lp([t0,∞);W−s,q( dkt))
+ ‖u‖eδ(t−t0)Lp([t0,∞);W 1−s,q( dkt))

. ‖ψ‖L2( dkt0 )

As a consequence of the Strichartz estimates, we obtain a (forward in time) small-data
global well-posedness result for the following semilinear wave equation on asymptotically de
Sitter spaces.

(�g + λ)u = e−ntFk(u)

(u, ∂tu)|t=t0 = (0, ψ)

Here we assume that Fk(u) is similar to |u|k−1u in the following manner.

|Fk(u)| . |u|k

|u| · |F ′
k(u)| ∼ |Fk(u)|

For general λ ≥ 0, we require the exponential damping on the nonlinear term as a means
of compensating for the exponential growth seen in the Strichartz and energy estimates.
Yagdjian studied this equation without the e−nt factor but on the static model of de Sitter
space [Yag09]. He established small-data global well-posedness for values of k below a thresh-
old value. The transformation he applies to solutions introduces an exponentially decreasing
factor similar to the one we use, but we are not able to recover his results for these values
of λ. For large λ (λ > n2

4
), we further obtain a small-data almost global existence result for

the standard semilinear equation.
For both the Strichartz estimates and the semilinear equation, we restrict our attention

only to the future. This is done both for convenience and for physical reasons, as the past
of de Sitter space (and, indeed, asymptotically de Sitter spaces) are poor models for our
universe.

We believe that the loss of derivatives in Theorem 1 is an artifact of our method, which
requires regularizing a Fourier integral operator. Because we lack Littlewood-Paley theory in
this geometric setting, we are unsure how to obtain the sharper estimates. The exponential
weights seen in Theorem 1 and in Theorems 30, 33, and 35 are due to two sources. The
main contribution is from the expanding nature of the spacetime, which prevents energy
conservation (or a global energy bound). The energy estimate we use contains an expo-
nentially growing bound, which carries through the proof and can be eliminated when λ is
large by a conjugation argument. The other term is the slight loss of decay. This is an
artifact of the non-decay of the fundamental solution along the light cone shown by the
author [Bas10a]. We also state uniform local Strichartz estimates. In [Bas10b], the author
established Strichartz estimates without loss and with better decay for the conformal value
of the Klein-Gordon mass. With this parameter, the Strichartz estimates are conformally
equivalent to local in time estimates for the wave equation on a compact Lorentzian cylinder.
In this current manuscript we do not recover those stronger estimates.

The proof of the Strichartz estimates relies on energy estimates and a dispersive estimate
obtained by analyzing the fundamental solution given by the author [Bas10a, Bas10c]. The
main ingredient in the proof of the existence result for the semilinear equation is a contraction
mapping argument using the Strichartz estimate. We do not prove existence for a wider range
of powers because we do not have an inhomogeneous L1L2 → LpLq Strichartz estimate. This
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is also due to the non-static nature of the spacetime, as the propagator no longer forms a
semigroup.

1.1. Notation. Throughout this paper, we write D for 1
i
∂ and P (λ) = �g + λ, where λ is

a real parameter.
Throughout this manuscript, we study the inhomogeneous Cauchy problem:

P (λ)u = f,(2)

(u, ∂tu)|t=t0 = (φ, ψ).

Here P (λ) = �g + λ, where λ is a real parameter. We use the term “odd” to refer to the
problem when f = 0, φ = 0, “even” to refer to when f = 0, ψ = 0, and the inhomogeneous
problem to refer when φ = ψ = 0.

We require the use of Sobolev-type spaces as well. Throughout this paper, HE(t) refers to
an energy space at time t, HE,r(t) denotes an energy space measuring r additional derivatives
at time t. In addition, 0W s,p( dkt) refers to the L

p-based Sobolev space of order s with respect
to the measure dkt. Finally, for a Banach space Z, we denote by eatLp([t0, T ];Z) the space
of Z-valued functions u on [t0, T ] that can be written as u = eatv, where

(∫ T

t0

‖v(t, ·)‖pZ dt

)1/p

<∞.

We give more precise characterizations of these spaces later.

2. Asymptotically de Sitter spaces

Suppose that X is a compact manifold with boundary with boundary defining function x.

Definition 2. (X, g) is an asymptotically de Sitter space if g is a Lorentzian metric on the
interior X◦ of X , and, in a collar neighborhood [0, ǫ)x × ∂X , g has the form

g =
− dx2 + h(x, y, dy)

x2
,

where h(x, y, dy) is a family of Riemannian metrics on ∂X .

We further require two global assumptions:

(A1) The boundary can be written as a disjoint union ∂X = Y+∪Y−, where Y± are unions
of connected components of ∂X .

(A2) Each nullbicharacteristic (or light ray) γ(t) of g tends to Y± as t → ±∞, or vice
versa.

Assumptions (A1) and (A2) imply that (X, g) is globally hyperbolic and that the interior of
X is diffeomorphic to R× Y±. We let Y = Y+. In particular, the global assumptions imply
the existence of a global time foliation of the manifold. We may take this foliation so that
t = log x near Y− and t = − log x near Y+. We denote by Yt the leaves of this foliation, i.e.,
Yt0 = {t = t0}. We denote by kt the restriction of the metric g to the slice Yt. In particular,
near Y+, kt = e2th. We set dkt to be the measure associated to this metric, which is equal
to ent dht near Y+.

Remark 3. The boundary of an asymptotically de Sitter space is space-like and so one should
consider the coordinate x as e−|t|.
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If we set

D =
1

i
∂,

then, in local coordinates (x, y) near ∂X , we may write

�g = −(xDx)
2 − nixDx −

xDx

√
h√

h
xDx + x2∆h.

We set P (λ) = �g + λ. This convention is chosen so that λ > n2

4
corresponds to positive

mass.
Near Y+, x = e−t and so in this region we have, in (t, y) coordinates,

(3) P (λ) = −D2
t + niDt −

Dt

√
h√
h
Dt + e−2t∆ht + λ,

where ∆ht is the positive Laplacian for the metric h(t).

3. Energy estimates

In this section we prove a family of energy estimates for the equation (2).
We start by defining a norm for an energy space on a spacelike slice Yt.

Definition 4. For I = (φ, ψ) ∈ C∞(Yt)× C∞(Yt), we define its energy norm by

(4) ‖I‖2HE(t) =
1

2

∫

Yt

(∣∣(∆′
kt)

1/2φ
∣∣2 + |ψ|2 + ℜλ |φ|2

)
dkt.

For ℜλ ≥ 0, this is a positive definite form, and we define the energy space HE(t) as the
completion of C∞(Y )× C∞(Y ) with respect to this norm.

We further define the shifted energy norm by

‖I‖2HE,r(t)
= ‖Ar,tI‖2HE(t) ,

and let the shifted energy space HE,r(t) be the completion of C∞ ×C∞ with respect to this
norm.

We now prove an energy estimate for the shifted energy spaces HE,r(t).

Proposition 5. Suppose that (X, g) is asymptotically de Sitter, P (λ) = �g + λ, and u is
a smooth function on the interior of X. If I = (u, ∂tu)(t0), then u satisfies the following
energy estimate:
(5)

‖(u, ∂tu)(t)‖HE,r(t)
. e(n−2r)(t−t0)/2 ‖I‖HE,r(t)

+ e(n−2r)t/2

∫ t

t0

‖Ar,sP (λ)u‖L2( dks)
e−(n−2r)s/2 ds.

In particular if P (λ)u = 0, then u satisfies:

(6) ‖(u, ∂tu)(t)‖HE,r(t)
. e(n−2r)(t−t0)/2 ‖I‖HE,r(t)

.

In particular, we obtain the following classical energy estimate by setting r = 0.

Corollary 6. If (X, g), u, and I are as in Proposition 5, then u satisfies the following energy
estimate:

‖(u, ∂tu)‖HE(t) . en(t−t0)/2 ‖I‖HE(t0)
+ ent/2

∫ t

t0

‖P (λ)u‖L2( dks)
e−ns/2 ds.(7)
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In particular, if P (λ)u = 0, then u satisfies:

(8) ‖(u(t), ∂tu(t))‖HE(t) . en(t−t0)/2 ‖I‖HE(t0)
.

Proof. We know from the local theory of hyperbolic equations that the bound holds away
from infinity (see, for example, the book of Taylor[Tay96]). We must thus only show the
bound near infinity for initial data on a slice near infinity.

We may compute using the form (3) (for simplicity of notation, let us assume that λ and
u are real):

∂t ‖(u, ∂tu)(t)‖2HE,r(t)
=

∫

Y

(
(∂tAr+ 1

2
,tu)(Ar+ 1

2
,tu) + (∂tAr,t∂tu)(Ar,t∂tu)

+ λ(∂tAr,tu)(Ar,tu)

)
ent

√
h dy

+
1

2

∫

Y

(
|Ar+ 1

2
,tu|2 + |Ar,t∂tu|2 + λ|u|2

)(
n+

∂t
√
h√
h

)
ent

√
hdy

= (n+O(e−t)) ‖(u, ∂tu)(t)‖2HE,r(t)
+

∫

Y

(Ar,tP (λ)u)(Ar,t∂tu)e
nt
√
h dy

−
∫

Y

|Ar,t∂tu|2(n+O(e−t))ent
√
h dy

+

∫

Y

(
([∂t, Ar+ 1

2
,t]u)(Ar+ 1

2
,tu) + ([∂t, Ar,t]∂tu)(Ar,t∂tu)

+ λ([∂t, Ar,t]u)(Ar,tu)

)
ent

√
h dy.

We now use the calculation in Lemma 15, the positivity of one of the above terms, and
the fact that x−rQr is controlled by Ar,t to conclude that

∂t ‖(u, ∂tu)‖2HE,r(t)
≤ (n− 2r +O(e−t)) ‖(u, ∂tu)‖2HE,r(t)

+ ‖Ar,tP (λ)u‖L2(Y ; dkt)
‖(u, ∂tu)‖HE,r(t)

,

so that

∂t ‖(u, ∂tu)‖HE,r(t)
≤
(n
2
− r +O(e−t)

)
‖(u, ∂tu)‖HE,r(t)

+
1

2
‖Ar,tP (λ)u‖L2(Y ; dkt)

.

An application of Gronwall’s inequality finishes the proof. �

When λ is large, we also obtain a stronger energy estimate by estimating the energy of
e

n
2
tu.

Proposition 7. Suppose that λ > n2

4
and (X, g), u, and I are as in Proposition 5, and

P (λ)u = 0, then u satisfies the following energy estimate.

(9) ‖(u, ∂tu)‖HE(t) . ‖I‖HE(t0)

Proof. Set v = e
n
2
tu. The same argument as in the proof of Proposition 5 shows that the

following energy norm of v satisfies the same exponential bound.
∫

Yt

(
|∂tv|2 +

∣∣∣
(
∆′

kt

)1/2
v
∣∣∣
2

+

(
ℜλ− n2

4

)
|v|2
)
dkt ≤ Cen(t−t0)ent0 ‖I‖2HE(t0)
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In particular, for λ > n2

4
this norm is positive definite and controls ent ‖(u, ∂tu)‖2HE(t). �

4. The solution operator

In this section we recall the description of the solution operator for the Cauchy problem

(2). This is a Lagrangian distribution on a compactification X̃2
0 of X × X . We briefly

describe the result below and refer the reader to the first author’s previous work for more
details [Bas10a, Bas10c]. Because we are interested only in obtaining Strichartz estimates,
we limit our discussion to the behavior near infinity.

The full double space X̃2
0 is a manifold with corners obtained from X×X in two steps. At

the first step, we obtain the 0-double space originally due to Mazzeo and Melrose [MM87].
In the second step we blow up the intersection of the flowout of the light cone with the side
faces.

This space, denoted X̃2
0 , is obtained by blowing up the boundary of the diagonal in X×X ,

yielding a manifold with corners that has a new boundary hypersurface, which we call the
front face ff, and on which the lift of the diagonal and the flowout of the light cone from the
diagonal intersect all boundary hypersurfaces transversely. Figure 1 illustrates this blow-up.

y, ỹ

x̃

x

diag

y, ỹ

x̃

x

diag0

Figure 1. Passing from X ×X to the 0-double space X2
0 = [X2, ∂ diag].

The 0-double space has three boundary hypersurfaces: lf, the lift of the left face of X×X
(given by x = 0 in X ×X); rf, the lift of the right face of X ×X (given by x̃ = 0 in X ×X);
and ff, the front face introduced by the blow-up. Near the front face in a single coordinate
chart for Y , the polar coordinates

rff =
(
x2 + x̃2 + |y − ỹ|2

)1/2
, θ = (x, y − ỹ, x̃)/rff ∈ S

n

are smooth functions. It is often more convenient to work in projective coordinates near the
front face away from rf. These are given by (s, z, x̃, ỹ), where

s = x/x̃, z =
y − ỹ

x̃
.

The flowout by the Hamilton vector field of σ(P ) of the characteristic set of P intersected

with the lifted diagonal is a smooth submanifold of T ∗X̃2
0 that intersects all boundary hyper-

surfaces transversely. This is a Lagrangian submanifold of T ∗X̃2
0 that we denote Λ1. Near

the front face but away from the diagonal, Λ1 is the conormal bundle of a submanifold that
we call the light cone LC. Because we are only interested in the region near the front face,
we may assume without loss of generality that LC is an embedded submanifold away from
the diagonal. The full double space is obtained by blowing up the intersection of LC with
the side faces lf and rf.
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y, ỹ

∆0

x̃

x

Figure 2. The double space X̃2
0 near ff+.

In the following three subsections, we summarize the results of [Bas10a]. We denote by

Im0

(
X̃2

0 ; Λ1

)
the space of Lagrangian distributions of order m associated to the flowout

Lagrangian Λ1 and supported near the diagonal in X̃2
0 . We denote by AF

phgI
m
(
X̃2

0 ; LC
)

the space of distributions conormal to LC whose symbols have polyhomogeneous expansions

with index family F at the side faces of X̃2
0 . Finally, we denote by AF

phg(X̃
2
0 ) the space of

polyhomogeneous conormal distributions with index family F on X̃2
0 .

4.1. The “odd” problem. We now describe the solution operator for the “odd” initial
value problem

P (λ)u = 0(10)

(u, ∂tu)|t=t0 = (0, ψ),

where ψ is a smooth function. Let us denote by Uv(t, t0) the solution operator for this
problem at time t, i.e., if u solves equation (10), then u(t) = Uv(t, t0)ψ. The “v” in this
notation stands for initial velocity.

Proposition 8. The kernel of the operator Uv(t, s), regarded as a distributional half-density
on X ×X, can be written as K1 +K2 +K3, where

K1 ∈ I
−3/2
0

(
X̃2

0 ; Λ1

)
,

K2 ∈ AF
phgI

−3/2
(
X̃2

0 ; LC
)
,

K3 ∈ AF
phg(X̃

2
0 ),

where Λ1 is the flowout light cone, and the relevant sets in the index family F are given by

Flcf l = {(j, l) : l ≤ j, j ∈ N0} ,
Flf+ = {(s±(λ) +m, 0 : m ∈ N0} ,
Fff+ = {(m, 0) : m ∈ N0} .

Remark 9. We list only the index sets above because we are only interested in the solution
operator U(t, t0) for t0 and t very large.
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Remark 10. In Section 7, we need estimates for the compositions U(t, t0)U(s, t0)
∗. These are

roughly of the same form, but with a symmetric index set, i.e., F is given by

Flcf l = Flcfr = {(j, l) : l ≤ j, j ∈ N0} ,(11)

Flf+ = Frf+ = {(s±(λ) +m, 0 : m ∈ N0} ,(12)

Fff+ = {(m, 0) : m ∈ N0} .(13)

4.2. The “even” problem. A similar proposition holds for the solution operator Up(t, t0)
of the “even” problem

P (λ)u = 0(14)

(u, ∂tu)|t=t0 = (φ, 0).

Here the subscript “p” indicates initial position.

Proposition 11. The kernel of the operator Up(t, s), regarded as a distributional half-density
on X ×X, can be written as K1 +K2 +K3, where

K1 ∈ I
−1/2
0

(
X̃2

0 ; Λ1

)
,

K2 ∈ AF ′

phgI
−1/2

(
X̃2

0 ; LC
)
,

K3 ∈ AF ′

phg(X̃
2
0 ),

where Λ1 is the flowout light cone, and the relevant sets in the index family F ′ are given by

F ′
lcf l

= {(j − 1, l) : l ≤ j, j ∈ N0} ,
F ′
lf+ = {(s±(λ) +m, 0 : m ∈ N0} ,
F ′
ff+

= {(m, 0) : m ∈ N0} .

Note that this index set differs from F only at the light cone face lcf l, and F
′
lcf l

= Flcf l −1.
This difference stems from the difference in the order of the Lagrangian distributions for two
solution operators.

Remark 12. Below we also use a symmetrized version of F ′, which differs from F only at
lcf l and lcfr. This difference is given by

(15) F ′
lcf l

= F ′
lcfr = Flcf l − 1.

4.3. The inhomogeneous problem. The solution operator E for the inhomogeneous prob-
lem

P (λ)u = f,(16)

(u, ∂tu)|t=t0 = (0, 0),(17)

can be obtained from the solution operator for the “odd” problem. Indeed, the two operators
are related by

(Ef)(t) =

∫ t

s

Uv(t, s)f(s) ds.



10 DEAN BASKIN

5. Regularization

We rely on the notion of semiclassical pseudodifferential operators on the slices Yt. Here the
variable x acts as the semiclassical parameter. In particular, we consider pseudodifferential
operators with Schwartz kernels given by

(18)

∫

Rn

ei(y−ỹ)·η/x̃a

(
x

x̃
,
y − ỹ

x̃
, x̃, ỹ, η

)
dη,

where a is a symbol in η.
We primarily use that powers of ∆kt are of this form.
We also use the boundedness of these operators on Lp spaces. This is a standard result in

semiclassical analysis.

Lemma 13. Suppose that Ax is a family of pseudodifferential operators of order −ǫ on Y
of the form (18). If 1 < p <∞, then

Ax : Lp(Y ; dkx) → Lp(Y ; dkx),

with bound independent of x.

Proof. We start by proving the same claim for Lp(Y ; dhx).
Using a partition of unity, we write the symbol a = a0 + a∞, where a0 is supported near

the zero section and a∞ is supported away from 0. a0 is a Schwartz function in η, and so we
may use standard semiclassical results (see, e.g., [KTZ07]) to conclude that the bound holds
for a0.

For a∞, we appeal to Schur’s test. Indeed, we must bound the integral over the left and
right factors of Y , uniformly in x. Because a∞ is supported away from η = 0, we may use
the principle of non-stationary phase to bound the integral

∫

Y

∫

Rn

ei(y−y′)·η/xa∞(y, y′, η) dη
dy

xn
.

Indeed, integrating by parts n times gives a bound of O(xn), which cancels the factor of
x−n in the measure. A similar bound applies to the integral in the other factor, proving the
claim.

This proves that Ax is bounded Lp(Y ; dhx) → Lp(Y ; dhx). To prove that it is bounded
Lp(Y ; dkx) → Lp(Y ; dkx), we note only that Ax commutes with multiplication by x. �

Definition 14. We denote by Ar,x (or Ar,t) the operator (∆′
kx
)r/2.

We require the commutator of Ar,t with ∂t (i.e., the commutator of Ar,x with −x∂x).
Lemma 15. For sufficiently large t, the commutator of Ar,t with ∂t is given by

(19) [∂t, Ar,t] = −rAr,t + xr+1Qr,t,

where Qr is a family of pseudodifferential operators on Y varying smoothly in x.

Proof. We note that
(
∆′

hx

)r/2
is a family of pseudodifferential operators of order r on Y ,

varying smoothly in x down to x = 0. In particular, the commutator

[∂x,
(
∆′

hx

)r/2
] = −Qr

is a pseudodifferential operator of order r on Y also varying smoothly in x down to x = 0.
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By interpolation, Ar,x =
(
∆′

kx

)r/2
can be written as Ar,x = xr

(
∆′

hx

)r/2
. We may then

write

[∂t, Ar,t] = −[x∂x, x
s
(
∆′

hx

)r/2
] = rAr,t + xr+1Qr,

where x = e−t near t = ∞. �

We now prove a lemma that allows us to regularize the distributions in Section 4.

Lemma 16. Suppose K ∈ Im0

(
X̃2

0 ; Λ1

)
is a Lagrangian distribution of order m associated

to Λ1, and Ax ∈ Ψk(Y ) is a family of semiclassical pseudodifferential operators on Y of order
k whose Schwartz kernels are given as x→ 0 by

(20) x−n

∫

Rn

ei(y−ỹ)·η/xa(x, y, ỹ, η) dη,

where a is a symbol of order k. The composition AK is also a Lagrangian distribution, i.e.,

AK ∈ Im+k
0

(
X̃2

0 ; Λ1

)
.

Here we may think of A as acting on the left or the right factor.

Remark 17. Because kx ∼ x−2h0 near x = 0, we may put (∆kx)
−k/2 in this form. The x−n

in front of the oscillatory integral substitutes for the 0-half-density factor.

Proof. Away from the front face, we may appeal to standard composition results. Although
A is not pseudodifferential on X , the additional wavefront set of the kernel of A is disjoint
from the operator wavefront set of K. Indeed, in local coordinates near ∂X , it is contained
in the set

{(x, y, x, ỹ, ξ, 0,−ξ, 0) : (y, ỹ) ∈ suppAx} .
The composition of this set with Λ1 is empty, so we may microlocalize A to be a pseudodif-
ferential operator on X without changing the singular structure of AK.

Near the front face, we use a different argument. Suppose that Ax is a family of pseu-
dodifferential operators on Y with Schwartz kernels as in equation (20). Given a symbol

b(x, x̃, y, ỹ, ξ) of order m+ 1
2
, supported away from the side faces of X̃2

0 , we observe that

Ax

(
b(x, x̃, y, ỹ, ξ)ei(y−ỹ)·ξ/x

)
= c(x, x̃, y, ỹ, ξ)ei(y−ỹ)·ξ/x,

where c is a symbol of order k + m + 1
2
. This can be seen (as in the book of Grigis and

Sjöstrand [GS94]) via a careful application of stationary phase to the integral
∫

Rn

∫

Yx

ei(y−y′)·(ξ−η)/xa(y, y′, η)b(x, x̃, y′, ỹ, ξ)
dy′

xn
dη.

�

By a similar argument, we may regularize conormal distributions with asymptotic expan-
sions.

Lemma 18. Suppose that K ∈ AF
phgI

m
(
X̃2

0 ; Λ1

)
is a conormal distribution and that Ax ∈

Ψk(Y ) is as above. Then

AxK ∈ AF
phgI

m+k
(
X̃2

0 ; Λ1

)
,

where we may again think of A acting on the left or on the right.
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We also require a notion of Lp-based Sobolev spaces, which interpolate with the L2-based
Sobolev spaces in the standard way.

Definition 19. The 0W s,p( dkt) norm of a function φ ∈ C∞(Y ) is given by

‖φ‖p0W s,p( dkt)
=

∫

Yt

∣∣(∆′
kt)

s/2
∣∣p dkt,

where ∆′
kt

is the Laplacian of the metric kt precomposed with a projection off of its zero
mode.

6. Dispersive estimates for Lagrangian distributions

In this section we demonstrate a family of uniform dispersive estimates for distributions
in the same class as the wave evolution operator. We start by proving that 0-Lagrangian
distributions associated to Λ1 and supported near the diagonal obey a dispersive estimate.

Lemma 20. Suppose that K ∈ rpffI
m
0

(
X̃2

0 ; Λ1

)
for m = −n

2
− 1 − ǫ and ǫ > 0. Suppose

further that K is supported near the diagonal in a small neighborhood of the front face. If

we write K = κµ, where µ is the lift of the 0-half-density υ to X̃2
0 , then we may bound κ

pointwise by

|κ| . rpff |log s|
−(n−1)/2+ǫ .

Moreover, because | log s| ≤ C on the support of K, we may bound

|κ| . rpff |log s|
−(n−1)/2 .

Proof. We start by showing the dispersive estimate in the case where the Lagrangian Λ1 is
parametrized by the phase function

φ0 = z · ζ ± (1− s)|ζ |.
The argument is identical for either value of plus or minus, so we fix it to be plus. We assume
that the distribution K is supported near the front face. We may write κ as an oscillatory
integral of the form

κ =

∫

Rn

eiφ0a(s, z, x̃, ỹ, ζ) dζ,

where a is a symbol of order m + 1
2
. By using polar coordinates ζ = |ζ |ζ̂ and writing

φ0 = (1− s)|ζ |
(

z
1−s

· ζ̂ + 1
)
, we may apply stationary phase to conclude that

|κ| .
∫ ∞

(1−s)−1

|a (s, z, x̃, ỹ,±|ζ |ẑ)| ·
(
|ζ |(n−1)/2(1− s)−(n−1)/2 +O(|ζ |(n−2)/2(1− s)−(n−2)/2)

)
d|ζ |

+

∫ (1−s)−1

0

∫

Sn−1

∣∣∣a(s, z, x̃, ỹ, |ζ |ζ̂)
∣∣∣ |ζ |n−1 dζ̂ d|ζ |.

The first term is bounded by C(1 − s)−(n−1)/2+ǫ when m = −n
2
− 1 − ǫ. The second term

within the parentheses is similarly bounded. We may bound the third term by

C + C

∫ (1−s)−1

1

|ζ |n+ 1
2
+m d|ζ |,
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which is then bounded by C(1+ (1− s)−(n−1)/2+ǫ) when m = −n
2
− 1− ǫ. Because this piece

is supported near s = 1, we may bound it by (1− s)−(n−1)/2+ǫ.
We now use a perturbation argument to show that this estimate holds in a neighborhood

of the front face for the Lagrangian Λ1. Indeed, near the front face, we may parametrize Λ1

by

φ = φ0 + |ζ |r(x̃, x, z, ζ̂),
where r = x̃b and b is a smooth function of its arguments. For small enough x̃, φ is still a
phase function and its critical points (in ζ̂) are close to those of φ0. A similar argument to
the one above thus shows that, in a small neighborhood of the front face the same bound
holds.

We are assuming that κ is supported near the diagonal, so (1− s) ∼ log s on the support
of κ, proving the claim. �

We now prove a similar estimate for the larger class of distributions used in the construc-
tion.

Lemma 21. Suppose that K ∈ rpffAF
phgI

m
(
X̃2

0 ; Λ1

)
with m = −n

2
−1−ǫ, ǫ > 0, and Flcf ≥ 0.

Suppose further that K is supported near the light cone LC and away from the diagonal. If

K = κν, where ν is the lift of the 0-half-density υ to X̃2
0 , then κ satisfies the following bound:

|κ(x, x̃)| . rpff max
(
1, |t− s|−n−1

2
+ǫ
)
,

where both x and x̃ are close to 0.
In fact, if x0 is small and fixed so that x, x̃ ≤ x0, Flcf l ≥ α and Flcfr ≥ β, then

|κ(x, x̃)| . rlcfl(x)
αrlcfr(x̃)

βrpff max

(
1,
∣∣∣log

(x
x̃

)∣∣∣
−n−1

2
+ǫ
)
,

where rlcf l(x) = (x2 + (x0 − x− |y − ỹ|)2)1/2, with a similar expression for rlcfr(x̃).

Proof. Near the diagonal, the proof of this lemma is identical to the proof of Lemma 20.
Away from the diagonal, Λ1 is the conormal bundle of an embedded submanifold and the
phase function for this distribution is a perturbation of

φ1(s, z, x̃, ỹ, η) =
1

s
((1− s)− |z|) η,

where s = x/x̃ and z = y−ỹ
x̃
.

The order m is sufficiently negative that the symbol of the conormal distribution is inte-
grable. For the first statement, we then apply the symbol bound given from the order of
polyhomogeneity. The proof of the second statement is identical. �

7. Estimating the propagator

We now seek dispersive estimates for the propagator. For convenience, we first show the
estimates for the “odd” initial value problem and then indicate how to modify the proof for
the “even” and inhomogeneous problems.
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7.1. The “odd” initial value problem. We start by fixing t0 large enough so that e−t0

is close to 0. Let U(t, t0) = ∂tUv(t, t0). We seek a dispersive estimate for the product
U(t, t0)U(s, t0)

∗, where the adjoint is taken with respect to the energy space defined above,
i.e., U(t, t0)

∗ is the L2 transpose of U(t, t0). Let us use the decomposition given in Section 4
to write U(t, t0) =

∑3
i=1 Ui(t, t0).

Let us denote by Ũi the regularization of Ui by order r = n+1
4

+ ǫ
2
, i.e., Ũi = ArUi.

In order to estimate Ũ1Ũ
∗
1 , we use the following lemma:

Lemma 22. Suppose that s, t > t0 and that e−t0 is close to zero. Then the composition

Ũ1(t, t0)Ũ1(s, t0)
∗

is an element of I
−n

2
−1−ǫ

0

(
X̃2

0 ; Λ1

)
.

Proof. The Lagrangian submanifolds corresponding to U1 and U∗
1 intersect transversely in

Y × Y × Y , so we may follow the proof of Hörmander [Hör71] to see that Ũ1Ũ
∗
1 is a Fourier

integral operator. The distributions are smooth down to the front face, so there are no extra
powers of rff .

The compositions have the stated order because restricting to t′ = t0 shifts the order by
1
4
. �

Combining the previous lemma with the results of Section 6 proves the following corollary.

Corollary 23. The composition Ũ1(t, t0)Ũ1(s, t0)
∗ is a bounded operator L1( dks) → L∞( dkt)

with bound

C|t− s|−n−1
2

+ǫ.

Proof. An L1( dks) → L∞( dkt) estimate is equivalent to a pointwise bound on κ, where κµ

is the kernel of the operator and µ is the lift of the 0-half-density ν to X̃2
0 . The claim then

follows in light of Lemma 20 and Lemma 22. Indeed, the bound from Lemma 20 implies
that

‖Kφ‖L∞( dkx)
.
∣∣∣log

x

x̃

∣∣∣
−(n−1)/2+ǫ

‖φ‖L1( dkx̃)
.

Changing coordinates from (x, y) to (t, y) finishes the proof. �

We now estimate the pieces containing Ũ2. As noted above, the phase function for this
distribution is a perturbation of

φ1(s, z, x̃, ỹ, η) =
1

s
((1− s)− |z|) η,

where s = x/x̃ and z = y−ỹ
x̃
.

The argument proceeds in a nearly identical manner. We start by observing the following
lemma, whose proof is identical to the proof of Lemma 22.

Lemma 24. Suppose that t, s > t0 and e−t0 is close to zero. Then for i, j = 1, 2, (i, j) 6=
(1, 1), the composition

Ũi(t, t0)Ũj(s, t0)
∗

is an element of AF
phgI

−n
2

−1−ǫ
(
X̃2

0 ; Λ1

)
, where F is as given in Remark 10.

In light of Lemma 21, we immediately obtain the following corollary.
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Corollary 25. Suppose that t, s > t0 and e−t0 is near 0. Then for (i, j) = (1, 2), (2, 1), or

(2, 2), Ũi(t, t0)Ũj(s, t0)
∗ is bounded L1( dks) → L∞( dkt) with bound C.

Proof. We apply Lemma 21 to the distribution obtained in Lemma 24. For (i, j) = (1, 2),
(2, 1), or (2, 2), |t− s|−1 . 1 in the support of Ũi(t, t0)Ũj(s, t0)

∗, finishing the proof. �

We must finally bound the polyhomogeneous terms, i.e., the terms containing Ũ3. The
main observation here is that the polyhomogeneous pieces “absorb” the singularities of the
other pieces, and so the pointwise bounds on the polyhomogeneous distributions are enough
to prove the desired estimate without regularization. In particular, we have the following
lemma.

Lemma 26. Suppose that i = 1, 2, 3 and that λ ≥ 0. Then the operator U3(t, t0)Ui(s, t0)
∗ is

bounded L1( dks) → L∞( dkt) by a constant C independent of s and t. An identical estimate
holds for Ui(t, t0)U3(s, t0)

∗.

Proof. The kernel of the operator is a smooth function on the interior of X × X and is
polyhomogeneous on the full double space. When λ ≥ 0, the values s±(λ) ≥ 0. In particular,
if we write the Schwartz kernel of this operator as κν, where ν is the lift of the 0-half-density

υ to X̃2
0 , then κ is bounded. �

We now interpolate to obtain a family of dispersive estimates. We start by summarizing
the estimates of Corollaries 23 and 25 and Lemma 26 in the following proposition.

Proposition 27. Suppose that t, s > t0, e
−t0 is close to 0, and λ ≥ 0. Then the operator

Ũ(t, t0)Ũ(s, t0)
∗ is bounded L1( dks) → L∞( dkt) with bound

max
(
1, |t− s|−n−1

2

)
.

By interpolating with the energy estimates in Section 3, we obtain the following family of
dispersive estimates.

Theorem 28. For q ∈ (2,∞) and ǫ, γ > 0, U(t, t0)U(s, t0)
∗ is a bounded operator

0W

(

1
q′
− 1

q

)

(n+1
4

+ ǫ
2)+γ,q′

(Ys, dks) → 0W
−
(

1
q′
− 1

q

)

(n+1
4

+ ǫ
2)−γ,q

(Yt, dkt) ,

with bound

Cq,ǫ,γe
n(t−t0)/qen(s−t0)/q max

(
1, |t− s|

(

1
q′
− 1

q

)

(−n−1
2

+ǫ)
)
.

Here q′ denotes the conjugate exponent of q and 0W r,q denotes the Lq-based Sobolev space of
order r.

If λ > n2

4
, then the same estimate holds, but with bound

Cq,ǫ,γ max

(
1, |t− s|

(

1
q′
− 1

q

)

(−n−1
2

+ǫ)
)
.

Proof. We may assume that t, s > t0. Proposition 5 and the boundedness of pseudodiffer-
ential operators on L2-based Sobolev spaces imply that Ũ(t, t0) → Ũ(s, t0)

∗ is a bounded
operator

0W−n+1
4

− ǫ
2
,2(Ys, dks) → 0W

n+1
4

+ ǫ
2
,2(Yt, dkt),

with bound Cǫe
n(t−t0)/2en(s−t0)/2.
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We now interpolate with the bounds in Proposition 27 to see that for q ∈ (2,∞), the

composition Ũ(t, t0)Ũ(s, t0)
∗ is a bounded operator

0W− 2
q (

n+1
4

+ ǫ
2),q′(Ys, dks) → 0W

2
q (

n+1
4

+ ǫ
2),q(Yt, dkt),

with bound

Cq,ǫe
n(t−t0)/qen(s−t0)/q max

(
1, |t− s|

(

1
q′
− 1

q

)

(−n−1
2

+ǫ)
)
.

We finally remove the regularization with Lemma 13 to finish the proof. This also accounts
for the extra γ in the regularity exponent, as Lemma 13 requires that the pseudodifferential
operator have negative order.

The second statement follows by using the improved energy estimates in Proposition 7. �

Because powers of e−(t−t0) and e−(s−t0) are bounded by |t − s|−1 for t, s > t0, we obtain
the following global bound.

Corollary 29. For q ∈ (2,∞) and δ, ǫ, γ > 0,

e−δ(t−t0)e−n(t−t0)/qU(t, t0)U(s, t0)
∗e−n(s−t0)/qe−δ(s−t0)

is a bounded operator

0W

(

1
q′
− 1

q

)

(n+1
4

+ ǫ
2)+γ,q′

(Ys, dks) → 0W
−
(

1
q′
− 1

q

)

(n+1
4

+ ǫ
2)−γ,q

(Yt, dkt) ,

with bound

Cq,ǫ,γ,δ|t− s|−
(

1
q′
− 1

q

)

(n−1
2

−ǫ).

We may also bound this operator by

Cq,ǫ,γ,δ|t− s|−
(

1
q′
− 1

q

)

n−1
2 .

If λ > n2

4
, then the operator

e−δ(t−t0)U(t, t0)U(s, t0)
∗e−δ(s−t0)

is bounded as an operator in the same spaces with the same bounds.

Proof. The second statement follows because |t−s| is bounded by 1 near t = s and bounded
by eδ(t−s) away from the diagonal. �

7.2. The “even” initial value problem. For the “even” initial value problem, we must
use the weaker index sets in Section 4. Let U(t, t0) be the operator given by multiplying

Up(t, t0) by (∆kt)
1/2 on either side, i.e.,

U(t, t0) = (∆kt)
1/2 Up(t, t0) (∆kt)

1/2 .

By the energy estimates, this operator is bounded on L2 with exponential bound. At this
point, the only difference with the proof in Section 7.1 is the contribution from the index set.
This contributes a factor of et−t0es−t0 to the L1 → L∞ dispersive estimates. Interpolating
with the energy estimates shows that the operator U(t, t0)U(s, t0)

∗ is bounded

0W

(

1
q′
− 1

q

)

(n+1
4

+ ǫ
2)+γ,q′

(Ys, dks) → 0W

(

1
q′
− 1

q

)

(n+1
4

+ ǫ
2)−γ,q

(Yt, dkt),

with bound

Cq,ǫ,γe
(1+n−2

q )(t−t0)e(1+
n−2
q )(s−t0)max

(
1, |t− s|

(

1
q′
− 1

q

)

(−n−1
2

+ǫ)
)
.
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By using the improved energy estimates in Proposition 7, we obtain analogous bounds
with fewer exponential factors when λ > n2

4
.

7.3. The inhomogeneous problem. To prove dispersive estimates in this setting, we use
that the solution operator E for the inhomogeneous problem

P (λ)u = f,

(u, ∂tu)|t=t0 = (0, 0),

is given by (Ef)(t) =
∫ t

t0
Uv(t, s)f(s) ds.

In this section we prove a dispersive estimate for Uv(t, s) that allows us to later prove
Strichartz estimates for the inhomogeneous problem. Let Ũ(t, s) = Uv(t, s) regularized by

order n−1
2
+ǫ. Lemmas 20 and 21 show that Ũ(t, s) is a bounded operator L1( dks) → L∞( dkt)

with bound Cǫe
δ(t+s)|t − s|−n−1

2
+ǫ. Moreover, the energy estimates in Section 3 show that

Ũ(t, s) is a bounded operator

L2( dks) → 0W 1+n−1
2

+ǫ,2( dkt),

with bound

Cǫe
(n(t−s)/2)(t−s).

Interpolating these two bounds and then deregularizing yields that U(t, s) is a bounded
operator

Lq′( dks) → 0W
2
q
−γ+( 2

q
−1)(n−1

2
+ǫ,q)( dkt),

with bound

Cq,ǫ,γ,δe
n(t−s)/qeδ(t+s)/q max

(
1, |t− s|

(

1
q′
− 1

q

)

(−n−1
2

+ǫ)
)

where q′ is the dual exponent to q. Note that the regularity exponent on the right hand side
is nonnegative when

q ≤ 2 +
4− 4γ

n− 1 + 2ǫ+ 2γ
.

In particular, by choosing γ and ǫ small enough, we may ensure that the regularity exponent
is nonnegative as long as

q < 2 +
4

n− 1
.

Note that we may eliminate the first exponential factor by using the improved energy
estimates of Proposition 7 when λ > n2

4
.

8. Strichartz estimates

We first establish Strichartz estimates for the “odd” initial value problem and then indicate
how the proof must be modified for the “even” and inhomogeneous problems.
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8.1. The “odd” problem. In this section we prove the following theorem:

Theorem 30. Suppose that λ ≥ 0, ǫ, δ > 0 and that u(t) solves the homogeneous “odd”
initial value problem:

P (λ)u = 0,

(u, ∂tu)|t=t0 = (0, ψ).

Then u satisfies

‖∂tu‖e(n+δ)(t−t0)/qLp([t0,∞);W−s,q( dkt))
+ ‖u‖e(n+δ)(t−t0)/qLp([t0,∞);W 1−s,q( dkt))

. ‖ψ‖L2( dkt0 )
,

where

2

p
+
n− 1

q
≤ n− 1

2
,

s =
n

2
− 1

p
− n

q
+ ǫ,

p, q ≥ 2, and q 6= ∞.
The function u(t) also satisfies uniform local Strichartz estimates

‖∂tu‖en(t−t0)/qLp([t0,T ];W−s,q( dkt))
+ ‖u‖en(t−t0)/qLp([t0,T ];W 1−s,q( dkt))

. |T − t0|
n−1
2 ‖ψ‖L2( dkt0 )

,

where p, q, s are as above and the constant is independent of T .

Remark 31. We could instead move the weights associated to the spaces on the left hand
side into the measures. For example, en(t−t0)/qLp ([t0,∞);W−s,q( dkt)) would become

Lp
(
[t0,∞);W−s,q( dkt); e

−np(t−t0)/q dt
)
.

Proof. We start by defining, for φ ∈ L2( dkt0), the operator

Tqφ = e−δ(t−t0)e−n(t−t0)/qU(t, t0)φ.

Consider also the formal adjoint of T , considered as an operator L2( dkt0) → L∞
t L

2( dkt).
This is given, for F ∈ L1

[t0,∞)L
2( dkt), by

T ∗
q F =

∫ ∞

t0

e−δ(t−t0)e−n(t−t0)/qU(t, t0)
∗F (t) dt.

In particular, the operator TT ∗ is given by

(TT ∗F )(t) =

∫ ∞

t0

e−δ(t+s−2t0 )e−n(t+s−2t0)/qU(t, t0)U(s, t0)
∗F (s) ds

=

∫ ∞

t0

V (t, s)F (s) ds.

Corollary 29 implies that V (t, s) is bounded as an operator

0W

(

1
q′
− 1

q

)

(n+1
4

+ ǫ
2)+γ,q′

(Ys, dks) → 0W
−
(

1
q′
− 1

q

)

(n+1
4

+ ǫ
2)−γ,q

(Yt, dkt) ,

with bound

Cq,ǫ,γ,δ|t− s|−
(

1
q′
− 1

q

)

n−1
2 .



STRICHARTZ ESTIMATES ON ASYMPTOTICALLY DE SITTER SPACES 19

We now apply the method of Hardy-Littlewood-Sobolev fractional integration (see, for
example, the book of Stein[Ste70], Section V.1.2) to obtain that TT∗ is bounded

Lp′

[t0,∞)

(
0W s,q′

y ; dt
)
→ Lp

[t0,∞)

(
0W−s,q

y ; dt
)
,

where p is given by
2

p
+
n− 1

q
=
n− 1

2
,

and s is given by

s =

(
1

q′
− 1

q

)(
n+ 1

4
+
ǫ

2

)
+ γ.

To prove the remaining estimates, we note that we may regularize Ui by order n
2
+ ǫ and

then the compositions have integrable symbols. This proves a bound of the form
∥∥∥Ũ(t, t0)Ũ(s, t0)

∥∥∥
L1→L∞

≤ C,

where Ũ is the regularization of U by order n
2
+ ǫ

2
. Interpolating this bound with the energy

estimate and then removing the regularization shows that, for all 2 < q <∞, U(t, t0)U(s, t0)
∗

is bounded 0W s,q′ → 0W−s,q with bound Cen(t+s−t0)/q, where

s =
n + ǫ

2
− n+ ǫ

q
+ γ =

(
1

q′
− 1

q

)(n
2
+ ǫ
)
+ γ.

In particular, TqT
∗
q is bounded L1W s,q′ → L∞W−s,q. Interpolating these bounds with the

bounds for 2
p
+ n−1

q
= n−1

2
proves part of the theorem.

To finish the proof of the estimate, note that we may replace ∂tUv(t, t0) by (∆kt)
1/2Uv(t, t0)

without changing the proof. The local estimates follow by replacing the constant in the

dispersive estimate with C|T − t0|
n−1
2 to obtain a bound in terms of |t− s|−n−1

2 . �

For large λ, we also have Strichartz estimates with smaller weights, which are obtained by
using the stronger estimates in Section 7.1.

Theorem 32. Suppose that λ > n2

4
, ǫ, δ > 0 and that u(t) solves the homogeneous “odd”

initial value problem:

P (λ)u = 0,

(u, ∂tu)|t=t0 = (0, ψ).

Then u satisfies

‖∂tu‖eδ(t−t0)Lp([t0,∞);W−s,q( dkt))
+ ‖u‖eδ(t−t0)Lp([t0,∞);W 1−s,q( dkt))

. ‖ψ‖L2( dkt0 )
,

where
2

p
+
n− 1

q
≤ n− 1

2
,

s =
n

2
− 1

p
− n

q
+ ǫ,

p, q ≥ 2, and q 6= ∞.
The function u(t) also satisfies uniform local Strichartz estimates

‖∂tu‖e(t−t0)Lp([t0,T ];W−s,q( dkt))
+ ‖u‖e(t−t0)Lp([t0,T ];W 1−s,q( dkt))

. |T − t0|
n−1
2 ‖ψ‖L2( dkt0 )

,
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where p, q, s are as above and the constant is independent of T .

8.2. The “even” problem. Strichartz estimates for the “even” problem are obtained in
an identical fashion as for the “odd” problem. The only difference is the dispersive estimate
used. This stems from the difference in the index sets in Section 4. In particular, we obtain
the following theorem.

Theorem 33. Suppose that λ ≥ 0, ǫ, δ > 0 and that u(t) solves the homogeneous “even”
initial value problem:

P (λ)u = 0,

(u, ∂tu)|t=t0 = (φ, ψ).

Then u satisfies

‖∂tu‖
e(1+

n−2
q +δ)(t−t0)Lp([t0,∞);W−s,q( dkt))

+ ‖u‖
e(1+

n−2
q +δ)(t−t0)/qLp([t0,∞);W 1−s,q( dkt))

. ‖φ‖0W 1,2( dkt0 )
,

where
2

p
+
n− 1

q
≤ n− 1

2
,

s =
n

2
− 1

p
− n

q
+ ǫ,

p, q ≥ 2, and q 6= ∞.
The function u(t) also satisfies uniform local Strichartz estimates

‖∂tu‖
e(1+

n−2
q )(t−t0)Lp([t0,T ];W−s,q( dkt))

+

‖u‖
e(1+

n−2
q )(t−t0)/qLp([t0,T ];W 1−s,q( dkt))

. |T − t0|
n−1
2 ‖φ‖0W 1,2( dkt0 )

,

where p, q, s are as above and the constant is independent of T .

We also obtain its analogue for λ > n2

4
.

Theorem 34. Suppose that λ > n2

4
, ǫ, δ > 0 and that u(t) solves the homogeneous “even”

initial value problem:

P (λ)u = 0,

(u, ∂tu)|t=t0 = (φ, ψ).

Then u satisfies

‖∂tu‖
e(1−

2
q+δ)(t−t0)Lp([t0,∞);W−s,q( dkt))

+ ‖u‖
e(1−

2
q +δ)(t−t0)/qLp([t0,∞);W 1−s,q( dkt))

. ‖φ‖0W 1,2( dkt0)
,

where
2

p
+
n− 1

q
≤ n− 1

2
,

s =
n

2
− 1

p
− n

q
+ ǫ,
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p, q ≥ 2, and q 6= ∞.
The function u(t) also satisfies uniform local Strichartz estimates

‖∂tu‖
e(1−

2
q )(t−t0)Lp([t0,T ];W−s,q( dkt))

+

‖u‖
e(1−

2
q )(t−t0)/qLp([t0,T ];W 1−s,q( dkt))

. |T − t0|
n−1
2 ‖φ‖0W 1,2( dkt0)

,

where p, q, s are as above and the constant is independent of T .

8.3. The inhomogeneous problem. The inhomogeneous problem is also similar. We use
the dispersive estimates in Section 7.3 to estimate the solution operator directly, yielding
the following theorem.

Theorem 35. Suppose that λ ≥ 0, ǫ, δ > 0 and that u(t) solves the inhomogeneous problem

P (λ)u = f,

(u, ∂tu)|t=t0 = (0, 0).

Then u satisfies

‖u‖
e(n+δ)t/qLp

(

[t0,∞);0W
2
q−γ+( 2

q −1)(n−1
2 +ǫ),q( dkt)

) . ‖f‖e(n−δ)t/qLp′([t0,∞);Lq′( dkt)) ,

where p and p′ (and q and q′) are dual exponents, p 6= 2, q 6= ∞, and

2

p
+
n− 1

q
≤ n− 1

2
,

s =
n

2
− 1

p
− n

q
+ ǫ.

In particular, for q < 2 + 4
n−1

, u satisfies

‖u‖e(n+δ)t/qLp([t0,∞);Lq( dkt))
. ‖f‖e(n−δ)t/qLp′([t0,∞);Lq′ ( dkt)) ,

where
2

p
+
n− 1

q
≤ n− 1

2
,

and p, q 6= ∞.

We require a variant of the Christ-Kiselev lemma ([CK01]), which we state now. Note
that the proof given in [HTW06] remains valid when X and Y are replaced with smoothly
varying families of Banach spaces X(t) and Y (t).

Lemma 36 (Christ-Kiselev Lemma [CK01], see [HTW06] for this variant). Let X(t) and
Y (t) be smoothly varying families of Banach spaces, and for all s, t ∈ R, let K(t, s) : X(s) →
Y (t) be an operator-valued kernel from X(s) to Y (t). Suppose we have the estimate

∥∥∥∥
∫

s<t0

K(t, s)f(s) ds

∥∥∥∥
Lq([t0,∞);Y (t))

≤ A ‖f‖Lp(R;X(t))

for some A > 0 and 1 ≤ p < q ≤ ∞, and all t0 ∈ R and f ∈ Lp ((−∞, t0);X(t)). Then we
have ∥∥∥∥

∫

s<t

K(t, s)f(s) ds

∥∥∥∥
Lq(R;Y (t))

≤ Cp,qA ‖f‖Lp(R;X(t)) .
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Proof of Theorem 35. The solution operator E for the inhomogeneous problem is given by

(Ef)(t) =

∫ t

t0

Uv(t, s)f(s) ds.

Consider first the operator A given by

(AF )(t) =

∫ ∞

t0

e−(n+δ)t/qUv(t, s)e
(n−δ)s/qF (s) ds.

The dispersive estimate in Section 7.3 shows that A is bounded as an operator

Lp′
(
[t0,∞), Lq′( dks)

)
→ Lr

(
[t0,∞), 0W

2
q
−γ+( 2

q
−1)(n−1

2
+ǫ),q( dkt)

)
,

where 1
r
+ 1 = 1

p′
+ n−1

2

(
1
q′
− 1

q

)
. The Christ-Kiselev Lemma (Lemma 36) then shows that

the operator E0, given by

(E0F )(t) =

∫ t

t0

e−(n+δ)t/qUv(t, s)e
(n−δ)s/qF (s) ds,

is bounded as an operator between the same spaces.
Consider now the operator E, which is related to E0 by

(Ef)(t) = e(n+δ)t/q
(
E0

(
e−(n−δ)s/qf

))
(t),

so that E is bounded as an operator

e(n−δ)t/qLp′
(
[t0,∞);Lq′( dkt)

)
→ e(n+δ)t/qLr

(
[t0,∞); 0W

2
q
−γ+( 2

q
−1)(n−1

2
+ǫ),q( dkt)

)
,

where all exponents are as above. In particular, if we demand that r = p, then we must have
that

2

p
+
n− 1

q
=
n− 1

2
.

The same argument as in the proof of Theorem 30 shows that the estimate holds for

2

p
+
n− 1

q
≤ n− 1

2
.

�

We also obtain the analogous theorem for λ > n2

4
.

Theorem 37. Suppose that λ > n2

4
, ǫ, δ > 0 and that u(t) solves the inhomogeneous problem

P (λ)u = f,

(u, ∂tu)|t=t0 = (0, 0).

Then u satisfies

‖u‖
eδtLp

(

[t0,∞);0W
2
q −γ+( 2

q−1)(n−1
2 +ǫ),q( dkt)

) . ‖f‖e−δtLp′([t0,∞);Lq′ ( dkt)) ,

where p and p′ (and q and q′) are dual exponents, p 6= 2, q 6= ∞, and

2

p
+
n− 1

q
≤ n− 1

2
,

s =
n

2
− 1

p
− n

q
+ ǫ.
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In particular, for q < 2 + 4
n−1

, u satisfies

‖u‖eδtLp([t0,∞);Lq( dkt))
. ‖f‖eδtLp′([t0,∞);Lq′( dkt)) ,

where
2

p
+
n− 1

q
≤ n− 1

2
,

and p, q 6= ∞.
The function u also satisfies a uniform local estimate for q < 2 + 4

n−1
:

‖u‖Lp([t0,T ];Lq( dkt))
≤ C|T − t0|

n−1
2 ‖f‖Lp′([t0,T ];Lq′( dkt)) .

Proof. The proof of the uniform local estimate uses that for t, s ∈ [t0, T ], we may bound
U(t, s) as an operator

Lq′( dks) → Lq( dkt)

with bound C|T − t0|
n−1
2 . It also relies on the fact that we may ensure that the constants in

the Christ-Kiselev lemma are uniform as we send T → ∞.
The proofs of the other statements of the theorem are identical to those of Theorem 35. �

9. Applications to semilinear equations

9.1. Global well-posedness for modified semilinear equations. In this section we
provide applications of the Strichartz estimates above to prove small-data results for modified
semilinear Klein-Gordon equations. For general λ ≥ 0, we consider the equation

P (λ)u = e−ntFk(u),(21)

(u, ∂tu) |t=t0 = (0, ψ),(22)

where Fk satisfies

|Fk(u)| . |u|k,
|u| · |F ′

k(u)| ∼ |Fk(u)| .
Note that we only consider the “odd” problem due to the loss of decay for the “even” problem
in Theorem 33.

For λ > n2

4
, we consider the equation

P (λ)u = e−γtFk(u),(23)

(u, ∂tu) |t=t0 = (0, ψ),

where Fk is as above and γ > 0 is small.
The main result of this section is the following theorem.

Theorem 38. Suppose that λ ≥ 0, and 1 < k < 1 + 4
n−1

. There is an ǫ > 0 so that if

‖ψ‖L2( dkt0 )
< ǫ, then there exists a unique solution

u ∈ e(n+δ)(t−t0)/(k+1)Lk+1
(
[t0,∞);Lk+1( dkt)

)
,

to equation (21). Here δ > 0 may be taken to be small.

If λ > n2

4
and k is as above, then there is an ǫ > 0 so that if ‖ψ‖L2( dkt0 )

< ǫ, then there is

a unique solution
u ∈ eδ(t−t0)Lk+1

(
[t0,∞);Lk+1( dkt)

)
,

to equation (23).
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Remark 39. For n = 3, the bound on k becomes 1 < k < 3.

Proof. We prove only the first part of the theorem, as the second part is identical but uses
the Strichartz estimates with better weights.

We first show that we may find (p, q) so that the following conditions hold:

(1) The solution operators for the homogeneous “odd” problem gives a weighted L2 →
LpLq bound, i.e., so that (p, q) are admissible Strichartz exponents such that the
associated regularity exponent s is no greater than 1.

(2) The solution operator for the inhomogeneous problem gives a weighted Lp′Lq′ → LpLq

bound, where p′ and q′ are the conjugate exponents to p and q.

(3) We have inclusions e−δtLpLq → Lk+1Lk+1, and e−δtL
k+1
k L

k+1
k → Lp′Lq′ .

If we take q = k + 1, then Theorem 35 implies that the second condition can be satisfied
whenever

1

p
≤ (n− 1)(k − 1)

4(k + 1)
,

and

2 ≤ q < 2 +
4

n− 1
,

which can be satisfied when 1 < k < 1 + 4
n−1

.
By Theorem 30, the first condition is equivalent to requiring that

1

p
≤ (n− 1)(k − 1)

4(k + 1)
,

and that
1

p
>

(n− 1)(k − 1)− 4

2(k + 1)
.

These two inequalities can be satisfied whenever 1 < k < 1+ 8
n−3

. Note that 1+ 8
n−3

> 1+ 4
n−1

.
Finally, the third condition follows as long as p ≥ k+1, which is possible as long as there

is a gap between 1
k+1

and (n−1)(k−1)−4
2(k+1)

, which holds as long as 1 < k < 1 + 6
n−1

.

We may thus find p and q which satisfy all three conditions. In particular, we may take
q = k + 1 and

p = max

(
k + 1,

4(k + 1)

(n− 1)(k − 1)

)
.

Now, given p and q as above, the solution operator of the homogeneous problem

P (λ)u = 0,

(u, ∂tu)|t=t0 = (0, ψ),

satisfies
‖u‖e(n+δ)(t−t0)/(k+1)Lp([t0,∞];Lk+1( dkt)) ≤ Cǫ,δ ‖ψ‖L2( dkt0 )

.

We now use the inclusion e−δtLp ([t0,∞)) → Lk+1 ([t0,∞)) to conclude that (for a slightly
larger δ)

‖u‖e(n+δ)(t−t0)/(k+1)Lk+1([t0,∞];Lk+1( dkt)) ≤ Cǫ,δ ‖ψ‖L2( dkt0)
.

Using a similar inclusion, the solution of the inhomogeneous problem

P (λ)u = f,(24)

(u, ∂tu)|t=t0 = (0, 0),
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satisfies the estimate

(25) ‖u‖e(n+δ)(t−t0)/(k+1)Lk+1([t0,∞);Lk+1( dkt)) ≤ Cǫ,δ ‖f‖
e(n−δ)(t−t0)/(k+1)L

k+1
k

(

[t0,∞);L
k+1
k ( dkt)

) .

We proceed by a contraction mapping argument. In other words, we wish to find a fixed
point of the mapping

Fu(t) = S(t)(0, ψ) + G
(
e−ntFk(u)

)
(t),

where S(t) is the solution operator for the homogeneous problem and G is the solution
operator for the inhomogeneous problem with zero initial data.

The assumptions on the nonlinearity imply that

|Fk(u)− Fk(v)| . |u− v| (|u|+ |v|)k−1

Let Z = e(n+δ)(t−t0)/(k+1)Lk+1
(
[t0,∞);Lk+1( dkt)

)
. The main estimate used in the proof is

(26)∥∥e−nt (Fk(u)− Fk(v))
∥∥
e(n−δ)(t−t0)/(k+1)L

k+1
k

(

[t0,∞);L
k+1
k ( dkt)

) ≤ C ‖u− v‖Z ‖|u|+ |v|‖k−1
Z .

as long as δ (which depends on k) is small enough.
Let u(0) be the solution of the homogeneous problem with initial data (0, ψ). For m >

0, let u(m) be the solution of the inhomogeneous problem with the same initial data and
inhomogeneity e−ntFk(u

(m−1). The estimates (24), (25), and (26) imply that if ‖ψ‖L2( dkt0)
<

ǫ, and
∥∥u(m−1)

∥∥
Z
< 2Cǫ, then

∥∥u(m)
∥∥
Z
≤ Cǫ+ C ′(2Cǫ)k,

where Z = e(n+δ)(t−t0)/(k+1)Lk+1
(
[t0,∞);Lk+1( dkt)

)
. In particular, if ǫ is small enough, we

may arrange that
∥∥u(m)

∥∥
Z
< 2Cǫ for all m.

We now consider Fu(m) − Fu(m−1). By the estimate (25), we have that
∥∥u(m+1) − u(m)

∥∥
Z
=
∥∥Fu(m) −Fu(m−1)

∥∥
Z

=
∥∥G
(
e−ntFk(u

(m))− e−ntFk(u
(m−1))

)∥∥
Z

.
∥∥e−ntFk(u

(m))− e−ntFk(u
(m−1))

∥∥
e(n−δ)(t−t0)/(k+1)L

k+1
k

(

[t0,∞);L
k+1
k ( dkt)

) .

Using estimate (26), we obtain that

∥∥u(m+1) − u(m)
∥∥
Z
≤ C

∥∥u(m) − u(m−1)
∥∥
Z

∥∥∣∣u(m)
∣∣+
∣∣u(m−1)

∣∣∥∥k−1

Z
.

We now use that
∥∥u(m)

∥∥
Z
< 2Cǫ to conclude that

∥∥u(m+1) − u(m)
∥∥
Z
≤ C̃ǫ

∥∥u(m) − u(m−1)
∥∥
Z
.

Thus, if ǫ is small, the sequence u(m) converges in Z to a fixed point u, which shows the
existence of a solution.

Uniqueness follows in a similar manner. �
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9.2. Almost global existence for the semilinear equation. In this section we consider
the unmodified semilinear equation for λ > n2

4
:

P (λ)u = Fk(u),(27)

(u, ∂tu) |t=t0 = (0, ψ),

where Fk satisfies

|Fk(u)| . |u|k,
|u| · |F ′

k(u)| ∼ |Fk(u)| .
We still consider only the “odd” problem due to the lack of decay for the “even” problem.

The main result of this section is the following theorem.

Theorem 40. Suppose that (X, g) is asymptotically de Sitter, 1 < k < 2+ 4
n−1

, and λ > n2

4
.

For any T > t0, there is an ǫ > 0 such that if ‖ψ‖L2( dkt0 )
< ǫ, then there exists a unique

solution
u ∈ Lk+1 ([t0, T ];L

q( dkt))

to the problem (27).

Proof. After replacing the global weighted Strichartz estimates with the uniform local ones,
the proof of this theorem is identical to the proof of Theorem 38. �
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