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U(1) × U(1) / Z2 Kosterlitz-Thouless transition of the Larkin-Ovchinnikov phase in
an anisotropic two-dimensional system
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We study Kosterlitz-Thouless (KT) transitions of the Larkin-Ovchinnikov (LO) phase for a two-
dimensional system composed of coupled one-dimensional tubes of fermions. The LO phase here
is characterized by a stripe structure (periodic in only one direction) in the order parameter. The
low energy excitations involve the oscillation of the stripe and the fluctuation of the phase, which
can be described by an effective theory composed of two anisotropic XY models. We compute from
a microscopic model the coefficients of the XY models from which the KT transition temperatures
are determined. We found the TKT

∝ t⊥ for small intertube tunneling t⊥. As t⊥ increases the
system undergoes a first-order transition to the normal phase at zero temperature. Our method can
be used to determine the Goldstone excitations of any stripe order involving charge or spin degrees
of freedom.

PACS numbers: 03.75.Hh, 03.75.Ss, 67.85-d

The role of topological excitations of striped supercon-
ducting states has been intensively studied [1–5] since
at finite temperature the proliferation of those defects
can lead to possible exotic phases, such as the charge 4
superfluid [5]. A typical striped superconducting state
is the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) [6, 7]
state which is believed to exist in heavy-fermion super-
conductor CeCoIn5 [8, 9]. However, since the FFLO or-
der is more likely to occur in the quasi-one-dimensional
(1D) system [10], the cold atom system with two imbal-
anced species of atoms confined in a lattice array of 1D
tubes formed by coherent laser beams [11] seems more
promising to display the direct evidence. Since the in-
tertube coupling can be tuned relatively with ease in the
cold atom system by controlling the intensity of trapping
lasers, it is suitable to study the dimensional crossover
phenomena [12–15].

Numerous exotic phases have been predicted from
effective field theories [3], but the phase diagram of
these exotic phases is not established for cold atom ex-
periments yet. In cold atom experiments, the micro-
scopic parameters (like interaction strength) are tun-
able and measurable, and this motivates our detailed
study of the Kosterlitz-Thouless (KT) transitions of the
Larkin-Ovchinnikov (LO) phase starting from a micro-
scopic model. In this letter we study a quasi-1D two-
dimensional (2D) spinful fermionic system composed of
coupled 1D tubes as illustrated in Fig. (1)(a) where
at zero temperature the LO order is the ground state.
We determine the Kosterlitz-Thouless temperature of LO
phase (the FFLO regime in Fig. (1)(b) [10]) as a function
of intertube coupling t⊥ from a microscopic model. We
found that transition temperature is linear in t⊥ for small
t⊥ (Fig. (2)(a)) and at zero temperature the transition
from LO to normal phase upon increasing t⊥ is of first
order (Fig. (2)(c)). This phase transition is driven by
the disappearance of the nesting Fermi surface, which is
a key feature for the quasi-1D to 2D dimension crossover.

Before introducing the microscopic model, we first dis-

FIG. 1: (a) Configuration of the system: arrays of 1D tubes
with intertube distance b and intertube tunneling t⊥. (b) A
schematic plot of quasi-1D phase diagram as a function of µ
and h. Vac: vacuum state (no particle); P-FL: partially po-
larized Fermi liquid; F-FL: fully polarized Fermi liquid. Our
study here focuses on the FFLO regime. (c) Possible phases
as a function of temperature. N:normal Fermi liquid; CDW:
charge density wave; SF4: charge 4 superfluid.

cuss the Goldstone modes of LO phase [3–5] from the
symmetry point of view. The LO phase is characterized
by an order parameter of stripe configuration

∆(x, z) ∝ 〈c↓(x, z)c↑(x, z)〉 ∝ ∆0f(z) (1)

where ∆0 is the amplitude of the order parameter while
f(z) describes the stripe satisfying f(z + L/2) = −f(z)
and f(z) = f(−z) in our coordinate choice. The LO wave
vector Q is defined as Q ≡ 2π/L with L the period of the
stripe. Since the LO phase breaks both translational and
U(1) symmetries, it has two branches of Goldstone modes
– the oscillation of the stripe, and the phase fluctuation
of the amplitude. Under these fluctuations, the order
parameter becomes

∆(x, z) = ∆0e
iθ(x,z) f(z + u(x, z)) (2)

where u(x, z), θ(x, z) are generalized elastic fields [16] to
describe the Goldstone modes. Physically u represents
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the small oscillation of the stripe LO order whereas θ
the phase fluctuation of the amplitude. In the quasi-1D
system, x and z directions are not equivalent. Therefore
to the quadratic order the total free energy in terms of
generalized elastic fields are described by two anisotropic
XY models [5, 17]

∆F =

∫

dxdz

[

A

2
(Qux)

2 +
B

2
(Quz)

2 +
C

2
θ2x +

D

2
θ2z

]

(3)

where fx = ∂xf . In our notation, u and θ/Q have
the dimension of length, their first derivatives are di-
mensionless, and coefficients A, B, C, D have the di-
mension of energy. For results presented in this pa-
per, we take f(z) = cosQz which is (eiQz + e−iQz)/2.
In this case, these two Goldstone modes correspond
to phase fluctuations of two Fulde-Ferrell (FF) order

∆(x, z) = ∆0(e
iQ(z+u+) + e−iQ(z+u−))/2. For the FF

order, ∆(x, z) ∝ eiQz which does not break translation
symmetry. When identifying u+ = u + θ/Q, u− =
u − θ/Q, ∆(x, z) = ∆0 cos(z + u(x, z)) eiθ(x,z), consis-
tent with the functional form in Eq. (2). To be general,
we shall not specify the form of f(z) unless necessary.
In 2D, each elastic field is associated with one topolog-

ical defect. For u the defect is the (edge) dislocation sat-

isfying
∮

~∇u ·d~l = Lnd; for θ the defect is the vortex sat-

isfying
∮

~∇θ ·d~l = 2πnv with nd, nv integers. There is an-
other topological defect referred to as a half-vortex half-
dislocation (HH) where (nd, nv) = (±1/2,±1/2), which
originates from the Z2 symmetry of the order parameter
[4, 5] – when circulating around an HH defect, each of
the half vortex and the half dislocation introduces a mi-
nus sign leaving the order parameter unchanged. The
proliferation of topological defects leads to Kosterlitz-
Thouless (KT) transition. The KT transition temper-

ature T u = π
2

√
AB for dislocations, T θ = π

2

√
CD for

vortices, and T hh = π
8 (
√
AB +

√
CD) = (T u +T θ)/4 for

HH [5]. The last temperature cannot be highest. When
increasing the temperature, there are three distinct possi-
bilities as illustrated in Fig. (1)(c): (I) T hh is the lowest,
(II) T θ the lowest, and (III) T u the lowest [5]. For (I)
there is only one transition from LO to normal state at
T hh. For (II), the LO phase first becomes a charge den-
sity wave (CDW) state at T θ and then normal at T hh.
For (III),the LO phase first becomes a charge 4 superfluid
at T u and then normal at T hh.
The microscopic model we use is a one band model

with attractive contact interaction in a quasi-1D system
[10].

H =
∑

~k,σ

ξ~k,σc
†
~k,σ

c~k,σ

+ g1D
∑

ix

∫

dz c†ix,↑(z)c
†
ix,↓(z)cix,↓(z)cix,↑(z) (4)

with ξ~k,σ =
h̄2k2

z

2m − 2t⊥ cos(bkx) − µ + h(−1)σ, where kz
is unbound, |bkx| < π with b the intertube distance, and
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FIG. 2: (a) Phase diagram for µ = 2, h = 1.145, Q = 1.2,
∆0 = 0.22. Curves with ligands are computed whereas two
dashed lines embracing the quantum critical (QC) region are
schematic. The calculated transition temperature T hh within
the QC region is not well defined and its plot is switched to
the dotted line with circles. (b) Energy as a function of gap
amplitude ∆ for µ = 2, h = 1.145, Q = 1.2, t⊥ = 0−0.2. The
energy minimum occurs at ∆ = 0.22 for t⊥ < 0.15.

(−1)↑ = 1, (−1)↓ = −1. Following Ref [10, 18], we mea-

sure all lengths in the 1D scattering length a1D = − 2h̄2

mg1D

and all energies by the 1D bound energy ǫB = h̄2

m
1

a2
1D

.

The dimensionless parameters in this model are t⊥/ǫB,
µ/ǫB, h/ǫB, and b/a1D. The attractive interaction im-
plies negative g1D and thus positive a1D. The relation

between a1D and a3D is [19] a1D = −a⊥

(

a⊥

a3D
− 1.4603√

2

)

with a⊥ =
√

h̄
mω⊥

. The typical a⊥ is of the order 100nm

and a3D can be controlled by the Fashbach resonance.
Taking a1D = 100nm, m = 6/(6 × 1023)g (6Li) [11], the
bound state energy is ǫB ∼ 1.5× 10−6K.
To obtain the effective theory at given parameters, we

first solve the Hamiltonian by the variational method
where the order parameter is assumed to be sinusoidal
∆ix(z) = ∆(z) = ∆0 cos(Qz) = g1D〈cix,↓(z)cix,↑(z)〉.
f(z) in Eq. (2) is chosen to be cosQz. The mean field
(Bogoliubov de Gennes) Hamiltonian is

Hmf =
∑

~k

(c†~k,↑
, c−~k,↓)H(∆0.Q)

(

c~k,↑
c†
−~k,↓

)

+
∑

~k

ξ~k,↓ + LzNx
∆2

0

2|g1D| (5)

where

H(∆0, Q) =

(

ξ~k,↑ B

B −ξ−~k,↓

)

(6)

with the block B = ∆0

2 δkx,−kx
(δkz+Q,−kz

+ δkz−Q,−kz
).

The ∆0 and Q are determined by minimizing the free
energy with respect to Q and ∆0 given by

F [∆] = −T
∑

n

log[1 + e
−ǫn

T ] +
∑

~k

ξ~k,↓ + LzNx
∆2

0

2|g1D|
(7)

where ǫn are all eigenvalues of the matrix H(∆0, Q). In
the T → 0 limit, −T

∑

n log[1+e−ǫn/T ] =
∑

n ǫnΘ(−ǫn).
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The energy cost for given strain configurations u(x, z),
θ(x, z) of elastic fields is computed by ∆F (b) =
F [∆0e

iθf(z + u)] − F [∆0f(z)], which to the lowest or-
der of u and θ in quasi-1D reduces to the form

∆F (b) = b
∑

xi

∫

dz

[

A(b)

2
(Qux)

2 +
B(b)

2
(Quz)

2

+
C(b)

2
θ2x +

D(b)

2
θ2z

]

(8)

where in the quasi-1D system ux(xi) ≡ u(xi+b)−u(xi)
b ,

θx(xi) ≡ θ(xi+b)−θ(xi)
b . Replacing b

∑

ix
→
∫

dx, Eq. (8)

is the same as Eq. (3).
We now show that the KT transition temperature is

independent of the intertube distance b when t⊥ is fixed.
For simplicity we only consider the stripe oscillation field
u. The same argument applies to the phase field θ. When
b → αb, the total free energy cost due to compression or
stretching along z is unchanged (since the energy depends
only on t⊥ which is fixed) but the energy density changes.
Consequently ∆Fz(b) = ∆Fz(αb) implies

bNxLz
B(b)

2
(Quz)

2 = αbNxLz
B(αb)

2
(Quz)

2 (9)

leading to B(αb) = B(b)/α. The free energy caused by
ux depends only on intertube coupling t⊥ and therefore
the elastic field difference between two adjacent tubes
u(x+b)−u(x). When b → αb, as long as u(x+b)−u(x) =
u(x+αb)− u(x) (same t⊥) the total free energy remains
unchanged which leads to

A(b)

2
Lzb

∑

x

Q2

(

u(x+ b)− u(x)

b

)2

=
A(αb)

2
Lz(αb)

∑

x

Q2

(

u(x+ αb)− u(x)

αb

)2

(10)

which leads to A(αb) = αA(b). Their product A(b)B(b)
is independent of b, so is the transition temperature
TKT ∝

√
AB. Since our main interest is the transition

temperature, we take b = a1D = 1.
To obtain coefficients A, B, C, D in Eq. (3), we take

the following approach. Take B as an example, we choose
u(x, z) = uzz, θ(x, z) = 0, compute ∆F (b) for several uz,

and fit δF (b, uz) ≡ ∆F (b;uz)/(bNxLz) =
B(b)
2 (Quz)

2 as
expressed in Eq. (8). The same procedure apply to A, C,
D. There is another approach to obtain these coefficients
involving Green’s function [20] which requires computing
the inverse of a matrix and is very time-consuming. Our
approach instead only involves the computation of eigen-
values [21] which allows us to include more k-points.
Some key steps of computing δF (b, uz) are are summa-

rized here. To obtain the coefficients C and D requires
computing the eigenvalues of

H(θ) =

(

(h0 − µ) + h ∆0f(z)e
iθ

∆0f(z)e
−iθ −(h0 − µ) + h

)

(11)

where h0 is diagonalized in momentum space as
h̄2k2

z

2m −
2t⊥ cos bkx. By performing a local gauge transforma-
tion c(z) → c(z)e−iθ/2, H(θ) in new coordinate becomes
H1(θ) [20, 22] which is

H1(θ) =

(

ξ+(~k) ∆0f(z)

∆0f(z) −ξ−(−~k)

)

(12)

where ξ+(~k) = ξ~k+~v/2,↑ and ξ−(−~k) = ξ−~k+~v/2,↓ with

~v = ~∇θ/2. The eigenvalues of H and H1 are identi-
cal, but this transformation automatically obtains the
derivative of θ, i.e. θx and θz , in the diagonal blocks. We
use µ = 2, h = 1.145, t⊥ = 0.1 as an example. Mini-
mizing the energy functional with respect to ∆0 and Q
leads to Q = 1.2, ∆0 = 0.22. Fig. (3) shows δF (θz) for
θ(x, z) = θzz and δF (θx) for θ(x, z) = θxx from which
the quadratic fit leads to C = 0.00168 and D = 0.23.
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FIG. 3: Energy density as a function of θz and θx for µ = 2,
h = 1.145, Q = 1.2, ∆0 = 0.22..

To obtain the coefficients A and B requires computing
the eigenvalues of

H(u) =

(

(h0 − µ) + h ∆0f(z + u)
∆0f(z + u) −(h0 − µ) + h

)

. (13)

A useful trick is to do the calculation in a new coordinate
whose order parameter is exactly ∆0f(z)[20]. We stress
here the Jacobian arising from the coordinate transform
has to be taken into account because it is the free en-
ergy, not the free energy density, which is invariant un-
der coordinate transformation. Again we use parame-
ter µ = 2, h = 1.145, t⊥ = 0.1 as an example. Fig.
(4) shows δF (Quz) for u(x, z) = uzz and δF (Qux) for
θ(x, z) = uxx from which we can fit A = 0.00168 and
B = 0.234. Note that f(z) is taken to be cosQz for
the results presented here. However we emphasize that
the coefficients A,B,C,D can be obtained for any given
order parameters.
We compute the coefficients for several t⊥ and deter-

mine all three KT transition temperatures. Our main
result is shown in Fig. (2)(a) where the phase diagram
as a function of T and t⊥ is plotted for a representative
set of parameters µ = 2, h = 1.145, Q = 1.2, ∆0 = 0.22.
When t⊥ = 0, there is no intertube coupling and no cor-
relation along x leading to zero TKT . As the system goes
from pure 1D to quasi-1D, TKT (t⊥) ∝ t⊥. More specifi-
cally, we found the coefficients associated with z deriva-
tive, i.e. B and D, depend very weakly on t⊥ whereas
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FIG. 4: Energy density as a function of uz and ux for µ = 2,
h = 1.145, Q = 1.2, ∆0 = 0.22.

those with x derivative, i.e. A and C, depend quadrat-
ically on t⊥. This explains the linear t⊥ dependence of
TKT (∝

√
AB,

√
CD). We found T θ and T u are very

close because the “cosine” ansatz is very close to two
decoupled FF order with opposite wave vector for small
∆0 and it is the coupling between u+ and u− (the fluc-
tuations of two FF orders) which lifts the degeneracy
of u and θ fields. In this case the proliferation of half-
vortex half-dislocation costs the least energy and the sys-
tem only undergoes one transition from LO to normal at
T hh when raising the temperature, as shown in the case I
of Fig. (1)(c). The transition temperature is of the order
of 0.03 ǫB which is roughly 8× 10−8K for the system of
6Li with a1D = 100nm. One also notes that the obtained
TKT (∼ 0.03) is an order of magnitude smaller than the
mean field gap ∆0(= 0.22), so the coefficients computed
at T = 0 are almost identical (less than 1% difference) to
those computed at T ∼ TKT .
At T = 0, our simulation suggests the quantum phase

transition from LO to normal phases upon increasing t⊥
is of first order. Fig. (2)(b) shows the energy as a func-
tion of ∆ for µ = 2, h = 1.145, Q = 1.2, t⊥ ∈ (0, 0.2)
where the minimum determines the value of ∆0. We
found that as t⊥ increases ∆0 stays around 0.22 and when
t⊥ > 0.16 ∆0 becomes zero. Around t⊥ = 0.16, the E(∆)
is essentially flat with several shallow minima. We note

that the FFLO to normal transition as a function of tem-
perature (fixed µ, and h) [8, 9] or h (fixed µ, T ) [23] is
also of first order. At finite temperature around the criti-
cal t⊥, the system is in the quantum critical region whose
behavior is under heavy investigations [24, 25] which we
will not discuss here.

We have assumed a sinusoidal order parameter in the
current calculation. However near BCS/LO transition
(Fig. (1)(b)) [10, 18], the order parameter behaves more
domain-wall like [23, 26] than sinusoidal. Therefore the
ansatz with sinusoidal order parameter does not capture
all physics. Close to the BCS/LO transition, we expect
that the stripe fluctuation should be stronger than the
phase fluctuation (A < C, B < D) and a two-stage tran-
sition with charge 4 superfluid shown as the case III in
Fig. (1)(c) can happen. In a cold atom trap where the
chemical potential is a position-dependent, the interface
between phases shown in Fig. (1)(c) is unavoidable and
worth investigating.
In summary, we have computed from a microscopic

model the effective theories of Goldstone modes of the
LO order for a quasi-1D fermionic system from which
the Kosterlitz-Thouless transition temperatures are de-
termined. The transition temperatures are found to de-
pend linearly on the intertube coupling t⊥. As t⊥ in-
creases, the system goes to a quantum critical regime
sandwiched by the LO and normal phases. Our approach
can generally determine the Goldstone excitations of any
stripe order involving charge or spin from a microscopic
model which should be useful for comparison between
theories and experiments.
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