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Abstract. Growth of GaAs and InxGa1−xAs nanowires by the group-III assisted

Molecular Beam Epitaxy growth method is studied in dependence of growth

temperature, with the objective of maximizing the indium incorporation. Nanowire

growth was achieved for growth temperatures as low as 550 ◦C. The incorporation

of indium was studied by low temperature micro-photoluminescence spectroscopy,

Raman spectroscopy and electron energy loss spectroscopy. The results show that

the incorporation of indium lowering the growth temperature does not have an effect

in increasing the indium concentration in the bulk of the nanowire, which is limited to

3-5 %. For growth temperatures below 575 ◦C, indium rich regions form at the surface

of the nanowires as a consequence of the radial growth. This results in the formation

of quantum dots, which exhibit extremely sharp luminescence.

1. Introduction

Nanowires are filamentary crystals with diameters in the order of few nanometers.

Thanks to their peculiar shape and dimensions, they are a great promise for many

technological advances in this century in diverse areas such as biosensing, energy

harvesting and optoelectronics [1, 2, 3, 4, 5]. For the full deployement of such technology,

control over the nanowire structure and composition at the nanometer scale is essential.

In this frame, nanowire based heterostructures have been broadly studied [2, 3, 6, 7].

Among the various compound semiconductors, InGaAs is considered to be one of the

suitable materials as a transistor channel due to its low electron effective mass [8].

Additionally, InGaAs/GaAs based quantum wells and dots constitute the ideal material

system for infrared detectors and single photon emitters. Moreover, the nanowire
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geometry has turned to be ideal for all these applications as it enhances the functionality

by allowing a better coupling with the electromagnetic radiation[9].

Nanowires are commonly obtained through the vapor-liquid-solid, VLS, (or vapor-

solid-solid, VSS) method, where gold is used as a catalyst that preferentially gathers

and decomposes the precursors [10, 11]. As a result of the concerns that gold raises

in the area of semiconductor technology, group III assisted growth has received an

increased attention [12, 13, 14, 15]. This method is also compatible with the fabrication

of heterostructures for example by combining the pairs InGaAs/GaAs [16, 17] or zinc-

blende/wurtzite crystal phases [18, 19].

InGaAs and InAs quantum dots have been obtained in GaAs nanowires grown by

the VLS method (Au-assisted) [20]. Investigations on the optical properties and interface

sharpness indicate that the InAs/GaAs system is more favorable than the InGaAs/GaAs

[11, 21, 22]. The synthesis of InGaAs nanowires with the Au-assisted method has been

demonstrated by various groups. Martelli et al. varied the growth temperature down to

480 ◦C, and reached an indium content up to 22 % [23, 24]. However, the concentration

turned not to be homogeneous along the nanowire axis. Such inhomogeneities have

been attributed to the longer diffusion length of indium with respect to GaAs and

have equally been observed by other groups [6, 25]. InGaAs nanowires have also

been obtained by selective area epitaxy. There, the difference in diffusion length

between gallium and indium results in a different indium incorporation depending on

the distance between the nanowires [26]. Up to date, it is still controversial to what

extent homogeneous InGaAs nanowires can be obtained and what is the maximum

indium concentration [27]. The synthesis of InGaAs nanowire and InGaAs/GaAs

nanowire heterostructures by the group-III assisted method has been demonstrated

recently [17]. In this case, the nanowire growth was performed under growth conditions

optimized for the growth of GaAs nanowires. It was argued that due to the high

growth temperatures, the incorporation of indium was limited to a few percent. It is

expected that a higher incorporation of indium may be reached by lowering the growth

temperature. At the same time, previous studies have shown that the sticking coefficient

of gallium on SiO2 increases as the substrate temperature is decreased and becomes

close to unity for temperatures lower than 565 ◦C [28]. Unfortunately, the optimum

growth temperature range for the growth of InxGa1−xAs compounds corresponds to

temperatures below 520 ◦C [29]. Indeed, by lowering the growth temperature down

to the range of 400-505 ◦C, pure InAs growth was obtained [30, 31]. The challenge

in catalyst-free growth is then, to find conditions where gallium still participates in

the catalyst-free growth and where the incorporation of indium is enhanced. The first

condition would normally require a temperature growth between 600 and 630 ◦C, while

the second the lowest growth temperature possible. In this work we study the influence

of the growth temperature on the nanowire growth and the implications in terms of

indium incorporation and optical properties.
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a) GaAs 590°C b) GaAs 575°C c) GaAs 560°C

e) InGaAs 575°C f) InGaAs 560°Cd) InGaAs 590°C

Figure 1. Representative tilted view (30◦) SEM micrographs of GaAs and

InxGa1−xAs nanowire samples grown at substrate temperatures of 560-590 ◦C at

otherwise identical conditions for the same growth times. The scale bar in each of

the micrographs corresponds to 1µm.

2. Experimental details

The nanowires were grown by the group-III assisted method by molecular beam epitaxy

as detailed elsewhere [14, 17, 32]. For this, (001) oriented GaAs substrates covered

with a thin layer of SiO2 were used. A systematic growth temperature series where

gallium or both gallium and indium was supplied during the entire growth process was

realized. The growth temperature series for pure GaAs nanowires grown under the same

conditions is used as a reference. The substrate temperature was varied in the range

of 550-590 ◦C. The indium and gallium rates were fixed at 0.045 Å s−1 and 0.2 Å s−1,

respectively. The As4 beam flux was set to 8.8 · 10−7 mbar at a constant growth time

of 5400 s for all samples. Further details on the growth procedure can be found in [32].

The morphology of the nanowires was studied by scanning electron microscopy (SEM).

The composition and crystal structure of the nanowires was studied by high resolution

electron microscopy (HRTEM), electron energy loss spectroscopy (EELS) and Raman

spectroscopy using the 488 nm line of an Ar+Kr+-laser focused to a diffraction limited
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spot (NA=0.75, power density 50 kW cm−2). The optical properties of single nanowires

were studied by photoluminescence spectroscopy at 4.2 K with a confocal microscope.

The photoluminescence was excited with a 780 nm diode-laser focused to a diffraction

limited spot (NA=0.65). For this, the nanowires were transferred from the original

substrate to a silicon substrate with 50 nm SiO2 layer.

3. Effect of the growth temperature on the morphology of GaAs and

InxGa1−xAs nanowires

We start by discussing the morphology of the nanowires grown under the different

conditions. Representative SEM micrographs are shown in figure 1. GaAs and InGaAs

nanowires could be obtained down to a temperature of 560 ◦C. By lowering the growth

temperature, we observe an increase of the material deposited between the nanowires.

These are randomly oriented GaAs deposits that nucleate on the oxide due to the

decrease in the mobility of Ga on the surface when the substrate temperature is reduced.

Besides the GaAs sample grown at 560 ◦C, both the amount of surface deposits and

length of the nanowires does not show significant deviations compared to the pure

GaAs samples grown under otherwise identical conditions (Figure 1a-c). This indicates

that the sticking coefficient is not significantly altered by the presence of In:Ga with

a beam flux ratio of 1:4 as compared to the situation with a pure gallium supply.

At 560 ◦C, almost the entire surface between the nanowires is covered with randomly

oriented (In)GaAs deposits (see figure 1c,f). The typical size of these structures is up to

500 nm. Concurrently, the length of the nanowires is reduced with regards to figure 1a-c.

This is also consistent with a reduced surface diffusion of gallium that is incorporating

in the surface deposits in the case of low growth temperature. Generally, the observed

temperature dependence is in agreement with previous studies for the sticking coefficient

of gallium on such SiO2 surfaces [28], which demonstrated a sticking coefficient of unity

for temperatures below 565 ◦C.

One should note that some of the samples did not show an alignment of the

nanowires toward the [111]B or [111]B directions of the GaAs (100) growth substrate.

We believe this is due to a higher thickness of the oxide, as it was shown elsewhere [14].

4. Optical properties of the InxGa1−xAs nanowires

We expect that the lowering of the growth temperature should have a direct influence

on the indium content and therefore on the optical properties. Upon homogeneous

incorporation of indium, the band gap Eg should decrease in the form [33]:

Eg(InxGa1−xAs) = 1.5192 − 1.5837x+ 0.475x2(eV) (1)

Figure 2a summarizes the results of the micro-photoluminescence experiments

performed at 4.2 K on the InxGa1−xAs nanowires. For completion, we have added the

data point of an InGaAs nanowire grown at 630 ◦C from a previous study [17]. The
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Figure 2. a) Typical 4.2 K photoluminescence transitions for InxGa1−xAs nanowire

samples grown at temperatures of 550-590 ◦C. � correspond to data from this work

while N corresponds to data from a previous study [17] using a higher In deposition

rate of 0.088 Å s−1. The right axis of the graph shows the indium concentration of an

idealized InxGa1−xAs material with a band gap related to the transition energy. b)

Typical 4.2 K photoluminescence spectra for InxGa1−xAs nanowire samples grown at

temperatures of 550, 560 and 575 ◦C under otherwise identical conditions.

graph shows the average photoluminescence peak position obtained from various single

nanowires obtained on the same growth run. The error bars indicate the standard

deviation of peak positions of the measurements on various nanowires. The indium

concentration x in the InxGa1−xAs nanowires estimated by equation 1 is indicated in

the right axis. We observe a red shift in the photoluminescence transitions with respect

to pure GaAs, which is a clear indication of the presence of indium in the nanowires.

Surprisingly, the peak position does not change significantly for nanowires obtained at

temperatures from 630 ◦C down to 575 ◦C. In all these cases, the optical properties

of the nanowires correspond to those of an indium concentration of only ≈ 3 %. As

a consequence, we can state that the indium incorporation in the nanowire is not

affected by the growth temperature within a variation in this range of temperature.



6

240 260 280 300
0

2

4

575 °C

560 °C

550 °C

N
o

rm
a

liz
e

d
C

o
u

n
ts

Raman Shift [cm
-1
]

*

Bulk GaAs

TO

590 °C

Figure 3. Raman spectra of single InxGa1−xAs nanowires from the samples grown

at temperatures of 550-590 ◦C. The peak marked with (*) corresponds to a line of the

laser.

This observation is in quantitative disagreement with thermodynamic calculations of

Shen and Chatillon [29]. This indicates that the incorporation of indium might not be

exclusively governed by a VLS mechanism through the droplet. For growth temperatures

below 575 ◦C a pronounced redshift of the emission is observed. In principle, this gives

an indication that the incorporation of indium in the nanowire may be significantly

increased by reducing the growth temperature. However, in order to have a more precise

information on the incorporation of indium, we perform a more detailed analysis.

Typical spectra of the InGaAs nanowires obtained under different temperatures are

shown in figure 2b. Interestingly, the decrease of the growth temperature is accompanied

with an increase of the variations in photoluminescence characteristics from nanowire to

nanowire. At the same time, we also observe that the shape of the photoluminescence

spectra changes for growth temperatures below 575 ◦C. This is illustrated in figure 2b.

Nanowires grown between 630 and 575 ◦C typically exhibit a quite narrow single emission

peak around 1.46 eV. The nanowires grown at lower temperatures present spectra with

multiple peaks. Furthermore, the photoluminescence emission of these nanowires is

typically inhomogeneous along the nanowire axis. The most extreme example for this

was observed in a sample grown at 550 ◦C. A photoluminescence spectrum of this sample

is shown in figure 4a. In this case, the emission consists mainly of three extremely sharp

lines. The main emission line at 1.346 eV has a full width at half maximum of only

365µeV. This spectral width is at the limit of the resolution of our spectrometer. In order
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Figure 4. a) 4.2 K photoluminescence spectra of a InxGa1−xAs nanowire sample

grown at 550 ◦C. b) Excitation power dependence of the three sharp emission lines

marked by the colored arrows in a)

to better understand the nature of these transitions, we measured the photoluminescence

spectra as a function of the excitation power. The integrated intensity of the lines

as a function of the excitation power is shown in figure 4b. The main emission line

at 1.346 eV has a linear excitation power dependence, while the emission peaks at

1.344 eV and 1.342 eV have a nonlinear power dependence as illustrated in figure 4.

Such behavior is typically only observed in low dimensional systems such as quantum

dots [34]. Interestingly, in order to achieve such a quantum dot like zero dimensional

confinement, the related structures must actually be of dimensions much smaller than

the diameter of the nanowires. The existence of quantum dots in the nanowire structure

may be related to inhomogeneities in the indium concentration at lower temperatures.

In order to understand if this is the case, a more detailed analysis of the structure and

composition is essential. Therefore, we realized a detailed study on the structure and

indium distribution in the nanowires. The results are shown in the following section.



8

20 nm20 nm20 nm

Ga+AsO In

a)

b)

c)

d)

0 10 20 30 40 50 60 70
0

20

40

60

80

100

Position (nm)

Ga
In
OC

o
n
te

n
t 
(%

)

0 20 40 60 80 100
0

20

40

60

80

100

Position (nm)

Ga
As
In
O

C
o
n
te

n
t 
(a

t%
)

100 nm

50 nm200 nm

10nm

Figure 5. a) Bright field STEM micrograph of a nanowire from the InxGa1−xAs

sample grown at 550 ◦C. b) High resolution micrograph of a nanowire, showing

accumulations of material on the surface. c) EELS profile perpendicular to the

nanowire growth direction clearly showing higher concentration of indium on the NW

side facets. d) EELS profile along the growth direction at the tip of a nanowire.

EELS Spectrum Imaging mapping of the tip region, showing a indium rich tip of this

nanowire. For the analysis the indium M4,5 (443 eV), the oxygen K-edge (532 eV), the

gallium L2,3 edge and the arsenic L2,3 edge are used.

5. Structural characteristics of InxGa1−xAs nanowires

The frequency positions of the optical phonons in the ternary compound InxGa1−xAs

strongly depends on the compositional fraction x [35]. Therefore, measuring the

Raman shift of the optical phonons provides a convenient non-destructive method for

estimating the composition. In figure 3 Raman spectra of the InxGa1−xAs nanowires

grown at various temperatures are shown. For the sample grown at 590 ◦C, the width

and the position of the transverse optical mode at 267.5 cm−1 shows no observable

deviations from the pure binary GaAs compound within the experimental uncertainty.

By decreasing the growth temperature, we observe a continuous broadening and down
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Figure 6. a) ADF-STEM micrograph of a nanowire grown at 550 ◦C b) Indium

content obtained from the averaged EELS line scan profiles A-D marked in a)

shift of the GaAs-like optical phonons. This is directly related to an increase in the

indium content in the nanowire. Interestingly, for the nanowire grown at 560 ◦C we

observe two overlapping features in the spectra: a broad background denoted by an

arrow in figure 3 and a superimposed sharper TO mode. It indicates a non-homogeneous

distribution of In in nanowire. We suggest that this is due to the formation of a shell with

higher In content around the core GaAs nanowire. For the employed laser wavelength

of 488 nm the Raman information depth is in the order of 40 nm. For the sample

grown at 550 ◦C, a down shift of the TO mode of 6.9 cm−1 is observed. From this

shift, in comparison with literature data [36], we can estimate an indium concentration

up to 23 % in these nanowires. The spatial resolution of the Raman spectroscopy is

not sufficient to obtain information on the axial distribution of indium in these only

approximately 700 nm long nanowires.

In order to provide a more detailed analysis on spatial inhomogeneities of

indium incorporation and at the same time the exact origin of the quantum dot like

photoluminescence features observed for the nanowires, the crystalline structure and
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indium composition of the sample grown at 550 ◦C was analyzed with transmission

electron microscopy and EELS. The results are presented in figure 5. Figure 5a shows

the bright field STEM micrograph of a typical nanowire of the sample. The nanowires

have a length in the order of 700 nm and exhibit tapering. In figure 5b a high resolution

STEM micrograph is shown. The nanowires consist of a highly twinned zinc-blende

structure with the sporadic inclusion of some wurtzite segments with thicknesses up to

10 nm. The surface of the nanowire is oxidized, the oxide thickness being of the order

of 2 nm. Moreover, the side facets of the nanowire are not perfectly flat as we have

observed in the past for pure GaAs nanowires [14, 16]. They present some rounded

structures (dome-like), which have a typical height and length respectively of 5 nm and

50 nm. In order to obtain more information on the nature of these domes, we realize

EELS scans along the diameter of the nanowire at several points. The result is shown in

figure 5c. The core of the nanowire is composed of InGaAs with an indium concentration

of 3-5 %. Interestingly, the indium concentration increases up to approximately 20 % at

the surface, coinciding with the formation of the nano-domes. We believe that the nano-

domes formed at the surface of the nanowire are most likely the origin of the ultra sharp

emission lines in the photoluminescence characteristics. We would like to point out that

the dimensions of the nano-domes are similar to those observed in Stranski-Krastanov

quantum dots [37].

Now we would like to discuss the growth mechanisms of the indium rich nano-domes

formed on the surface of the nanowires. Figure 6a clearly shows that the nanowires grown

at 550 ◦C are tapered. This is a clear indication of radial growth. If the formation of

indium rich regions is related to the radial growth, one should find a gradient in the

indium concentration at the surface. For this purpose, we have realized EELS scans

along the nanowire diameter at different points shown in figure 6. We have found that

indeed the formation of indium rich regions is inhomogeneous along the nanowire and

that the concentration is higher at the bottom of the nanowire. Formation of InGaAs

quantum dots on GaAs (110) surfaces has been observed in the past for similar growth

temperatures [38]. Indeed this could account for the sharp features observed in the

sample grown at 550 ◦C.

Finally, we have realized an EELS spectroscopy map of the region close to the tip

of a nanowire. This is illustrated in figure 5d. At the nanowire droplet at the tip, a peak

indium concentration as high as 80 % is observed. This clearly shows that the catalyst

droplet is very rich in indium during the growth. In the final 40 nm below the tip, the

indium concentration in the solid InxGa1−xAs gradually increases to a concentration

of up to x ≈ 40 %. We believe that the increased incorporation is related to the final

part of the growth, when substrate heating is stopped. At that stage, there is still

some residual axial growth as the arsenic pressure is maintained. This indicates that an

higher indium incorporation during the axial growth might be obtained by even further

lowering the growth temperature.
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6. Conclusions

The formation of InxGa1−xAs heterostructures in nanowires by catalyst-free molecular

beam epitaxy has been studied in dependence of growth temperature. The incorporation

of indium in the nanowire core was shown to be limited to 3-5 %. A growth

temperature series showed that for temperatures below 575 ◦C indium incorporation

occurs predominantly through radial growth, as demonstrated by a detailed EELS

analysis. The optical properties of such structures resulted in extremely sharp peaks

and an excitation power dependence typical of quantum dots.
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