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A Droplet within the Spherical Model.

A.E. Patrick1

Abstract. Various substances in the liquid state tend to form droplets. In this

paper the shape of such droplets is investigated within the spherical model of a

lattice gas. We show that in this case the droplet boundary is always diffusive,

as opposed to sharp, and find the corresponding density profiles (droplet shapes).

Translation-invariant versions of the spherical model do not fix the spatial lo-

cation of the droplet, hence lead to mixed phases. To obtain pure macroscopic

states (which describe localized droplets) we use generalized quasi-averaging. Con-

ventional quasi-averaging deforms droplets and, hence, can not be used for this

purpose. On the contrary, application of the generalized method of quasi-averages

yields droplet shapes which do not depend on the magnitude of the applied exter-

nal field.

key words: Droplet shape; lattice gas; pure phases; quasi-averages.

1 Introduction.

The purpose of the Gibbs distribution and the statistical physics in general is to
provide a bridge between microscopic and macroscopic phenomena. It would be a
mistake though to think that the bridge is in any sense similar to one of, for instance,
London bridges. The difficulties of actual “traveling” through that bridge in the case
of finite-dimensional models (with d ≥ 2) are so formidable, that a better name for
the bridge might have been a labyrinth. Therefore it was not really surprising that it
were mathematicians (not physicists) who actually managed to walk through a few
bridges connecting microscopic interparticle interactions with macroscopic shapes of
droplets of condensed matter.

In a colossal effort beginning from works of Minlos and Sinai [8, 9] it was shown
that for sufficiently low temperatures typical configurations of discrete lattice models
look like a macroscopic droplet of one phase surrounded by another phase. The
droplet border is sharp in the macroscopic scale, that is, the magnitude of typical
fluctuations of the corresponding long contour is much smaller than the linear size
of the droplet. Somewhat later the exact shape of the droplet in the case of the
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Ising model was also found. It is given by a curve minimizing the corresponding
Wulff functional. For an accurate account of all “twists and turns”, which should
be dealt with in order to walk through the bridge-labyrinth connecting the shape of
a macroscopic droplet with the interaction of Ising particles, see the books [4, 12].

The behaviour of continuous lattice systems is different from that of the above
mentioned discrete systems, and properties of Gibbs states of, for instance, O(n)-
models are much less understood than those of various discrete models. Fortunately,
there is a continuous lattice model which macroscopic properties can be derived from
the interaction of microscopic variables with only modest efforts. This model is the,
so-called, spherical lattice gas [6, 11].

The authors of the paper [11] studied the equation of state of the model — the
behaviour of pressure as a function of specific volume and temperature. At the time,
derivation of equation of state from a microscopic interaction was an achievement
on its own right. Therefore, it is not surprising that such a question as the shape
of a droplet of condensed “spherical matter” was not even considered. Moreover,
the spherical lattice gas with cyclic boundary conditions is a translation invariant
model. Hence, the center of the droplet is uniformly distributed over the available
volume, and the constant average values of microscopic variables do not reveal the
droplet shape.

At nearly the same time, in the paper [1] similar phenomena related to invari-
ance of correlation functions were termed the degeneracy of equilibrium state, and
a heuristic procedure to remedy the situation — the quasi-averages — was adver-
tised. Calculation of quasi-averages involves switching on an appropriate symmetry-
breaking field of a magnitude proportional to ε, and switching off the field by sending
ε ↓ 0 after the thermodynamic limit. It is shown in the present paper that the con-
ventional quasi-averages allow one to find the true shape of the droplet only in
a fortuitous situation when the symmetry-breaking field is already similar to the
droplet shape we are looking for. The field of a different shape not only fixes the
location of the droplet but also deforms it unrecognizably. Nevertheless, one can say
that certain tools for finding the shape of a droplet in the spherical lattice gas were
available already in early sixties, but investigation of that kind can not be found in
the literature.

Two decades later the dominant terminology became pure phases and mixed
phases (instead of non-degenerate and degenerate equilibrium states, respectively),
see, e.g., the book [7]. More importantly, a simple criterion allowing one to answer
the question whether a phase is pure or mixed became widely known: a phase is
pure if the covariance of microscopic dynamic variables associated with nodes j
and k tend to zero as the distance |j − k| increases. Pure phases can be obtained
with a help of quasi-averages, or by using appropriate boundary conditions, or by
calculating conditional distributions. Mixed phases can always be represented as
linear combinations of pure phases.

Gersch and Berlin, see [6], found the (constant) expected values, covariances, and
conditional expected values of microscopic variables of the spherical lattice gas. The
derived covariances do not tend to 0 with the distance between the corresponding
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microscopic degrees of freedom, hence, the natural phase of the lattice gas is not
pure. In order to obtain the droplet shape in a situation like that, it is necessary
to decompose the mixed phase into pure components. However, apparently, the
authors of the paper [6] did not realize that.

In the present paper we extract pure phases of the spherical lattice gas using
(generalized) quasi-averages, see [2, 3]. The investigation of the properties of the
pure phases shows that the droplet in the spherical lattice gas is always diffusive.
That is, the boundaries of the droplet are not sharp, not even in the macroscopic
scale. The constant levels of the expected values of microscopic variables look like
rounded squares, although not exactly the same ones as the rounded squares de-
scribing the sharp boundaries of the droplet within the 2D Ising model of a lattice
gas.

The rest of the paper is organized as follows. Section 2 contains a precise defini-
tion of the spherical lattice gas. It also contains some well known technical results
for the use in the later sections. Section 3 introduces macro states and summarizes
the main results of the paper. In Section 4 we calculate the distributions of micro-
scopic random variables in the mixed phase of the spherical lattice gas. In Section 5
we use the Lagrange method to find pure macroscopic phases for the lattice gas with
periodic boundary conditions at zero temperature. Section 6 is the main part of this
paper. There we use the method of quasi-averages for extracting pure macroscopic
phases. The results of the paper are discussed in Section 7.

2 The model and useful facts.

The spherical lattice gas is a collection of random variables {xj , j ∈ Zd} placed at
sites of an integer d-dimensional lattice, Zd. Every site j ∈ Zd is specified by its d
integer coordinates (j1, j2, ..., jd). In the present paper we consider the case d ≥ 3.

To define the distribution of random variables at all sites of the lattice, we first
specify the joint distribution for the random variables in a finite cube

Vn = {j ∈ Zd : 1 ≤ jν ≤ n, ν = 1, 2, ..., d}

containing N ≡ nd sites, and then pass to the limit n → ∞. To avoid unnecessary
complications we impose periodic boundary conditions in all dimensions.

It is instructive to consider also a stretched model defined on the parallelepipeds

Υn = {j ∈ Zd : 1 ≤ jν ≤ nν , ν = 1, 2, ..., d}, (1)

where n1 = (1 + δ)n, δ > 0, and nν = n, for ν = 2, 3, ..., d. Save for one side being
longer than the others, the definition of the stretched model is exactly the same as
that of the conventional spherical lattice gas.

The Hamiltonian.
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The random variables located in the rectangle Vn interact with each other and with
the external field {hj , j ∈ Zd} via the Hamiltonian

Hn = −J
∑

j,k∈Vn

Tjkxjxk −
∑

j∈Vn

hjxj , (2)

where J > 0, and Tjk are the elements of the nearest-neighbour interaction matrix.
In this paper the field {hj , j ∈ Zd} is used as a technical tool, so that, it should
not necessarily be physically sensible. We let its magnitude to depend on the size
of rectangle Vn:

hj = n−γbj , j ∈ Zd, (3)

where the absolute values of bj are bounded by an independent of n constant b.

The interaction matrix.

The elements of the interaction matrix T̂ describe the usual nearest neighbour in-
teraction on a square lattice, and they are given by

Tjk =
d∑

ν=1

J (ν)(jν , kν)
∏

l∈{1,2,...,d}\ν

δ(jl, kl),

where

δ(jl, kl) =

{
1, if jl = kl,
0, if jl 6= kl,

is the Kronecker delta.
The coefficients J (ν)(jν , kν), for ν = 1, 2, . . . , d, are the elements of the matrix

Ĵ =




0 1
2

1
2

1
2

0 1
2

0
1
2

0
. . .

. . .
. . .

. . .
. . . 0 1

2

0 1
2

0 1
2

1
2

1
2

0




.

The eigenvalues and orthonormal eigenvectors of the matrix Ĵ are given by

λl = cos
2π(l − 1)

n
, l = 1, 2, . . . , n,

and

u
(l) =



u

(l)
m =

√
2

n
cos

[
2π(l − 1)(m− 1)

n
− π

4

]


n

m=1

, l = 1, 2, . . . , n.
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The eigenvalues of the interaction matrix T̂ are the sums of eigenvalues of the
matrix Ĵ :

Λk =
d∑

ν=1

λkν , k ≡ (k1, k2, . . . , kd) ∈ Vn.

The corresponding orthonormal eigenvectors are the products of eigenvectors of the
matrix Ĵ :

w
(k) =

{
w

(k)
j =

d∏

ν=1

u
(kν)
jν

}

j∈Vn

, k ≡ (k1, k2, . . . , kd) ∈ Vn. (4)

Note that the second-largest eigenvalue Λ s ≡ d−1+cos(2π/n) of the interaction
matrix (which will play an important role below) is 2d times degenerate. At the
same time, in the case of the stretched model the second-largest eigenvalue Λ s ≡
d− 1 + cos

[
2π

(1+δ)n

]
is only twice degenerate.

The Gibbs distribution.

The joint distribution of the random variables {xj , j ∈ Vn} is specified by the
usual Gibbs density

p({xj , j ∈ Vn}) =
e−βHn

Θn(ρ)
,

with respect to the “a priori” measure

µn(dx) = δ


∑

j∈Vn

xj − ρN


 δ


∑

j∈Vn

x2j −N


 ∏

j∈Vn

dxj .

The first delta function imposes the typical for gas models density constraint

1

N

∑

j∈Vn

xj = ρ,

the second one imposes the usual spherical constraint

∑

j∈Vn

x2j = N.

The normalization factor (partition function) Θn(ρ) is given by

Θn(ρ) =
∫ ∞

−∞
. . .
∫ ∞

−∞
e−βHnµn(dx). (5)

3 Macro states and the main results.

The usual Gibbs states provide a detailed microscopic description of a thermody-
namic system. In some sense the amount of available detail is too big: there can be
a macroscopically inhomogeneous structure in the thermodynamic system, but its
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shape can not be described within the Gibbs-state framework. In this situation an
introduction of a rougher (reduced) description seems justified and useful.

We define macro states as the following continuum limit of the original lattice
system. The limiting configurations are realizations of random functions defined on
the d-dimensional rectangle [0, 1]d:

{x(γ)}γ∈[0,1]d ≡ {x(γ1, γ2, . . . , γd)}γ1,γ2,...,γd∈[0,1].

For any γ ∈ [0, 1]d the random variable x(γ) is defined as the following limit in
distribution

x(γ)
d
= lim

n→∞
x([γ1n],[γ2n],...,[γdn]),

where [y], is the integer part of y. Of course, for correctness of the above definition
we need some kind of continuity in the system, so that for two sequences j(n) and
k(n) with the same limits

lim
n→∞

(j1(n)/n, . . . , jd(n)/n) = lim
n→∞

(k1(n)/n, . . . , kd(n)/n) = (γ1, γ2, . . . , γd),

we also have identical limits of the corresponding sequences of random variables
{xj(n)}∞n=1 and {xk(n)}∞n=1. Although in discrete spin systems that kind of continuity
may well be missing, we do not worry too much about that, because it should be
possible to surpass this technical problem one way or another.

Thermodynamic random variables x(γ) and x(δ) are limits of the random se-
quences x([γ1n],[γ2n],...,[γdn]) and x([δ1n],[δ2n],...,[δdn]) separated by a distance of order n.
Hence, in the continuum limit the random variables x(γ) and x(δ) with γ 6= δ are
independent due to the exponential/power-law decay of correlations in pure phases
of high/low temperature regions. Therefore, a pure macro state is completely char-
acterized by individual distributions

Fγ(y) = lim
n→∞

Prn
[
x([γ1n],[γ2n],...,[γdn]) ≤ y

]
.

Macro states defined above contain complete information about the microscopic
individual distributions of the random variables xj . It might be desirable to achieve
further reduction of description by using, for instance, Kadanoff’s blocks in the defi-
nition of the continuum limit. That should reduce the range of limiting distribution
outside the critical lines/points to just the normal distribution. Even on critical lines
the asymptotic distributions of large Kadanoff’s blocks should be of quite limited
variety.

The main results of the present paper obtained for the low-temperature region
β > βc(ρ), see Eq. (9), can be stated as follows.

1. The expected values of the random variables xj in the natural state of the
spherical lattice gas are translation invariant and equal to the density, 〈xj〉 = ρ.
Their variances and covariances in the limit n→ ∞ are given by

Var(xj) =
Wd(d)

2βJ
+

1− ρ2

2

(
1− βc

β

)
+ o(1),
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Cov(xj , xl) = c(j, l) + (1− ρ2)

(
1− βc

β

)
1

d

d∑

ν=1

cos
2π(jν − lν)

n
+ o(1),

where c(j, l) are the covariances of the microscopic variables in the ordinary
spherical model, see Eq. (21).

2. The random variables xj within the stretched model admit the following rep-
resentation

xj =

√√√√2(1− ρ2)

(
1− βc

β

)
sin(2πU) +Nj

(
ρ,
Wd(d)

2βJ

)
,

where the random variable U is uniformly distributed on the interval [0, 1],
Nj(a, b) are normal random variables with mean a and variance b, and

Cov(Nj,Nl) ≡ c(j, l) → 0 as dist(j, l) → ∞.

3. For T = 0 the pure equilibrium states of the model (ground states) are given
by

xj = ρ+
√
2(1− ρ2)

d∑

ν=1

rν cos

[
2π(jν − 1)

n
− αν

]
,

where αν and rν are any constants satisfying αν ∈ [0, 2π] and
∑d
ν=1 r

2
ν = 1.

4. In the presence of a symmetry-breaking field

hj =

{
εn−δ, if j1 = 1,
0, otherwise,

the expected values of the random variables xj are given by

〈xj〉 ∼
εn(1−δ)/3

2J
√
2ζ∗

[
1 +

√
2ζ∗n−(1+2δ)/3

]−j1
,

if 0 < δ < 1 and j1 ≤ n/2. In this case all condensed “spherical matter”
gathers in a narrow strip around the plane where the field is applied. The
shape of the droplet is clearly deformed by the field.

If δ = 1 the distributions of the random variables xj still depend on the
magnitude of the symmetry breaking field, but in the limit n→ ∞ they remain
proper. In particular, the finite expected values of the random variables xj are
given by Eq. (26). The droplet shape is still deformed by the field.

If 1 < δ < d− 1, then the limiting distributions of the random variables xj do
not depend on the magnitude of the symmetry breaking field. In particular,
the expected values of the random variables xj are given by

〈xj〉 = ρ+

√√√√2(1− ρ2)

(
1− βc

β

)
cos(2πγ1) + o(1).

The droplet shape is determined by the field (for different field types we obtain
different shapes), but it is no longer deformed by the field (does not depend
on varepsilon).
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4 The mixed phase.

Main thermodynamic properties of the spherical lattice gas with cyclic boundary
conditions were derived in the papers [6, 11]. Although the free energy density of
the model is not sensitive to the type of boundary conditions used, more delicate
properties, like the droplet shape, are. Therefore in this section we re-derive the
results of the paper [6] in the case of, more realistic, periodic boundary conditions.

The calculation of free energy, expected values, and correlation functions for the
spherical lattice gas is reduced, in a routine fashion, to calculation of the large-n
asymptotics of an integral, see [6]. Introduction of new integration variables yj,
j ∈ Vn in Eq. (5) via the orthogonal transformation

xj =
∑

k∈Vn

w
(k)
j yk, j ∈ Vn, (6)

where the eigenvectors {w(k)
j , j ∈ Vn} are given by Eq. (4), diagonalises the inter-

action matrix. As a result, we obtain the following expression for the partition
function

Θn(ρ) =
∫ ∞

−∞
. . .
∫ ∞

−∞
exp


βJ

∑

k∈Vn

λky
2
k + β

∑

k∈Vn

ϕkyk


 µ̃n(dy),

where ϕk =
∑
j∈Vn hjw

(k)
j , and

µ̃n(dy) = δ
(
y(1,1,...,1)

√
N − ρN

)
δ



∑

j∈Vn

y2j −N



∏

j∈Vn

dyj.

Integration over y(1,1,...,1) yields

Θn(ρ) =
1√
N

∫ ∞

−∞
. . .
∫ ∞

−∞
exp


βJdρ2N + βJ

∑

k∈Vn

′
λky

2
k + βρ

∑

j∈Vn

hj + β
∑

k∈Vn

′
ϕkyk


×

δ


∑

k∈Vn

′
y2k −N(1 − ρ2)


 ∏

k∈Vn

′
dyk,

where primes indicate that summations/products do not include k = (1, 1, . . . , 1).
The integral representation for the delta function

δ


∑

k∈Vn

′
y2k −N(1 − ρ2)


 =

1

2πi

∫ +i∞

−i∞
ds exp


s


N(1 − ρ2)−

∑

k∈Vn

′
y2k




 ,

allows one to perform integration over the variables yk. However, we can switch the
order of integration over the variables yk and s only after a shift of the integration
contour for s to the right. The shift must assure that the real part of the quadratic
form involving the variables yk, is negatively defined. On switching the integration
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order, integrating over yk, and introducing a new integration variable z via s = βJz
one obtains

Θn(ρ) =
βJ

2πi
√
N

exp


βJdρ2N + βρ

∑

j∈Vn

hj



(
π

βJ

)(N−1)/2 ∫ +i∞+c

−i∞+c
dz exp [NβΦn(z)] ,

(7)
where

Φn(z) = Jz(1− ρ2)− 1

2βN

∑

k∈Vn

′
ln(z − λk) +

1

4JN

∑

k∈Vn

′ ϕ2
k

z − λk
,

and c > d is the shift of the integration contour mentioned above.
Depending on the value of β, the large-n asymptotics of the integral (7) can be

found either by the saddle-point method, or by direct integration after an appro-
priate change of variables. The saddle point of the integrand is a solution of the
equation

Φ′
n(z) = J(1− ρ2)− 1

2βN

∑

k∈Vn

′ 1

z − λk
− 1

4JN

∑

k∈Vn

′ ϕ2
k

(z − λk)2
= 0. (8)

If the field {hj , j ∈ Zd} is of the type (3), then

1

N

∑

k∈Vn

ϕ2
k

(z − λk)2
≤ n−2γb2

(z − d)2
.

Hence, for any z > d, as n→ ∞, the sequence of the derivatives Φ′
n(z) converges to

Φ′(z) = J(1− ρ2)− 1

2β
Wd(z),

where

Wd(z) ≡
∫ π

−π
. . .
∫ π

−π

1

z −∑d
ν=1 cosων

d∏

l=1

dωl
2π

<∞

is the Watson function.
The function Φ′(z) increases monotonically with z on [d,∞), and the location of

its zeroes depends on the dimension d of the lattice. Namely, if d = 1, 2, then the
function Φ′(z) has exactly one zero on the interval [d,∞) at a point z∗(ρ) > d, for
any β > 0. If d ≥ 3, then there exists a critical value

βc(ρ) =
1

2J(1− ρ2)
Wd(d) (9)

of the parameter β. If β < βc(ρ), then the function Φ′(z) still has exactly one zero
on the interval [d,∞) at a point z∗ > d. While if β > βc(ρ), then the function Φ′(z)
is strictly positive on the interval [d,∞).

In this section our aim is to investigate the natural state of the spherical lattice
gas, which, as we shall see shortly, happens to be a mixed phase. Therefore we do
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not utilize any symmetry-breaking perturbations and set hj = 0 for all j ∈ Zd untill
Section 6.

Application of the saddle-point method to the integral (7) is fairly straightfor-
ward when there exists a saddle point z∗(ρ) greater than d. In this case

Φn(z
∗(ρ)) = J(1− ρ2)z∗(ρ)− 1

2β
Ld(z

∗(ρ))
︸ ︷︷ ︸

≡Φ(z∗(ρ))

+O(e−nδ),

and the saddle-point method yields

−fn ≡ 1

βnd
lnΘn(ρ) =

1

2β
ln

π

βJ
+ Jdρ2 + Φ(z∗(ρ)) +O

(
n−d lnn

)
,

as n→ ∞, where

Ld(z) =
∫ π

−π
. . .
∫ π

−π
ln

(
z −

d∑

ν=1

cosων

)
d∏

l=1

dωl
2π

.

When β ≥ βc, the function Φn(z) still attains its minimum on the interval (λ s,∞)
at a point z∗n > λ s, where λ s = d − 1 + cos 2π

n
is the second-largest eigenvalue of

the interaction matrix T̂ . However, the sequence of saddle points z∗n approaches the
pole of the integrand at z = λ s, and the application of the saddle-point method
becomes a bit more tricky.

To find the asymptotics of the free energy we have to introduce a new integration
variable ζ via z = λ s + ζN−1. The large-n asymptotics of the sum

L
(N)
d

(
λ s + ζN−1

)
≡ 1

N

∑

k∈Vn

′
ln
(
λ s + ζN−1 − λk

)
,

is given by

L
(N)
d

(
λ s + ζN−1

)
=

2d ln(ζ/N)

N
+

1

N

∑

k∈Vn

′′
ln (λ s − λk)−

ζ

N2

∑

k∈Vn

′′ 1

λ s − λk
+ o(N−1),

where the double prime indicates that the summation does not include both the
largest and the (2d-times degenerate) second-largest eigenvalues.

Hence

Θn(ρ) ∼ exp


NβJ(dρ2 + λ s(1− ρ2))− 1

2

∑

k∈Vn

′′
ln (λ s − λk)


×

βJNd−3/2

(
π

βJ

)(N−1)/2
1

2πi

∫

C

eJ [(1−ρ
2)β−βc]ζ

ζd
dζ, (10)

where the integration contour C runs below the negative semi-axis (−∞, 0]− i 0, en-
circles 0 counterclockwise, and returns to−∞ above the negative semi-axis (−∞, 0]+
i 0.
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We see that the remaining integration does not contain the large parameter N
any longer, and calculating the residue of the integrand at ζ = 0 we obtain

1

2πi

∫

C

eJ [(1−ρ
2)β−βc]ζ

ζd
dζ =

Jd−1

(d− 1)!

[
(1− ρ2)β − βc

]d−1
.

We can use the same method to find the joint characteristic function χ(t, s) of
random variables xj and xl. First, we express χ(t, s) ≡ 〈exp(itxj + isxl)〉n as the
following integral

χ(t, s) =
eitρ+isρ

Θn(ρ)
√
N

exp


βJdρ2N + βρ

∑

j∈Vn

hj


 βJ

2πi

(
π

βJ

)(N−1)/2

×

∫ +i∞+c

−i∞+c
dz exp


NβΦn(z)−

∑

k∈Vn

′

(
tw

(k)
j + sw

(k)
l

)2

4βJ(z − λk)
+ i

∑

k∈Vn

′

(
tw

(k)
j + sw

(k)
l

)
ϕk

2J(z − λk)


 .

(11)
Next, introduce a new integration variable ζ via z = λ s+ ζN

−1, and use the asymp-
totic expansion for the partition function Θn(ρ) to obtain

χ(t, s) ∼ exp


i(t + s)ρ− t2 + s2

4βJN

∑

k∈Vn

′′ 1

λ s − λk
− ts

2βJ

∑

k∈Vn

′′w
(k)
j w

(k)
l

λ s − λk


×

(d− 1)!

2πi

∫

C
exp

[
ζ − 1− ρ2

2 ζ

(
1− βc

β

)(
(t2 + s2)d+ 2 ts

d∑

ν=1

cos
2π(jν − kν)

n

)]
dζ

ζd
.

(12)
The remaining integral can be expressed in terms of the Bessel function

Jm(x) =
1

2πi

∫

C
exp

[
x

2

(
ζ − 1

ζ

)]
dζ

ζm+1
,

however, calculation of the moments can be done easily by differentiation under the
integral sign in Eq. (12).

Setting s = 0 and passing to the limit N → ∞ we see that the random variables
xj of the spherical model on the infinite lattice have the common characteristic
function

χ(t) = exp

[
itρ− t2

4βJ
Wd(d)

]
(d− 1)!

2πi

∫

C
exp

[
ζ − 1− ρ2

2 ζ

(
1− βc

β

)
t2d

]
dζ

ζd
. (13)

Differentiation over t shows that the expected values are given by 〈xj〉 = ρ, and the
variances are given by

Var(xj) =
Wd(d)

2βJ
+

1− ρ2

2

(
1− βc

β

)
.
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More importantly, differentiation of the joint characteristic function shows that

Cov(xj , xl) = (1− ρ2)

(
1− βc

β

)
1

d

d∑

ν=1

cos
2π(jν − lν)

n
.

Note that Cov(xj, xl) 6→ 0, as dist(j, l) → ∞, for any β > βc. Therefore, the
lattice gas is in a mixed (or degenerate) state, and in order to calculate the values
of observable quantities we have to single out pure phases.

In the case of the stretched lattice (1) the second-largest eigenvalue of the inter-
action matrix is only twice degenerate, and we obtain

χ(t, s) ∼ exp


i(t + s)ρ− t2 + s2

4βJN

∑

k∈Υn

′′ 1

λ s − λk
− ts

2βJ

∑

k∈Υn

′′w
(k)
j w

(k)
l

λ s − λk


×

J0




√√√√2(1− ρ2)

(
1− βc

β

)(
t2 + s2 + 2 ts cos

2π(j1 − l1)

n(1 + δ)

)
 , (14)

where J0(z) is the Bessel function of order zero. Hence, for 1 ≪ |j1 − l1| ≪ n we
have

χ(t, s) ∼ E exp


i(t+ s)

√√√√2(1− ρ2)

(
1− βc

β

)
sin 2πU+

+itNj

(
ρ,
Wd(d)

2βJ

)
+ isNl

(
ρ,
Wd(d)

2βJ

)]
,

where the random variable U is uniformly distributed on the interval [0, 1], and it
is independent of the normal random variables Nj and Nl.

The last expression admits the following probabilistic interpretation. Let

j/n ≡
(
j1
n
,
j2
n
, . . . ,

jd
n

)
→ γ ≡ (γ1, γ2, . . . , γd), as n→ ∞,

then in the continuous limit the field of random variables xj converges to the random
function

x(γ) =

√√√√2(1− ρ2)

(
1− βc

β

)
sin 2πU γ +Nγ

(
ρ,
Wd(d)

2βJ

)
,

where Nγ (a, b) is a continuous function of independent normal random variables
defined on the rectangle

0 ≤ γ1 ≤ 1 + δ, 0 ≤ γ2 ≤ 1, . . . , 0 ≤ γd ≤ 1.

The random variables Uγ are uniformly distributed on the interval [0, 1], any pair
Uγ , Uα becomes perfectly correlated as γ1 → α1. While if γ1 6= α1, the random
variables Uγ, Uα are neither independent, nor perfectly correlated.
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5 Droplet shape at zero temperature.

As it often happens, the situation at zero temperature is simpler than in the case
β−1 > 0. If β−1 = 0, then the pure states of the spherical gas are configurations
xN = {xj , j ∈ Vn} which minimize the energy Hn subject to the spherical and the
density constraints. The corresponding minimization problem is solved using the
Lagrange function

L({xj , j ∈ Vn}, a, b) = −J
∑

j,k∈Vn

Tjkxjxk + a



∑

j∈Vn

x2j −N


+ b



∑

j∈Vn

xj − ρN


 ,

where a and b are Lagrange multipliers. Introducing the variables {yj, j ∈ Vn}, see
Eq. (6), we get rid of the density constraint, and write down the Lagrange function
in the following diagonal form

L({yj, j ∈ Vn}, a) = −JNρ2λ(1,1,...,1) − J
∑

j∈Vn

′
λjy

2
j + a


∑

j∈Vn

′
y2j −N(1− ρ2)


 ,

where the primes indicate that the summations do not involve j = (1, 1, . . . , 1).
Differentiating over {yj, j ∈ Vn \ (1, 1, . . . , 1)} we obtain the following system of

equations for stationary points

2Jλjyj = 2ayj, j ∈ Vn \ (1, 1, . . . , 1).

If a 6= Jλk, then the only solution of the system, yj = 0 for j ∈ Vn \ (1, 1, . . . , 1),
violates the spherical constraint. Therefore to solve the constraint minimization
problem we have to set the value of the Lagrange multiplier to a = Jλk, for some
k ∈ Vn \ (1, 1, . . . , 1). Using the spherical constraint we obtain for such a value of a,
that ∑

j:Jλj=a

y2j = N(1 − ρ2), and yj = 0, if Jλj 6= a.

The global minimum of −∑′
j∈Vn λjy

2
j is obtained when a = Jλ s, where λ s is the

2d times degenerate second largest eigenvalue of the interaction matrix. Therefore
the configuration {y∗j , j ∈ Vn} minimizing −∑j∈Vnλjy

2
j subject to the spherical and

density constraints has the following components. The component y∗(1,1,...,1) = ρ
√
N ,

due to the density constraint. The 2d components y∗j , with j such that λj = λ s,
are the coordinates an arbitrary point on a 2d-dimensional sphere with the center

at the origin and the radius
√
N(1− ρ2). All the remaining N − 2d− 1 components

of the configuration {y∗j , j ∈ Vn} are zeroes.
Going back to the variables {xj, j ∈ Vn} we obtain

xj = w
(1,1,...,1)
j ρ

√
N +

∑

k:λk=λ s

w
(k)
j y∗k = ρ+

∑

k:λk=λ s

w
(k)
j y∗k.
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The 2d orthonormal eigenvectors corresponding to the eigenvalue λ s are given by

w
±
ν =





√
2

N
cos

[
2π(jν − 1)

n
± π

4

]

j∈Vn

, ν = 1, 2, . . . , d.

Let us denote y±ν the component y∗k such that w(k) = w
±
ν . Then the components of

pure zero-temperature states xN are given by

xj = ρ+

√
2

N

d∑

ν=1

cos

[
2π(jν − 1)

n
− π

4

]
y−ν + cos

[
2π(jν − 1)

n
+
π

4

]
y+ν

= ρ+

√
2

N

d∑

ν=1

√
(y−ν )

2 + (y+ν )
2 cos

[
2π(jν − 1)

n
− αν

]
, (15)

where the phase shifts αν are such that

cos
(
αν −

π

4

)
=

y−ν√
(y−ν )

2 + (y+ν )
2
, and sin

(
αν −

π

4

)
= − y−ν√

(y−ν )
2 + (y+ν )

2
.

The phase shifts {αν}dν=1 merely set the “center” of the pure state xN , which
we are free to choose at will because of the translation invariance of the Hamil-
tonian of the spherical lattice gas. The multipliers

√
(y−ν )

2 + (y+ν )
2 play a much

more important role, they determine asymmetry of the droplet across dimensions.
If (y−k )

2 + (y+k )
2 = N(1− ρ2), and y±ν = 0, for ν 6= k, then the states are maximally

asymmetric. Namely, they have the cosine shape in the dimension ν = k, and they
are translation invariant across other dimensions, see Fig. 1,

xj = ρ+
√
2(1− ρ2) cos

[
2π(jk − 1)

n
− αk

]
.

The opposite extreme is the symmetric case (y−ν )
2 + (y+ν )

2 = N(1 − ρ2)/d, for
ν = 1, 2, . . . , d, when the droplet has a rounded-square shape, see Fig. 1,

xj = ρ+

√
2(1− ρ2)

d

d∑

ν=1

cos

[
2π(jν − 1)

n
− αν

]
. (16)

In intermediate situations, the droplet has a kind of elliptic shape, see Fig. 2.
It turns out that the above zero-temperature pure (macro) states are stable with

respect to heating up of the system to a temperature not exceeding the critical value
β−1
c . Pure (macro) states for β−1 > 0 are in one-to-one correspondence with zero-

temperature pure states. In the next section we single out pure states for β−1 > 0
by quasi-averaging.
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Figure 1: The shape of the maximally asymmetric and symmetric droplets.
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Figure 2: A droplet of an intermediate shape.

6 Quasi-averages.

Pure (micro) states of thermodynamic systems can be obtained with a help of quasi-
averaging [1]. The basic recipe of quasi-averaging looks like this: switch on an
external field (of magnitude ε) removing the degeneracy of equilibrium state, pass
to the thermodynamic limit, switch off the field by sending its magnitude ε to zero
over positive values (ε ↓ 0). It turns out that in the case of the spherical lattice gas
this procedure often deforms macro states (droplet shape). Therefore, we have to
use a more potent version of quasi-averaging [2, 3], where the field magnitude is a
decreasing function of the volume N . That is, the symmetry-breaking external field
is switched off together with the thermodynamic limit.

Motivated by the results of the previous section, we begin with the Hamiltonian
(2) where the external field

hj =
ε
√
2

nδ
cos

[
2π(j1 − 1)

n
− α

]
, j ≡ (j1, j2, . . . , jd) ∈ Vn, (17)
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is proportional to an eigenvector corresponding to the second-largest eigenvalue, λ s,
of the interaction matrix. The dimensionality of the eigenspace corresponding to λ s

is 2d, and we are free to choose the value of the parameter α ∈ [0, 2π), and instead
of j1 we can use jν , with ν = 2, 3, . . . , d. Different choices of α and ν yield different
pure macro states.

For the characteristic function of random variables xj and xl one obtains an
integral similar to Eq. (11),

χ(t, s) =
exp(βJdρ2N)eitρ+isρ

Θn(ρ)
√
N

βJ

2πi

(
π

βJ

)(N−1)/2

×

∫ +i∞+c

−i∞+c
dz exp [NβΦn(z, ε)] exp


−

∑

k∈Vn

′

(
tw

(k)
j + sw

(k)
l

)2

4βJ(z − λk)


 . (18)

where

NβΦn(z, ε) = NβΦn(z) +
i ε

2Jnδ−d/2
tw

(2,1,...,1)
j + sw

(2,1,...,1)
l

z − λ s
+

βε2

4Jn2δ−d(z − λ s)︸ ︷︷ ︸
≡ψn(z)

.

The innocent-looking term ψn(z) makes a huge difference for the evaluation and
behaviour of the integral (18) when β > βc. Indeed, in the scale z = λ s + ζn−δ

the magnitudes of variation of NβΦn(z) and ψn(z) with ζ become comparable.
Moreover, if δ < d, then ψn(z) prevents the saddle point z∗n from approaching the
pole at λ s any closer than the distance O(n−δ).

Introducing a new integration variable ζ via z = λ s + ζn−δ one obtains

NβΦn(λ s + ζn−δ, ε) = NβΦn(λ s + ζn−δ)+

i
ε
√
2N

2Jζ

{
t cos

[
2π(j1 − 1)

n
− α

]
+ s cos

[
2π(l1 − 1)

n
− α

]}
+
nd−δβε2

4Jζ
.

Gathering the terms of the order nd−δ and differentiating over ζ we obtain the
following equation for the saddle-point ζ∗:

(1− ρ2)J(β − βc)−
βε2

4Jζ2
= 0.

Hence the saddle point of Φn(z, ε) is located at

z∗n = λ s +
|ε|

2Jnδ
1√

(1− ρ2)(1− βc/β)
+ o(n−δ).

Application of the saddle-point method to the integral (18) and to the analo-
gous integral for the partition function Θn(ρ) shows that the large-n asymptotics of
χ(t, s) coincides with the characteristic function of a bivariate normal distribution
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B(µ1, µ2; v1, v2, c). That is, for large n the joint distribution of random variables xj
and xl is asymptotically normal with mean values µ1 and µ2, variances v

2
1 and v22,

respectively, and covariance c. Under the assumption that the first components of
the nodes j and l scale with n as j1 ∼ γn and l1 ∼ λn, the expected values of xj
and xl are given by

µ1 = ρ+
√
2(1− ρ2)(1− βc/β) cos (2πγ − α) , (19)

µ2 = ρ+
√
2(1− ρ2)(1− βc/β) cos (2πλ− α) . (20)

Note that, provided δ ∈ (0, d), the expected values (droplet shape) do not depend
on the magnitude of the external field εn−δ. Therefore it is reasonable to conclude
that the symmetry-breaking field (17) selects one of the possible droplet shapes, but
it does not deform the droplet.

The variances v21, v
2
2 and covariance c(j, l) are given by the usual formulae for

the pure phases of the spherical model below the critical temperature

v21 = v22 =
Wd(d)

2βJ
,

c(j, l) =
1

2βJ

∫ π

−π
. . .
∫ π

−π

exp
[
i
∑d
ν=1(jν − lν)ων

]

d−∑d
ν=1 cosων

d∏

ν=1

dων
2π

∼ Γ(d/2− 1)

4βJπd/2rd−2
j,l

, (21)

where rj,l is the Euclidean distance between j and l.
The equations (19) and (20) describe the shape of a localised droplet obtained

with a help of the (generalized, see [2, 3]) method of quasi-averages. To double
check that the droplet shape (19) is not deformed by the external field we would
like to examine the sensitivity of the droplet shape to the type of external field used
for quasi-averaging. For this purpose we now repeat the above calculations for a
technically more demanding case

hj =

{
εn−δ, if j1 = 1,
0, otherwise,

j ∈ Vn; (22)

where ε > 0, and δ ≥ 0. First, we have to find the range of values for δ, such that the
field (22) is strong enough to fix the location of the droplet of condensed “spherical
matter”, but, at the same time, it is weak enough not to deform the droplet shape.

The partition function Θn(ρ) is still given by Eq. (7), but the coefficients ϕk,
k ∈ Vn are now given by

ϕk = εnd/2−1−δ
d∏

ν=2

δ(kν, 1).

In order to find the location of the saddle-point of the integrand in Eq. (7) we have
to first investigate the behaviour of the sum

Σ(z) ≡ 1

4JN

∑

k∈Vn

′ ϕ2
k

z − λk
=

ε2

4Jn2(1+δ)

n∑

k1=2

1

z − d+ 1− cos [2π(k1 − 1)/n]

17



in the vicinity of the point z = d. Fortunately, this sum can be calculated exactly,
see [10],

Σ(z) =
ε2

4Jn2(1+δ)

[
2n

x2(z)− x1(z)

xn2 (z) + 1

xn2 (z)− 1
− 1

z − d

]
.

Hence, for any fixed z > d, the (derivative of the) sum Σ(z) = O(n−1−2δ) produces
only a vanishing contribution to the saddle-point equation (8).

The contribution of the sum Σ(z) becomes significant below the critical temper-
ature, where we have to introduce a new integration variable ζ via z = λ s + ζn−γ

before application of the saddle-point method. In order to find the right rescaling
for the integration variable z (which, as we shall see shortly, depends on the value
of δ in Eq. (22)), we have to analyse the behavior of Σ(z) for different values of γ.

If 0 < γ < 2, then

Σ(λ s + ζn−γ) ∼ ε2

4J
√
2ζ
n−1−2δ+γ/2, as n→ ∞.

If γ = 2, then

Σ(λ s + ζn−γ) ∼ ε2n−2δ

8J


coth

√
ζ/2− π2

√
ζ/2− π2

− 1

ζ/2− π2


 , as n→ ∞.

Note that the r.h.s. of the last equation does not actually have a singularity at
ζ = 2π2. Therefore to find Σ(λ s + ζn−γ) for ζ < 2π2 one can use the analytic
continuation

Σ(λ s + ζn−γ) ∼ −ε
2n−2δ

8J


cot

√
π2 − ζ/2

√
π2 − ζ/2

+
1

ζ/2− π2


 , as n→ ∞.

Finally, if γ > 2, then the main asymptotics of Σ(λ s+ζn
−γ) comes entirely from

the first and the last terms of this sum,

Σ(λ s + ζn−γ) ∼ ε2nγ−2(1+δ)

2Jζ
, as n→ ∞.

Under the same rescaling z = λ s + ζn−γ the first two terms of Φn(z) become

J(λ s + ζn−γ)(1− ρ2)− 1

2βN

∑

k∈Vn

′
ln(λ s + ζn−γ − λk) ∼

Jλ s(1− ρ2)− Ld(d)

2β
+ n−γζ

[
J(1− ρ2)− Wd(d)

2β

]
+ n−2π

2Wd(d)

β
.

Hence, if 0 < δ < 1, then the contributions of all ζ-dependent terms in Φn(λ s+ζn
−γ)

are of the same order when γ = 2(1 + 2δ)/3, and the saddle-point equation for ζ is
given by

J(1− ρ2)(β − βc) =
β

4J

ε2

2
√
2ζ3/2

.
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The positive solution of this equation is given by

ζ∗ =
1

2

(
ε

2J

)4/3 1

[(1− βc/β)(1− ρ2)]2/3
. (23)

If δ = 1, then we have to set γ = 2, which yields the following saddle-point
equation for ζ

J(1− ρ2)(β − βc) = −βε
2

8J

d

dζ


coth

√
ζ/2− π2

√
ζ/2− π2

− 1

ζ/2− π2


 . (24)

Finally, if 1 < δ < d − 1, then we have to set γ = 1 + δ, and the saddle-point
equation for ζ is given by

J(1− ρ2)(β − βc) =
βε2

2Jζ2
.

The positive solution of the above equation is given by

ζ∗ =
ε

J
√
2(1− βc/β)(1− ρ2)

.

Now that we know the behavior of the saddle point z∗n of the integrand in Eq. (7)
we can find the thermodynamic limits of various macro- and microscopic quantities.
But before we are able to apply the saddle-point method and find the characteristic
function of an arbitrary pair of random variables xj and xl we have to calculate the
sum

Σ̃j(z) ≡
∑

k∈Vn

′ γkw
(k)
j

z − λk
,

appearing in Eq. (11). After some elementary transformations the above sum reduces
to

Σ̃j(z) =
ε

n1+δ

n∑

k1=2

cos [2π(j1 − 1)(k1 − 1)/n]

z − d+ 1− cos [2π(k1 − 1)/n]
,

and the summation technique from [10] yields

Σ̃j(z) =
2ε

nδ(x2 − x1)

xj1−1
2 + xn−j1+1

2

xn2 − 1
− ε

n1+δ(z − d)
.

On application of the saddle-point method to the integral in Eq. (11) one obtains
the following expression for the characteristic functions of random variables xj and
xl:

χ(t, s) ∼ exp


−

∑

k∈Vn

′

(
tw

(k)
j + sw

(k)
l

)2

4βJ (z∗n − λk)
+ it

(
Σ̃j(z

∗
n) + ρ

)
+ is

(
Σ̃l(z

∗
n) + ρ

)

 . (25)
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Hence, as it is usually the case for pure states of the spherical model, for large values
of n the random variables {xj , j ∈ Vn} have asymptotically normal distributions.

If δ ∈ (0, 1), then the saddle point is given by z∗n = λ s + ζ∗n−2(1+2δ)/3, see Eq.
(23), and the large-n asymptotics of the expected values of the microscopic variables
(the multipliers of it and is in Eq. (25)) are given by

〈xj〉 ∼
εn(1−δ)/3

2J
√
2ζ∗

[
1 +

√
2ζ∗n−(1+2δ)/3

]−j1
,

if j1 ≤ n/2. In this case the droplet shape is clearly deformed by the external
field, since virtually all “spherical matter” gathers in a narrow layer of the width
∼ n(1+2δ)/3 around the hyperplane j1 = 1, where the field is applied.

If δ = 1, then the saddle point is given by z∗n = λ s+ζ
∗n−2, where ζ∗ is a solution

of Eq. (24), and the large-n asymptotics of the expected values of the microscopic
variables are given by

〈xj〉 ∼ ρ+
ε

2J




cosh
[
(1− 2γ1)

√
ζ∗/2− π2

]

√
2(ζ∗ − 2π2) sinh

√
ζ∗/2− π2

− 1

ζ∗ − 2π2


 . (26)

if j1 ∼ γ1n. In this case the droplet shape is still deformed by the external field,
since it depends on the field’s magnitude ε.

Finally, if δ ∈ (1, d− 1), then the large-n asymptotics of the expected values of
the thermodynamic variables are given by

〈xj〉 ∼ ρ+
√
2(1− ρ2)(1− βc/β) cos (2πγ1) .

if j1 ∼ γ1n. In this case, apparently, the droplet shape is not deformed by the
external field, since it does not depend on the field’s magnitude ε, and it is the same
as in Eqs. (19) and (20).

Thus, the droplet shape is sensitive to the magnitude of the symmetry-breaking
field only if it scales with n as n−δ with δ ∈ [0, 1]. If the field is switched off
reasonably fast, δ ∈ (1, d− 1) in Eq. (22), the droplet shape is not deformed by the
field (does not depend on the magnitude of the field). If the field is switched off
too fast, δ ≥ d− 1, then it does not transfer the thermodynamic system into a pure
state.

It is appropriate to stress at this point that different configurations of the sym-
metry breaking field {hj : j ∈ Vn} can produce different pure macroscopic phases.
Therefore the droplet shape is sensitive to the type of field used for quasi-averaging.
The eigenvector (17) is only one of 2d orthogonal vectors spanning the eigenspace
corresponding to the second-largest eigenvalue of the interaction matrix. In this
respect, the symmetry breaking field (22) is special, because it is orthogonal to all
of the remaining 2d− 1 eigenvectors corresponding to the eigenvalue λs. If instead
of the field (22) we decide to use a configuration {hj : j ∈ Vn}, which has a non-zero
scalar product, say, with

√
2

n
cos

[
2π(j2 − 1)

n
− α

]
, j ≡ (j1, j2, . . . , jd) ∈ Vn,
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then the corresponding vector of expected values 〈xj〉, j ∈ Vn will contain a compo-
nent proportional to cos(2πj2/n), cf. Eq. (16).

7 Discussion.

The investigation of droplet shape performed in this paper demonstrates the impor-
tance of decomposing mixed states into constituent pure components. It appears
that, often, mixed states are mathematical constructions reflecting absence of suf-
ficient information about the system under investigation. A priori we do not know
which of many possible pure states of the system will be actually observed in an ex-
periment. As a consequence, a direct mathematical solution of the model produces
a mixed state. At the same time, if an experimentalist actually performs measure-
ment in the corresponding physical system, the obtained results would be described
by one of pure states.

Whether this point of view is valid or not, depends, of course, on how quickly the
system under investigation can transit from one pure state into another. Namely, if
the typical transition time is much larger than the typical experimental observation
time, then measurements yield results corresponding to one of pure states. If the
observation time is much longer than the transition time, then the observed values
are likely to correspond to a mixed state.

Investigation of dynamical properties of the mean spherical model were per-
formed recently, see [5]. It is possible to calculate the interstate transition times
using the technique proposed there. We have not attempted yet those calculations,
and we do not even know if the droplet shape in the mean spherical and the con-
ventional spherical model are similar. But, it does not seem inconceivable, that the
transition time from one pure state into another is much greater than the typical
measurement time. Indeed, investigations of large deviation probabilities show that
in order to transit from one pure state into another within the conventional spherical
model one has to overcome a free-energy barrier that grows exponentially with nd−2.

It is well known that gaussian approximations correspond to leading orders of
low-temperature expansions of various continuous models. Therefore, one can hope
that the behaviour of realistic continuous models, for instance O(n) models, is quali-
tatively similar to the findings of the present paper. On the other hand, the common
knowledge is that physical substances in liquid phases form droplets which bound-
aries are sharp in the macroscopic scale. Most likely, the sharpness of boundaries
should be attributed to the atomistic (discrete) microscopic structure of physical
substances. Therefore, in this respect, discrete lattice gas models of Ising type
provide much more realistic description of various substances in the liquid state.
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