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Abstract

It is known that the parity of reflection amplitude can either be even or odd under the mirror

operation. Up to now, all the parities of reflection amplitude in the one-mode energy region are even

under the mirror operation. In this paper, we give an example of odd parity for Andreev reflection

(AR) in a three-terminal graphene-supercondutor hybrid systems. We found that the parity is even

for the Andreev retroreflection (ARR) and odd for specular Andreev reflection (SAR). We attribute

this remarkable phenomenon to the distinct topology of the band structure of graphene and the

specular Andreev reflection involving two energy bands with different parity symmetry. As a result

of odd parity of SAR, the SAR probability of a four-terminal system with two superconducting

leads (two reflection interfaces) can be zero even when the system is asymmetric due to the quantum

interference of two ARs.
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Since the experimental realization of graphene[3], it has become an exciting arena for

theoretical and technological investigations.[4] A number of new phenomena have been pre-

dicted and verified experimentally. For instance, in the presence of magnetic field, it exhibits

a distinctive half-integer quantum Hall effect.[3] Its quasi-particles obey the Dirac-like equa-

tion and have relativistic-like behaviors.[4] Due to the relativistic effect, the Klein tunneling

occurs where an incident electron in graphene can pass through a potential barrier with

probability one.[5] Then a graphene p-n junction can be used to focus Dirac electron current

with a negative refractive index.[6, 7]

Since good contacts between superconducting leads and graphene have been re-

alized experimentally,[8] the transport study through graphene based normal-metal-

superconductor (GNS) heterojunction becomes feasible. In the presence of a normal metal

(graphene)-superconducting interface, an incoming electron converts into a hole and a cooper

pair is formed that enters the superconductor. Due to the relativistic nature of the electron

in graphene, the electron-hole conversion can either be intraband (within conduction or va-

lence band) or interband (between conduction and valence bands). When the electron-hole

conversion is intraband, it corresponds to the usual Andreev reflection (AR)[9] or Andreev

retroreflection (ARR) because the reflected hole is along the incident direction. This ARR

occurs for both relativistic and non-relativistic electrons. When the electron-hole conversion

is interband, the reflected hole is along specular direction and a specular Andreev reflection

(SAR) takes place,[10] which can lead to novel phenomena as we will discuss below.

It is known that the parity is a fundamental quantity in physics and reflection is a

general physical phenomenon in nature. In this paper, we discuss the parity of reflection

amplitude for graphene in contact with superconductor leads. In general, the parity of a

reflection amplitude can be either even or odd when the system is under mirror operation.

However, for all previous known reflection events, the reflection amplitudes in the one-mode

energy region have even parity under the mirror operation. It is yet to find an odd-parity

reflection event. In this paper, we found, for the first time, that the SAR amplitude has

an odd parity under the mirror operation for zigzag graphene ribbons with even number

of chains. This means that the phases of SAR amplitude for a graphene-superconductor

hybrid system and its mirror system differ by π. We attribute this phenomenon to the

unique band structure of the graphene. Obviously this phase difference does not affect

any observable quantities for each system. When two systems couple together, however,
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this π phase manifest through quantum interference between two SARs. So this π phase

shift has important consequences for a four terminal device with two superconducting leads

(see Fig.2(a)). When two superconducting leads are symmetrically attached to the device,

the quantum interference of the left and right SAR leads to a destructive or constructive

interference depending on whether the phase difference of superconducting leads is zero or

π. Importantly, when two superconducting leads are asymmetrically attached to the device,

the same interference pattern occurs provided that the Dirac point E0 is in line with the

condensate of superconducting lead. The quantum interference between pairs of the AR can

be tuned by shifting the Dirac point, the asymmetry of the two superconducting leads, as

well as the phase between two superconducting leads. Due to the odd parity of SAR, the

interference pattern for SAR is phase contrasted to that of ARR where the parity is even.

Before doing numerical calculation, we first prove that the phases of SAR amplitude of

two systems (i) and (ii) in Fig.1(a) differ by π, i.e., the parity of SAR is odd under mirror

operation. Note that for graphene systems electrons in valence and conduction band are

usually referred as electrons and holes, respectively. In the presence of superconducting

lead the reference point of electrons and holes is the Fermi level in the superconducting

lead. In the following, we will refer electrons (holes) as electrons above (below) Fermi

level in superconducting lead. Denote ψ+
c (ψ+

v ) the wavefunction of electrons in conduction

(valence) band moving in +y direction and ψ−
c (ψ−

v ) in -y direction in the zigzag graphene

nanoribbon lead. It was known that under reflection P̂ : x → −x, ψ±
c is symmetric while

ψ±
v is anti-symmetric if the energy of electron is in the first transmission channel[11][see

Fig.1(a)], i.e.,

P̂ψ±
c (x, y) = ψ±

c (−x, y)

P̂ψ±
v (x, y) = −ψ±

v (−x, y). (1)

which is one of the unique features of zigzag edge nanoribbons with even number of chains.

Assuming the incident electron from the terminal-1, the wavefunctions for SAR ψ1,3 in zigzag

nanoribbon lead 1 or 3 of the system (i) can be written as

ψ
(i)
1 = ψ+

e + r11ψ
−
e + r11Aψ

−
h

ψ
(i)
3 = t13ψ

+
e + r13Aψ

+
h (2)

where r11 is the normal reflection amplitude, t13 is the transmission amplitude, r11A and
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r13A are the Andreev reflection amplitudes with the reflected hole to the terminal-1 and 3,

respectively. Similarly the wavefunctions for the system (ii) are given by

ψ
(ii)
1 = ψ+

e + r̄11ψ
−
e + r̄11Aψ

−
h

ψ
(ii)
3 = t̄13ψ

+
e + r̄13Aψ

+
h (3)

Since the system (i) is related to (ii) by the reflection operator P̂ , we have ψ
(i)
α = P̂ψ

(ii)
α with

α = 1, 3. Note that for SAR, the electron is in the conduction band while the hole is in the

valence band, i.e., ψe = ψc and ψh = ψv. From this relation together with Eqs.(1), (2), and

(3), we obtain

r11A = −r̄11A, r13A = −r̄13A
r11 = r̄11, t13 = t̄13 (4)

Note that the origin of this π phase shift (odd parity) is the interband conversion from the

electron to the hole. Therefore the π phase shift does not occur for ARR since it involves only

intraband conversion. Now we verify this statement numerically using a tight-binding model

(see below for detailed description of the model and numerical procedure). The numerical

results of AR probability R11A(13A) = |r11A(13A)|2 for two systems are shown in Fig.1(b). As

expected the AR probability are exactly the same for two systems. However, the phase

of AR amplitudes r11A(13A) denoted as Φi,ii

11(13) are different. It is shown in Fig.1(c) and

Fig.1(d) that ARR amplitudes (|E0| > |EF |, with |EF | = 0.5) are the same for two systems

in Fig.1(a) while the SAR amplitudes (|E0| < |EF |) have a π phase shift. It confirms the

odd parity for interband electron-hole conversion, which comes from the distinct topology

of the band structure of graphene.

To see the consequence of the odd parity of SAR, we examine a symmetric four-terminal

device with two superconducting leads depicted in Fig.2(a) (by setting asymmetry δN = 0

and phase difference δφ = 0). For this system, two beams from terminal-1 has a π phase

shift due to odd parity of SAR and interferes destructively at terminal-3 giving rise to a

vanishing SAR coefficient. However, we can arrive the same conclusion using symmetry

argument as follows. Since the system is symmetric with respect to x = 0, we must have

r13A = r̄13A when the reflection operation along x-direction is applied. While from Eq.(4),

r13A = −r̄13A. So the AR probability R13A = |r13A|2 for SAR can also be zero from symmetry

point of view.[12] Therefore we conclude that the symmetric device can not be used to test
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the odd parity of SAR. In the following, we demonstrate that due to the π phase shift the

destructive interference still occurs in a four-probe devices with two superconducting leads

attached asymmetrically and hence can be used to test the odd parity of SAR.

For this purpose, we consider an asymmetric four-terminal device consisting of a zigzag

graphene ribbon with two superconducting leads as shown in Fig.2(a). The Hamiltonian of

the graphene is[13] H0 =
∑

i ǫia
†
iai −

∑
<ij> ta

†
iaj. Here ai and a

†
i are the annihilation and

creation operators at site i, ǫi is the on-site energy which can be controlled experimentally

by the gate voltage[3], and the hopping constant t = 2.75eV represents the nearest carbon

bond energy. The pair potential (energy gap) of superconducting terminal-β with β = 2, 4

is ∆̃β = ∆βe
iϕβ with ∆2 = ∆4 = ∆ ≃ 1meV . In numerical calculations,[12] we fix Fermi

energy EF and tune the Dirac point E0. We have used ∆ as the energy unit.

Now we study the interference between two ARs from GNS junctions as shown in Fig.2(a)

in which two superconducting leads 2 and 4 are asymmetrically attached to the zigzag

nanoribbon. The horizontal distance δN between two GNS junctions measures the asym-

metry of two GNS junctions. The scattering process can be qualitatively understood as

follows. For simplicity, we assume φ2 = φ4 for the moment. As shown schematically in

Fig.2(a), for SAR the particle-like electrons in terminal-1 split into two beams and are scat-

tered separately by two GNS junctions (green horizontal lines) as holes that finally recombine

at terminal-3. We examine the total phase accumulated for each beam that involves the fol-

lowing three processes. Before reaching the first GNS junction (denoted by the left vertical

green line) two beams of electrons propagate with the same momentum kx. After reaching

the second GNS junction (denoted by the right vertical green line) two beams of holes also

propagate with the same momentum k′x. Obviously phases accumulated in the above two

processes for both beams are the same. Between them two beams propagate with different

momenta kx and k′x. Hence the phase difference between two beams is φ = (kx− k′x)δx with

δx = bδN , where b =
√
3a and a the lattice constant. This phase difference can be tuned

by varying the Dirac point E0 or the asymmetry δN giving rise to a complicated interfer-

ence pattern (see Fig.2). In particular, this phase difference can be zero if (kx − k′x) = 0

(i.e.,E0 = 0) or δN = 0. In general, the total phase difference is φ = (kx − k′x)δx+ φ2 − φ4.

Interference pattern of AR probability R13A for system depicted in Fig.2(a) with pair

potential phase difference of two superconductors δϕ = 0 and π (δϕ ≡ ϕ2 − ϕ4) are then

plotted in Fig.2(b) and (c), respectively. For Fig.2(b) following observations are in order:
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(1) For the geometrically symmetric system (δN = 0), the interference is always destructive

with zero R13A as long as |E0| < |EF |.[12] Clearly this is due to the π phase shift depicted

in Fig.1(d) and is consistent with the band selection rule.[11] (2) When Dirac point E0 is

in line with the condensate energy of the superconductor, i.e., when E0 = 0, R13A is again

zero no matter what value δN assumes. This means that there is a completely destructive

interference between two beams scattered by two GNS junctions attached asymmetrically to

the graphene nano-ribbon. This behavior can be understood as follows. When E0 = 0 the

incoming electron and reflected hole have the same propagating momentum kx and thus path

1 and 2 in Fig.2(a) experience the same quantum phase kxδx except at the superconducting

leads. Hence the total phase difference is only due to the π phase shift between two SARs.

(3) R13A is an even function of Dirac point E0 because of the electron-hole symmetry in

graphene. Due to the geometric symmetry, R13A is also an even function of asymmetry δN .

(4) For nonzero EF , the closer the Dirac point E0 to EF , the more rapidly R13A oscillates

as we vary δN . This is because the difference of propagating momentum kx − k′x increases

monotonically as E0 approaches to EF . (5) When E0 is in the vicinity of EF , R13A can

reach 0.9 which is much larger than that when |E0| > |EF |. This is because when EF is

very close to E0, the edge states of zigzag ribbon begin to contribute, then electron is easier

to be scattered by two GNS junctions located also at edges of zigzag ribbon. Considering

the pseudo-spin conservation, large R13A is always found in the region of |E0| < |EF |, i.e.,
the SAR region. (6) There is an overall fine oscillation with a period of δN = 3b. Similar

behavior was also found in zigzag ribbons with a p-n junction where the conductance is

determined by the relative displacement δ along the p-n junction.[14] In Fig.2(c) with the

superconducting phase difference δϕ = π, we see that the interference pattern is contrary to

δϕ = 0 [Fig.2(b)] where the constructive interference becomes destructive and vice versa.

To further analyze the interference pattern, we plot in Fig.3(a) the total R13A vs Dirac

point E0 for different asymmetry δN with the phase difference between two superconducting

leads δϕ = 0 [main panel of Fig.3(a)] or δφ = π [inset of Fig.3(a)]. Clearly the interference

(oscillatory) pattern occurs only for asymmetric systems (δN 6= 0) with oscillation frequency

proportional to δN . When pair potential phase difference δϕ = π is introduced, the inter-

ference pattern reverses, and R13A with δN = 0 becomes the envelop function of R13A for

all nonzero δN . In Fig.3(b) we plot R13A vs δN for different widths W of nanoribbon. It

is shown clearly that R13A is a periodic function of δN with larger periodicity for larger W .
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In the inset of Fig.3(b) we plot this period versus the width for different E0. The period

P is obtained in two ways: (1). from the expression P = 2π/(kx − k′x) where the momenta

kx and k′x can be obtained from the band structure for a given E0 (black symbols). (2).

directly from main panel of Fig.3(b) (red solid circle). From the inset, it clearly shows that

two periods are exactly the same giving strong evidence that the interference pattern of AR

probability are indeed from two reflected hole beams.

Finally, the interference pattern of AR probability R11A is also studied (not shown). We

found that only ARR probability R11A (|E0| > EF = 0.2∆) exhibits interference pattern. We

note that since there is no π phase shift involved in ARR, when δN = 0 reflected electrons

through two GNS junctions interfere constructively when δϕ = 0 and destructively when

δϕ = π which is in contrast to SAR in Fig.2. In fact, interference patterns of SAR and ARR

are always phase contrast not only for δN = 0 but also for all other δN .

To test the odd parity of SAR experimentally, it relies on the fabrication of high quality

zigzag graphene nanoribbons. It has been achieved by several laboratories using differ-

ent methods last year including the method to unzip the multi-walled carbon nanotube

(CNT),[15] the anisotropic etching by thermally activated nickel nanoparticles,[16] and use

reconstruction of the edge to make zigzag graphene nanoribbons.[17] In view of the above

experimental breakthrough, we expect that the setup to test our predicted phenomenon can

be realized experimentally.

To reduce the experimental challenge, we have considered an unzipped CNT device, i.e.,

(n,n) CNT-zigzag graphene-(n,n) CNT, obtained by unzipping a few unit cells in the central

part of an armchair CNT which has been achieved experimentally.[15] For this system, the

wavefunction in the armchair CNT has the same symmetry as that of the zigzag graphene

ribbon. Following the same procedure leading to Eq.(4), we have shown that the unzipped

CNT in contact with a superconducting lead has the odd parity under mirror operation.

Similar conclusions drawn from GNS can be obtained for unzipped CNT with two super-

conducting leads.

In conclusion, up to now, the parity of reflection amplitude was found to be even under

the mirror operation. Here we have provided an example of odd parity for the reflection

amplitude, the SAR amplitude in the zigzag graphene-superconductor hybrid system. This

odd parity is due to the combination of unique band structure of the graphene and the

electron-hole conversion involving two energy bands with different parity symmetry. The
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signature of odd parity of SAR can be found from the quantum constructive interference in a

four terminal system with two superconducting leads attached asymmetrically. Furthermore,

the interference pattern due to odd parity of SAR is phase contrasted to that of ARR where

the parity is even.
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FIG. 1: (Color online) Panel (a): zigzag ribbons with even number of chains (gray honeycomb)

attached by a superconducting lead on the left and right (orange honey comb), respectively. For

SAR the incoming electrons (red arrow) are scattered by the GNS junction (green solid line) as holes

(blue arrow). The corresponding wave functions at sublattice “A” (solid circle) and “B” (hollow

circle) for the lowest subband in conduction band (bottom) and the highest subband in valence

band (top) are shown schematically. Panel (b): AR probability from terminal-1 to terminal-1 R11A

and to terminal-3 R13A vs. Dirac point E0. Panels (c) and (d): AR phase Φi,ii
11 (c) and Φi,ii

13 (d) of

two systems in panel (a) and their phase different Φi
11(13) − Φii

11(13) vs. E0.

[16] L. C. Campos et al, Nano. Lett. 9, 2600 (2009).

[17] Ç. Ö. Girit et al, ibid, 323 1705 (2009).
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FIG. 2: (Color online) Panel (a): sketch of AR interferometer in which the zigzag ribbon is

asymmetrically attached by two superconductor lead-2 and 4. Electrons in terminal-1 can be

Andreev reflected into terminal-3 by either top or bottom GNS junction (horizontal green lines).

Panel(b) and (c): the contour plot of R13A vs Dirac point E0 and asymmetry δN . The phase

difference of two superconductor leads δϕ is zero in panel (b) and π in panel (c). The other

parameters: Fermi energy Ef = 0.8, number of chains in zigzag ribbon N = 40 corresponding to

width 60a, the width of superconductor lead WS = 10b, where b =
√
3a.
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FIG. 3: (Color online) Panel (a): With fixed Fermi level EF = 0.8, total AR probability R13A vs

Dirac point E0 for different asymmetry δN . In the main panel δϕ = 0, and while δϕ = π in the

inset. Panel (b): R13A vs asymmetry δN with E0 = 0.3t for different width W from 10 × 3a to

38× 3a with the interval 2× 3a along the black arrow. Inset panel: the hollow signs are the period

P obtained from the main panel and the solid red circles are the period P from the energy band

with the expression P = 2π/(kx − k′x). The other parameters: δϕ = 0, EF = 0.8.
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