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We discuss the analytical solution through the cavity method of a mean field model that displays
at the same time an ideal glass transition and a set of jamming points. We establish the equations
describing this system, and we discuss some approximate analytical solutions and a numerical strat-
egy to solve them exactly. We compare these methods and we get insight into the reliability of the
theory for the description of finite dimensional hard spheres.
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I. INTRODUCTION

The theoretical investigation of the glass transition and its relation to jamming in hard sphere systems has
made considerable progress in the last 30 years [1–5]. This has been possible mainly because of the powerful
analogy between jamming states and inherent structures [3, 6–8] and of the development of methods based
on spin glass theory [9, 10] to describe the glass transition of particle systems. This progress led to the
proposal that amorphous jammed states of hard spheres can be thought of as the states obtained in the
infinite pressure limit of metastable glasses, and therefore described using tools of (metastable-)equilibrium
statistical mechanics.
The phase diagram of hard spheres that results from these mean-field studies is summarized in Fig. 1,

where we plot the pressure as a function of the packing fraction ϕ which is the fraction of space covered
by the spheres. The full black line represents the equilibrium phase diagram with the liquid-to-crystal
transition. If this transition can be avoided (by compressing fast enough or by introducing some degree of
polydispersity), one enters into a metastable liquid phase. The nature of this metastable liquid changes at
ϕ = ϕd. It consists of a single ergodic state for ϕ < ϕd. When ϕ > ϕd, the available phase space splits
into many glassy states. If the system is stuck in one of these states and compressed, it follows one of the
glass branches of the phase diagram, until its pressure eventually diverges at some packing fraction ϕj which
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depends on the state. At density ϕK a thermodynamic glass transition happens (in the sense of mean field
spin glasses [11]) towards an ideal glass. The pressure of the latter diverges at ϕGCP. In the inset, the
complexity, i.e. the logarithm of the number of glassy states, is plotted as function of the jamming density
ϕj : this approach predicts that there exist jammed states in a finite interval of density ϕj ∈ [ϕth, ϕK]. The
boxes show a schematic picture of the (3N -dimensional, where N is the number of particles) phase space of
the system: black configurations are allowed by the hard-core constraint, white ones are forbidden. In the
supercooled liquid phase the allowed configurations form a connected domain; however, on approaching ϕd

the connections between different metastable regions become smaller and smaller. Above ϕK, they disappear
in the thermodynamic limit and glassy states are well defined.
The above mean-field picture has been obtained by a succession of works which start from the studies

of some categories of spin-glasses with so-called ‘one step replica symmetry breaking’, and have gradually
matured into analytic approximation tools for the theory of hard spheres (see [5] and references therein).
A very interesting model has been introduced recently by Mari, Krzakala and Kurchan [12]. It displays
exactly the phase diagram presented in Fig. 1: it undergoes an equilibrium glass transition and it has an
interval of densities where it shows all the phenomenology which is now associated to jamming, like marginal
mechanical stability and the associated presence of anomalous soft modes in the vibrational spectrum [13–
15]. The model has been studied numerically in [12] in order to show the existence of a separate glass and
jamming transition and to clarify to some extent the relation between the two.
This model is interesting in that it is in principle solvable: it can be investigated by mean of modern

methods that have been developed in the context of mean field spin glasses, the replica method [16] and
the cavity method [17]. This investigation is the purpose of the present paper, where we derive the cavity
equations that describe the model and we present some approximated analytical solutions to them, along with
a detailed numerical resolution. Since it will turn out that the exact solution requires quite heavy numerical
calculations (heavier than a direct Monte Carlo study of the model, at least for a moderate number of
particles, such as the one performed in [12]), one might wonder why this solution is interesting at all. There
are at least two reasons why this study is interesting, in our opinion. The first is that Monte Carlo methods
are not able to access the deep glassy phase or the densest part of the jammed phase: they are confined
to explore the region close to ϕd (at equilibrium) and ϕth (at jamming). Therefore if one wants to study,
for instance, how the properties of the packings change when going from ϕth to ϕGCP, the exact solution is
needed. Moreover, we will show that the cavity method allows to derive simple analytical approximations
to the true solution. Similar approximations have been used to study finite dimensional hard spheres [5];
their investigation in the controlled setting of the present ’solvable’ model allows to assess their reliability.
Finally, there are some generic structures in the correlations of jammed packings that one would like to
explain analytically. Our work is a first step in this direction.
This paper is meant to be read by specialists in the field, so we did not make much attempt to explain in

details the basis of the method. Recent complete reviews of the physical problem [5, 18–20] as well as of the
method we used [17, 21] exist, and the reader is assumed to be familiar with these concepts.

II. DEFINITIONS

The model that we study in this paper is a simple generalization of the one introduced in [12], defined as
follows. We consider a “factor graph”, namely a bipartite graph made by two types of nodes: variables and
boxes. Each variable is connected to z boxes and each box is connected to p variables. In a system with N
variables the number of boxes is Nz/p and the total number of links (i.e. variable-box connections) is Nz.
We will consider an ensemble of ‘random regular’ factor graphs where each graph satisfying this requirement
has the same probability. A crucial properties of this ensemble, that allows for the solution of the model,
is that in the thermodynamic limit N → ∞ almost all graphs are locally tree-like, in a sense that can be
defined precisely [17].
Each variable is a vector xi ∈ [0, 1]d with periodic boundary conditions, where d is the dimension and

i = 1, · · · , N . In the following we denote by |xi − xj | =
√

∑d
µ=1(|x

µ
i − xµj |mod 1)2 the distance between

xi and its closest periodic image of xj . If we call χ(xi, xj) the characteristic function of the hard sphere
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FIG. 2: An illustration of the model for p = 6, z = 3 and N = 8. Each white square is a box, each black dot is a
variable (sphere). Each box contains all the spheres connected to it by a link. The sphere inside one box must not
overlap (note that for z = 1 one obtains N/p systems of p hard spheres).

constraint (with periodic boundary conditions), i.e. χ(xi, xj) = 1 if |xi−xj | ≥ D and 0 otherwise, then each
box a = 1, · · · , Nz/p imposes the condition

χ(a) ≡ χ(xa1 , · · · , xap) ≡
1,p
∏

i<j

χ(xai , x
a
j ) 6= 0 , (1)

where xai are the variables connected to box a. The partition function of the model is

Z =

∫

dx1 · · · dxN
Nz/p
∏

a=1

χ(a) . (2)

A pictorial description of the model is the following (see Fig. 2). Each box can be thought of as a cubic
region [0, 1]d with periodic boundary conditions. Each variable node i = 1, . . . , N represents a “sphere” of
diameter D and this sphere appears in position xi in all the z boxes to which the node is connected. On the
other hand, each box contains exactly p spheres. The constraint is that, for each box, the p spheres present
in the box do not overlap. Note that in the case z = 1 the model reduces to N/p independent systems of p
hard spheres each, while for p = 2 and z = N − 1 one gets back a single system of N hard spheres. Note
that in [12] only the version with p = 2 has been studied.
Our investigations showed, however, that the model defined above undergoes a “crystallization” phe-

nomenon at high density: the spheres tend to localize around a discrete set of positions inside the unit box.
This has been avoided in [12] by introducing a small degree of polydispersity of the size of spheres. Here, in
the analytical treatment of the model, we do not need to use this trick since we can impose directly that the
solutions are translationally invariant, therefore discarding all crystalline phase of the model. In this way
one effectively restricts to the amorphous phases, but one should keep in mind that these are metastable
with respect to the crystal in the true model. Another possibility to remove the non-translationally invariant
phase is to introduce local “random shifts”: on each link we introduce a quenched variable sai ∈ [0, 1]d, such
that the corresponding particle appears in the corresponding box translated by sai. On a tree with open
boundary conditions, this will not change the model since one can always perform a change of variable to
remove the shifts. In presence of loops however, the random shifts will frustrate the periodic order. But
since the cavity solution is based on local recursions, the solutions describing the model with random shifts
will be the same as the translationally invariant solutions of the model without random shifts. A similar
situation occurs when studying an antiferromagnetic model on a random graph: local recursion relations
allow both an antiferromagnetic and an amorphous ordering. The former is irrelevant on a random graph
because long loops of odd length frustrate the antiferromagnetic order. The antiferromagnetic system thus
behaves like the spin glass in which the sign of the couplings are quenched random variables.
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We define Vd(R) the volume of a d-dimensional hypersphere of radius R; then Vs = Vd(D/2) = 2−dVd(D)
is the volume of one hard sphere (since the spheres have diameter D), and ϕ = pVs is the packing fraction,
that represents the fraction of the unit box that is covered by the p interacting spheres. It is trivial to check
that there are no configurations with ϕ > 1. The parameter that controls the packing fraction is the diameter
D since the box size is fixed; for this reason in the following we will use directly the sphere diameter D as
control parameter and label the different transitions as DK, DGCP, Dd, etc.
For a system of p hard spheres in d dimensions, we define the following quantities:

Z0
p =

∫

dx1 · · · dxp
1,p
∏

i<j

χ(xi, xj) ,

g0p(x− y) =
1

p(p− 1)

〈

1,p
∑

i6=j
δ(x− xi)δ(y − xj)

〉

=
1

Z0
p

∫

dx3 · · · dxpχ(x, y, x3, · · · , xp) ,
(3)

such that Z0
p is the partition function of p hard spheres (apart from a p!), and g0p is related to the usual pair

correlation function [22] by

g(r) =
p− 1

p
g0p(r) . (4)

For the following discussion, it will be useful to define

vn(x1, · · · , xn) =
∫

dx

n
∏

i=1

χ(x, xi) (5)

which is the so called void space or cavity volume, namely the volume available to insert an additional sphere
in a box given the positions of n other spheres, {x1, · · · , xn}.

III. CAVITY EQUATIONS

The cavity method has now become a standard method to solve statistical models defined on random
graphs. We will not explain here the method and refer the reader to [17, 23]. Here we only write the
equations for our specific case.

A. Bethe free energy

We define by ∂i the set of boxes connected to variable i, and by ∂a the set of variables connected to box
a. On each link we define two fields: ϕa→i(xi) is the probability density of the variable xi when connected
only to the box a; ψi→a(xi) is the probability density of the same variable when connected to all the boxes
in its neighborhood but a. Both are normalized to 1 and they satisfy the equations:

ψi→a(xi) =
1

Zi→a

∏

b∈∂i\a
ϕb→i(xi) ,

ϕa→i(xi) =
1

Za→i

∫





∏

j∈∂a\i
dxjψj→a(xj)



χ(a) ,

(6)

which can derived from the stationarity of the Bethe entropy:

S = −
∑

links a−i
log

∫

dxiψi→a(xi)ϕa→i(xi)+
∑

a

log

∫





∏

j∈∂a
dxjψj→a(xj)



χ(a)+
∑

i

log

∫

dxi
∏

a∈∂i
ϕa→i(xi) .

(7)
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These equations have the general form of the cavity (or Bethe) equations that can be derived for any model
with local interactions [17]. With respect to previous studies of frustrated systems with the cavity method,
the main difference here (and the main source of difficulty) is the fact that the variables x are continuous.
Although the Bethe free energy is not variational in general, it has the property that the cavity equations
can be obtained imposing its stationarity with respect to the cavity fields. In some special cases one can
argue that it provides indeed an upper or lower bound to the true free energy, but a proof of this is still
lacking.

B. Replica symmetric cavity equations

The replica symmetric (RS) equations for such a regular graph are trivially obtained by dropping the
spatial dependence of the fields. In this case we use the notation Zϕ = Za→i and Zψ = Zi→a, and we get

ψ(x) =
1

ZRSψ
ϕ(x)z−1 ,

ϕ(x) =
1

ZRSϕ

∫





p−1
∏

j=1

dxjψ(xj)



χ(x, x1, · · · , xp−1) ,

(8)

and the RS entropy per particle is

SRS = −z log
∫

dxψ(x)ϕ(x) +
z

p
log

∫





p
∏

j=1

dxjψ(xj)



χ(x1, · · · , xp) + log

∫

dxϕ(x)z . (9)

These equations admit the trivial translationally invariant solution ψ(x) = ϕ(x) = 1 with ZRSψ = 1 and

ZRSϕ =

∫

dx

∫





p−1
∏

j=1

dxjψ(xj)



χ(x, x1, · · · , xp−1) ≡ Z0
p , (10)

that is the partition function of p Hard Spheres in the unit box. Therefore the entropy of the RS phase is

SRS =
z

p
logZ0

p . (11)

C. 1-Step replica symmetry breaking cavity equations

In the standard interpretation [17], the glass phase is signaled by the appearance of multiple solutions

ψ
(α)
i→a, ϕ

(α)
a→i, of Eq. (6). Each of these solutions represents a glass state with entropy sα given by the Bethe

free energy (7) computed on the corresponding set of fields. Although one does not have direct access to
individual glassy solutions (since the direct numerical solution of the Bethe equations by iteration on a single
graph is extremely unstable in this region), a statistical treatment of the properties of the solutions in this
regime exists and goes under the name of 1-step replica symmetry breaking (1RSB) description [23]. It is
based on an entropy S(m) which is the sum over all solutions α of the corresponding partition function
Zα = eNsα to power m [9]. The latter is computed by looking to the evolution of the solutions of the Bethe
equations under an iteration that adds one more variable to the graph [23], or more simply by introducing
an auxiliary model and assuming that a RS description holds for that model [17]. We do not discuss here
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these derivations and only report the resulting equations for our model, which are the following:

S(m) =
1

N
log
∑

α

Zmα = ms(m) + Σ(m) = −zSlink(m) +
z

p
Sbox(m) + Ssite(m)

Slink(m) = log

∫

dP [ψ]dP [ϕ]

[∫

dxψ(x)ϕ(x)

]m

≡ log 〈Zmlink〉 ,

Sbox(m) = log

∫

dP [ψ1] · · · dP [ψp]





∫





p
∏

j=1

ψj(xj)dxj



χ(x1, · · · , xp)





m

≡ log 〈Zmbox〉 ,

Ssite(m) = log

∫

dP [ϕ1] · · · dP [ϕz]

[

∫

dx
z
∏

i=1

ϕi(x)

]m

≡ log 〈Zmsite〉 .

(12)

The stationarity of this function with respect to P [ψ] and P [ϕ] gives the 1RSB equations:

P [ψ] =
1

Zψ

∫ z−1
∏

i=1

dP [ϕi]δ

[

ψ(x)− 1

Zψ

∏

i

ϕi(x)

]

(Zψ)
m ,

P [ϕ] =
1

Zϕ

∫ p−1
∏

i=1

dP [ψi]δ



ϕ(x) − 1

Zϕ

∫

∏

j

dxjψj(xj)χ(x, x1, · · · , xp−1)



 (Zϕ)
m .

(13)

where the normalization constants are

Zψ[ϕ1, · · · , ϕz−1] =

∫

dx
∏

i

ϕi(x) ,

Zϕ[ψ1, · · · , ψp−1] =

∫

dx
∏

j

dxjψj(xj)χ(x, x1, · · · , xp−1) ,

Zψ = 〈(Zψ)m〉 ,
Zϕ = 〈(Zϕ)m〉 .

(14)

The internal entropy can then be written, using the standard method of [9], as

s(m) =
∂S(m)

∂m
= −z 〈Z

m
link logZlink〉
〈Zmlink〉

+
z

p

〈Zmbox logZbox〉
〈Zmbox〉

+
〈Zmsite logZsite〉

〈Zmsite〉
(15)

and the complexity is Σ(m) = S(m)−ms(m). The parameter m is the 1RSB parameter, whose equilibrium
value must be fixed imposing that the replicated entropy is stationary [16].

IV. THE STABILITY OF THE RS SOLUTION

To study the stability of the RS phase we perturb around it:

ψi→a(x) = 1 +Ae−ikx+iθi→a , (16)

and look at the linear stability of A assuming that the phase θ is random, i.e. when substituting in the
right hand side of (8) each ψ get a random independent phase. This is done in order to enforce translational
invariance, otherwise we would study the instability towards modulated phases, which is indeed interesting
but we do not consider here, for reasons discussed in the introduction. Note that we have k = 2π(n1, · · · , nd),
where ni are integer numbers. Then at first order we have

Ae−ikx+iθ = A
1

Z0
p

z−1
∑

a=1

p−1
∑

j=1

∫

dx2 · · · dxpχ(x, x2, · · · , xp)e−ikx2+iθj→a . (17)
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Now we can bring the factor e−ikx on the other side and integrate over x; moreover we take the square and
use that the θj→a are random and uncorrelated and we obtain the final result

A2 = A2(z − 1)(p− 1)

∣

∣

∣

∣

1

Z0
p

∫

dx1 · · · dxpχ(x1, · · · , xp−1)e
ik(x1−x2)

∣

∣

∣

∣

2

. (18)

Defining

g0p(k) =

∫

dxdyeik(x−y)g0p(x− y) =
1

Z0
p

∫

dx1 · · · dxpχ(x1, · · · , xp)eik(x1−x2) , (19)

the stability condition is

√

(p− 1)(z − 1)|g0p(k)| ≤ 1 , ∀k = 2π(n1, · · · , nd) 6= 0 . (20)

Hence from the knowledge of Z0
p and g0p(k) we can compute the RS entropy and the stability of the RS

solution.

A. Results for p = 2, any dimension

For p = 2, k 6= 0 and D < 1/2, we have simply g02(x− y) = χ(x− y)/(1− Vd(D)) and

g02(k) =

∫

[0,1]d
dx

eikxχ(x)

1− Vd(D)
= −

∫

[−1/2,1/2]d
dx

eikxθ(|x| < D)

1− Vd(D)
= −

(

2πD

k

)d/2 Jd/2(kD)

1− Vd(D)
. (21)

One can show that for the values of D we are interested in, the maximum of g02(k) is assumed for k = 2π,
i.e. the smallest k. Then the condition on D is

Dd/2Jd/2(2πD)

1− Vd(D)
≤ 1√

z − 1
. (22)

In the limit z → ∞, as D is small, we can use Jn(x) ∼ (x/2)n/Γ(n+ 1), and neglecting the denominator

Dd/2Jd/2(2πD)

1− Vd(D)
∼ πd/2Dd

Γ(d/2 + 1)
= Vd(D) ≤ 1√

z − 1
. (23)

B. Results for d = 1, any p

In d = 1 we get, from the exact solution

Z0
p = [1− pD]p−1 ,

g0p(k) =
1

p− 1

p−2
∑

n=0

e−i(n+1)kD
1F1[1 + n; p;−i(1− pD)k] .

(24)

where 1F1[a; b; z] is the confluent hypergeometric function of the first kind. Also in this case the lowest k
becomes unstable in the first place.
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C. Results for d = 2 and p = 3

As a last interesting case, we consider d = 2 and p = 3. In the following for simplicity we consider D < 1/4
to avoid problems coming from periodic boundary conditions.
We start by the computation of the partition function Z0

3 of three spheres in a box. For convenience we
fix the first sphere, as well as the origin of the coordinate frame, in the center of the box. The center of
the second sphere can be anywhere in the box outside a disk of radius D centered in the origin. Given the
position of the second sphere, the third sphere can be anywhere outside the union of two disks centered
around the first two spheres.
If the second sphere is at distance r = |x2 − x1| from the origin x1 = 0, the free volume accessible to the

third sphere is

v2(x1, x2) = 1− 2πD2 + θ(2D − r)D2

(

2 arccos
r

2D
− r

2D

√

4− r2

D2

)

(25)

This has to be integrated over the position of the second sphere. There are three possible cases:

1. r ∈ [D, 2D]; in this case the first and second spheres have an overlap, and the second sphere can rotate
at any angle without hitting the boundary of the box. Therefore one has

Z0
3 (1) = 2π

∫ 2D

D

dr r

[

1− 2πD2 +D2

(

2 arccos
r

2D
− r

2D

√

4− r2

D2

)]

(26)

2. r ∈ [2D, 1/2] (recall that the box has side 1 so r is at most 1/2); in this case the first and second
spheres have no overlap, and the second sphere can rotate at any angle, therefore

Z0
3 (2) = 2π

∫ 1/2

2D

dr r
(

1− 2πD2
)

(27)

3. r ∈ [1/2,
√
2/2]; also in this case there is no overlap contribution, but the second sphere can only

be at some angles because of the cubic shape of the box. The total angle that can be spanned is
8(π/4− arccos(1/(2r)), therefore

Z0
3(3) = 8

∫

√
2/2

1/2

dr r
(

1− 2πD2
)

(

π

4
− arccos

(

1

2r

))

(28)

All the integrals can be evaluated and summing the three contributions one gets the final result

Z0
3 = 1− 3πD2 +

1

4
πD4

(

3
√
3 + 8π

)

, D < 1/4 . (29)

We also need the value of the pair correlation at contact, g03(D). Following the same reasoning this is
given by

g03(D) =
v2(r = D)

Z0
3

=
1− 2πD2 +D2

(

2π
3 −

√
3
2

)

1− 3πD2 + 1
4πD

4
(

3
√
3 + 8π

) , D < 1/4 . (30)

Finally, g03(x− y) = v2(x, y)/Z
0
3 , from which one can compute g03(k) numerically and determine the stability

of the RS solution.
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V. THE GAUSSIAN APPROXIMATION

We now introduce an approximation to describe the 1RSB phase of the model. We assume that the fields
ψj(x) and ϕi(x) are localized around a position which is randomly distributed in the box (this maintains
the global translational invariance). This Ansatz, of course, is not a solution of the equation of motion.
However, we expect that it provides a reasonable estimate of S(m), which is expected to become more
and more accurate for large connectivity and close to the random close-packing point. Moreover, we will
see in the following, that even if the variational nature of the replicated entropy cannot be proven, these
approximations give upper bounds for DK For this reason we will refer from now on to these approximations
as “variational” approximations. Note that if a variational approximation predicts that the Kauzmann radius
is less than the radius where the RS solution is unstable, DK < DRS, then we know for sure that there is a
discontinuous transition occuring at a value of D smaller than DRS.
We assume a Gaussian shape for the fields, which leads to the following assumption for their distribution:

P [ψ] =

∫

dX δ

[

ψ(x)− e−
(x−X)2

2A

(2πA)d/2

]

,

P [ϕ] =

∫

dX δ

[

ϕ(x) − e−
(x−X)2

2δA

(2πδA)d/2

]

.

(31)

We substitute this ansatz in the Bethe free energy (12) and determine the variational parameters A and δ by

its extremization. In the following we will use the definition γA(x) =
e−

x2

2A

(2πA)d/2
. Substituting the expressions

above in (12), we obtain the following results:

Slink = log
[

m−d/2[2π(1 + δ)A]d(1−m)/2
]

,

Ssite = log
[

m(1−z)d/2z(1−m)d/2(2πδA)−(1−m)(1−z)d/2
]

.
(32)

Note that Sbox does not depend on δ. Therefore we first write the contribution of Slink and Ssite and optimize
with respect to δ:

Ssite − zSlink = −d
2
(1−m) log(2πA) +

d

2
logm+

d

2
(1−m) log

[

zδz−1

(1 + δ)z

]

. (33)

The optimization is straightforward and gives δ = z − 1 as expected from the first Eq. (6). The optimized
result is

Ssite − zSlink = −d
2
(1−m) log(2πA) +

d

2
logm+

d

2
(1 −m)(z − 1) log

[

1− 1

z

]

. (34)

The last term to be computed is Sbox, which has the form:

Sbox = log

∫

dX1 · · · dXp

[∫

dx1 · · · dxpγA(x1 −X1) · · · γA(xp −Xp)χ(x1, · · · , xp)
]m

(35)

Unfortunately this cannot be computed exactly and we have to resort to further approximations.

A. Small cage expansion, first order

The small cage expansion proceeds as follows [5]. First we assume that m is an integer and write Sbox as:

Sbox = log

∫

dx̄1 · · · dx̄pρ(x̄1) · · · ρ(x̄p)
1,p
∏

i<j

χ̄(x̄i, x̄j) , (36)
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where x̄ = (x1, · · · , xm) is the coordinate of a “molecule” made of m particles, χ̄(x̄, ȳ) =
∏m
a=1 χ(xa, ya),

and ρ(x̄) =
∫

dX
∏m
a=1 γA(xa −X). Observing that

∫

dx2 · · · dxmρ(x̄) = 1, we write

Sbox = log

∫

dx̄1 · · · dx̄pρ(x̄1) · · · ρ(x̄p)
1,p
∏

i<j

[χ̄(x̄i, x̄j)− χ(x1i, x1j) + χ(x1i, x1j)]

∼ log





∫

dx11 · · · dx1p
1,p
∏

i<j

χ(x1i, x1j) +

1,p
∑

i<j

∫

dx11 · · · dx1p





1,p
∏

i′<j′

χ(x1i′ , x1j′ )



Q(x1i − x1j)



 ,

(37)

where we omitted the second order in the development in series of χ̄− χ1 and we defined

Q(x− y) =

∫

dx1 · · · dxmdy1 · · · dymρ(x̄)ρ(ȳ)
[

m
∏

a=2

χ(xa, ya)− 1

]

. (38)

In [5] it is shown that the second order gives a contribution O(A) and that at lowest order (see Appendix

C3 of [5]) Q(r) = 2
√
AQ0(m)δ(r −D), where Q0(m) is a function of m defined in [5] as:

Q0(m) =

∫ ∞

−∞
[Θ(t)m −Θ(t)] ; Θ(t) =

1

2
[1 + erf(t)] =

1√
π

∫ t

−∞
dxe−x

2

(39)

We get then

Sbox ∼ logZ0
p +

p(p− 1)

2

∫

dxdyQ(x − y)gp0(x− y)

= logZ0
p +

p(p− 1)

2

2d
√
A

D
Q0(m)g0p(D)Vd(D)

(40)

and collecting all the terms we get

S(m) =
d

2
(m− 1) log(2πA) +

d

2
logm+

d

2
(1−m)(z − 1) log

[

1− 1

z

]

+
z

p
logZ0

p +
z(p− 1)

2

2d
√
A

D
Q0(m)g0p(D)Vd(D) .

(41)

Optimization with respect to A gives

√
A∗ = D

1−m

Q0(m)

1

z(p− 1)Vd(D)g0p(D)
, (42)

and

S(m) =
d

2
(m− 1) log(2πA∗) +

d

2
logm+ d(1−m) +

d

2
(1−m)(z − 1) log

[

1− 1

z

]

+
z

p
logZ0

p . (43)

In particular, using the results Q0(m → 0) ∼
√

π/4m and Q0(m ∼ 1) = Q0 × (1−m) with Q0 = 0.638 [5],
one can show that this expression trivially reduces to the RS entropy (11) for m = 1, and that

Σj = lim
m→0

S(m) = −d log
[

2
√
2D

z(p− 1)Vd(D)g0p(D)

]

+ d+
d

2
(z − 1) log

[

1− 1

z

]

+
z

p
logZ0

p ,

Σeq = − lim
m→1

m2∂m[S(m)/m] = −d
2
log

2π

e
− d log

[

D

z(p− 1)Vd(D)g0p(D)Q0

]

+
d

2
(z − 1) log

[

1− 1

z

]

+
z

p
logZ0

p
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FIG. 3: Special values of the sphere radius as functions of z at p = 2 for different values of d in the Gaussian
approximation: DRS beyond which the RS solution becomes unstable, DGCP where the pressure diverges, and DK

where the Kauzmann transition takes place. When DK < DRS the transition is necessarily first order.

B. Results for p = 2, any dimension

For p = 2 we have trivially Z0
2 = 1− Vd(D) and g02(x, y) = χ(x, y)/Z0

2 , therefore g
0
2(D) = 1/Z0

2 . We get

S(m) =
d

2
(m− 1) log

[

2πD2(1− Vd(D))2

z2Vd(D)2
(1−m)2

Q0(m)2

]

+
d

2
logm

+ d(1−m) +
d

2
(1−m)(z − 1) log

[

1− 1

z

]

+
z

2
log[1− Vd(D)] ,

(44)

and

Σj = lim
m→0

S(m) = −d
2
log

[

8D2(1− Vd(D))2

z2Vd(D)2

]

+ d+
d

2
(z − 1) log

[

1− 1

z

]

+
z

2
log[1− Vd(D)] ,

Σeq = − lim
m→1

m2∂m[S(m)/m] = −d
2
log

[

2πD2(1 − Vd(D))2

z2Vd(D)2Q2
0

]

+
d

2
+
d

2
(z − 1) log

[

1− 1

z

]

+
z

2
log[1− Vd(D)]

and DK is defined by Σeq = 0 while DGCP is defined by Σj = 0. The results are reported in Fig. 3.
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FIG. 4: DRS , DGCP and DK as functions of z for different values of p at d = 1 in the Gaussian approximation.

C. Results for d = 1, any p

Also in d = 1 the integrations can be performed for all p. We get

Z0
p = [1− pD]p−1 ,

g0p(D) =
1

1− pD
.

(45)

Then

S(m) =
1

2
(m− 1) log

[

π(1 − pD)2

4z2(p− 1)2
(1−m)2

Q0(m)2

]

+
1

2
logm

+ (1−m) +
1

2
(1−m)(z − 1) log

[

1− 1

z

]

+
z(p− 1)

p
log(1 − pD) ,

(46)

and

Σj = −1

2
log

[

2(1− pD)2

z2(p− 1)2

]

+ 1 +
1

2
(z − 1) log

[

1− 1

z

]

+
z(p− 1)

p
log(1− pD) ,

Σeq = −1

2
log

[

π(1− pD)2

2z2(p− 1)2Q2
0

]

+
1

2
+

1

2
(z − 1) log

[

1− 1

z

]

+
z(p− 1)

p
log(1− pD) .

The results are reported in Fig. 4.
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VI. THE DELTA APPROXIMATION

Another variational approximation scheme, that we shall call the “delta approximation”, is based on the
following ansatz for P(ψ):

P [ψ] =

∫

dX δ [ψ(x)− δ(x −X)] , (47)

namely on each site i the probability of the variable xi is a delta function centered in a i.i.d. random point.
One can show in general that by using the equations (13), one can eliminate the field ϕ(x) and the

replicated entropy can be equivalently written as

S(m) = Ssite′ −
z(p− 1)

p
Sbox (48)

where Sbox is defined as in Eq. (12) and

Ssite′ = log

∫

dP [ψ1
1 ] · · · dP [ψzp−1]

[

∫

dx

z
∏

k=1

∫

dxk1 · · · dxkp−1ψ
k
1 (x

k
1) · · ·ψkp−1(x

k
p−1)χ(x, x

k
1 , · · · , xkp−1)

]m

≡ log 〈Zmsite′〉 .
(49)

The latter form is convenient when one studies approximation (47): the replicated entropy then becomes

S(m) = log

∫

dX1
1 · · · dXz

p−1

(

∫

dx

z
∏

k=1

χ(x,Xk
1 , · · · , Xk

p−1)

)m

− z(p− 1)

p
log

∫

dX1 · · · dXpχ(X1, · · · , Xp)

= log

∫

(

z
∏

k=1

dXk
1 · · · dXk

p−1χ(X
k
1 , · · · , Xk

p−1)

)

vz(p−1)(X
1
1 · · ·Xz

p−1)
m − z(p− 1)

p
logZ0

p ,

(50)

recalling the definition of vn in Eq. (5). Introducing the normalized measure of n spheres in a unit box,

dµ(x1 · · ·xn) =
dx1 · · · dxnχ(x1 · · ·xn)

Z0
n

, (51)

we can rewrite S(m) given in Eq. (50) in the equivalent form

S(m) = log

∫

(

z
∏

k=1

dµ(Xk
1 · · ·Xk

p−1)

)

[

vz(p−1)(X
1
1 , · · · , Xz

p−1)
]m

+ z logZ0
p−1 −

z(p− 1)

p
logZ0

p . (52)

In the following we study this expression for several specific values of p and d. In this section we will
derive the expressions for the complexity, and in the next section we will present the results together with a
comparison with numerical resolution of the cavity equations. Note that for m = 1 one can easily show that
S(m) given above is equal to the RS entropy (11), which is an important requirement for the consistency of
this approximation.
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A. One dimension

1. Results for p = 2

We first consider the simplest case, namely one spatial dimension and only two-particles-in-a-box interac-
tions (p = 2). Since Z0

1 = 1 and Z0
2 = (1 − 2D), we get

S(m) = log

∫ z
∏

i=1

dXi [vz(X1 · · ·Xz)]
m − z

2
log(1− 2D) . (53)

We have therefore to compute the probability distribution Pz(v) of the void space left in [0, 1] for the insertion
of a new particle, after having put z particles in random positions {Xi}. Then we have

S(m) = log

∫ 1−2D

0

dv Pz(v) v
m − z

2
log(1− 2D) . (54)

Note that v ranges from 0 (no void space) to 1− 2D (in the limiting case where all points Xi coincide), and
we expect that Pz(v) = p0δ(v) + P regz (v) since a finite fraction of configuration has zero void space at large
enough D. Since the delta function does not contribute to S(m), we will omit it from now on.
In order to estimate Pz(v) we can make the assumption that whenever v > 0, there is only one hole large

enough to contribute to v (i.e. a hole whose length is bigger than 2D). The function Pz(v) can then be
easily evaluated in the following way. The hole that contributes to v must have length 2D+ v, and must be
delimited by two particles that we can choose in z(z − 1) different ways, since particles are distinguishable.
We can put the first particle in x1 = 0 and the second in x2 = 2D + v (integration over x1 can be omitted
since it gives a factor of 1, the length of the box). The remaining z−2 particles must be in the space between
x2 and 1, therefore giving a contribution (1 − 2D − v)z−2. Therefore, within the one-hole approximation,
we get Pz(v) = z(z − 1)(1− 2D− v)z−2. We notice that the total probability of v > 0 must be smaller then
one since some configurations might have v = 0. This gives the condition

∫ 1−2D

0

dvPz(v) = z(1− 2D)z−1 ≤ 1 ⇒ D ≥ (1− z−1/(z−1))/2 , (55)

which gives an estimate of the limits of validity of the one-hole approximation.
Plugging the result for Pz(v) in Eq. (54), we get an approximate formula for the replicated free energy

which depends on z and D,

S(m) = log

(

Γ(z + 1)Γ(m+ 1)

Γ(z +m)

)

+
(

m− 1 +
z

2

)

log(1− 2D) . (56)

Recall that Σeq = −[m2∂m(S(m)/m)]|m=1 and that DK is the point where the latter quantity vanishes. We
get

Σeq =

z
∑

q=2

1

q
+
z − 2

2
log (1− 2D) , DK =

1

2

[

1− e−
2

z−2

∑z
q=2

1
q

]

. (57)

On the other hand, Σj = S(m = 0) and it vanishes at the close packing diameter DGCP. We get

Σj = log(z) +
z − 2

2
log(1− 2D) , DGCP =

1

2

[

1− z−2/(z−2)
]

. (58)

The complexity curve can be obtained explicitely, using Σ = −m2∂m(S(m)/m) and s = ∂mS(m), which
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gives the parametric representation:

s = log(1 − 2D)−
z−1
∑

q=1

1

m+ q
,

Σ =
z − 2

2
log(1− 2D) + log

(

Γ(z + 1)Γ(m+ 1)

Γ(z +m)

)

+m

z−1
∑

q=1

1

m+ q
.

(59)

One can check easily that both critical diameters DK and DGCP are well within the region of validity of the
one-hole approximation given by Eq. (55), and they scale as DK, DGCP ∼ log z/z in the large connectivity
limit. The values of DK and DGCP can be compared to the stability of the RS solution (which scales as
Ds ∼ 1/

√
z).

2. Results for p = 3

We now consider the three-particles-in-a-box case p = 3, still for d = 1. Since Z0
2 = 1 − 2D and

Z0
3 = (1− 3D)2, we get from Eq. (52):

S(m) = log

∫ 1−3D

0

dv P2,z(v) v
m + z log(1− 2D)− 4z

3
log(1 − 3D) . (60)

where now P2,z(v) is the probability distribution of the void space in [0, 1] for the insertion of a new particle,
after having thrown at random z pairs of particles, each pair being at distance bigger than D. The latter
ranges from 0 (no void space) to 1−3D (in the case where each pair is exactly at distance D and superposed
to all the others).
Within the same one-hole approximation, we can approximate P2,z(v) as follows. The hole must have

length L = 2D+v. We have to distinguish between two different situations: i) The hole is made by the same
couple of particle; ii) The hole is made by two different couples. In the case i) we have z ways of choosing
the couple. We fix then one of the two particles of the couple in 0 and the other one in L (which gives an
extra factor 2). Finally the other z − 1 couples of particles must be in the interval [L, 1] with the conditions

that they are pairwise compatible, which gives a factor f(L,D) =
∫ 1

L
dx
∫ 1

L
dy χ(x, y) = (1 − L − D)2 for

each pair. With this definition the contribution due to the same couple finally reads: 2zf(L,D)z−1. In the
case ii), instead, we can fix one particle of one couples in 0 (we have 2z ways to choose it) and one particle
of another couple in L (we have 2(z − 1) ways of choosing it). The free particle of the first couple must be
in [L, 1 − D], due to the condition that it is compatible with its partner which has been fixed in 0. This
gives a contribution (1− L−D). An analogous contribution comes from the the free particle of the second
couple, which must be in the interval [L+D, 1]. The other z − 2 couples must be in the interval [L, 1] and
must satisfy the compatibility condition, and therefore give a contribution f(L,D)z−2. The sum of the two
contributions is (4z2 − 2z)(1 − L − D)2(z−1), and it has to be normalized by the total integral (1 − 2D)z;
going back to v = L− 2D we get

P2,z(v) =
2z(2z − 1)(1− v − 3D)2(z−1)

(1− 2D)z
. (61)

As in the previous case we get the condition
∫ 1−3D

0

dv P2,z(v) =
2z(1− 3D)2z−1

(1 − 2D)z
≤ 1 , (62)

which gives a lower limit of validity in D of the one-hole approximation.
Plugging this results in Eq. (60) we get for the replicated entropy

S(m) = log

[

Γ(m+ 1)Γ(1 + 2z)

Γ(m+ 2z)

]

+

(

m− 1− 2z

3

)

log(1− 3D) (63)
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from which we get

Σeq =

2z
∑

q=2

1

q
+

2z − 3

3
log(1− 3D) , DK =

1

3

[

1− e−
3

2z−3

∑2z
q=2

1
q

]

, (64)

and

Σj = log(2z) +
2z − 3

3
log(1− 3D) DGCP =

1

3

[

1− (2z)−3/(2z−3)
]

. (65)

We checked that both DGCP and DK are well within the region of validity of the one-hole approximation;
actually, the value of the left hand side of Eq. (62) never exceeds 0.1. Again, DGCP and DK are found to
scale as 2 log z/z for large z.

3. Conjecture for arbitrary p (2, 3, · · · ,∞)

A comparison of Eqs. (57) and (63) and of Eqs. (58) and (64) allows to guess the form for general p:

Σeq =

(p−1)z
∑

q=2

1

q
+

(p− 1)z − p

p
log(1− pD) , DK =

1

p

[

1− e−
p

(p−1)z−p

∑(p−1)z
q=2

1
q

]

,

Σj = log((p− 1)z) +
(p− 1)z − p

p
log(1− pD) , DGCP =

1

p

[

1− ((p− 1)z)−p/((p−1)z−p)
]

.

(66)

however we did not attempt to provide a proof of this conjecture.

B. Two dimensions

In the d = 2 case we cannot compute S(m) analytically and we must resort to a numerical evaluation.
The numerical algorithm consists in writing a routine that is able to compute the void space vn, defined in
Eq. (5), left by n disks centered in a set of positions {X}. We used an adaptation of the algorithm described
in [24] that works as follows:

• We start by a grid of squares of side ∆ ≪ D (typically ∆ = 1/100). These squares are considered as
particular cases of convex polygons.

• We add disks X1 · · ·Xn sequentially.

• Each time a disk is added, we check if a given polygon is entirely contained in the disk. In this case it
is removed from the grid.

• Next we consider the polygons that intersect the boundary of the new disk. We approximate the
boundary of the void space left in the old polygon by a new polygon, by approximating the boundary
of the disk by a straight line (which is reasonable if ∆ ≪ D, with error O(∆/D)2). The new polygon
replaces the old one in the grid.

• This construction is iterated until all disks have been placed. The area of the polygons that survived
is computed easily using Eq. (1) of Ref. [24], and it gives the void space vn.

The void space has to be averaged over the distribution
∏z
i=1 dµ(X

i
1 · · · dX i

p−1), hence we must sample a
configuration of p−1 spheres in a box (and do this z times indepentently). This can be easily done for p = 2
(one sphere, flat distribution) and p = 3 (put one sphere in the centre of the box, draw a second sphere
outside it, then translate randomly both spheres).
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A correct sampling gives access to the void space distribution P (v), that has the form P (v) = p0δ(v) +
P reg(v), as in one dimension. In the following we omit the delta term and only consider P reg(v), which
therefore is not normalized to one (its integral gives the probability that v > 0). From this we can compute
Eq. (52) as we did in one dimension:

S(m) = log

∫

dv P (v) vm + z logZ0
p−1 −

z(p− 1)

p
logZ0

p . (67)

Similarly we get, using the relation
∫

dv P (v) v = 〈v〉 = (Z0
p/Z

0
p−1)

z (which can be easily checked and also
serves as a check of the correct sampling of P (v)),

Σeq =
z

p
logZ0

p −
(

Z0
p−1

Z0
p

)z
∫

dv P (v) v log v ,

Σj = log

∫

dv P (v) + z logZ0
p−1 −

z(p− 1)

p
logZ0

p .

(68)

Therefore both Σeq and Σj can be computed directly from P (v); from them we can determine the transition
points DK and DGCP.

VII. NUMERICAL SOLUTION OF THE EQUATIONS

In the previous sections we described two analytical approximate methods yielding the phase diagram of
the model. Beyond these analytical approaches, one can also develop some algorithms to solve the functional
self-consistent 1RSB equations numerically. In this section we explain how it is possible to implement a
numerical procedure to solve Eqs. (13) in the 1RSB phase for each value of the connectivities, z and p, of the
diameter D, of the 1RSB parameter m and, in principle, of the spatial dimension d (in practice, numerical
solutions can only be achieved in one and two dimensions). In order to do that we need representations of
the cavity fields ϕ(x) and ψ(x), and of the distributions P [ϕ] and P [ψ], which can be treated by a computer.
As far as the cavity fields are concerned, the simplest possibility is to discretize the volume [0, 1]d where

the functions ϕ(x) and ψ(x) are defined using a regular hyper-cubic grid with q bins per side of size 1/q.
For instance, in one dimension we discretize the interval [0, 1] in q slices of length 1/q, and in two dimension
we discretize the square box on a square lattice of q × q points.
The coordinate in the box can assume a discrete set of values, ~i/q, with ~i being a d-dimensional vector

whose components are integers between 0 and q − 1, identifying the coordinate of the position of the center
of the sphere in the box. If the position of the center of the sphere occupies a given site of the grid ~i, then
all other sites of the lattice that are at Euclidean distance from ~i smaller than the diameter of the sphere
D cannot be occupied by the center of another sphere (we call this number nD). The volume of the sphere
in the discretized version of the model can be estimated as Vs = nD/(2q)

d, and the packing fraction as
ϕ = pVs = pnD/(2q)

d. Since in the continuum limit Vs = Vd(1)(D/2)
d, we can then define an effective

diameter as Deff = 1
q

[

nD

Vd(1)

]1/d

. Note that in general Deff 6= D, and we take Deff as representative of the

sphere diameter in the continuum limit. In particular, by symmetry, in d = 1 the number of excluded sites
always has the form nD = 1 + 2a for integer a, and one has

Deff =
1 + 2a

2q
. (69)

In d = 2 the parameter nD depends in an irregular manner on the choice of D (since the square lattice we
use breaks the spherical symmetry) and one has in general

Deff =
1

q

√

nD
π

. (70)
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In the discretized version, the fields ϕ(x) and ψ(x) are vectors of qd components (such that the sum of all
components is equal to one), and the cavity equations, Eqs. (6), become a set of coupled algebraic equations
for the qd components of the cavity fields, which can be easily solved numerically (of course, the numerical
complexity of this step grows linearily with the number of components of the cavity fields, qd).
Note that the discretized version of the model is a generalization of a very important optimization problem

known as the “random graph coloring” problem, where the number of colors corresponds to the number of
components of the cavity fields qd. In particular, for nD = 0 and p = 2 we recover the standard q-coloring
problem, which has been deeply studied in the past few years, and whose properties and phase diagram are
known in great details [25].
The continuum limit of the model is, of course, recovered for q → ∞. As a consequence, in order to make

sure that the numerical results are reliable and that they are not affected by the discretization, we solve
numerically the 1RSB equations using several values of q, and analyze the scaling properties of the numerical
solutions with the number of bins. Moreover, one should note that for d > 1, partitioning the box using an
hyper-cubic grid breaks the spherical symmetry down to some discrete symmetry. This makes the scaling
towards the continuum limit in two dimensions more problematic than in one dimension (also because, due
to the fact that the complexity of the numerical algorithm grows as qd, we are limited to smaller values of q
for d = 2).
Other numerical representations of the cavity fields were also possible. For instance, as ϕ(x) and ψ(x) are

periodic functions in the interval [0, 1]d, we could have performed a Fourier transformation of the recurrence
equations keeping all the components up to a certain momentum, yielding a finite set of coupled algebraic
equations for the Fourier coefficients of the cavity fields (similarily to what we did in Sec. IV to study the RS
stability). However, it turns out that this strategy is not efficient in the most interesting region of the phase
diagram, namely at high packing fraction where a 1RSB glass transition is found. Indeed here the cavity
fields becomes extremely peaked (this is also the reason why the Gaussian and the delta approximation work
very well), and the momentum cut-off needed to get accurate results becomes too big to be handled.
Another possibility we could have employed, is to represent the fields as a population of delta functions,

e.g. ϕ(x) =
∑

α cαδ(x − xα). This strategy, which has the advantage that one does not need to discretize
the space, has, on the other hand, the disadvantage that at each step of the iterative procedure, in order
to generate a new field, one has to sample uniformly one point in the free space available for the insertion
of a new particle, given the position of z(p − 1) neighboring particles in the box. This is trivial in d = 1,
however in that case the discretized procedure work already well enough. In d = 2, this could be done using
the algorithm described in Sec. VIB. However this algorithm is too slow to be used efficiently to this scope.
Therefore in the following we will not explore further this representation.

A. The population dynamics algorithm

Now, once that we dispose of the discretized representation of the cavity fields, we need to be able to
implement a computational strategy to solve the 1RSB functional self-consistent equations, Eqs. (13), for
any value of the connectivities, z and p, of the diameter of the spheres, D, and of the 1RSB parameter m.
This step is quite standard in the context of the cavity method, and goes under the name of “population
dynamics algorithm” [23]. The idea is to represent the probability distributions P [ϕ] and P [ψ] as populations
of M representative cavity fields with some weights:

P [ϕ] =

M
∑

α=1

zαϕ δ[ϕ(x) − ϕα(x)], and P [ψ] =

M
∑

α=1

zαψ δ[ψ(x)− ψα(x)] (71)

As previously discussed, we need to consider only translationally invariant solution of Eqs. (13) in order to
describe the glassy phase. A solution P [ψ(x)] is translationally invariant if the property P [ψ(x+s)] = P [ψ(x)]
holds for any s ∈ [0, 1]d, where ψ(x + s) is an arbitrary translation (taking into account periodic boundary
conditions) of ψ(x). Since we represent the probability distribution P [ψ] by a set of representative samples
ψα(x), it is very easy to implement translational invariance. In principle, we would like to impose that
if ψα(x) is one of the samples, then any translation of it is also contained in the set of samples with the
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same weight. But this is just equivalent to do the following: at each time we use a given sample ψ(x) as
a representative of P [ψ], we apply to it a “random shift”, namely we extract a vector s uniformly in [0, 1]d

and we translate ψ(x) by s. In this way we impose translational invariance by hand.
The population dynamics algorithm works in the following way:

1) Pick at random p−1 fields ψi from the population P [ψ], according to their weights zαψ. Apply a random

shift with flat probability in [0, 1]d to each of the cavity fields.

2) Using Eq. (6), compute the new cavity field ϕ, along with its weight zϕ, which is given by the nor-
malization in Eq. (14) to the power m, according to Eq. (13). Note that at high density, in the 1RSB
phase, the cavity fields becomes extremely peaked. This implies that there exist some configurations of
the p− 1 fields ψi for which the new field ϕ is zero everywhere in [0, 1]d. In this case the corresponding
weight is zero and we have to reject it and restart the procedure. These events, which can cause a
major slowing down of the algorithm, are called “rejection events”.

3) Repeat 1) and 2) M times, until a whole new population Pnew[ϕ] is generated, and replace the old
population with the new one (this kind of update is called in the context of population dynamics
algorithm “parallel update”).

4) Apply steps 1), 2), and 3) using the population P [ϕ] to generate a new Pnew[ψ].

5) Repeat steps 1), 2), 3), and 4) until convergence, namely until the populations P [ψ] and P [ϕ] are
stationary.

Once this process has converged, we can compute the average values of the link, the site and the box
contribution to the 1RSB entropy, Eq. (12), from which one can obtain the complexity Σ(m). This allows
to determine the equilibrium value of m⋆ inside the 1RSB glassy phase as the point where S(m) has a
minimum [9]. In practice, instead of computing the replicated entropy using Eq. (12), we can use another
and equivalent formula (derived below) which is more advantageous from a numerical point of view. Indeed,
using Eqs. (6) we can easily obtain the following relations (we omit the arguments of the functions Z):

Zlink =
Zbox
Zϕ

=
Zsite
Zψ

. (72)

Using these and Eqs. (13), one can rewrite the total and internal entropy as

S(m) =

(

1− z +
z

p

)

Slink +
z

p
Sϕ + Sψ

s(m) =

(

1− z +
z

p

)

slink +
z

p
sϕ + sψ (73)

The computation of Sϕ = log〈Zmϕ 〉 and Sψ = log〈Zmψ 〉 is numerically less involved than Ssite and Sbox
appearing in Eq. (12). Moreover, these contributions can be evaluated on-line during steps 1)-5) of the
population dynamics algorithm described above (we have just to compute the average value of Zmϕ and Zmψ
over all the M attempts of generating a new cavity field), without requiring the implementation of any
further step.
Of course, representing the distributions P [ψ] and P [ϕ] as populations of M elements is an approximation

which becomes exact only in the M → ∞ limit. On the other hand, the numerical complexity of the
population dynamics algorithm grows linearily with M. In practice on has to find a good compromise
between a value of M small enough such that the execution time of the code stays reasonable, but big
enough to avoid systematic corrections due to the finite size of the populations. In the present case, we find
that M = 216 is close to the optimal value.
Although we have produced a working version of the algorithm described above at any finite value of the

1RSB parameter m, it turned out that the execution time is too big to get accurate results in a reasonable
time. However, there are two special limits, namely m → 1 and m → 0, which describe respectively the
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physics at the Kauzmann point and in the close packing regime, where some semplifications arise which
allow to perform the numerical study of the model in a more efficient way. These two limits are discussed
below.

B. Reconstruction: the limit m = 1

In this section we consider the numerical solution of the 1RSB equations for m = 1. Recall that S(m = 1)
gives back the equilibrium RS entropy of the system between the dynamical transition (where a non-RS
solution of the 1RSB equations appears for the first time due to the emergence of glassy metastable states)
and the Kauzmann point. In this limit, using the approach introduced in [26] which goes under the name
of reconstruction method, also applied in a similar context to the coloring optimization problem in [25], the
self-consistenf 1RSB equations can be simplified. Similarily to [25, 26], one can indeed introduce two new
families of distributions over the cavity fields for each value of the variable x, defined as

Rx[ψ] ≡ ψ(x)P [ψ] and Rx[ϕ] ≡ ϕ(x)P [ϕ] . (74)

Using the previous definitions, the 1RSB cavity equations, Eqs. (13) can be rewritten in terms of these new
distributions. Furthermore, imposing the translational invariance which implies thatRx[ψ(y)] = R0[ψ(y−x)]
for all x we obtain the the self-consistent recursion relation for the new distributions which read:

R0[ψ] =

∫ z−1
∏

i=1

dR0[ϕi] δ

[

ψ(x) − 1

Zψ

∏

i

ϕi(x)

]

(75)

R0[ϕ] =

∫

dµ(x1 · · ·xp−1|0)
p−1
∏

i=1

dR0[ψi] δ



ϕ(y)− 1

Zϕ

∫

∏

j

dyjψj(yj − xj)χ(y, y1, · · · , yp−1)





where

dµ(x1 · · ·xp−1|0) =
χ(0, x1, · · · , xp−1)dx1 · · · dxp−1

Z0
p

(76)

From a numerical point of view, these latter equations are much easier to solve than Eqs. (13) for two reasons.
First, no reweighting factor is present, which prevent the population to concentrate on few cavity fields with
large weight. Second, rejection events cannot occur in this case. Indeed, for example, the procedure to
generate a new field ϕ amounts to:

1) Pick at random p−1 fields ψi from the population R0[ψ]. Note that all the fields have the same weight
in this representation.

2) Pick p − 1 variables x1, · · · , xp−1 in the interval [0, 1]d satisfing the hard-sphere constraint
χ(0, x1, · · · , xp−1) with a flat measure.

3) Shift each of the p− 1 chosen cavity fields ψi by xi.

4) Using Eq. (6), compute the new cavity fields ϕ (again, note that there is no reweighting in this case),
and insert the new field randomly into the population R0[ϕ] (this kind of update is called “serial
update” and ensures a better convergence than the parallel one).

Once the populations R0[ϕ] and R0[ψ] have attained stationarity, we can compute the complexity of the
system. Since the replicated entropy S(m = 1) equals the RS one, the complexity at m = 1 is given by
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Σeq = SRS − s(m = 1). The internal entropy can be evaluated using Eqs. (15) and (13), where

〈Zlink logZlink〉 =

∫

dR0[ψ]dR0[ϕ] log

∫

dy ψ(y)ϕ(y)

〈Zψ logZψ〉 =

∫ z−1
∏

i=1

dR0[ϕi] log

∫

dy
∏

i

ϕ(y) (77)

〈Zϕ logZϕ〉 =

∫

dµ(x1 · · ·xp−1|0)Z0
p

p−1
∏

i=1

dR0[ψi] log

∫

dy
∏

i

dyiψi(yi − xi)χ(y, y1, . . . , yp−1).

From the complexity we can determine the Kauzmann point, which corresponds to the value DK where Σeq
vanishes.
In principle this method would also allow to determine the location of the dynamical transition, which is

the first point where a non-RS solution of the 1RSB equations appear at m = 1.
The results atm = 1 obtained with the reconstruction method will be discussed in Sec. VIII, and compared

with the analytical approximations.

C. Hard fields: the limit m = 0

Also this specific limit yields a simplification of the numerical algorithm. The m→ 0 limit corresponds in
this context to the “close packing limit”, since an inspection of the expression of the internal entropy s(m)
shows that it goes to −∞ as log(m), and the pressure diverges as well [5]. Therefore the limit m → 0 gives
access to the jammed glassy states at infinite pressure [5].
The limit for m going to zero of Zmlink, Z

m
box, and Z

m
site are either zero (for “incompatible” configurations

of the cavity fields) or one (for “compatible” configurations of the cavity fields) regardless of the value of the
cavity fields. As a consequence, in order to compute the complexity (which equals the replicated entropy
S(m→ 0), since the internal entropy term, ms(m), disappears) we are only interested in the propagation of
this information.
To this aim, we introduce the “hard” components of the cavity fields ψhard and ϕhard:

ψhard(x) =

{

1 if ψ(x) > 0
0 otherwise

and ϕhard(x) =

{

1 if ϕ(x) > 0
0 otherwise

(78)

These functions are defined as being equal to one for all values of x such that the cavity fields are non
vanishing regardless of their value (i.e., corresponding to a non-vanishing probability of finding a sphere with
center in x), and zero otherwise. Since the reweighting factors in Eq. (13) do not depend on the actual value
of the fields in the m → 0 limit, the propagation of the hard components decouples completely from the
propagation of the cavity fields and can thus be treated indepenently. As a consequence, the population
dynamics algorithm described above can be used on the populations encoding the probability distributoons
of the hard fields. Once a stationary state has been reached, we can compute the complexity at m = 0,
Σj , from Eq. (12), computing the logarithm of the average value of the fraction of attempts yielding a non
vanishing value of Zlink, Zbox, and Zsite. Using Eq. (73), instead of computing 〈Zmbox〉 and 〈Zmsite〉, one can
more easily compute 〈Zmψ 〉 and 〈Zmϕ 〉, which are given respectively by the average value of the fraction of
non-rejection attempts to generate the new ψhard and ϕhard fields over the total number of attempts. Then
we can determine the location of DGCP defined as Σj(DGCP ) = 0.
The results at m = 0 obtained with this method will be reported in Sec. VIII, and compared with the

analytical approximations.
An important caveat is that in principle some fields could be proportional to exp(−1/m) in the limit

m → 0. If this happens, then the procedure above fails since these fields give a finite contribution to the
normalizations which is neither 0 nor 1. Although we could not perform a careful systematic investigation
of this effect, it seems that it might happen only for values of z and p where the transition at m = 1 is
continuous. This point surely deserves further investigation.
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FIG. 5: The complexity in some representative cases of discontinuous transition at d = 1, computed with the numerical
solution of the population dynamics algorithm with varying resolution of the discretization process, is compared to
the Gaussian and the Delta approximations. [Upper panels] Σeq (left) and Σj (right) for p = 2 and z = 110. In both
cases we fixed the parameter a = 4, 7, 10 in Eq. (69) and changed q to vary the effective diameter Deff = (1+2a)/(2q),
which is reported in the horizontal axis. [Lower panes] Σeq (left) and Σj (right) for p = 4 and z = 3. In the first
case, we varied q at fixed a, while in the second we did the inverse.

Note that in order to compute the correlation function in the close packing limit (see Sec. IX) we also
need to know the actual values of the cavity fields. Since the propagation of the hard components decouples
completely from the the one of the fields itself, one can use the population dynamics algorithm to find the
solution of the 1RSB equations for the distributions of hard fields and of the cavity fields independently
(knowing that the cavity fields can only be non zero where the hard components are equal to one), and use
Eq. (80) to compute the pair correlation function.

VIII. COMPARISON BETWEEN NUMERICAL RESULTS AND THE APPROXIMATIONS

In this section we report the results obtained from the direct numerical calculation with discretized space
and we compare them with the delta and Gaussian approximations.



24

0.325 0.35 0.375 0.4D
-1

-0.5

0

0.5

1

1.5

Σ

q=11
q=12
q=13
q=20
Delta
Gaussian

Jamming complexity Σ
j
 - m=0

d=
2    z=

20     p=
2

FIG. 6: The complexity at d = 2, p = 2 and z = 20, computed with the numerical solution of the population
dynamics algorithm with varying resolution of the discretization process, is compared to the Gaussian and the Delta
approximations. Here we can only use moderate values of q, and because of the geometry of the discretization the
effective diameter of the sphere, given by Eq. (70) and reported on the horizontal axis, cannot be varied smoothly.
For instance, at q = 11 we could not find a point at positive complexity.

A. Complexity

In Fig. 5 we report the complexities Σeq (the complexity at m = 1 equal to (1/N) time the logarithm of
the typical number of glass states when configurations are samples uniformly) and Σj (the complexity at
m = 0 equal to (1/N) time the logarithm of the total number of jammed states) for several representative
cases at d = 1 where the transition is discontinuous. Generically we observe that the delta approximation
performs better atm = 0, while the Gaussian approximation is more reliable atm = 1. Both approximations
give an upper bound to the true complexity and therefore give values for DK and DGCP that are above the
true ones. Moreover, both approximations miss the dynamical transition since by construction the fields are
assumed to be localized.
Some results for d = 2 are reported in Fig. 6. Here the scaling for q → ∞ becomes very difficult

because the numerical solution is computationally demanding and we cannot go beyond q = 20 for moderate
connectivities. We could perform a systematic investigation only p = 2 and z = 20, which is unfortunately a
case where the transition is continuous and the solution might be unstable towards further RSB in the glass
phase. In this case, at m = 1 we correctly find a continuous transition at a value of D which is compatible
with the result found from the stability analysis of section IV. At m = 0, we find good agreement with
the result of the Gaussian and delta approximation. Note however that also at m = 0 the results could be
unstable towards further RSB.

B. Phase diagram

In Fig. 7 we compare the transition lines obtained by the Gaussian and delta approximations with the
numerical results, where available. We computed DK and DGCP by performing an extrapolation to q → ∞
(which is simple since the corrections are found to be proportional to 1/q) in some representative cases where
the transition is continuous or discontinuous; the results are reported in Fig. 7. We observe that indeed the
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FIG. 7: Phase diagrams for p = 2, 3 and d = 1, 2. We compare the results of the Gaussian and delta approximations
with the numerical results obtained directly from a discretization of the cavity equations. In the lower right panel,
the horizontal line indicates the value D = 1/4 above which the calculation of Z0

3 is not valid, see Eq. (29).

Gaussian and delta approximation give consistent results, which are also consistent with the exact numerical
solution and provide upper bounds to the latter.
Whenever the RS instability DRS < DK, the transition is continuous. This happens generically for small

z. On increasing z, the lines DRS and DK cross and the transition becomes discountinuos. The value z∗

where this crossover happens depends weakly on the space dimension, but it depends strongly on p. Indeed
we have z∗ ∼ 100 for p = 2, while z∗ ∼ 20 for p = 3 and (as we can infer from Fig. 4) the transition is always
discontinuous for p > 3.

IX. CORRELATION FUNCTION

A. Definition

As explained in section III, in the glass phase the cavity equations have multiple solutions, each describing
a different glass state. Within each state α we can define a correlation function gα(x, y) as follows. For each
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box we have:

g(α)a (x, y) =
1

p(p− 1)

〈

1,p
∑

i6=j
δ(x − xi)δ(y − xj)

〉

a,α

=
1

p(p− 1)

∫

dxa1 · · · dxap ψ
(α)
a,1 (x

a
1) · · ·ψ

(α)
a,p (xap)χ(x

a
1 , · · · , xap)

∑1,p
i6=j δ(x− xai )δ(y − xaj )

∫

dxa1 · · · dxap ψ
(α)
a,1 (x

a
1) · · ·ψ

(α)
a,p (xap)χ(x

a
1 , · · · , xap)

,

(79)

since the fields ψ
(α)
a,i (x

a
i ) describe the distribution of the variables adjacents to box a in absence of the box

itself. We now average this quantity over the boxes and over the states α with the weight Zmα . We get

g(x, y) =
p

Nz

Nz/p
∑

a=1

1
∑

α Z
m
α

∑

α

g(α)a (x, y)Zmα

= e−Sbox

∫

dP [ψ1] · · · dP [ψp]Zbox[ψ1 · · ·ψp]m−1 ψ1(x)ψ2(y)

∫





p
∏

j=3

ψj(xj)dxj



χ(x, y, x3, · · · , xp)
(80)

Note that in the RS case the above expression reduces to g0p(x, y).
We expect that atm = 0 (close packing), g(x, y) develops a peak in |x−y| = D describing contacts [27, 28].

The number of contacts is

ζ = (p− 1)

∫

peak

g(0, y)dy . (81)

The delta peak is also accompanied, in three dimensional sphere packings, by a square root divergence,
g(r) ∼ (r −D)−0.5 [27, 28], which we want to investigate here.
Note that in the delta approximation we just get

g(x, y) =
1

Z0
p

∫

dX3 · · · dXpχ(x, y,X3, · · · , Xp) = g0p(x, y) (82)

therefore all the structure of the correlation in the packings is lost in this approximation.
One can show, following [5], that in the Gaussian approximation, as A ∼ m for m → 0, one gets a

delta peak at r = D in the jamming limit, with all particles being non-rattlers and ζ = 2d. Therefore this
approximation is able to capture some of the peculiar structure of the correlation. On the other hand, the
square root singularity is missed by the Gaussian approximation [5].
Unfortunately, it is very difficult to study the contact peak in the numerical solution of the cavity equation,

because the discretization makes it hard to define a proper notion of contacts and separate the delta peak
contribution from the background. Therefore in the following we focus on the square root singularity which
is also a non-trivial and somehow unexpected feature of pair correlations at jamming [27, 28].
Numerical results are presented in Fig. 8 for the g(r) in one dimension, and two representative values of z

and p where the transition is continuous or discontinuous. In both cases, the divergence is compatible with
a square root singularity (r −D)−0.5 in a range of r −D, but at smaller r −D the g(r) seems to diverge as
(r −D)−γ with an exponent γ > 0.5. However, in this region the square root divergence is probably mixed
with the contact delta peak, because of the discretization. A detailed analysis of this mixing was not possible
because the values of q we could reach were still too small. Since this investigation is computationally very
demanding, we could not perform a systematic study of the value of the exponent as a function of p and
z, nor investigate the more interesting case d = 2, which is very hard because our discretization does not
preserve the spherical symmetry around the central particle. We leave a more systematic numerical analysis
for future work.
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FIG. 8: Pair correlation function g(r) at d = 1, m = 0 (jamming) and D ∼ DGCP (in practice, the closest value
to DGCP compatible with the discretization). (Left) p = 2, z = 6; note that in this case the system undergoes a
continuous transition and these results might be unstable towards further RSB. (Right) p = 4, z = 3: here the
transition is discontinuous. Note that for p = 4 we observe an additional singularity at r = 2D [27].

B. Argument for the square-root singularity

We now present an analytical argument to relate the shape of the cavity fields to the square root singularity.
We focus on m = 0, and we study the small r −D behavior of g(r) as follows. We define the quantity

Ψ(z) =

∫





p
∏

j=1

ψj(xj)dxj





χ(x1, · · · , xp)
χ(x1, x2)

δ(x1 − x2 − z) . (83)

Note that z = x − y ∈ [−1, 1]d but using periodicity one can restrict to z ∈ [−1/2, 1/2]d with periodic
boundary conditions. The probability distribution of ψ induces a distribution P [Ψ] on Ψ. Then we have

g(z) =

∫

dxdyg(x, y)δ(x − y − z) = e−Sbox

∫

dP [Ψ]
Ψ(z)χ(z)

∫

dzΨ(z)χ(z)
θ

[∫

dzΨ(z)χ(z)

]

, (84)

where the term e−Sbox ensures the normalization
∫

dzg(z) = 1.
In the following we restrict for simplicity to d = 1. Note that by translational invariance the field Ψ

is centered around a random uniformly distributed position z0, while its shape is encoded by a non-trivial
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distribution. Now assume that with a certain finite probability with respect to the shape distribution, one
has that

• Ψ(z) vanishes at some finite distance from the center given by z± = z0 ± δz0. The quantities z± are
then also random and uniformly distributed in [−1/2, 1/2];

• the shape of Ψ(z) around the point where it vanishes is of the form

Ψ(z) ∼ e
− A

|z−z±|α ; (85)

• and |z+−z−| < 2D, and z+ > D (the additional symmetric contribution coming from z− gives a factor
2 and will be neglected as all proportionality constants).

Then the function χ(z)Ψ(z) vanishes everywhere except in [D, z+] where it is given by exp
[

−A/(z+− z)α
]

.
The average over P [Ψ], for what concerns this contribution, is translated onto an average over z+ and
Eq. (84) becomes :

g(z) ∼
∫

dz+
e−A/(z+−z)αθ(D ≤ z ≤ z+)

∫ z+
D

dze−A/(z+−z)α θ [z+ ≥ D] =

∫ C

z

dz+
e−A/(z+−z)α

∫ z+
D

dze−A/(z+−z)α , (86)

where C is a suitable cutoff that comes from the fact that if z+ is too much larger than D the approximation
Eq. (85) will break down. We will show that this cutoff does not matter as the main contribution for z → D
comes from z+ close to D.
To simplify notations, we introduce λ = (z −D)/D and ε = (z+ −D)/D. Also we define a = A/Dα and

c = (C −D)/D. With these notations we get

g(λ) ∝
∫ c

λ

dε
e−a/(ε−λ)

α

∫ ε

0 dλ e
−a/(ε−λ)α . (87)

The integral in the denominator is dominated by the small λ behavior, that gives
∫ ε

0

dλ e−a/(ε−λ)
α ∼

∫ ε

0

dλ e−
a
εα (1+α

λ
ε ) = e−

a
εα
εα+1

aα
, (88)

and

g(λ) ∝
∫ c

λ

dε ε−(α+1)ea(
1

εα − 1
(ε−λ)α ) . (89)

We want now to evaluate the integral by a saddle point for λ→ 0. We assume (and will check self-consistently)
that the saddle point value ε∗ ≫ λ. Then we can expand for λ/ε≪ 1 and

g(λ) ∝
∫ c

λ

dε e−(α+1) log ε−aαλε−(α+1)

. (90)

The maximum of the above expression is found at ε∗ = (aαλ)1/(α+1) ≫ λ for small λ as initially assumed.
Substituting this in the expression above one obtains g(λ) ∝ 1/λ. To get the correct result we need to
compute also the quadratic corrections around the saddle point. Including these, we finally obtain

g(λ) ∝ λ−
α

1+α ∝ (r −D)−
α

1+α , (91)

i.e. a power-law divergence for z → D with exponent ∈ [0, 1], which is consistent with the observed exponents
in Fig. 8. Note that a square root singularity is obtained for α = 1, namely a simple exponential singularity
of the cavity fields. We checked on our numerical results that indeed the form of the fields is compatible
with the ansatz (85).
Note that this same argument can be carried out at finitem, but in this case we get that g(λ) is independent

of λ for small λ. A more complete analysis should show that at finite m, g(λ) is a power law for λ≫ O(mν)
with some exponent ν, and it crosses over to a finite value for λ≪ O(mν).



29

X. DISCUSSION ON FINITE DIMENSIONAL HARD SPHERES

One way to recover the normal hard sphere model from our model is to set p = 2 and z = N − 1.
However, this limit cannot be investigated within the cavity formalism which is based on taking first the
limit N → ∞ at finite z. Here the limits N → ∞ and z → ∞ do not commute, and if we first send N → ∞
and then z → ∞ we do not recover the hard sphere models (a similar behavior is found for the Bethe lattice
antiferromagnet [23]).
Therefore we want here to find a suitable limit that we can take after N → ∞ to recover the hard sphere

model. As we discussed in the introduction, one possibility if to set formally z = 1 and identify p with the
number of particles, therefore taking p ≫ 1. Of course, for z ≤ 2 and finite p the model does not have any
phase transition (it becomes a one-dimensional model for z = 2). Therefore, we have to send p → ∞ before
z becomes smaller than 2.
As a first check, we note that in this limit the RS entropy

SRS =
z

p
logZ0

p → Sliq(ϕ) , (92)

where Sliq(ϕ) is the entropy of d-dimensional hard spheres in the thermodynamic limit at fixed packing
fraction ϕ. Actually, there is a problem with the latter identification, since Z0

p does not contain a factor
p! which should take into account indistinguishability of the particles. This is indeed to be expected, since
we took a formal limit z → 1, but at any finite z > 1 the particles are connected to several boxes which
makes them distinguishable. We therefore recover the finite dimensional result for a system of distinguishable
particles.
Next, we can look at the stability of the RS solution according to Eq. (20). To compare with standard

hard spheres it is crucial to observe that here the box side is one while D becomes very small for p → ∞,
in such a way that the packing fraction ϕ = pVd(D/2) = pVd(1/2)D

d is finite. For p → ∞ first and z → 1
after, we have g0p(x) → gliq(x), however x is expressed in units of the box length. If we introduce as usual
the distance r measured in units of the sphere diameter, r = x/D, we have (for k 6= 0)

g0p(k) =

∫

dxeikxg0p(x) = Dd

∫

dreikDrgliq(r) = DdS(kD) , (93)

where S(kD) is the structure factor, and the stability condition becomes

√

(p− 1)(z − 1)Dd|S(kD)| =
√

(p− 1)(z − 1)
ϕ

pVd(1/2)
|S(kD)| ≤ 1 (94)

which is always verified for p→ ∞ since ϕ and S(kD) are both of order 1. This is indeed consistent with our
investigations of the model at finite p that showed that the transition is always discontinuous at p > 4. We
conclude that one cannot observe a continuous transition in the normal hard spheres model. This conclusion
is consistent with the ones of Biroli and Bouchaud [29] who showed that indeed replicated liquid theory in
finite dimensions does not allow for a continuous RSB transition.
We also note that starting from Eqs. (43), (42) and taking first p → ∞ (with ϕ = pVd(D)/2d and

(p−1)g0p(r) = pgliq(r)) and then z → 1 we recover Eq. (74) of [5], which is the starting point of the Gaussian

small cage replica treatment in finite dimensions, provided we identify again limp→∞
1
p logZ

0
p = Sliq(ϕ),

neglecting the problem with the missing p!. Apart from this caveat, this is a nice alternative derivation of
the approximation of [5], which is not based on the replica method.
Finally, one could try to take the same formal limit in Eq. (52) to obtain an alternative approximate

expression for S(m) in finite dimensions. Using the relation Z0
p/Z

0
p−1 = 〈v〉, where v is the void space of

p− 1 particles, we obtain for z → 1 (after p→ ∞):

S(m) = log
〈vm〉
〈v〉 +

1

p
logZ0

p . (95)
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Note however that the void space v ∝ p, therefore we must rearrange terms as

S(m) = log
〈(v/p)m〉
〈(v/p)〉 +m log p+

1

p
log(Z0

p/p
p) . (96)

The term m log p can be dropped since it gives an additive constant to the internal entropy, and the resulting
expression has a well defined p → ∞ limit, assuming here that limp→∞

1
p log(Z

0
p/p!) = Sliq(ϕ) (which is

however inconsistent with the previous discussion, for reasons that we do not understand at present). This
expression can in principle be directly computed, even if it is very hard to sample the distribution P (v) of
void space because at high density v = 0 for most configurations [30].

XI. CONCLUSIONS

In this paper we have derived the cavity equations for the model introduced in [12] and we have presented
both analytical approximations to their solution and an “exact” numerical solution based on a discretization
of the space.
We have shown that the analytical approximations give quite reliable results for the phase diagram and the

complexity. In particular, the Gaussian approximation is very good for the Kauzmann transition but tends
to overestimate the close packing. This is consistent with what happens for three-dimensional hard spheres
where the Gaussian approximation gives ϕK ∼ 0.62, which is consistent with numerical estimates, and
ϕGCP ∼ 0.68, while numerical simulations suggest a somewhat smaller value [5]. On the contrary, the delta
approximation is very good for close packing but tends to overestimate the Kauzmann point. We proposed
a formula for the complexity that is based on the delta approximation and can be computed numerically for
three-dimensional hard spheres. It would be very interesting to do this computation and compare the result
with the Gaussian approximation in that case.
We also showed that the transition is continuous at small z and p. In particular, for the values of p = 2 and

z = 100 that have been used in [12], the transition should be very weakly first order. It would be interesting
to repeat the numerical simulations of [12] for a larger value of p, e.g. p = 4 where the transition should be
strongly first order even at very small z.
Finally, we partially computed the correlation function of the model and showed that it displays a power-

law singularity close to contact, at least for d = 1. Extending this study to higher dimension could give
insight in the physics that is responsible for this divergence and hopefully connect it to isostaticity and the
presence of soft modes in the spectrum, as suggested in [14, 15].
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