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Quantum Destruction of Spiral Order in Two Dimensional Frustrated Magnets
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We study the fate of S = 1/2 spiral ordered two dimensional quantum magnets when disordered
by quantum fluctuations. The topological point defects of the spiral, the Z2 vortices, play a crucial
role in such disordering. Previous works established that a quantum spin liquid phase results when
the spiral is disordered without proliferating the Z2 vortices. Here we show that when the spiral is
disordered by proliferating these vortices valence bond ordering occurs due to quantum Berry phase
effects. We develop a general theory for this latter phase transition and apply it to a lattice model.
This transition provides a new example of a Landau-forbidden deconfined quantum critical point.

PACS numbers: 75.10.Jm, 71.27.+a, 75.30.Kz, 71.10Hf

It is now understood that collinear Néel states in two
dimensional spin-1/2 quantum antiferromagnets can give
way to paramagnetic valence bond solids (VBS) through
generic second order quantum phase transitions. The
latter phase breaks lattice translation but not spin rota-
tion symmetry like the former. The notion of deconfined
criticality was introduced in the context of such Landau-

forbidden phase transitions [1]. In contrast, despite good
numerical and theoretical motivations, the possibility of a
continuous transition between a spiral and a VBS param-
agnet has remained unexplored. Early theoretical works
discussed continuous phase transitions from a spiral to a
Z2 spin liquid [2]. These studies have given rise to spec-
ulations that collinear magnets mostly give way to con-
fined paramagnets (VBS), while disordering spiral mag-
nets naturally lead to deconfined spin liquids.
Quite generally one can view the nature of the tran-

sition out of the spiral from the perspective of its topo-
logical defects, the point-like Z2 vortices in two spatial
dimensions [3]. If the spiral is destroyed without prolifer-
ating these vortices a gapped spin liquid with fractional-
ized bosonic spinon excitations emerge and the resulting
transition is well understood [2]. However the more con-
ventional transition out of the spiral is driven by prolifer-
ating the Z2 vortices. What is the nature of the resulting
paramagnet and the associated transition? Here we ar-
gue that the quantum Berry phase effects lead to VBS
order in such paramagnets, outline the general structure
of the field theory of such a generic continuous transition
and work out an example in context of a lattice model.
On the theoretical side there are several numerical

studies of frustrated S = 1/2 quantum magnets. Most
pertinent to this work are exact diagonalization calcula-
tions on “J1 − J3” magnets on a square lattice [4]. In
general, consider spins on a rectangular lattice with first
(J1) and third neighbor (J3) antiferromagnetic exchanges

H =
∑

r

(J1 Sr · Sr+x + J3 Sr · Sr+2x)

+ λ
∑

r

(

J1 Sr · Sr+y + J3 Sr · Sr+2y

)

. (1)

The couplings along y direction are λ (anisotropy fac-

tor) times those along the x direction (0 ≤ λ ≤ 1).
The two tunable parameters in the Hamiltonian are λ
and (J3/J1). The presence of the latter leads to frustra-
tion. Various limits of this model are well known. For
λ = 0, one has decoupled spin chains with nearest and
next nearest neighbour couplings, where, it is known that
for J3/J1 < 0.241 there is power-law Néel order, while
above this true long range VBS order is obtained [5].
On the other hand, λ = 1 represents an isotropic square
lattice with nearest and third nearest neighbour interac-
tions. Numerical results [4] suggest that this has three
phases. For J3/J1 . 0.3 the usual collinear Neel state
obtains while for J3/J1 & 0.7 the ground state shows
non-collinear spiral order. At intermediate values one
gets a paramagnet which possibly breaks lattice symme-
try, i.e. a VBS state. Imagine sitting in the spiral phase
at λ = 1 (by choosing J3/J1 > 0.7). What happens if
λ is decreased towards zero? Clearly decreasing λ in-
creases quantum fluctuations so that the spiral order will
be destroyed below some critical λc. For very small λ the
VBS order of the decoupled chains will persist as colum-
nar dimer order with a 2-fold degenerate ground state.
Could this VBS state persist all the way up to λc ? If so
could the resulting transition be second order? While the
first question can only be answered by detailed numerical
studies of this particular microscopic model in future we
will formulate an answer to the second one in this paper.
A generic spiral phase (coplanar) is described by

〈Sr〉 ∼ (n1(r) cos (Q · r) + n2(r) sin (Q · r)) 6= 0, (2)

where Q(6= nπ) is the ordering vector of the spiral and
n1(r), n2(r) are two mutually orthogonal unit vectors
(i.e. nα(r) · nβ(r) = δαβ). The spiral order parame-
ter is given by an SO(3) matrix, R ≡ [n1, n2, n1 × n2].
The order parameter manifold is isomorphic to S3/Z2

which allows topologically stable point vortices, charac-
terized by a Z2 quantum number, in two spatial dimen-
sions (Π1

(

S3/Z2

)

= Z2,Π2

(

S3/Z2

)

= 0) [3]. In the
ordered phase the energy of a single vortex diverges log-
arithmically with the system size and free vortices are
absent. However the vortices play a crucial role when
the spiral order is destroyed by condensing them.
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To this end we set up an effective description of the spi-
ral and the proximate paramagnetic phases that captures
easily the role of the Z2 vortices. Hence we introduce the
well-known redundant description of the order parameter
in terms of the spinon variables. Specifically we write [2]

n+ = n1 + ın2 = ǫαβzβσαγzγ , (3)

where σs are the three Pauli matrices, ǫαβ is the two di-
mensional antisymmetric matrix (ǫ12 = −ǫ21 = −1, ǫ11 =
ǫ22 = 0) and z = (z1, z2) is the uni-modular (z† · z = 1)
two component complex spinon field. The spinons are
thus bosons that transform as spin-1/2 under spin ro-
tations. This spinon parameterization is two-to-one and
there is a discrete Z2 gauge symmetry corresponding to
the change of sign of the z fields at each site (z(r) →
−z(r)) which leaves the order parameter invariant. This
reiterates the fact, in terms of the spinons, that the order
parameter manifold is S3/Z2. It is now easy to see that,
for the spinons, a vortex configuration in real space cor-
responds to the class of non-contractile paths in S3/Z2

[6] where the spinon wave function changes its sign on
going around a vortex. This reveals the very important
fact that the spinons and the Z2 vortices (visons [7]) see
each other as sources of π flux.
A fruitful description of the vortices is now achieved by

introducing an Ising gauge field σij = ±1, minimally cou-
pled to the spinons, on the links of the direct lattice. The
Z2-vortices are then associated with the magnetic flux
(F� =

∏

�
σij , where the product is taken over the links

of the plaquette) of the Ising gauge field. F� = −1(+1)
indicates the presence(absence) of a vison inside the pla-
quette [8]. It is important to note [6] that visons are
well defined excitations even in the paramagnetic phase.
Here, the spinon fields fluctuate wildly and so does their
corresponding paths in the order parameter space. How-
ever for spinons describing a closed loop around a vison
the paths necessarily end at diametrically opposite points
in order parameter manifold (S3/Z2).
The above classical picture must be augmented with

the correct quantum Berry phase term. Semi-classical
analysis [9] for the spiral phase shows that the non-trivial
Berry phases are solely associated with the vortices and
are given by

eSB = exp





iπ

2

∑

i,j=i+τ

(1 − σij)



 =
∏

i,j=i+τ

σij , (4)

where σi,i+τ are the Z2-gauge fields on the time-like links
of the (2 + 1)D space-time lattice. A different study
[10], starting from the spin disordered phase, recovers
the same Berry phase term. Eqn. [4] is also, not surpris-
ingly, the Z2-Polyakov loop term obtained in the analysis
of the quantum dimer models [11].
Various global symmetries and the Z2 gauge structure

now fully determine the effective action which is invariant

under the transformation group (SU(2)× U(1))global ×
(Z2)gauge. The minimal imaginary time Ginzburg-
Landau action in (2 + 1) space-time lattice, consistent
with these symmetries, is

S = Sz + SB, (5)

where

Sz = −ts
∑

〈ij〉

σij

(

z†i · zj + h.c
)

− r
∑

〈ij〉

(

z†i · zj − z†j · zi

)2

(6)

and SB is the Berry phase contribution given by Eqn.
[4]. Eqn. [5] may be derived more formally using
Hubbard-Stronovich transformation [12]. Integrating out
the higher energy spinons generate several terms allowed
by the symmetry, the foremost being the Z2-Maxwell

term:

Sσ = −
∑

P

KP

∏

�

σij , (7)

where KP depends on the plaquette orientation. Thus
the effective low energy action is given by

Seff = Sz + Sσ + SB, (8)

where Sz, Sσ and SB are given by Eqns. [4-7] (with
appropriate high energy cut-off for the spinons). The
spiral phase is obtained by condensing the spinons, i.e.
〈zα〉 6= 0 (hence 〈n〉 6= 0). On the other hand, deep in-
side the paramagnet the spinon excitations are gapped
and can be integrated out from Eqn. [8] to yield the
effective action

S
′ = Sσ + SB. (9)

This is the action for the Odd Ising gauge theory [11],
which, in (2+1) dimensions, is dual to the fully frustrated
transverse field Ising model on the dual lattice [7]

HFFTFIM =
∑

ab

K̃abρ
z
aµ

ext
ab ρzb − Γ

∑

ab

ρxa, (10)

where ρα are dual Ising spins and µext
ab (not to be con-

fused with µab introduced later) impose the constraint
of maximal frustration by having

∏

�
µext
ab = −1 over all

space-like dual plaquettes and has its origin in the Berry
phase term (Eqn. [4]). Detailed analysis [12] shows that
ρza is the vison creation operator.
The dual Ising spins undergo an ordering transition

and the ordered phase, of this model, breaks lattice trans-
lation symmetry due to the frustration [7]. The visons
proliferate and condense in this phase. The VBS order
parameter, a bilinear in the vison operators (hence gauge
invariant), gains a non-zero expectation value and thus
rendering the paramagnet dimerized [7, 12].
The momenta at which the visons condense may be

easily obtained from a soft mode analysis of Eqn. [10][13].
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For a fully frustrated transverse field quantum Ising
model on the dual rectangular lattice there are two such
modes: χ0 and χπ at wave-vectors (0, 0) and (π, 0) re-
spectively. The low energy modes are linear combination
of χ0 and χπ:

Φ(r, t) = Ψ0(r, t)χ0 +Ψπ(r, t)χπ , (11)

where Ψ0(r, t) and Ψπ(r, t) are the two complex ampli-
tudes. The effective Ginzburg-Landau action for the soft
vison modes can be constructed by considering trans-
formations of the two amplitudes under various symme-
tries of the Hamiltonian. This is given by (we have used
Ψ = Ψ0 + i Ψπ = |Ψ|eiφ)

Sv = −tv
∑

〈a,b〉

cos (φa − φb)− Γv

∑

a

cos (4φa). (12)

The modes transform as “XY spin” under different sym-
metries of the Hamiltonian up to 4th order.
At the critical point both visons and spinons are gap-

less and since they see each other as sources of π flux
(mutual semions), there is a long range statistical inter-
action between them. Such interactions may be effec-
tively implemented by introducing two Ising gauge fields
σij(µab), on the links of the direct(dual) lattice, coupled
by an Ising Chern-Simmons term [7] :

SCS =
iπ

4

∑

〈ab〉

(1−
∏

�

σij)(1− µab). (13)

(This mutual Ising Chern-Simmons coupling is differ-
ent from the U(1) Chern-Simmons term used for simi-
lar problems in Ref. [14]). Thus the critical Ginzburg-
Landau action is

SC = Sv + Sz + SCS. (14)

The long range interaction between the spinons and the
visons, as encoded in SCS , makes the analysis of this
field theory difficult and a series of transformations are
required to cast the theory in a useful form. To start
with, we neglect the effect of the terms with coefficient r
(Eqn. [6]) and Γv (Eqn. [12]) and consider their effects
later. Making standard Villain approximation [7] in the
vison action (Eqn. [12]) and introducing integer valued
vison current field Jab on the links of the dual lattice
through Hubbard-Stratonovich decoupling we get

Sv =
∑

〈ab〉

J2
ab

2tv
, (15)

where integrating over the vison fields (φa) and summing
over µab gives, respectively, the constraints:

∇ · J = 0, (−1)Jab =
∏

�

σij (16)

The first constraint is satisfied by defining an integer val-
ued vector field a on the links of the direct lattice such
that J = ∇× a. The second constraint then becomes

σij = eiπaij . (17)

We now write aij = 2bij+sij , where bij is an integer field
and sij = 0(1) for aij even(odd). Eqn. [17] then gives
σij = 1−2sij. The condition on aij to be an integer may
be implemented by applying a soft potential:

Vsoft = −g
∑

ij

cos (2πbij) = −g
∑

ij

σij cos (πaij) (18)

At this stage it is useful to break the 2 complex spinon
fields, z1, z2 into a 4-component real vector field: z1 =
ν1 + iν2; z2 = ν3 + iν4. Further, rescaling the gauge
potential aij → aij/π and choosing the transverse gauge
(∇·a = 0) by defining a scalar field ζ on the direct lattice
(aij → aij +∆ζij) we have

SC = −
∑

ij

σij [tsνi · νj + g cos (aij + (ζi − ζj))]

+
1

2tvπ2

∑

ij

(∇ij × aij)
2, (19)

where ν = (ν1, ν2, ν3, ν4). Summing over σijs gives the
critical action:

SC = −
∑

ij

[

t
(

eiaijχi · χ
∗
j + h.c

)

−
(∇ij × aij)

2

2tv

]

,(20)

where we have introduced: χiα = νiαe
iζi . The constraint

over the χ fields being that they are uni-modular and
parallel, i.e., χ∗

αχα = 1 and χ∗
αχβ − χ∗

βχα = 0. This is
implemented by incorporating a soft potential:

V ′
soft = η(1 − (χ∗

i )
2(χi)

2) (21)

where η > 0. The continuum limit for this critical theory
may now be written using a soft-spin description.

Seff =

∫

d2x dτ
[

| (∂µ − iaµ)χ|
2 + p|χ|2 + u

(

|χ|2
)2

−η(χ∗)2(χ)2 +
1

e2
(∇× a)2

]

(22)

So far we have neglected the effect of r coupling present
in the microscopic model. Without this term the symme-
try is enlarged from the original microscopic SU(2)×U(1)
to SO(4). Hence on coarse graining terms allowed by mi-
croscopic symmetry should be generated to reduce this
enlarged symmetry. Such a generic term can be found
starting from the universal covering group SU(4) which
is generated by fifteen 4 × 4 matrices, six of which gen-
erate the subgroup SO(4)(≡ SU(2) × SU(2)). The two
constituting SU(2) groups are mutually commuting and
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one SU(2) generates spin rotations. We can choose a
generic term that breaks the second SU(2) to U(1), the
latter being the generator of lattice translation. Consid-
ering transformation under various discrete symmetries
(like lattice translation, inversion, reflection and time re-
versal) [12] we find that the lowest order term allowed

by symmetry is (χ∗ · τy · χ)2(the term χ
∗ · τy · χ is for-

bidden by time reversal). So the final continuum field
theory is

Seff =

∫

d2xdτ
[

| (∂µ − iaµ)χ|
2 + p|χ|2 + u

(

|χ|2
)2

−η(χ∗)2(χ)2 + γ (χ∗τyχ)
2

−
1

e2
(∇× a)

2

]

. (23)

Now consider the role of Γv, which introduces the 4-fold
anisotropy. For Γv = 0, from Eqn.[12], the number op-
erators conjugate to the φ fields are conserved. This is
equivalent to the flux conservation of the U(1) gauge field
aµ. Finite Γv destroys this conservation. Remembering
that eiφ is a vison creation operator, we see that this term
allows the simultaneous appearance or disappearance of
4 visons, i.e., a doubled instanton operator [16].
The continuum theory given Eqn. [23] is an anisotropic

version of the non-compact CP 3 model (NCCP 3) and
belongs to the general family of NCCPN−1 critical the-
ories (N denotes the number of matter components).
Anisotropic NCCP 1 describes the transition between
collinear Néel and VBS phases in easy-plane spin-1/2
2D-antiferromagnets [1], while anisotropic NCCP 2 de-
scribes the continuous transition between spin-nematic
and VBS in spin-1 2D-antiferromagnets [15].
In Eqn. [23], the condensation of the spinons lead to

spiral ordering. Once they condense the gauge field dy-
namics is gapped through the Anderson-Higg’s mecha-
nism and the instantons are suppressed. On the other
hand the instantons are relevant in the paramagnetic
phase and their condensation lead to VBS order. Thus
this field theory suggests that there can be a direct tran-
sition between spiral and the VBS [17].
This direct transition may be continuous only if the

doubled instantons are irrelevant at the critical point.
Presently, accurate estimates of the scaling dimension of
this doubled instanton operator is missing. While these
may be obtained numerically, here we make a crude es-
timate of this. Large-N , RPA treatment of the gauge
fluctuations [18], suggest that the scaling dimensions of
instanton of charge q is proportional to q2N [15]. Recent
numerical studies [19] on the isotropic NCCP 1 model
find that a single instanton has a scaling dimension of
0.63. Combining these, we find that the scaling dimen-
sion of the doubled(q = 2) instanton operator (∆) is
∆ = 4

2
× 22 × (0.63) ≈ 5.04 > 3. Hence this naive esti-

mate suggests that doubled instantons are irrelevant at
the critical point and so the U(1) gauge flux is conserved

right at the critical point. This emerging U(1) symmetry,
absent in the microscopic model, is typical to deconfined

quantum critical points. An extensive characterization of
such critical points is given in Ref. [1].

In this paper we have outlined the field theory for a
direct second order quantum phase transition between a
spiral state and a VBS in context of a concrete spin-1/2
lattice model in two spatial dimensions. This is poten-
tially a new example of deconfined quantum criticality.
Our theory can be extended to study other relevant cases.
As an example, it would be interesting to study other
two dimensional lattices, especially the triangular lattice,
where a similar transition may occur. A recent attempt
to understand the phase-diagram of triangular lattice an-
tiferromagnets using a mutual U(1) Chern-Simmons the-
ory [14] suffer from the limitation that within that ap-
proach, a continuous spiral-dimer transition is always fine
tuned. An extension of our theory should overcome this
limitation. It is also interesting to note that for analogous
cases in 1 D spin chains the visons will always proliferate
(since in (1 + 1) D the Z2 gauge theory is always in a
confining phase) leading to dimerization.
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