arXiv:1011.4943v1 [cond-mat.stat-mech] 22 Nov 2010
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We develop a functional renormalization group approach to obtain the time evolution of the
momentum distribution function of interacting bosons out of equilibrium. Using an external out-
scattering rate as flow parameter, we derive formally exact renormalization group flow equations for
the non-equilibrium self-energies in the Keldysh basis. A simple perturbative truncation of these
flow equations leads to an approximate solution of the quantum Boltzmann equation which does
not suffer from secular terms and gives accurate results even for long times. We demonstrate this
explicitly within a simple exactly solvable toy model describing a quartic oscillator with off-diagonal

pairing terms.
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I. INTRODUCTION

Quantum mechanical many-body systems out of equi-
librium pose extraordinary challenges to theory. Al-
though powerful field-theoretical methods to formulate
non-equilibrium problems in terms of Green functions
and Feynman diagrams are available,! ¢ in practice new
concepts and approximation strategies are needed. Be-
cause systems under the influence of external time-
dependent fields are not time-translationally invariant,
one has to formulate theoretical descriptions in the time
domain. Moreover, even if after a sufficiently long time
the system has approached a stationary non-equilibrium
state, such a state can exhibit properties which are rather
different from a thermal equilibrium state. For exam-
ple, the Fourier transform ng of the distribution function
at such a non-thermal fixed point can exhibit a scaling
behavior as function of momentum k which is charac-
terized by a completely different exponent than under
equilibrium conditions.”# In this case a simple perturba-
tive approach based on the quantum Boltzmann equa-
tion with collision integrals calculated in lowest order
Born approximation is not sufficient. The scaling be-
havior close to non-thermal fixed points in simple mod-
els has been studied within a next-to-leading order 1/N-
approximation.® This method has also been used to study
the real-time dynamics of quantum many-body systems
far from equilibrium.?

Another useful method to investigate strongly corre-
lated many-body systems is the renormalization group
(RG), which has been extensively used to study the
scaling properties of systems in the vicinity of contin-
uous phase transitions. Although there are many suc-
cessful applications of RG methods to systems in ther-
mal equilibrium, the development of RG methods for
quantum mechanical many-body systems out of equi-
librium is still in its infancy® In recent years a num-
ber of authors have applied functional renormalization
group (FRG) methods to study many-body systems out
of equilibrium.2-11-14 While the non-equilibrium FRG ap-
proach to quantum dots'22 has so far only been devel-

oped to study stationary non-equilibrium states, Gasen-
zer and Pawlowskit* have written down a formally exact
hierarchy of FRG flow equations describing the time evo-
lution of the one-particle irreducible vertices of interact-
ing bosons out of equilibrium. Using a sharp time cutoff
as RG flow parameter, they showed that a simple trun-
cation of the FRG vertex expansion at the level of the
four-point vertex reproduces the results of the next-to-
leading order 1/N-expansion.”

In this work we shall propose an alternative version
of the non-equilibrium FRG which uses an external out-
scattering rate as flow parameter. Technically, this cut-
off scheme is implemented by replacing the infinitesi-
mal +in defining the boundary condition of the retarded
and advanced Green functions by finite quantities +iA.
Given this cutoff procedure, a simple substitution in the
usual hierarchy of FRG flow equations for the irreducible
vertices!® yields the FRG flow equations describing the
evolution of the irreducible vertices as the flow param-
eter A is reduced. An important property of our cutoff
scheme is that it preserves the triangular structure in the
Keldysh basis and hence does not violate causality.

To be specific, we shall develop our formalism for the
following time-dependent interacting boson Hamiltonian,

*
H(t) = Z {eka};ak + ’Y—;e*wota;fcalf_k + F%kewota,kak
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x Uk, ka; ks, ka)a'  a'y an,an,,
where a}; creates a boson with (crystal) momentum k
and energy dispersion €, the volume of the system is
denoted by V, and U (kq, ko; ks, k4) is some momentum-
dependent interaction function; the minus signs in front
of the momentum labels of the creation operators in the
last line of Eq. () are introduced for later convenience.
As explained in Refs. [16,[17] the Hamiltonian (1) de-
scribes the non-equilibrium dynamics of magnons in or-
dered dipolar ferromagnets such as yttrium-iron garnet®
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subject to an external harmonically oscillating microwave
field with frequency wg. The energy scale g is then pro-
portional to the amplitude of the microwave field. The
non-equilibrium dynamics generated by the Hamiltonian
(TI) is very rich and exhibits the phenomenon of para-
metric resonance for sufficiently strong pumping.16-17

In practice it is often useful to remove the explicit
time dependence from the Hamiltonian H(t) in Eq. (1))
by going to the rotating reference frame. The effective
time-independent Hamiltonian H in the rotating refer-
ence frame (denoted by a tilde) is obtained as follows:
Given the unitary time evolution operator U(t) defined
by

OU(t) = HEU(), (1.2)

we make the factorization ansatz
U(t) = U (U (), (1.3)
with
Up(t) = e~ 3 Dulwot—er)a an (1.4)

where ¢, is the phase of vx = |yx|e*?*. The time evo-
lution operator U(t) in the rotating reference frame then
satisfies

iOUt) = HU(L), (1.5)

where the transformed Hamiltonian H does not explicitly
depend on time,

H = UL ()[H(t) — id:)Uo(t)

= Z [éka};ak + h—;l (a};atk + a_kak)}
k

1
+ W Z 6k1+k2+k3+k470

kikaksks
xU (kq, ko; ks, k4)aiklaik2ak3ak4, (1.6)

with the shifted energy
€k=6k—%. (1.7)

The solution of Eq. (I5) is simply U(t) = e~""*, so that
the total time evolution operator of our system can be
explicitly written down,

U(t) = e~ Trlwot—pr)ajan—ift, (1.8)
Throughout this article we shall work in the rotating ref-
erence frame were the effective Hamiltonian (L6 is time
independent. To simplify the notation we shall €x — €g
and give all Green functions and distribution functions
in the rotating reference frame. Explicit prescriptions
to relate these functions in the original and the rotating
reference frame are given in appendix A.

The rest of this paper is organized as follows: In Sec. [l
we shall define various types of non-equilibrium Green

functions and represent them in terms of functional inte-
grals involving a properly symmetrized Keldysh action.
Due to the off-diagonal terms in our Hamiltonian (L))
the quantum dynamics is also characterized by anoma-
lous Green functions involving the simultaneous creation
and annihilation of two bosons. To keep track of these
off-diagonal correlations together with the usual single-
particle correlations, we introduce in Sec. [[Il a compact
matrix notation. In Sec.[[II] we then derive several equiv-
alent quantum kinetic equations for the diagonal and off-
diagonal distribution functions. In Sec.[[Vlwe write down
formally exact FRG flow equations for the self-energies
which appear in the collision integrals of the quantum
kinetic equations discussed in Sec. [l We also discuss
several cutoff schemes. In Sec. [V] we then use our non-
equilibrium FRG flow equations to study the time evo-
lution of a simple exactly solvable toy model which is
obtained by retaining in our Hamiltonian (LG only a
single momentum mode. We show that a rather sim-
ple truncation of the FRG flow equations yields already
quite accurate results for the time evolution. Finally, in
Sec. [VIl we summarize our results and discuss some open
problems. There are three appendices with additional
technical details.

II. NON-EQUILIBRIUM GREEN FUNCTIONS

Our goal is to develop methods to calculate the time
evolution of the diagonal and off-diagonal distribution
functions

i (t) = (af,(t)ar(t)),
pr(t) = (a—g(t)ar(t)),

where all operators are in the Heisenberg picture and
the expectation values are with respect to some initial
density matrix p(tg) specified at some time ¢,

(.)="Tepto)...].

Note that in our Hamiltonian (6 the combinations

aLaT_k and a_gag do not conserve particle number, so

that we should also consider the anomalous distribution
function (2.1B) and its complex conjugate. Our final goal
is to derive renormalization group equations for the self-
energy appearing in the collision integrals of the quantum
kinetic equations for these distribution functions. In or-
der to do this, it is useful to collect the various types of
non-equilibrium Green functions into a symmetric ma-
trix, as described in the following section.

(2.1a)
(2.1b)

(2.2)

A. Keldysh (RAK) basis

In the Keldysh technique? one doubles the degrees of
freedom to distinguish between forward and backward
propagation in time. As a consequence, all quantities
carry extra indices p € {+, —} which label the branches



of the Keldysh contour associated with the forward and
backward propagation. The single-particle Green func-
tion is then a 2 x 2 matrix in Keldysh space. In or-
der to formulate the Keldysh technique in terms of func-
tional integrals,8 it is convenient to work in a basis where
causality is manifestly implemented via the vanishing of
the lower diagonal element of the Green function matrices
in Keldysh space. The other matrix elements can then
be identified with the usual retarded (R), advanced (A)
and Keldysh (K) Green functions. Keeping in mind that
our model has also anomalous correlations, we define the
following non-equilibrium Green functions,

gk (1,1) = =i0(t = ') ([ax(t), a (), (2.3a)
g (t,1') = iO(t' — 1) (an(t), af()]),  (23b)
gk (8,1') = —i({ar(t), a(t)}), (2.3¢)
where [ , ] denotes the commutator and { , } is the

anticommutator. The corresponding off-diagonal Green
functions are

pi(t,t") = —z@(t — ) Jar(t),a_p(t")]), (2.4a)
Pt t) =iOF — t)([ar(t), a—(t)]),  (2.4b)
Pk (1) = —Z<{Gk( ), a—x(t')}). (2.4c)

In Sec. [[TC] we represent these Green functions as func-
tional integrals involving a suitably defined Keldysh ac-
tion. To write the Gaussian part of this action in a com-
pact form, it is convenient to introduce infinite matrices
g% and p¥ in the momentum and time labels (where
X = R, A, K labels the three types of Green functions)
whose matrix elements are related to the Green functions

([Z3a24d) as follows,t?
[0 Ikt ke = Ok —kr gin (1), (2.5a)
D |kt = Ok 1D (L, 1). (2.5b)

From the above definitions it is easy to show that the
normal blocks satisfy the usual relations®

(gR)T = QA ) (QK)T = _gK, (26)
while the pairing blocks have the symmetries
" =p", )T =p" (2.7)

For each type of Green function, we collect the normal
and anomalous components into larger matrices,

N GR GE ﬁR QR )
Gl = jaa ) — (2 T ) 2.8
<ng Gfa> <<gR> (57 (2.8a)
. GA GA— > < ﬁA QA >
A _ Taa “aa — ! 2 A , 2.8b
(G;;*a G (G () (2.8b)

(§5)° —(")* )  (280)

whose blocks G, are infinite matrices in the momentum
and time labels. The subscripts 0,0’ € {a,a} indicate

whether the associated Green functions involve annihila-
tion operators a or creation operators af. We shall refer
to these subscripts as flavor labels. The symmetries (2.6))

and (Z7) imply
(GHT =G4 | (GF)T =GK. (2.9)
Finally, we collect the blocks (2:8aHZ.8d) into an even

larger matrix Green function,

()AL T) o

where the superscripts C' and ) anticipate that in the
functional integral approach we shall identify the corre-
sponding block with correlation functions involving the
classical (C') and quantum (Q) component of the field,

see Eqs. (235al2.35d) below. The symmetries (Z9) im-

ply that the infinite matrix G is symmetric,
G =G". (2.11)

As emphasized by VasilievZ? (see also Refs. [15,221]) the
symmetrization of the Green function and all vertices
greatly facilitates the derivation of the proper combina-
torial factors in perturbation theory and in the functional
renormalization group equations. The definitions (2.5al
250 2:8d) imply that at equal times and vanishing total
momentum the matrix elements of the Keldysh block GK
contain the diagonal and off-diagonal distribution func-

tions defined in Eqs. (2Tal2.1H]),
A Kt t) gf(t,t
[GK]kt,—kt — (pk ( ) ) ( ) )

gk (t,1) py (t,0)*
A pe(t) ng(t)+ L )
= -2 N 2 ). (212
(nk<t>+% ) (212)
For later reference we note that the inverse of the matrix
G in Eq. (2I0) has the block structure

-1 0 (GA)_l
¢ = ((éR>-1 (GR)1GR (G

where the products in the lower diagonal block denote
the usual matrix multiplication, i.e.,

[A okt,oc’k’'t! — E E /dtl O’kt,dlkltl[B]O’lkltl,a’/k/t/'

o1 ki

(2.14)
The symmetry relations (Z9) guarantee that the lower
diagonal block in Eq. (ZI3) is again symmetric. To in-
troduce a matrix F' in flavor space which contains both
the normal and the anomalous components of the distri-
bution function, we parametrize the Keldysh block in the
form

) ) . (213)

GK =GREZ — ZFTGA, (2.15)

is defined by

where the antisymmetric matrix Z=-77

ZzZ@iz(_Oi(i)). (2.16)



Here Z is the following antisymmetric 2 x 2-matrix in

flavor space,
. 0 1
Z =i0g9 = <_1 0),

and 1 is the unit matrix in the momentum- and time-
labels, ie. [lgtre = Opwro(t — t'). Substituting
Eq. 2I5) into ([ZI3]), the lower diagonal block of the

matrix (ZI3) can be written as

(2.17)

[G—I]QQ — _(GR)—IGK(GA)—I

= (GB)1ZFT —FZ(GY7Y, (2.18)

so that Eq. (Z1I3) takes the form

G71 — < R 0 . A(AGAA)_]; R >
(GR)fl (GR)fleT _ Fz(GA)fl :
(2.19)
In Sec. we shall explicitly calculate the matrix ele-
ments of F' in the non-interacting limit, see Eqs. (2.68]

2.70) below.

Introducing the self-energy matrix 3 in all indices via
the matrix Dyson equation
G'=G;'-%, (2.20)

the non-equilibrium self-energy in the Keldysh basis ac-
quires the form

2< 0 [2]“9)( 0 EA)
[E]QC [E]QQ SR 2K |
The sub-blocks contain the normal and anomalous self-
energy matrices

(2.21)

- <§ZZZ ;Z%) = < (f%:)* (;15) ) : (2.22a)
5= (;?Z g?j) = ( (;ﬁ)* (;:)* ) . (2.22D)
s (S ) < (L o) o
The Dyson equation ([@220) and the symmetries

EE2Z7R9) imply that the sub-blocks satisfy the sym-
metries

(65 = —6K, (2.23)
and
=7k, (2.24)

Since the self-energy blocks satisfy the same symmetry
relations as the Green functions (ZG27), the symmetries
([239) hold also for the self-energy blocks in Keldysh space,

(ERT =54 | (2T = 2K, (2.25)

The full self-energy matrix is therefore again symmetric,
> =xT (2.26)

In the presence of interactions the lower-diagonal block
of the inverse propagator is given by the negative of the
Kledysh component of the self-energy,

SE = (GB)IGR (G = —[GT1)99, (2.27)

B. Contour basis

In the Keldysh technique all operators are considered
as functions of the time-argument on the Keldysh con-
tour which runs from some initial time ¢y to some upper
limit ¢~ (which is larger than all other times of interest)
slightly above the real axis, and then back to ¢y slightly
below the real axis. Alternatively, all time integrations
can be restricted to the interval [tg, =] and one can keep
track of the two branches of the Keldysh contour us-
ing an extra label p = +, where p = 4 corresponds to
the forward part of the contour and p = — denotes its
backward part. In the functional integral formulation
of the Keldysh technique,® the bosonic annihilation and
creation operators are then represented by pairs of com-
plex fields ag ,(t) and g p(t) carrying the contour label
p. The contour ordered expectation values of these fields
define four different propagators GPP' | which are related
to the usual time-ordered (G7'), anti-time-ordered (G7'),
lesser (G<) and greater (G>) Green functions and their
RAK-counterparts as follows, 42

GT G< G+t G+ R GE GR R
(7 6)-(8) (& )
(2.28)
where the transformation matrix R has the block struc-

ture
1 (1 1 . T
R = — A A = R = R .
A1)
Here [ is the unit matrix in the flavor-, momentum-, and
time labels, i.e., [I]okt.o'k't/ = 05,0/ 0k 1 0(t—1'). The ma-
trix equation (2:28) implies for the blocks in the contour
basis

(2.29)

G = % [p’éR +pGA 4 GK } : (2.30)

where p,p’ € {+, —}. From Eq. (230) one easily verifies
the inverse relations,

GR =[G]°?9 = % S par, (2.31a)
pp

G4 =[G)9¢ = % > pGrr, (2.31Db)
pp

G =[G]°¢ = %ZGPP’, (2.31c¢)
pp

(2.31d)

0= pr’@pp/ )
pp’



The corresponding relations for the self-energy are

27 o$< )oanall Ya e 0 4
(z> 27):(2—+ z——)ZR(zR 2K)R’

(2.32)
which gives
NV . .
PP = 3 [pER +p'eA —i—pp’EK} , (2.33)
and the inverse relations
N 1 Ay
BE = [2]Q¢ = 3 > prr, (2.34a)
pp
. 1 A
54 = 299 = 3 > op'e (2.34b)
pp’
~ 1 Ay
S = (299 = 5 > 'S (2.34c)
pp’
(2.34d)

0=> s,
pp’

C. Functional integral representation of Green
functions in the RAK-basis

To define the proper boundary conditions in the func-
tional integral formulation of the Keldysh technique,® it
is convenient to work in the RAK basis. The transition
from the contour basis to the RAK basis is achieved by
introducing the classical (C') and quantum (Q) compo-
nents of the fields, which are related to the corresponding
fields ag,+ and ag, + in the contour basis via

£ = Sl +au (0], (235)
W) = sl ) +a- (0], (235)
W0 = sl ()=o), (2350)
G200 = s fow ()~ an-(0). (2350
Introducing a four-component “super-field”,

@2(1@, t) acg (t)

®Y (K, t) a%,(t)

@R | = | ooy |0 @9

98k, 1) 3% (0)

the matrix elements of the symmetrized matrix Green
function G defined in Sec.[[I’Al can be represented as the
following functional average,

i[G Rt = iGopr (Kt K't') = (B (kt) @) (K't))

= / D[D]* 510 (k)X (K't').  (2.37)

The Keldysh action S[®] has two contributions,

S[®] = So[®] + S1[®], (2.38)

where after proper symmetrization the Gaussian part
So[®] can be written as

So[®] = %ZZZ/dtdt’

oo’ AN kk’
A —17A) N
X (I)U(kt)[GO ] kt,o”k’t’q)a’(k/t/)'

[og

(2.39)

Here Gg' is the non-interacting inverse Green func-
tion matrix in Keldysh space, which is associated with
the non-interacting part of the Hamiltonian (L6). The
matrix G’ has the same block structure as G~! in
Eq. (Z1I3), with retarded and advanced blocks given by

GCGH'=D—inz , (GH'=D+inZ, (2.40)
where the antisymmetric matrix Z is given in Eq. (2106),

and the symmetric matrix D is defined by

[ﬁ]kt,k’t’ =0,k 2 [—i(s/(t — t/) +0(t— t/)Mk/] .
(2.41)
Here &'(t) = 46(t) is the derivative of the Dirac 4-
function and My, is the following matrix in flavor space,22

Mk—< €k |7k|)_
—|vel —ex
Recall that we are working in the rotating reference frame
where we have redefined € = ex — %2 — eg,see Eq. (LL7).
Keeping in mind that 6’ (t—t") = —id’ (¢’ —t), it is obvious
that [(GE)~1)T = (G&)~!, in agreement with Eq. (29).
Although the Keldysh block [Gy']?® of the inverse
Gaussian propagator in Eq. (2.39) vanishes in continuum
notation, it is actually finite if the path integral is prop-
erly discretized.8 It is, however, more convenient to stick
with the continuum notation and take the discretization
effectively into account by adding an infinitesimal regu-
larization 7. To derive this regularization, we note that
the relations G, 'Goy = GoGy' = I imply that in the
non-interacting limit the Keldysh block satisfies

(2.42)

DGE =GED =o. (2.43)

Introducing the non-interacting distribution matrix Fy as
in Eq. (213)) this implies for n — 0,

DGED =FZD - DZFE} =o. (2.44)

Using Eq. ([ZI8)) we thus obtain for the lower diagonal
block of G !in the non-interacting limit,
(G199 =~ (GG (G

= (Gg) ' 2F] - Fo2(Gy) ™!

= in(Fo + FL) = 2inky, (2.45)

where we have used the fact that F} is symmetric, which
is easily verified by explicit calculation, see Sec.[[IDl The



lower diagonal block of G ! is thus a pure regularization,
which guarantees that in the non-interacting limit the
functional integral ([2:37)) is well defined. In the presence
of interactions the Keldysh component of the self-energy
is finite due to Eq. 227), so that in this case the in-
finitesimal regularization (2:45) can be omitted.

To write down the interaction part of the Keldysh
action associated with the interaction part of the
Hamiltonian (L), one should first symmetrize the
Hamiltonian23:24 before formally replacing the operators
by complex fields, since a and a' are treated symmetri-
cally. Noting that the symmetrized product of n bosonic
operators Aq, ..., A, is defined by

(A1 A} = —

ZAPI... P

(2.46)
|

1

2V
kikakska

S1[@] = —

x {cpac (krt) D2 (ot [cpac (kst)®

n [@g(klt)q>g(k2t) n

L (k1) (k) @§<k3t>@§<k4t>}.

where the sum is over all n! permutations, we have

Tt _ T
O, Op, Okes Obey = {aklakg ey ke, |

1
- 5 {5’61,’64{&;2 aks} + 6’617’63 {aLzak4}
+5k2,k3{al.rcl ak4} + 5’62,’64{&;1 Uk }}
1
+1 [5k1,k35k2,k4 + 5k2,k35k1,k4] (2.47)

The quadratic terms on the right-hand side of Eq. (2:47)
lead to a time-independent first-order shift in the bare
energy dispersion,

€ — €x — % > U(—k,~k';k,K). (2.48)

This shift can be absorbed by re-defining the energy €f in
the matrix M}, introduced in Eq. (2:42]). The first term
on the right-hand side of Eq. (2247 leads to the following
interaction part of the Keldysh action in the RAK-basis,

dt Ok, 4 kot ks +ka,0U (K1, k2s k3, ky)

O (kyt) + @a‘?(kgt)@a"?(k@)}

(2.49)

To eliminate complicated combinatorial factors in the FRG flow equations derived in Sec. [[V] it is convenient to

symmetrize the interaction vertices in Eq. (2:49) with respect to the interchange of any two labels!®2%2 and write
51[®] = 4'V Z > Z /dt5k1+k2+ke+k4 0 Uplpzoint (ki ko, kg, ka) @1 (ki) @52 (kat) @52 (kt) @51 (Kat),
<04 X1 Ag k.
(2.50)

where the interaction vertex U(;\llg‘;(;\f(;\f(kl, ko, ks, ky) is
symmetric with respect to any pair of indices. Up to

permutations of the indices, the non-zero vertices are

USDCC (ky, ko, ks, Ky

aaaa )
_Uggan(kluk2uk37 4)
= UGS 2 (K, ko, ks, Ka)
= USe2 (ky, ko, ks, k1) = Ulky, kas ks, k). (2.51)

D. Non-interacting Green functions

To conclude this section, let us explicitly construct the
2 x 2 matrix Green functions in flavor space in the non-
interacting limit. In general, we define the Green func-
tions in flavor space in terms of the matrix elements

[CX gtk = GX (R, t,t)) , X =R,A K. (2.52)

In the absence of interactions, we can obtain explicit
expressions for these Green functions. Then the non-
interacting part of the Hamiltonian (I6) reduces to??

Ho = Z {ekaka + |72k| (aka e a— kak)} (2.53)
k

The retarded and advanced matrix Green functions in the

non-interacting limit are now easily obtained. Consider

first the retarded Green function, which satisfies
10 Gl (K, t,t)) = 6(t —t')Z + MpGE(k,t,t"). (2.54)

The solution of Eq. (2254]) with proper boundary condi-

tion is

)e—iﬂlk(t—t') 7.

GE(k,t,t") = —iO(t — ' (2.55)



The matrix exponential is

e Mt — T cos(upt) — iMkM, (2.56)
223
where I is the 2 X 2 unit matrix, and
2 7

Ve = [kl if [er] > |kl
e =1 . : (2.57)

{ ikl — € if [l > lexl.
Using the symmetry relation (GR)T = G4 given in

Eq. 29), we obtain for the corresponding advanced
Green function,

Go (ko t,t') = GR(—k, t' )T = —iO(t' 1) 2T e~ iMe (=),

(2.58)
Using the identities
7% = —1I, (2.59a)
z7 =27"=-27 (2.59b)
ME =ZMpZ = -Z" My Z, (2.59¢)
ZT e MR (t' =) — _o—iMi(t=t") 7 (2.59d)

we may also write

Gk, t, ') = iOt — t)e Mrlt=t) 7. (2.60)
Because the retarded and advanced Green functions de-
pend only on the time difference, it is useful to perform

a Fourier transformation to frequency space,

Ggf(k,w)z/ dte™' G (k,t,0).

— 00

(2.61)

Substituting Eqs. (260) and ([2355) into this expression
and representing the step-functions as

! eiw't
o(t) = — 2.62
®) /_OO 2mi W' —in’ (2.62)
it is easy to show that
Gl(k,w) = [w— My +in)~' 2, (2.63a)
Gg‘(k:,w) =Jw— My —in'Z
= Zlw+ ML —in 7, (2.63b)

or explicitly,
1
(win)? — €, + |l

w:l:in—l—ek) (2.64)
—[ 7kl S

GHA (K, w) =

— [l
—wF i+ e
Next, consider the Keldysh component G¥ (k,t,t') of

our 2x2 matrix Green function in flavor space. It satisfies
the matrix equations

i0,GE (k,t,t') = MpGE (k. t, 1),
10y G (k,t, V) = GE (k, t,t" )M},

(2.65a)
(2.65b)

and hence

(104 +i0, ) GE (k,t, 1) = MpGE (k. t,t)+GE (k,t,t) M.
(2.66)

These equations are solved by
GE(k,t,t) = e ™Ml GE (1, 0,0)e ™Mt (2.67)
with an arbitrary initial matrix G{ (k, 0, 0) which defines
the distribution functions at ¢ = 0. To explicitly con-
struct the distribution matrix Fy defined via Eq. 213,

we note that in the non-interacting limit the distribution
matrix is diagonal in time,

[Folkt e = Ok Fo(ke 1, ') = g _ir0(t — ') Fo (K, 1),
(2.68)
so that Eq. (ZT5) reduces to the 2 x 2 matrix relation

GE(k,t,t') = GE(k,t,t)Fo(k,t')Z — ZFy(k,t)G{ (k,t,1')
= —iO(t — e M=) 7 Fy (k) Z

—iO(t — t)ZFy(k,t)Ze Me (=D (2.69)
It follows that in the non-interacting limit the time-
diagonal element Fy(k,t) of the distribution matrix con-
tains the normal and anomalous distribution functions
defined in Egs. (2Tal 2.Th) in the following way,

—2p;(t)  2nk(t)+1
m(t) +1 —2pilt) )

(2.70)

Combining this relation with Eq. (2.66]), we see that our
diagonal distribution function matrix satisfies the kinetic
equation

Fo(k,t) =iZGE (k,t,t)Z = (

10 Fo(k,t) = — ML Fy(k,t) — Fo(k,t)My.  (2.71)
Note that the non-interacting Keldysh Green function
[259) can also be written as

GE(k,t,t") = —i[GE(k,t,t)ZGK (k,t', 1)
_G(IJ((ku tvt)ZGé(ku tat/)]v (272)

which relates the matrix elements of the Keldysh Green
function at different times to the corresponding equal-
time matrix elements.

IIT. QUANTUM KINETIC EQUATIONS

From the Keldysh component of the Dyson equation
we obtain quantum kinetic equations for the distribution
function. In this section we shall derive several equivalent
versions of these equations. Although similar derivations
can be found in textbooks?? the special matrix struc-
ture of the kinetic equations in the presence of anoma-
lous correlations has apparently not been worked out in
the literature.



A. Non-equilibrium evolution equations for
two-time Keldysh Green functions

In order to derive quantum kinetic equations we start
with the matrix Dyson equation (220), which can be
written as

(Go'-2)G =1 (3.1)
This “left Dyson equation” is equivalent with the follow-
ing three equations for the sub-blocks,

(Gt —sR)IGR =1, (3.2a)
(GH™P =246 =1, (3.2b)
[(GE)~ — SRGK = SKGA, (3.2¢)

where 1 is again the unit matrix in the flavor-,
momentum- and time labels. Alternatively we can also
consider the corresponding “right Dyson equation”,

G(Gy'-3) =1L (3.3)
which implies the following relations,
GRIGE) ™ -7 = I, (3.4a)
GG -8 = 1, (3.4b)
GE[(GH™! — 24 = GRsK, (3.4c)

In order to solve the coupled set of equations (3.2aH3.2d)
and ([B4aH3d), it is sometimes useful to rewrite them as
integral equations. Therefore we should take into account
that in the non-interacting limit the Keldysh self-energy
is actually an infinitesimal regularization, X = —2inFy,
see Eq. (Z40). In the non-interacting limit the Keldysh
component therefore satisfies

(G§) G = —2inFyGy, (3.5)
which is equivalent with
GE = —2inGREGE. (3.6)

Using the integral forms of the Dyson equations
(32al3.2h) for the retarded and advanced Green func-
tions,
R = GF + GESRGR,
Y= G + GG,

(3.7a)
(3.7h)

the equation ([B2d) for the Keldysh-block can alterna-
tively be written in integral form as

GX = GESRGE 1+ GFskaA
= GE + GESAGA + GESRGE + GESKGA. (3.8)

Given an approximate expression for the self-energies, the
integral equations (B7B.])) can be solved by an appropri-
ate iteration to obtain the time evolution of the Keldysh
Green function. Here we follow a different strategy which
is similar to the one proposed in Ref. [9]. We represent
the inverse propagators (Z.40) as differential operators to
derive evolution equations in differential form. We will
see that the resulting initial value problem allows for ap-
proximate solutions which manifestly preserves causal-
ity. Using the advanced and retarded components of
the Dyson equations (3.2all3.2bl[3.4all3.4b)) and keeping
in mind that by translational invariance the matrix el-
ements in the rotating reference frame are,

[GX]k:t,k’t’ = 5kx_leX (k7 t7 tl)7

[EX]k:t,k’t’ = 5kx_klzx(k/7 t7 tl)7

with X = R, A, K, we obtain,

i G Ak, t,t) — MG/ A (R, t, 1)) = Z6(t — 1)

t/t
+/ dty ZSR A (k, t, 1) GE/A (K, t,1'), (3.10a)

to

iy GBI A (R, t, 1)) — GR/A (R, t, M = —Z6(t —t')

t/t
- / dt, G/ A (K, t, 1) SR/ A (K, ty, ') Z. (3.10b)
t

0

In the same way we obtain from (B:2d [B4d) the following
kinetic equations for the Keldysh component,

i0,GE (k,t,t") — MpG" (k,t, 1)

’

t
:/ dt, ZSE (k,t,t1)GA (K, t,t)

to

t
+/ dt, Z58 (K, t,t1)GE (k, t1,1),

to

(3.11)

and
10y G (k,t,t') — GX (k,t,t" )M

t
:—/ dt,GR(k,t, )55 (K, t1,t)Z

to

t/
—/ dt, G (k,t, 1) (k, t1,t) 2. (3.12)

to

Finally, in order uniquely define the solution of the
set of coupled first-order partial differential equations,
proper boundary conditions for the Green functions have
to be specified. From the definitions (2.3al2.3D) and
(ZZal2.4D) of the advanced and retarded propagators we
find that for infinitesimal 7,

GR(k,t,t —n) = —iZ,
GA(k,t,t +1) =iZ,

(3.13a)
(3.13b)

and that the Keldysh Green function should reduce to
the matrix G¥(k,0,0) at the reference time t = ' = 0.



Note that we have not made any approximations so far
and the time evolution is exact provided we insert the
exact self-energies. The evolution equations are causal
by construction, since no quantity in the collision inte-
grals on the right-hand side depends on future states.
Interpreting the time derivatives as finite-difference ex-
pressions, the solution can be obtained by stepwise prop-
agating the equations in ¢ and ¢’ direction. Note that in
the non-interacting limit where all self-energies and col-
lision integrals vanish, our kinetic equations (BI1B.12)
correctly reduce to the equation of motion for the non-
interacting Keldysh Green function given in Eq. (2.66]).

For open systems coupled to an external bath, it is
sometimes convenient to move some of the terms on the
right-hand side of the kinetic equations (B.ITB12) to the
left-hand side such that the remaining terms on the right-
hand side correspond to the “in-scattering” and the “out-
scattering-rate” in the Boltzmann equation. To achieve
this, we introduce the average (mean) and the imaginary
part of the retarded and advanced self-energies,*

. 1 . . . . .
uM = 5[ER +34] , ST =R -4 (3.14)
The inverse relations are
iRziM—%EI , EA:2M+%EI. (3.15)

A similar decomposition is also introduced for the re-
tarded and advanced Green functions,

N 1 - N N N N

GM = 5[GR +G4 , GI=ilGF-G4, (3.16)
so that

GR=GM — %él . GA=GM 4 %Cﬂ. (3.17)

Subtracting the Keldysh component of the left and right-
hand sides of the Dyson equations (3:2dB.4d), we obtain
the (subtracted) kinetic equation

ZDMGK —GEDM 7 — [2SKGM — GM K 7
= (i — gout, (3.18)
with

N . ~ . 1 -~ A
DM:D—EM:D—E[ER—FEA]. (3.19)
The collision integrals are represented by symmetric ma-
trices,

Cin = %[ZEKGI +GISE ), (3.20a)

Gont — %[221 GE + GESI 7, (3.20b)
and correspond to the usual “in-scattering” and “out-
scattering” term in the Boltzmann equation.® The kinetic
equation (BI8) generalizes the subtracted kinetic equa-
tion given in Ref. [4] to matrix form, which includes also
off-diagonal correlations. In equilibrium both terms on

the right-hand side of Eq. (BI8) cancel.

B. Evolution equations for the equal-time Keldysh
Green functions

Keeping in mind that in analogy with Eq. (Z70) the
diagonal and off-diagonal distribution functions are con-
tained in the matrix F(k,t),

—2p(t)

F(k,t) =iZG"X(k,t,t)Z = ( e 2nk(t) + 1 ) 7

—2pk(t)

(3.21)
we only need to calculate the time evolution of the equal-
time Keldysh Green function in order to obtain the dis-
tribution function. Adding Eqs. BII)) and BI2) and
using

(00 + 0)G" (K, t, 1), = DG (K, 1, 1),

we arrive at the evolution equation for the equal-time
Keldysh Green function,

i0;GX (k,t,t) — MpGE (k,t,t) — GX (k,t,t) ML

(3.22)

t'=t

t
:/ dt, [ 25K (k,t, 1) G (k, 1, 1)

to

_GR(ka tv tl)zK(kv tlv t)Z]

t
+/ dt1 [ 288 (k,t, 1) G5 (k, t1,t)

to
—GE(k,t,t)2 (k, t1,1)Z]. (3.23)

Although the left-hand side of Eq. 23] involves the
Keldysh Green function only at equal times, the inte-
grals on the right-hand side depend also on the Green
functions at different times (notice the implicit depen-
dence via the self-energies), so that Eq. (323) is not a
closed equation for G¥ (k,t,t). In principle, one has to
solve the more general equations [B.IT]) and (BI12) which
fully determines G¥(k,t,t') for all time arguments. An
alternative strategy is to close the kinetic equation (3.23)
for the equal-time Keldysh Green function by approxi-
mating all Keldysh Green functions at different times on
the right-hand side in terms of the corresponding equal-
time Green function. This is achieved by means of the
so-called generalized Kadanoff-Baym ansatz2® (GKBA)
which is one of the standard approximations to derive
kinetic equations for the distribution function from the
Kadanoff-Baym equations of motion for the two-time
non-equilibrium Green functions.22226 For bosons with
diagonal and off-diagonal correlation, the GKBA ansatz
reads

GE(k,t, 1) =~ —i[GR(k,t,t) ZG" (k,t',t)
—GE(k,t,t)Z2GA (k. t,1)], (3.24)

which assumes that the exact relation Eq. (Z72) be-
tween non-interacting Green functions remains approx-
imately true also in the presence of interactions. Note
that Eq. (824)) is a non-trivial 2 x 2 matrix relation in
flavor space. In appendix B we discuss the approxima-
tions which are necessary to obtain the GKBA from the
exact equations of motion (BIIIBI2) for the two-time
Keldysh Green function.



IV. NON-EQUILIBRIUM FUNCTIONAL
RENORMALIZATION GROUP

The functional renormalization group (FRG) has been
quite successful to study strongly interacting systems in
equilibrium, see Refs. [15, [27] for reviews. In contrast
to conventional renormalization group methods where
only a finite number of coupling constants is considered,
the FRG keeps track of the renormalization group flow
of entire correlation functions which depend on momen-
tum, frequency, or time. In principle, it should therefore
be possible to calculate the non-equilibrium time evolu-
tion of quantum systems using FRG methods. Recently,
several authors have generalized the FRG approach to
quantum systems out of equilibrium.®12-14 In particular,
Gasenzer and Pawlowski' have used FRG methods to
obtain the non-equilibrium time evolution of bosons.

Given the Keldysh action defined in
Eqs. (238R239250) it is straightforward to write
down the formally exact hierarchy of FRG flow equa-
tions for the one-particle irreducible vertices of the
non-equilibrium theory, which we shall do in the follow-
ing subsection. The real challenge is to devise sensible
cutoff schemes and approximation strategies. We shall
address this problem in Sec. [V] using a simple exactly
solvable toy model to check the accuracy of various
approximations.

A. Exact FRG flow equations

To begin with, we consider an arbitrary bosonic many-
body system whose Gaussian action is determined by
some inverse matrix propagator G ! which we modify
by introducing some cutoff parameter A,

Gy — G07A. (41)
Depending on the problem at hand, different choices of A
may be appropriate. For systems in thermal equilibrium
it is usually convenient to choose A such that it removes
long-wavelength or low-energy fluctuations.*® In order to
calculate the time evolution of many-body systems, other
choices of A are more appropriate. For example, Gasen-
zer and Pawlowski have proposed that A should be iden-
tified with a time scale 7 which cuts off the time evolution
of correlation functions at long times.14 In Sec. [V B2 we
shall propose an alternative cutoff scheme which uses an
external “out-scattering rate” as RG cutoff.

Given the cutoff-dependent Gaussian propagator (1),
the generating functional of all correlation functions de-
pends on the cutoff. By taking the derivative of the gen-
erating functional I'y[®] of the irreducible vertices with
respect to the cutoff, we obtain a rather compact closed
functional equation for I'y[®] which is sometimes called
the Wetterich equation.2® Formally the Wetterich equa-
tion is valid also for quantum systems out of equilibrium
provided we use the proper non-equilibrium field theory
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to describe the system.l? By expanding the generating
functional T'A[®] in powers of the fields we obtain the
one-particle irreducible vertices of our non-equilibrium

theory,
0= [ [T

Here the collective labels ay,as,... stand for all la-
bels which are necessary to specify the fields.1221 For
the boson model defined in Sec. [l the collective label
a = (A, o0,k,t) represents the Keldysh label A € {C, Q},
the flavor label o € {a,a}, as well as the momentum
and time labels k and ¢. The corresponding integration
symbol is

(4.2)

[-XXY [a (4.3)
@ A ok

The exact FRG flow equations for the irreducible vertices

can be obtained from the general FRG flow equations

given in Refs. [15,121,129] by making the following substi-

tutions to take into account the different normalization

of the action in the Keldysh formalism,

]"—‘E\n,’()ll...an - /L]"—‘E\r?()llozn7 (4'4)
Gy — —iGy GA — —iGA, (4.5)

where the single-scale propagator is given by
GA = _GA(aAG(I}\)GA' (4.6)

This definition implies that the blocks of the single-scale
propagator for general cutoff are

[GACQ = GR = GRIoA(GEL)GR, (47a)
[G4]9¢ GA—GA[6A<GA> NGR, (4.7b)
[GACC = G = —GRoA(GE ) 1]GA
KNG 0
— GROAGFAI99)GE. (a7¢)

If the expectation values of the field components @, van-
ish in the absence of sources, the exact FRG flow equation
for the irreducible self-energy (two-point function) is

/ / GA 6162 A6261a1a2 (4 8)
1 2

while the four-point vertex (effective interaction) satisfies

/ / GA BlBZFA ,BaBrarasazay
1B

aAFA , 1 (X2

9 (4)

Aariazasoy

+% /1 /2 /g /4[GA]ﬁ1ﬁ2[GA]6354

A 3233a3a4r/\ BaPraraz A;BZBSQIQQFA7ﬂ4ﬂ3a3a4

(4.9)

« [T () LT@ ©

+(a1 & az) + (a1 & 044)]



If, in the absence of sources, the field has a finite ex-
pectation value ®% = 0, it is convenient to re-define the
vertices in the functional Taylor series (.2 by expanding
in powers of & = & — OO,

oo 1 .
FA[QJ]:ZE/ / T (20)50,, - 60, .
n=0" 71 Qn

(4.10)
Then, the odd vertices (n = 1,3,5,...) are in general
also finite. The requirement that the one-point vertex
vanishes identically leads to the following flow equation
for the field expectation value2:2%30

J [OnIGT s+ 24100 Gi e

i . 5
= 5/ / [GA]ﬂl,@zPSx,)tbﬁla'
1 2

Moreover, the FRG flow equation for the two-point ver-
tex contains additional terms involving the three-point
vertex,

2 i : Y
aAFSX,)al(m - 5/ / [GA]ﬁlﬁng\,)Bsztloﬂ
1 2

3
+ / (6A(b%)r§\,)ﬁ}a1a2

B
. . 3 3
+Z/ / // // [GA]ﬁlﬁi [GA]ﬁ2ﬁéF5\331,320t1Fg\q)ﬁiﬁéaz'
178281 /B4
(4.12)

(4.11)

B. Cutoff schemes
1. General considerations

The crucial point is now to identify a sensible flow pa-
rameter A. Since we are interested in calculating the time
evolution of the distribution function at long times the
flow parameter should be chosen such that for sufficiently
large A the long-time asymptotics is simple. This is the
case if we identify A with a scattering rate which intro-
duces some kind of damping. Formally, such a cutoff can
be introduced by replacing the infinitesimal imaginary
part n appearing in the retarded and advanced blocks of
the inverse matrix propagator G ' given in Eqs. (Z40)
by a finite quantity A. This amounts to the following
replacement of the inverse retarded and advanced prop-
agators by cutoff-dependent quantities,

(G = (GE) ' = (G —iAZ, (4.13a)
(Gt = (Gea) ™ = (G +iAZ. (4.13b)

Explicitly, the cutoff-dependent retarded and advanced
Green functions are then

Gk, t,1) = GEf (k, t,1)e 2071,
Gialk, t,t) = Gi (k. t, #)e~AE =0,

(4.14a)
(4.14D)
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As far as the QQ-component of the inverse free prop-
agator is concerned (which for infinitesimal 1 is a pure
regularization), we set

(G, A9 = 2iAF, 4, (4.15)
where the distribution matrix F*yA will be further
specified below. Defining the cutoff-dependent non-

interacting distribution matrix Fy o as in Eq. (ZI5), we
have

éé(,A == GgAFO,AZ - ZFO,AGéA7 (416)
and
[G&}x]QQ = —(G(})?A)_lééf/x(éé/x)_l
= (G ZFon — FopZ(GEy) 7!
= ﬁZAFQA — Fo)AZA.[) + QiAF())A. (4.17)

Comparing this with Eq. (£I3]), we see that our cutoff-
dependent distribution matrix satisfies
DZFon — FoaZD + 2iA(Fon — Fupn) = 0. (4.18)

For our cutoff choice given in Eqs. (£13al£13h) we have

(G =iz, (4.19a)
NG =iz, (4.19b)
O[Gg A|99 = 2iF, A, (4.19¢)

so that in this scheme the blocks of the single-scale prop-
agator (A7) are

GR = iGRZGE, (4.20a)
GA = iGAZeA, (4.20b)
GX =i |[GR2GK - GK 263 —2GRP.AGR] . (4.200)

Let us now discuss two possible choices of F* A-

2. Out-scattering rate cutoff

The simplest possibility is to choose

i

Fop =
A=

Fon =0, (4.21)

so that the cutoff-dependent distribution function defined
via Eq. [I]) satisfies

DZFyn — FonZD + 2iAFy 5 = 0. (4.22)
In this case the QQ-component of the inverse free prop-
agator is chosen to be the following cutoff-dependent in-
finitesimal regularization,

(G A9 = 2inFy 4. (4.23)



The term 2iAFp 5 in Eq. (@22) amounts to the following
substitution for the time-derivative in the equations of
motion for the distribution function,

Or — Oy + 2A. (4.24)

The time-diagonal element of the non-interacting distri-
bution function is then modified as follows,

Foa(k,t) = e *MEy(k,t), (4.25)

whereas the cutoff-dependent non-interacting Keldysh
Green function is now given by

GE (K, t,t) = e MO GE (1, 1) (4.26)
The occupation numbers therefore decrease exponen-
tially with rate A for large time, which justifies the name
“out-scattering cutoff scheme.” Because for A — oo all
propagators vanish in this scheme, the FRG flow equa-
tions should be integrated with the initial condition

lim ()

Aoo Mar.om

= 0. (4.27)

3. In-out scattering rate cutoff

Alternatively, we may choose F* A= 13'07 A, so that the
distribution function satisfies

DZFy s — FoaZD = 0. (4.28)

This equation agrees exactly with the cutoff-independent

non-interacting kinetic equation (2.44)), so that we may

identify Foan = Fp with the cutoff-independent non-

interacting distribution function. Obviously, this cutoff

choice amounts to replacing the infinitesimal 1 appearing
in Eq. (Z43) by the running cutoff A, so that

(G A9 = 2iA Ty, (4.29)
where Fy is the distribution function for infinitesimal 7,
which is determined by the same equation as for A = 0.
With this cutoff choice all propagators at non-equal times
vanish for A — oo. Explicitly, we obtain for the non-
interacting 2 x 2 Green functions in flavor space in this
cutoff scheme,

GEplk, t ) = GE (K, t, 1) Fo(k,t')Z

— ZFy(k, )Gy (K, t,t).  (4.30)

Because for large A — oo all propagators at non-equal
times are suppressed, each time integration in loops
yields a factor of 1/A. For A — oo only the Hartree-
Fock contribution to the self-energy survives because it
depends only on the equal-time component of the Green
function. The FRG flow equations in this cutoff scheme
should therefore be integrated with the boundary condi-
tion that for A — oo the irreducible self-energy is given
by the self-consistent Hartree-Fock approximation.
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The finite value of the QQ-block of the inverse prop-
agator can be considered to be a part of the Keldysh
self-energy, which in turn is related to an “in-scattering”
rate.8 We therefore refer to this cutoff scheme as the “in-
out scattering cutoff scheme.”

4. Alternative cutoff schemes

At this point it is not clear which cutoff choice is su-
perior. By construction, both schemes do no violate
causality for any value of the running cutoff A. More-
over, to describe systems close to thermal equilibrium
it might be important to require that in thermal equi-
librium the fluctuation-dissipation theorem relating the
Keldysh Green function to its retarded and advanced
counter-parts is satisfied for any value of the running
cutoff. Using the spectral representation of the Green
functions, it is easy to show that for our model the
fluctuation-dissipation theorem can be written as the fol-
lowing relation between the Fourier transforms of the 2x2
matrix Green functions in flavor space,

+1

(4.31)
While this relation is manifestly violated in the out-
scattering cutoff scheme, in the in-out-scattering scheme
it remains valid in the non-interacting limit.

Finally, let us point out that in certain situations other
choices of the distribution matrix F, o in the QQ-block
of the regularized inverse propagator given in Eq. (£15)
may be advantageous. For example, for describing the
approach to thermal equilibrium, it might be useful to
identify Fi A with the true equilibrium distribution. To
see this, let us approximate the Keldysh Green function
G¥ appearing in the Keldysh-block of the single-scale
propagator (£20d) by the generalized Kadanoff-Baym
ansatz ([324), which assumes that the non-interacting
relation ([2.72) remains approximately valid for the in-
teracting system. Introducing the flowing distribution
function in analogy with Eq. (20),

" (k,w) = [GT(k,w) — G* (k,w)] [eﬁw —1

Fr(k,t) =iZGE(k,t,1)Z, (4.32)
the generalized Kadanoff-Baym ansatz (3.24)) can also be
written as

GE(k,t,t) = GR(k,t,t)Fp(k,t)Z

— ZF\(k,t)GA (k, t,t)).  (4.33)
Substituting this approximation into Eq. (£.20d), we ob-
tain for the Keldysh block of the single-scale propagator
at equal times

t
G (k,t,t) = 2i/ dt,GR (K, t,t1)[Fa(k, t1) — Faa(K))]
to

XG4 (K, t1,1). (4.34)



Obviously, this expression vanishes if the flowing distri-
bution matrix F(k,t1) approaches the equilibrium dis-
tribution Fi A (k).

C. Combining FRG flow equations with quantum
kinetic equations

The FRG flow equation (L) relates the derivative of
the self-energy [Xa]aia, = I‘Ei)alaz with respect to the
flow parameter A to the flowing Green function G, and
to the flowing effective interaction 1"5{47)52 Bron ap- OUr final
goal is to obtain a closed equation for the Keldysh block
GX of the Green function matrix at equal times (or al-
ternatively the distribution function F A), from which we
can extract the time evolution of the diagonal and off-
diagonal distribution functions given in Eq. (ZTal2.1H).
Therefore we have to solve the FRG flow equation (3]
simultaneously with the cutoff-dependent quantum ki-
netic equation, which can be derived analogously to
Sec. [Tl from the cutoff-dependent Dyson equation,

G,'=Gg ) —Za. (4.35)
The cutoff-dependent kinetic equation for the Keldysh
block can be derived in the same way as in Sec. [Tl and
we thus obtain for the equal-time Keldysh Green func-
tion,

i0:GX (k,t,t) — Mp Gy (k,t,t) — GX (k,t,t) My

t
:/ dt [ 25K (R, t,1)G4 (K, t1, 1)

to

—GR(k,t,t1)2K (k. t1,1) 7]

t
+/ dt [Z8R (K, t,t)GE (k, t1,t)

to

—GX (K, t,t)24 (k, t1, ) Z], (4.36)

where M)y f is a cutoff dependent deformation of the ma-
trix My, defined in Eq. (2:42). The explicit form of My
depends on the cutoff scheme. For the out-scattering
cutoff scheme, it follows from Eq. [@22]) and (£32) that
Mpayr = My — iAI. For the in-out scattering cutoff
scheme, Eqs. (28) and (£32) imply that My = Mg,
which is identical to Eq. (Z42]). The general form of the
kinetic equation ([{30) is of course similar to Eq. 3.23)),
except that now all Green functions and self-energies de-
pend on the cutoff parameter A. Together with the FRG
flow equation (L8]), this equation forms a system of cou-
pled first-order partial integro-differential equations with
two independent variables t and A, which have to be
solved simultaneously. Because the flow equation (L)
depends on the effective interaction which satisfies the
flow equation (L9, the simplest truncation is to neglect
the flow of the interaction. However, the resulting sys-
tem of kinetic and flow equations given by Eqs. ([£38]) and
(43) is not closed because the flow and the kinetic equa-
tion contains integrals involving the two-time Keldysh
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Green function. To reduce the complexity and to close
the system of equations, the usual approximation strate-
gies of quantum kinetics can now be made. For exam-
ple, on the right-hand side of the quantum kinetic equa-
tion ([£36), one could express the Keldysh Green func-
tion for non-equal times in terms of the corresponding
equal-time Keldysh Green function using the generalized
Kadanoff-Baym ansatz (324]). Further simplifying ap-
proximations such as the Markov-approximation where
the time-arguments of all Keldysh Green functions on
the right-hand side of Eq. (438]) are replaced by the ex-
ternal time ¢ might also be useful. For the solution to be
unique, we have to further specify the boundary condi-
tions. For our system of kinetic and flow equation it is
sufficient to define the distribution F(to) at the initial
time ¢y for arbitrary cutoff A, and the self-energy ¥, (¢)
at the initial cutoff scale Ag for arbitrary time t. We shall
illustrate this choice of boundary conditions and the ap-
proximations mentioned above in the following section
within the framework of a simple exactly solvable toy
model.

V. EXACTLY SOLVABLE TOY MODEL

Although the functional renormalization group ap-
proach for bosons out of equilibrium developed in Sec. [[V]
is rather general, at this point it is perhaps not so clear
whether this approach is useful in practice to calculate
the non-equilibrium time evolution of interacting bosons.
One obvious problem which we have not addressed so far
is that truncation strategies of the formally exact hierar-
chy of FRG flow equations have to be constructed which
correctly describe the long-time asymptotics.

As a first step in this direction, we shall consider in
this section a simplified version of our boson Hamiltonian
(1) which is obtained by retaining only the operators
associated with the k = 0 mode. Setting ax—o = a,
€k=0 = €, Y=o = v and U(0,0;0,0)/V = u, our boson
Hamiltonian (1) thus reduces to the following bosonic
“toy model” Hamiltonian,

1 . _
'H(t) —cata + 5 [,YefzwotaTaT + ,Y*ezwotaa]

+ gaTaTaa. (5.1)

In the rotating reference frame Eq. (5. becomes
H= (e - %) ata + |—F2Y| [aTcLJf + aal + gaTaTaa. (5.2)
For notational simplicity, we redefine again?? e — 2 =

€. This simplified model describes a single anhar-
monic quantum mechanical oscillator subject to a time-
dependent external field which creates and annihilates
pairs of excitations. Although this toy model does not
describe relaxation and dissipation processes, it does cap-
tures some aspects of the physics of parametric resonance
in dipolar ferromagnets.3!



The non-equilibrium dynamics of the Hamiltonian
(B2) can be easily determined numerically by directly
solving the time-dependent Schrodinger equation. Ex-
panding the time-dependent states |1 (¢)) of the Hilbert
space associated with Eq. (5:2) in the basis of eigenstates
In) of the particle number operator a'a,

= Z Un (t) |n>7
n=0

the time-dependent Schrodinger equation assumes the
form

(5.3)

10¢hn (t) = [en + gn(n - 1)} Y (t)
+ Dt D
+/n+2)(n+ 1)¢n+2(t)} . (54)

This system of equations is easily solved numerically.
From the solution we may construct the normal and
anomalous distribution functions,

n(t) = ((t)]alaly () = > nlva (b, (5.5)
n=0
p(t) = < (t)]aaly(t))
—Z\/n+2 (n+ D)0k () nsa(t).  (5.6)

We have solved the Schrodinger equation (B.4) numeri-
cally with the initial conditions

wn(tO) = 6n,1' (57)

by both integrating it directly and by calculating the ma-

trix exponential exp[—iH(t — to)] and using

Nmax —1

S e 0] (t),

Jj=0

Yn (t) = (58)

where the Hamiltonian 7 has the matrix elements

[H]nm:[en—l—gn(n—l)} nm—l—m{\/ (n—1Dbp—2m

+/n+2)n+ 1)5n+27m} . (5.9)
We found identical results with both methods. A total

number of nmax = 20 basis coefficients was sufficient for
convergence.

A. Time-dependent Hartree-Fock approximation

As a reference, let is briefly discuss the self-consistent
Hartree-Fock approximation for our toy model. In the
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context of parametric resonance of magnons in yttrium-
iron garnet, this approximation is also referred to as “S-
theory.”16:17 Within this approximation the self-energy
matrix is time-diagonal,

(B0t e = 8( — )T (). (5.10)
With the help of the symmetrized interaction vertex de-
fined in Eq. (Iml) we may write

DN = 5 30 D0 U (@ (@2 (1)
0102 A1 A2
DI I A R CREY
<71<72 A1z

Recall that by definition ©2¢ = % and 29 = %4,
so that we obtain for the time-diagonal elements of the
retarded and advanced self-energy,

El(t)EER(t):EA(t)ziu( ;E §> Géi(m))

Gy 3Gla(t,t)
< p*(t)
2n(t) +1

The Keldysh component of the self-energy vanishes in
this approximation,

»eQ(t) =

(5.12)

»E(t) =o. (5.13)
Actually, there is an additional time-independent in-
teraction correction —u to the normal component of
the advanced and retarded self-energy which arises from
the symmetrization of the Hamiltonian, as discussed in
Sec. IO  According to Eq. ([248) this contribution
simply leads to a constant shift —u in the energy in
Eq. (242). Taking this shift into account, we find that
our kinetic equation ([B:23]) reduces to the following 2 x 2
matrix equation,

i0:F(t) = —MT(t)F(t) — F(t)M(t), (5.14)
where
M(t) = M+ Z5(t) = ( _;(fzt) _"Ye((z) ) . (5.15)
with
_(e—u Dl
u=(0 ) (>19)
and
€(t) = e + 2un(t), (5.17a)
Y(t) = |yl + up(t). (5.17b)

Recall that according to Eq. (Z70) the 2 x 2 distribution
matrix is given by
F(t) = iZG5(t,4)2 = ( _%p (*)

2n(t 1
2n(t) +1 o )'(5'18)

—2p(t)
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FIG. 1. (Color online) Time evolution of the diagonal (up-
per figure) and off-diagonal (lower figure) distribution func-
tion for initial conditions n(0) = 1 and p(0) = 0. We have
chosen |v|/e = wu/e = 0.1 and introduced the frequency
u = /€2 — |y|? which gives is the oscillation period in the
non-interacting limit. We compare the result of the self-
consistent Hartree-Fock approximation (solid line) with the
exact solution (dashed line) and the time evolution in the
non-interacting limit (dotted line).

At this level of approximation the kinetic equation (5.14)
has the same structure as the corresponding equation
@) in the absence of interactions. From Eqs. (I8
and (BI4) we obtain the following kinetic equations for
the diagonal and off-diagonal distribution functions,3!

(5.19a)
(5.19b)

i0pn(t) = —y*(t)p(t) +~v()p" (1),
i0ep(t) = 2¢(t)p(t) +y()[2n(t) + 1].

In Fig. [ we compare the numerical solution of these
equations with the exact result obtained from Egs. (&4
[(6), and with the time evolution in the non-interacting
limit. Because our simple toy model does not account
for damping and dissipative effects, the time evolution
is purely oscillatory. However, the true oscillation pe-
riod lies between the non-interacting oscillation period
To = 7/p = ©//€2 — |7|? and the smaller oscillation
period predicted by the self-consistent Hartree-Fock ap-
proximation. A similar phenomenon is also observed for
the oscillation amplitudes. We thus conclude that the
Hartree-Fock approximation only describes the time evo-
lution up to times of order Tp/4, where the free time
evolution is still fairly accurate.
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B. Kinetic equation with self-energy up to second
order

Let us consider again the quantum kinetic equation for
the Keldysh Green function G¥ (¢,t'), which for our toy
model can be obtained by simply omitting the momen-
tum label in Eqs. (311 and 3IZ). Substituting on the
right-hand side of this equation the self-energies up to
second order in the interaction given in Eq. (BI1) (first
order self-energy) and in appendix C (second order self-
energy), we obtain an equation of motion for the two-
time Keldysh Green function G¥ (¢,#'). Together with
the corresponding retarded and advanced components of
the Dyson equation, this equation forms a closed system
of partial differential equations, which can in principle be
solved numerically. To simplify the numerics, we will fo-
cus here only on the evolution equation for the equal-time
Keldysh Green function G¥(¢,¢) which can be obtained
from the kinetic equation ([B.23]) by omitting the momen-
tum labels,

i0;GE (t,t) — MG® (t,t) — GE(t,t)MT

— / t At [ZS5 (t,t1)GA (1, 1)

to

—GE(t,t)25 (t1,1) 2]

t
+/ dt [Z2B(t, )G (ty,1)

0 —GE(t,t))2(t,1)Z].  (5.20)

Since the two-time function G¥(¢,t') appears again on
the right hand side of this equation let us make three
additional standard approximations to close the system
of equations:

1. Generalized Kadanoff-Baym ansatz: As discussed
in Sec. [IIBl with the help of the generalized
Kadanoff-Baym ansatz ([B324) we may derive a
closed integral equation for the equal-time Keldysh
Green function G¥(¢,t). For our toy model, the
generalized Kadanoff-Baym ansatz reads

GE(t,t") ~ —i[GR(t, ") ZGE (' 1)

—GE(t,t)ZGA(t,1)]. (5.21)

This ansatz amounts to approximating the distri-
bution matrix in the collision integrals by its diag-
onal elements,

[Fly = F(t,t') ~ t)F(t)

tYiZGE (t, 1) 2.

(
(

2. Markov approximation: To reduce the integro-
differential equation for the equal-time Keldysh
Green function to an ordinary differential equation,
we replace under the integral

5(t —
5(t — (5.22)

t t
/dthK(tl,tl)...%GK(t,t)/ dti.... (523)

t() t()
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FIG. 2. (Color online) Time evolution of the diagonal (upper
figure) and off-diagonal (lower figure) distribution function of
the toy model. The parameters and initial conditions are the
same as in Fig. [l The solid line is the solution of the ki-
netic equation with second order self-energies, simplified us-
ing the generalized Kadanoff-Baym ansatz and the Markov
approximation. For comparison we also show the exact solu-
tion (dashed line).

3. Free advanced and retarded propagators: Finally,
we neglect the self-energy corrections of the ad-
vanced and retarded propagators in Eq. (5.20) and
thus replace G (t,t') and G4 (t,t') by the free prop-
agators, which can be obtained by omitting the mo-

mentum labels in Eqs. (2.552.60).

After these approximations, the collision integrals in
Eq. (520) can be calculated analytically and the non-
equilibrium distribution functions are easily obtained by
numerically solving a system of two coupled ordinary dif-
ferential equations. For the numerical solution, the time
grid was chosen equally spaced with Ate = 1.3 x 1072
and the differential equations were solved using a fourth-
order Runge-Kutta algorithm.32

The result for the same parameters and initial condi-
tions as in Fig. [l is shown in Fig. Obviously, up to
times of order Ty = 7/u =7/ — |v|? the inclusion of
second-order corrections indeed improves the agreement
with the exact solution. However, for times exceeding
Ty the solution of the kinetic equation with second-order
corrections to the self-energy disagrees even more dras-
tically from the exact solution than the time-dependent
Hartree-Fock approximation shown in Fig.[[} In addition
we found secular behavior and unphysical divergences of
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the pair correlators for long times (not shown in Fig. [2I).
By numerically solving the kinetic equation without mak-
ing the above approximations, we have checked that the
strong disagreement of the time evolution beyond one os-
cillation period Ty with the exact result is not an artifact
of the Kadanoff-Baym ansatz, the Markov approxima-
tion or the neglected renormalization of the retarded and
advanced propagators.

C. First order truncation of the FRG hierarchy

We now show that a very simple truncation of the non-
equilibrium FRG flow equation for the self-energy where
the flow of the effective interaction is neglected leads to
much better results for the time evolution than the pre-
vious two approximations. A similar truncation has also
been made by Gezzi et al? in their FRG study of sta-
tionary non-equilibrium states of the Anderson impurity
model. In the exact FRG flow equation (48] for the
self-energy we replace the flowing effective interaction by
the bare interaction (recall that for our toy model the
collective labels «; represents (t;, \;, 7)),

Fgé)alfmasﬂ% ~ 6(t1 - t2)6(t2 - t3)5(t3 - t4)U3\113\223f’3\:a
(5.24)

where up to permutation of the indices the symmetrized
bare interaction is given by (see Eq. (ZX21))

eeeQ _ yeecQ _

UCQCC aaaa aaaa U. (525)

aaaa

eeQQ _

aaaa
In this approximation the two-point function is time-

diagonal,

F(Q)AA’

A,oto't = 6( (526)

)EAG’G’ ( )

where the self-energies satisfy the FRG flow equation

AN A1 A2 AN
Z Z Ucrcr 0'11022 GA10120'2 (t7 t)

)\101 A202

NN (1) = (5.27)

With the bare interaction given by Eq. (5:28), this leads
to the FRG flow equations for the retarded (AN = QC)
and advanced (AN = CQ) self-energies,

OAZR(t) = OADA () = OAZA(t)
_ G aa(tat) G aa( )
- < GA/,\aa(tvt) 1GAA7aa(t,t) ) . (528)

For the Keldysh component of the self-energy corre-
sponding to AN = QQ we obtain

a/\zf\{,a&( ) i [GA aa(t t) + GA aa( )} ) (5298“)
8/\25\{41(1(15) = 7’5 [G.}I\%,Zu’z(ta t) + Gf,&&(ta t)} .

From the definitions (£20all4.20D) of the retarded and
advanced components of the single-scale propagators it

(5.29Db)



is easy to see that at equal times G (t,1) = 0 = G4 (t,1),
so that within our truncation the right-hand sides of the
flow-equations (5.29al5.29h)) for the Keldysh self-energy
vanish. Because the initial Keldysh self-energy is zero, it
remains zero during the entire RG flow within our trun-
cation.

At this point we specify our cutoff procedure. It
turns out that from the two cutoff schemes discussed in
Sec. [V Bl the out-scattering rate scheme described in
Sec. is superior. Recall that this scheme amounts
to setting Fx o = 0 in Eq. (420d). For our toy model
the Keldysh component of the single-scale propagator at
equal times is then given by the following 2 x 2 matrix
equation,

GR(t,1) = / dh [GR(t,0)Z2GE (1, 1)

to

—Gf(t,tl)zaﬁ(tl,t)] (5.30)

Note that this equation still contains memory effects. We
simplify Eq. (530) using the same approximations as in
the previous subsection: First of all, we use the general-
ized Kadanoff-Baym ansatz (5:21)) to express the Keldysh
Green functions on the right-hand side of Eq. (£30) in
terms of the corresponding equal-time Green function.
Introducing the cutoff-dependent distribution function

FA(t) =iZGR(t,t)Z (5.31)

we obtain

t
GR (1) ~ 2i / A GR( 41) Py ()G (h, 1), (5.32)

to

Next, we replace Fp(t1) — Fa(t) under the integral sign
(Markov approximation). Substituting the advanced and
retarded propagators by their free counterparts (which
can be obtained from Eq. (Z532.60) by omitting the mo-
mentum labels) we finally arrive at the following simple
expression for the Keldysh component of the single-scale
propagator in the out-scattering rate cutoff scheme,

t
fo(t,t)z%/ dt1G{ A (t, 1) FA(H) G A (t, 1), (5.33)

to

At this point we have arrived at a system of two cou-
pled partial differential equations (PDE) for the cutoff-
dependent distribution matrix F(t) and the self-energy
matrix YA (t). The former contains the normal (n4(t))
and anomalous (pa(t)) distributions as in Eq. (.18,

—2p% (1) 2na(t)+1
Fp(t) = (2nAZ/)\(+)1 —ggﬂlz(t) ) -

The time evolution of this distribution matrix is deter-
mined by a kinetic equation which is formally identical
to the corresponding kinetic equation (B.I4]) within time-
dependent Hartree-Fock approximation,

FA(t)MA(t).

(5.34)

i FA (1) = —M{ (DFA(1) - (5.35)
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The cutoff-dependent matrix My (t) is
MA(t) =M —iAI + Z¥A (1)

_ ( €—u—iA+ XA ga(t)
=l

[v] + XA,aa(t)
- 2A,aa(t) ’

—[6 —u+ 1A+ EA,aFl(t)]
(5.36)

and depends on the bare matrix M defined in Eq. (516,
on the cutoff parameter A, and on the cutoff-dependent
self-energy Y5 (t). The flowing self-energy matrix satisfies

GA aa( )) ) ’ (5'37)

A, aa( t)

Aaat ) GAaa(

where the matrix G (,t) is given by Eq. (5.33).
Mathematically, the problem is now reduced to the so-
lution of a system of first order partial differential equa-
tions in two independent variables ¢t and A. To illustrate
the structure more clearly, we rewrite the system (5.35)

and (.37 as
O FA(t) = A(FA(1), Za(t), A),
rSa(t) = B(Fa(t), A1),

where the explicit form of the matrix functions A and
B follows from the right-hand sides of Eq. (535) and
(B37). Note, that the system is not fully symmetric in
the variables A and ¢, because the flow equation con-
tains causal memory integrals over the time t. Without
Markov approximation, the right-hand side of the flow
equation (and in higher-order truncations also the ki-
netic equation) is a functional of the distribution matrix
Fa(t) and depends on the distribution matrix at earlier
times. Using the Markov approximation the distribution
matrix can be pulled out of the integral and the func-
tional B reduces to an ordinary function of the distribu-
tion Fa(t). To define the solution of Egs. (5.38al5.380)
uniquely we note that the boundary conditions fix the
distribution matrix F(fp) at the initial time to and ar-
bitrary cutoff A, and the self-energy matrix X5, (¢) at the
initial cutoff Ag and arbitrary time ¢. In fact, within our
truncation, the boundary condition for the distribution
matrix is Fj (tg) = F(tg). Since for a large cutoff all one-
particle irreducible vertices vanishes due to Eq. ([{@27),
the boundary condition for the self-energy matrix at suffi-
ciently large initial cutoff Ag is ¥, (t) = 0. The standard
method of dealing with this kind of first order PDEs is
the method of characteristics.22 However, in our case the
characteristic curves coincide with the curves where the
boundary conditions are specified, so that the standard
procedure is not applicable. Nevertheless, it is easy to see
that the solution with the proper boundary conditions
can be obtained by means of the following algorithm:
We first note that the kinetic equation (5.38al) describes
the propagation of Fi(t) in ¢, and that the flow equation
(5.38D)) gives the propagation of X (¢) in A direction, as
illustrated in Fig. Bl Solving the kinetic equation (5:38a))
for an infinitesimally small time step dt, the resulting dis-
tribution function at ¢ + dt can be used to integrate the

OAXA(t) = iu (

(5.38a)
(5.38h)



l OATA(t)

to t
FIG. 3. (Color online) Illustration of our approach to solve

the system (5.38a) and (5.380) of partial differential equa-
tions. The kinetic equation (5:38al) describes the propagation

of Fa(t) in ¢, where the flow equation (5.38h) describes the
propagation of X (¢) in A-direction. The boundary conditions
define the distribution function Fa (o) at the initial time to
(dashed line) and the self-energy Y, (¢) at the initial Ao (dot-
ted line).

flow equation (5.38D) at fixed ¢ + dt over A. Repeating
these two steps allows to obtain the solution of Fy (¢) and
YA (t) in the entire (¢, A)-plane.

In the following we explain our approach to numeri-
cally solve the coupled set of first order partial differ-
ential equations. We focus on the out-scattering cutoff
scheme but generalizations to other cases are straightfor-
ward. We consider a discretization of the two variables ¢
and A in the form

(5.39a)
(5.39D)

t—t, € {to,. .. ,thl},
A— A, € {Ao,. ..,ANfl},

with m € {0,...,M — 1} and n € {0,...,N —1}. The
discretized grid points are ordered as t, < t,+1 and
A, > A, +1. Both grids do not need to be equally spaced.
Moreover, the number of points M and N can be chosen
arbitrarily. The discretized functions are written as
EFp, (tm) =Fom , 2a, (tm) =Ynm, (5.40)
and
GX (tm,tm) = GK,,. (5.41)

The derivatives are approximated by first-order finite-
difference expressions,

an+1 _an

atFAn (tm) ~ t +1 — ¢ 5 (5.423.)
En m Enm
N, (tm) & A“H—_A (5.42b)

The discretized version of the kinetic equation (5.14]) then
follows as

anJrl == an + i(thrl - tm)(Mngnm + anMnm)7
(5.43)
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with the time-dependent coefficient matrix
My =M — i\ I+ 25, . (5.44)

In the same way the discretized flow equation (.37 for
the self-energy is

EnJrlm - Enm

1GE, . GE. .
+ iu(Apy1 — Ay) ( 2 nmaa Mpm,aa ) (5.45)
Gi{m,éa %sz{m,aa

According to Eq. (5.33) the single-scale propagator G,
on the right-hand side is defined as

tm
GE = 2i/ d'GE N (st ) Frm G, ().

to

(5.46)
From the structure of the discretized equations it is obvi-
ous that causality is preserved since each time step can be
calculated from the previous ones and does not depend
on quantities at later times. Starting from the initial
values which specify the distribution matrix Fj, ¢ with
n € {0,..., N — 1} and the self-energy matrix Xy, with
m € {0,...,M — 1} on the boundaries, one can obtain
the entire solution by stepwise propagating in ¢- and in
A-direction in terms of basic Euler steps. One Euler step
from t,, to t,,41 contains two parts: First, with the so-
lution F,, ,, where n € {0,..., N — 1} from the previous
step and the initial self-energy Xg,, on the boundary,
the flow equation (545) at fixed time t,, can be inte-
grated in N sub-steps from Ay to Ay_1 to obtain 3, ,,
on all points n € {0,..., N — 1}. Next, by using the ki-
netic equation (543), F,,;m+1 can be derived from F, ,,
and ¥, ,,,. This completes one basic Euler step since the
distribution function F}, ;11 is now known at time ¢,,1.
Repeating this procedure M-times yields the full solution
up to time tp7—1. Numerically, the first-order finite differ-
ence derivatives are not accurate enough unless the grid
spacing becomes very small which is not feasible in prac-
tice. Therefore a fourth-order Runge-Kutta method for
the propagation in ¢- and the second-order Heun method
for the propagation in A-direction®? is used. One Runge-
Kutta step from Fj, ., to Fj 41 consists of four Euler
steps of the form described above. The integral (5.46)
was solved analytically using the free retarded and ad-
vanced Green functions (given by (2355 2.60) without
k dependence). The time grid was chosen similar to
the Hartree-Fock and the second-order case described in
Sec. VBl The A-grid ranges between Ag/e = 8.1 and
Asgg /€ = 2.1 x 1077 and was adjusted in such a way that
for A/e < 1, the resolution of the grid spacing was in-
creased to take into account the higher curvature of the
self-energy in this region.

The result for the FRG approach with the out-
scattering cutoff scheme for the same parameters and ini-
tial conditions as in perturbation theory (compare Fig. [l
and [2) is shown in Fig. @l For the oscillation period of
the pair correlators, the FRG treatment clearly improves
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FIG. 4. (Color online) The solid lines are our FRG results
for the diagonal (upper figure) and off-diagonal (lower figure)
distribution function. The parameters and initial conditions
are the same as in Figs.[[land 2] The dashed line is again the
exact solution.

the results compared to perturbative approaches. Up to
time Ty = 7/ = w/+/€2 — |y|? the period of the oscilla-
tion is nearly identical with the exact result. Even after
longer times of the order 47} the deviation from the ex-
act solution is small. The oscillation is regular and we
found no secular behavior even at long times. However,
the amplitude of the pair correlators is underestimated
and is comparable to the perturbative mean-field result
shown in Fig. [l In contrast, with the in-out-scattering
cutoff scheme, we were not able to obtain any reasonable
results for the pair-correlator dynamics. This suggests
that in practice the out-scattering cutoff scheme works
better than the in-out scattering cutoff scheme.

VI. SUMMARY AND CONCLUSIONS

We have developed a real-time functional renormaliza-
tion group (FRG) approach to calculate the time evolu-
tion of interacting bosons out of equilibrium. To be spe-
cific, we have developed our formalism in the context of
the interacting time-dependent boson Hamiltonian (L.1))
describing the non-equilibrium dynamics of magnons in
dipolar magnets such as yttrium-iron garnet® subject
to an oscillating microwave field 2617 To take into ac-
count the off-diagonal correlations inherent in this model
we have introduced an efficient matrix notation which
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facilitates the derivation of quantum kinetic equations
for both the normal and anomalous components of the
Green functions in the Keldysh formalism. We have also
extended the generalized Kadanoff-Baym ansatz?® to in-
clude both diagonal and off-diagonal correlations on the
same footing.

In our FRG approach the time evolution of the di-
agonal and off-diagonal distribution functions is ob-
tained by solving a quantum kinetic equation with cutoff-
dependent collision integrals simultaneously with a renor-
malization group flow equation for cutoff-dependent non-
equilibrium self-energies appearing in the collision in-
tegrals. To implement this procedure, we proposed a
new cutoff scheme where the infinitesimal imaginary part
defining the boundary conditions of the inverse advanced
and retarded propagators is replaced by a finite scale act-
ing as a running cutoff. In principle one can also re-
place the infinitesimal imaginary part appearing in the
Keldysh component of the inverse free propagator by a
cutoff-dependent finite quantity, but we have presented
evidence that in practice it is better to keep the Keldysh
component of the inverse free propagator infinitesimal.
We have called this cutoff procedure “out-scattering rate
cutoff scheme” because the cutoff-dependent imaginary
parts in the retarded and advanced propagators lead to
an exponential decay of the occupation numbers.

We have explicitly tested our FRG approach for a sim-
plified toy model which is obtained from the Hamilto-
nian () by retaining only a single momentum mode.
Although this simplified model does not contain damp-
ing and dissipative effects, it does describe some aspects
of the magnon dynamics in yttrium-iron garnet.2! Since
the non-equilibrium time evolution of our toy model can
be obtained exactly by direct numerical integration of
the time-dependent Schrodinger equation, our toy model
allows us to test the quality of various approximations.
Specifically, we have studied the following approxima-
tions:

1. Self-consistent Hartree-Fock approximation, which
is also called S-theory in the context of non-
equilibrium dynamics of magnons.26:17

2. A perturbative approach based on the calculation
of the non-equilibrium self-energies to second order
in the interaction, in combination with the gener-
alized Kadanoff-Baym ansatz and the Markov ap-
proximation.

3. A FRG approach based on the simultaneous solu-
tion of a coupled system of kinetic equations and
renormalization group flow equations for the scale-
dependent self-energies, using a simple truncation
of the FRG flow equations for the non-equilibrium
self-energies where the flow of the interaction is ne-
glected.

For each approach we have calculated the time depen-
dence of the normal and anomalous distribution func-
tion for some representative value of the interaction and



compared the result with the exact solution. It turns
out that the first two approaches do not give reliable
predictions for the time evolution beyond one oscillation
period. Although inclusion of second order self-energy
corrections somewhat improves the agreement for short
times, the time dependence beyond a single oscillation
period disagrees even more strongly with the exact so-
lution than the prediction of the self-consistent Hartree-
Fock approximation. The perturbative approaches are
therefore not able to reproduce the real-time dynamics
of our toy model and do not allow for systematic im-
provements. The failure of perturbation theory to pre-
dict the long-time behavior of correlation functions is
not unexpected.? In contrast, our simple truncation of
the FRG flow equations in combination with the out-
scattering cutoff scheme leads to quite good agreement
with the exact solution over many oscillation periods.
Note, however, that our FRG approach is numerically
more costly than the other two methods, because one
has to solve a coupled system of partial differential equa-
tions in two independent variables, the time ¢ and the
cutoff-parameter A. Moreover, due to our simple trunca-
tion of the FRG flow equations the oscillation amplitudes
are still underestimated.

Our work can be extended in several directions: First
of all, it should be interesting to use our FRG ap-
proach to calculate the time evolution of infinite or
open quantum systems which exhibit relaxation and dis-
sipative processes. We expect that for such systems
standard approximations such as the Kadanoff-Baym
ansatz or the Markov approximation are more accu-
rate than for our toy model. Moreover, other cutoff
schemes such as the “in-out scattering rate” scheme dis-
cussed in Sec. [V Bl might be superior in this case. It
should also be interesting to extend our study of the
toy model to the regime of strong pumping where the
original vacuum state is unstable.3! Moreover, it would
be even more interesting to apply our non-perturbative
FRG method to study the non-equilibrium dynamics
of the time-dependent boson Hamiltonian (I]) in the
regime of strong pumping. It is well knownl®1? that
for sufficiently large values of the pumping parameter
vk the system exhibits the phenomenon of parametric
resonance. The magnon operators acquire than finite
expectation values and the system approaches a non-
trivial time-independent non-equilibrium state which is
dominated by interactions1817:3% Although this state
has been studied at the level of time-dependent Hartree-
Fock approximationi®l? (S-theory) it would be interest-
ing to describe the time evolution into stationary non-
equilibrium states non-perturbatively, and check if the
states exhibit non-thermal scaling properties as predicted
in Ref. [g].
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APPENDIX A: TRANSFORMATION TO THE
ROTATING REFERENCE FRAME

In order to simplify the calculations, it is useful to re-
move the explicit time-dependence from the Hamiltonian
H(t) in Eq. (LI). This can be achieved by means of a
unitary transformation to the rotating reference frame,
as discussed in Sec. [l In the rotating reference frame
the Hamiltonian does not explicitly depend on time, see
Egs. (). To distinguish quantities in the original- and
the corresponding rotating frame, we put in this ap-
pendix an extra tilde over Green functions in the rotating
frame. Introducing the unitary 2 X 2 matrix

— % (wot—op)
e 2 0
Uk(t) = ( 0 e%(th_wk) > )

the relations between the elements of the matrix Green-
functions G®, G4, G¥ defined in Eqs. (28a2.8d) and
the corresponding quantities in the rotating reference
frame (with the tilde) is

(A1)

GX (K, t, 1) = Up(t)GX (K, t, ") Ur(t'), (A2)

where X = R, A, K, and we have defined the 2 x 2-
matrices in flavor space,

GX (k,t,t') = [GNkt,—porr- (A3)
Introducing the diagonal matrix
U=U(t)®1, (A4)

with matrix elements [Ulgt ke = Ok 0(t — t')Ug(t), we
can rewrite Eq. (A2)) in the more compact form

GX = UGXTU. (A5)

The distribution function matrix F' defined via Eq. (ZI5)

is related to its counterpart F' in the rotating reference
frame via

P OtRoT (A6)
Taking matrix elements in the time-labels and using the
fact that in the non-interacting limit the distribution
function matrix is time-diagonal (see Eqs. (Z68)), the
relation (Af)) implies the 2 x 2 matrix equation,

Fo(k, t) = U (t)Fo(k, UL (t), (A7)
where we have used the fact that
Ul(t) = ZTU(t)Z = ZUx (1) Z7 . (A8)



APPENDIX B: GENERALIZED
KADANOFF-BAYM ANSATZ

The generalized Kadanoff-Baym ansatz (GKBA) is an
approximate relation between matrix elements of the
Keldysh Green function at different times and its equal-
time couterparts. To derive the matrix form of the
GKBA given in (3:24)) formally and to identify the terms
which are neglected if one uses this ansatz, we follow
the derivation by Lipavsky et al..22 Without any loss of
generality we will neglect the momentum labels for a mo-
ment and concentrate on the time dependence only. In
addition we use the short-hand notation Gy = [Gw for
the matrix elements in the time labels. We introduce

GER = GEER(t, ¢y =0t —t)GK(t,t'), (Bla)
GEA = gEA ) =0 —t)GE(t,t'), (Blb)

so that by definition
GE, = GEF + GEA. (B2)

Note that the above functions are 2 x 2 matrices in flavor
space. Acting with (GF)~! from the left on Eq. (BIa))
and using the left Dyson equation (B3:2al) for the retarded
Green function we obtain

[(GA'R)ilGAKR]tt/ = —25(t —t )ZGtt/

+0O(t—t") <[(C¥§)1GK]W —/t dtlztthtlt/) .
(B3)

A similar relation can be derived for the advanced com-
ponent of the Keldysh Green function,

[GEAC) ™ Y =id(t —t)GE Z

t/
+0O( 1) <[GK(G64)_1]tt’ _/ dth{;Etlt) .
t
(B4)
Using the Keldysh components of the left and right

Dyson equations given in Eqgs. (82d) and [B.4d), the ac-

tion of the free inverse propagators on GX can be written
as

t/
[(G(})%)ilGK]tt’:/ dtlztthtlt/ / dtlz{;tht/
(B5)

t’ t
[GK(G(J“)’l]tt/:/ dtlc;{;zgt,+/ G SE,.

— 00 — 00
(B6)
Substituting these expressions into Eqs. (B3) and (B4)
and solving for GKF GKEA

[GEE), = —zGtt/ZGt,t/ +0O(t—t)

/ dtl/ dta Gﬁl Egtthgt’ +Et1t2Gt2t’} g
(B7)

and we obtain

21
[GK ]tt’ = ZGgZGtt' +O(t t'— t)
/ dty / dty (G, S0, + G, St ] Gl
(B8)

Adding Eqgs. (B7) and (B8] we obtain the following exact
integral equation for the Keldysh component of the Green
function,

[GK]tt/ - — [Gtt’ZGt’t’

+ 0Ot -t /dtl/ dt: GE (S8, Gry + 25,6 ]

Gr ZGyy]

+ 0O -t / dtl/ dtz (G, 28, + G SE, | Gy
(B9)

To rewrite this equation in a more compact form we in-
troduce the functions

th/ — @(t - tl)/ dtQ(Egz Gt2t’ + 252(;75275,) (B].Oa)

WA — o — 1) [ O; dt(GERSA, + GETK,). (B10b)
Then we may write
[GER), = —iGE, 26K, + 01t -t / h dt,Gf, W,
—iGR, ZGE, + /_ h dt,Gfi W,
= / h dt,Gp ZFf,
= _[GRO}FR]W, (B11)
[GEA)w =iGEZGA, + 0 —t) [ . At Wi Gy
=iGEzZGA + L dt Wi G,
= / h dt Fj ZG,
(20, 12
and hence
GK = —GRZFR 4 FAZGA. (B13)

Here the retarded and advanced component of the distri-
bution function matrix is defined by

FR=FP 4+ ZWE (Bl4a)
FA=FP _WwAZ, (B14b)

with the time-diagonal part given by
[Py =it —t)GE (1), (B15)



One easily verifies that the blocks have the following sym-
metries,

(GERT = GKA (B16a)
(W™T = w4, (B16b)
(F®T = pA, (B16c¢)
(FP)T = pP (B16d)

The above relations are all exact. Comparing Eq. (215)
with Eq. (B13), we conclude that the parametrization in
Eq. (213) is indeed correct, and that

F=Z2FR7 (B17)

22

The GKBA amounts to retaining only the diagonal part
FP of the distribution function. Then the matrix ele-
ments of the general relation (BI3) reduce to

GE(t,t) = —i[GR(t, Y ZGE (', V') — GE(t,t) ZGA (L, 1))].

(B18)
This is identical to the GKBA ansatz (5:2I]) which was
used to study the toy model. Repeating the above calcu-
lation in the same fashion including the full momentum
dependence leads to the relation (3:24)).

APPENDIX C: SECOND ORDER SELF-ENERGY OF THE TOY MODEL

In this appendix we explicitly give the matrix elements of the non-equilibrium self-energies 35(¢, ') of our toy model
introduced in Sec. [V]to second order in the interaction. Ignoring Hartree type of diagrams which are implicitly taken
into account by imposing self-consistency in the first order calculation, the non-equilibrium self-energy to second order
in the interaction is in the contour basis (p,p’ € {+, —}) given by

oo SBEL(E 1) SEE (4,8
[22];;75 — ( 2,(}(1( ) 2, ( ) ) _ _2u2pp/ (

Eg?ﬁa (ta t/> pr’,’ (tv t/)

2,aa

where the time labels of all Green functions are (¢,t').

Grr/ (GP2)? 4 2GPE GPE GP | GPE (GRF)2 + 2G8 Goe' R
GEF(GPE)? 4 2GP2 R G’ | G2 (G )2 26wy ger gy )

(C1)

Using the relations ([2337aH2:34d) we obtain for the normal

part of the matrix elements of the self-energy in the Keldysh (RAK)-basis,

2
Eé%,a&(tu t/) = %{ij&[(Gga)2 + (Gé(a)z] + 2G§&G§aG§a + 2G§a[G5aG§d + GfaGé(&] + 2G£<11[G1}1%aG£<d + GfaG(}i%d]}v

St t) = {replace R — A in the above expression for X, (t,') },

2,aa

EK

2,aa

(C2a)
(C2b)

2
(1) = — S {GRIGR) + (G + (GE)Y) + 2(GRGE, + GLGAIGE,

+ 2G5 [GRGE, + G,Gly + GE.GE) + 268 [GE.GE + GE,GE) + 2G4, [GEGL, + G, GE] |

2
= { GEI(GL)? = (GE)!) + 261, GLGE, + 26K [Gh.GLy — GG +2GL,[GE,Gl, + GL.GE] .

(C2c¢)

where GI_,(t,¢') is the matrix element of the matrix GT defined in Eq. BI9), ie.,
Goor (1) = 1[G (8,1) = G (1:1)], (C3)
and we have used the fact that G*(t,¢)G*(t,t') = 0. The corresponding self energies $5; (¢, 1), £4;,(t,t'), and

EK

2,aa

(t,t') can be obtained by simply exchanging a <+ @ in the above expressions. The anomalous components of the
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self-energy are

2
Saa(t.t) = = S{GRIGE) + (GE)Y) + 2G5 GRGE + 2GR [GE G, + GIGE) + 26K [GR.GE + GG,
(Cda)
E‘;aa(t, t') = {replace R — A in the above expression for S, (t,1')}, (C4b)

2
S oalt, ) = — S { GEIGR) + (GA)? + (GR)*) + 2(GE.GE, + GLGLIGE,
+ 26 [GRGE, + GGl + GIGE) + 2GR [GRGE, + GRLGE) + 2G4 GEGE, + GhGE]

2
= {GRIGL)? — (G + 261, GLGE + 26 [Gl,Gh, — GR.GE) + 264, [GEGL, + GLGE)}.
(C4c)

Finally, the conjugate anomalous self-energies $5,- (¢, 1), 32", (t,'), and $,.(¢,1') can be obtained by exchanging
a <+ @ on both sides of Eqs. (C4aliC4d). In order to calculate the “out-scattering term” (3.20D)) in the kinetic equation,
we need only the difference between retarded and advanced self-energies, which to second order in the interaction can

be written as
58 a0 (1) ZUIEF (0 8) = an (00)] = 2 { GLL[(GLL)? — (G)2) 26 GL,GE,
+2GL, (GGl — GG - 265 [GL,GE + GEGLL (C3)
4 a0 (1) = 1R (1) = S (18] = o { G [(GR)? — (GE) — 265,GL G,
+2GL,[GLLGL, — GRGE] - 265 [GLGE, + GG} (Co)

The functions Egﬁa (t,t') and Egm(t, t') can again be obtained by exchanging a <+ @ in the above expressions.
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