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Bound states and persistent currents in topological insulator rings
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We analyze theoretically the bound state spectrum of an Aharonov Bohm (AB) ring in a two-
dimensional topological insulator using the four-band model of HgTe-quantum wells as a concrete
example. We calculate analytically the circular helical edge states and their spectrum as well as
the bound states evolving out of the bulk spectrum as a function of the applied magnetic flux and
dimension of the ring. We also analyze the spin-dependent persistent currents, which can be used to
measure the spin of single electrons. We further take into account the Rashba spin-orbit interaction
which mixes the spin states and derive its effect on the ring spectrum. The flux tunability of the ring
states allows for coherent mixing of the edge- and the spin degrees of freedom of bound electrons
which could be exploited for quantum information processing in topological insulator rings.

PACS numbers: 73.43.-f, 72.25.Dc, 85.75.-d, 73.61.-r

I. INTRODUCTION

Mesoscopic rings offer an ideal testbed for the investi-
gation of geometrical phase effects in quantum mechanics
like the well known Aharonov-Bohm (AB) effect1. Ex-
perimental observation of the energy spectra of quantum
rings, showing clear signatures of AB periodicity, have
been obtained by means of optical spectroscopy2,3. The
predicted persistent currents4 have been experimentally
measured, also on a single ring, in various experiments
in metals5–7 and semiconductors8. Phase effects, such
as the Aharonov-Casher effect9,10 and the Sagnac phase
shift11 have been studied. Although many of these fea-
tures can be understood in terms of a single particle pic-
ture, quantum rings are also attractive laboratories, be-
ing quasi-1D systems, to study many-body effects. A
review about this topic can be found in Ref. 12. In con-
junction with spin-orbit interaction, quantum rings are
an active field of research for spin manipulation13. Pro-
posed devices, based on a ring geometry, include spin-
filters14, spin beam splitters15, spin current parametric
pumping16, spin qubits17, or quantum rings which can be
used to compose networks for spintronic applications18.
Topological insulators (TI) are a new class of time-

reversal invariant materials that have a bulk gap and pro-
tected surface states. These materials are distinguished
from a trivial insulator (with no topological protected
surface states) by a Z2 topological number19. In two
dimensions, these materials exhibit the quantum spin
Hall effect20,21 and typically are small gap semiconduc-
tors, with the peculiarity that their gap, originated from
strong spin-orbit coupling, is inverted with respect to
that of a normal insulator, allowing for the presence of
topologically protected edge states20–22. At each bound-
ary two gapless counterpropagating edge modes exist
that have opposite spin and are related by Kramer’s the-
orem, known as helical edge modes. A successful realiza-
tion of a two dimensional TI phase has been obtained in
HgTe/CdTe quantum wells, where the topological phase
has been confirmed with the observation of the ballistic
helical edge channels21,23,24. TIs, with their dissipation-

less edge states, represent a new promising route to spin
manipulation in semiconductors.
A ring geometry in a TI with its well localized wave-

functions is optimal for spin manipulation, using a mag-
netic flux. It has been proposed, on the basis of numerical
transport calculations, that the AB effect in a topological
insulator disc can be exploited to perform spin rotation
and spin filtering25, or to create a topological spin transis-
tor26. Similar properties are expected in a general closed
disk geometry connecting two quantum point contacts in
which coherent oscillations in the magnetoconductance
are expected due to the AB effect27. It is clear that, if
experimentally confirmed, these properties can make the
disk, ring and hole geometry extremely interesting also
from an application point of view.
In this paper we consider the boundstates of a ring

made from a two-dimensional TI. The boundstates are
found analytically as a function of a magnetic flux, pierc-
ing the ring hole, and dimensions of the ring in the
topological non-trivial (edges states and bulk states) and
topological trivial (only bulk states) regime. We show
that the specific bandstructure of such TIs allows for ma-
nipulations of electron spin states using the magnetic flux
and their read-out through a spin-selective persistent cur-
rent in the ring. In addition, the special topology of a
ring introduces a new type of two-level system consist-
ing of inner and outer-edge localized bound states where
their mixing can be tuned by the flux. Together with
the spin of an electron, these features allow for new ways
to coherently manipulate quantum states in topological
insulators.
The paper is organized as follows. In section II we

solve the edge and bulk states of a TI in cylindrical
coordinates, described by an effective four-band model
for HgTe/CdTe quantum wells21, exactly. We summa-
rize here, for the benefit of those who are not intersted
in the more mathematical details, the main results of
section II. The total angular momentum is a conserved
quantity of the system and we associate the half-odd
integer quantum number m to it, this fact permits us
to separate azimuthal and radial variables in the spinor
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FIG. 1: (Color online) Scheme of a topological insulator ring
of radius a and width w. A magnetic field, generating a flux
Φ is threading the ring.

(Eq. (8)). We can express the radial part of the spinor
components (Eq. (22) and (26)) in general as a combina-
tion of ordinary and modified Bessel functions, both for
the bulk (Eq. (24)) and edge modes (Eq. (30)). We find
the eigenstate spectrum by assuming vanishing boundary
conditions for a ring, a disk or a hole geometry, obtainin-
ing transcendental secular equations, that we numerically
solve for the eigenenergies, and eventually we obtain the
corresponding eigenfunctions. So in general an eigen-
state of the system can be labelled as |n,m, τ〉, with n
the radial quantum number, associated with the number
of nodes of the radial wavefunction, the total angular
momentum m and the spin τ = ±1.
In Section III we show the results of our calculation,

in particular focusing on the bound states of a ring sub-
ject to the AB effect. We present the edge dispersion
for a disk, a hole and a ring, where a minigap arises due
to the confinement, which exponentially shrinks with in-
creasing ring thicknesses. We show that the sign of the
Dirac mass, which distinguishes the topologically trivial
from the topologically non-trivial insulator, is important
to the eigenstates in the gap but also in the bulk spec-
tral region. We also calculate the persistent currents as
a function of the magnetic flux. In Section IV we con-
sider the inclusion of Rashba spin-orbit interaction which
couples the two spin-blocks. The main effect, for a suffi-
ciently small interaction, is the opening of a spin splitting
gap at specific values of the magnetic flux. As a conse-
quence, we can perform coherent spin manipulations with
the magnetic flux. In Section V we present a scheme for
the coherent manipulation of quantum states stored lo-
cally in the spin or the edge degrees of freedom of a TI
ring, by means of an AB flux.

II. FOUR BAND MODEL OF HG-TE

QUANTUM WELLS

For a realistic description of a two-dimensional
topological insulator, we use the effective four-band
model21,24 for HgTe quantum wells, composed out of the
E1 andH1 subbands, and the electron spin degree of free-

dom |±〉 (see Appendix B for a discussion of these basis
states and the meaning of spin). The four-band Hamil-
tonian is built with respect to the basis

{

|E1+〉, |H1+〉,
|E1−〉, |H1−〉

}

(see Eq. (B1)), where the E1 states are a
mixing of the s-like Γ6 band with the Γ8 light-hole band,
and H1 represents basically the Γ8 heavy-hole band. In
this basis, ± stands for the sign of the total angular mo-
mentum projection of the E1 and H1 bands, i.e. the sum
of spin and orbital angular momentum. In the absence
of inversion symmetry breaking terms (as the Rashba in-
teraction discussed in Section IV), the Hamiltonian is
separable into two blocks related by time-reversal sym-
metry21

H̃ =

(

h(k) 0
0 h∗(−k)

)

(1)

with h(k) = ǫ(k)I2×2 + da(k)σ
a and da(k) =

(Akx,−Aky,M(k)) where σa is the vector of Pauli ma-
trices. In Eq. (1), ǫ(k) = C −Dk2, and the Dirac mass
term M(k) = M −Bk2 with k2 = k2x + k2y.
The parameters A,B,C,D,M depend on the QW ge-

ometry. Realistic estimates can be made by a comparison
of the effective model with a well established 8× 8 Kane
Hamiltonian28. In the following we will use the param-
eter values A = 375 meV nm, B = −1.120 eV nm2 and
D = −730 meV nm2. The parameter C results only in
a shift of the energy and we can set C = 0 without loss
of generality. The Dirac rest mass M depends on the
QW thickness and M < 0 corresponds to the inverted
(topologically non-trivial) regime whereas M > 0 corre-
sponds to the normal (topologically trivial) regime. This
model is able to describe both the edge states and the
bulk states in a reasonable energy range29. We note that
Eq. (1) is not restricted to HgTe QWs but describes also
other two-dimensional TIs like thin films of Bi2Te3 and
Bi2Se3.

30

For the ring, it is useful to express Eq. (1) in polar

coordinates x = r cos θ, y = r sin θ. Using ~k = −i~∇ and
performing the unitary transformation

U =
1

2
[(τ0 − τz)σy + (τ0 + τz)σ0] , (2)

which changes the old basis into
{

|E1+〉, |H1+〉,
−i|H1−〉, i|E1−〉

}

, we obtain

H = C +Mτzσz + (DI+Bτzσz)∆− iAeiσzθΠ (3)

with

∆(r, θ) =

(

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2

)

(4)

Π(r, θ) =

(

∂

∂r
σx − 1

r

∂

∂θ
σy

)

, (5)

where τa, σa represent the Pauli matrices for the spin
(Kramer’s partners ±) and pseudo-spin (E1, H1) com-
ponents, respectively.
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In the following table we define the orbital angular

momentum l̂z, the pseudo spin operator Ŝz and the time
reversal operator T̂ for the unsymmetrized and the sym-
metrized basis.

H̃ H

l̂z = −i~∂θ l̂z = −i~∂θ
Ŝz = ~

2 τzσz Ŝz = ~

2 τ0σz

T̂ = iτyσ0K̂ T̂ = −τxσyK̂

(6)

We further introduce a total angular momentum operator

as ĵz = l̂z − Ŝz which commutes with H

[H, ĵz ] = 0. (7)

The eigenstates of ĵz therefore can be used for the ring en-
ergy eigenstates. Consequently, we can write the spinors
for the two blocks (τ = ±1) of H as

Ψm,τ(r, θ) =
eimθ

√
2π

(

χm,τ
1 (r)ei

θ

2

χm,τ
2 (r)e−i θ

2

)

, (8)

where it is easy to verify that

ĵzΨm,τ = ~mΨm,τ . (9)

Now we need to find the radial wave functions χτ
1,2(r).

We note that the diagonal part of H (putting Π = 0) is
solved by Bessel functions. Similarly, if we put ∆ = 0,
the radial solution for each of the two blocks of H can
be expressed in terms of Bessel functions31. We con-
sequently use the ansatz χm,τ

1 (r) = fm+ 1

2

(Kr), with

f proportional to a function of the Bessel family, de-
fined below (this will result in χm,τ

2 (r) ∝ fm− 1

2

(Kr)

as we will show below). To include a magnetic flux Φ
threading the ring hole, we consider the vector potential
~A = (Φ/2πr) êθ. Using the minimal coupling procedure

−i~~∇ → −i~~∇ + e ~A, with −e the electron charge, the
inclusion of the magnetic flux is equivalent to

∂θ → ∂θ + i
Φ

Φ0
(10)

with the magnetic flux quantum Φ0 = h/e. The radial
wave functions satisfy the Bessel differential equation

∆m̄± 1

2

fm̄± 1

2

(Kr) = −K2fm̄± 1

2

(Kr), (11)

with

∆m̄± 1

2

=
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

(

m̄± 1

2

)2

, (12)

where m̄ = m+Φ/Φ0. Using HΨm,τ = EΨm,τ , we arrive
at the following equations

i
R

K

[

∂r +
m̄+ 1

2

r

]

χm,τ
1 = χm,τ

2 (13)

[

(E+DK2)2−(BK2−M)2

A2
+∆m̄+ 1

2

]

χm,τ
1 = 0, (14)

with

R =
AK

(BK2 −M)τ − (E +DK2)
. (15)

Eq. (14) is satisfied, employing the assumption of χm,τ
1

being a Bessel function (see Eq. (11)), if

A2K2 = (E +DK2)2 − (BK2 −M)2. (16)

Therefore, for a given energy E, there are four possible
values for the wave vector K

K2 = −F ±
√

F 2 −Q2, (17)

with

F =
A2 − 2(BM +DE)

2(B2 −D2)
, (18)

Q2 =
M2 − E2

B2 −D2
. (19)

Solutions with K2 > 0 correspond to propagating
modes, and f(r) is therefore described by the Hankel

functions H
(1)
ν and H

(2)
ν . For K2 < 0, instead, f can be

expressed with the modified Bessel functions Kν(|K|r)
and Iν(|K|r) describing an evanescent behavior (expo-
nentially growing and decaying) along the radial direc-
tion.

A. Condition for bulk-propagating modes

In the spectral range inside the bulk bands, we expect
Eq. (17) to produce two real (K = ±K1) and two imagi-
nary K = ±iK2 solutions. Here K1(K2) are the modulus
of the real(imaginary) solutions of K obtained with the
+(−) sign from Eq. (17). The required condition is that

F <
√

F 2 −Q2 (20)

which is satisfied if

Q2 < 0. (21)

In HgTe QWs, |B| > |D|, and the condition is automat-
ically satisfied if |E| > |M |, as expected.
Within this spectral region, the first component of the

spinor in Eq. (8) can be expressed as

χm,τ
1 (r) = ~h~Fm̄+ 1

2

(r), (22)

with

~h = (h1, h2, h3, h4) (23)

~Fν(r) =
(

H(1)
ν (ξ1), H

(2)
ν (ξ1), Iν(ξ2),Kν(ξ2)

)

, (24)
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where ξi = Kir, i = 1, 2. The expression for the second
component can be found from Eq. (13) and using the
following property of the Bessel functions

∂rgν(ξ)±
ν

r
gν(ξ) = ±ηKgν−1(ξ), (25)

with η = +1 for H
(1)
ν , H

(2)
ν and Iν , and η = −1 for Kν .

We obtain

χm,τ
2 (r) = i~hR~Fm̄− 1

2

(r), (26)

with the diagonal matrix R given by

R = diag
(

R
(τ)
1,+, R

(τ)
1,+, R

(τ)
2,−,−R

(τ)
2,−

)

, (27)

where, according to Eq. (15), we define

R
(τ)
i,± =

AKi

(±BK2
i −M)τ − (E ±DK2

i )
, (28)

with ± depending on whether Ki is the modulus of a real
or an imaginary solution of Eq. (17).

B. Condition for edge modes

In order to have four imaginary solutions of Eq. (17),
in the region |E| < |M |, we need, being |B| > |D| and
Q2 > 0, to satisfy the conditions F > 0 and F 2−Q2 > 0.
The latter turns out to be the more restrictive one. In
particular, if we want to observe the Dirac point of the
edge states (of typical value E = −MD/B), the material
parameters have to satify the following inequality32

A

B2 −D2
<

4M

B
. (29)

Again, K1 and K2 are the wave vector moduli of the
four modes with imaginary wave vectors obtained from
Eq. (17) with the + and − sign, respectively.
The spinors for edge states are also obtained from

Eq. (8) with components described by Eqs. (22) and (26),

but with an alternative definition of the basis vector ~Fν

and the diagonal matrix R. They are given by

~Fν(r) = (Iν(ξ1),Kν(ξ1), Iν(ξ2),Kν(ξ2)) (30)

R = diag
(

R
(τ)
1,−,−R

(τ)
1,−, R

(τ)
2,−,−R

(τ)
2,−

)

. (31)

Note that for F 2 − Q2 < 0, also complex solutions
for K2 are possible. However, F 2 − Q2 > 0 as long as

M > A2

B
which is the case for HgTe QWs.

C. Boundary conditions and secular equation

In order to obtain the energy levels and bound states
of the ring, we need to solve the boundary problem. We
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FIG. 2: (Color online) (a) Upper (U) and lower (L) bands
of the edge states for a ring with inverted Dirac mass M =
−10 meV, radius a = 500 nm and width w = 200 nm for spin
up and down blocks with solid (τ = 1) and dashed (τ = −1)
lines. Squares and circles represent the internal and external
boundary (helical) edge states calculated independently, filled
for τ = 1 and empty for τ = −1, which would result from a
very large width w where no minigap develops. They could
also describe a hole and disk geometry. (b) Radial probability
density ρ(r) = |Ψ(r)|2 of the edge states of the upper band
with τ = 1, for m̄ = 0 and m̄ = ± 1

2
.

assume a ring of radius a and width w and impose van-
ishing boundary conditions at r = a± w

2

χm,τ
1

(

a± w

2

)

= 0 (32)

χm,τ
2

(

a± w

2

)

= 0. (33)

Details of this calculation can be found in Appendix A.
Here we just note that the four former conditions plus

the normalization of the wave function fix ~h and lead
to a transcendental secular equation for E. We here re-
mark in connection with rings in graphene31, that the
inclusion of quadratic terms allows for a formulation of
vanishing boundary conditions which is not allowed in
the Dirac equation (only linear terms in k) of graphene
as the wave function would vanish identically. There, a
confinement on a circle can be formulated with an infinite
mass boundary condition31,33.
For the bulk-propagating region we obtain the secular

equation described by Eq. (A1), while for the edge states
we obtain Eq. (A2). For a fixed m and τ , the secular
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FIG. 3: (Color online) Minimal and maximal values of the
minigap (it is a periodic function of the magnetic flux) for
a ring with radius a = 500 nm as a function of w between
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FIG. 4: (Color online) Low-lying bound states corresponding
to m̄ = 1

2
, τ = 1, a Dirac rest mass of M = ±10 meV, ring

radius a = 500 nm and width w = 100 nm. The change of
sign of the mass term is accompanied by the disappearence of
the edge states and by a non-trivial shift of all eigenenergies.

equation is numerically solved. In the bulk-propagating
region we obtain the eigenvalues En,m,τ where n = ±2,
±3, . . . represents a radial quantum number, positive for
conduction band modes and negative for valence band
modes. The corresponding eigenstates are given by the
spinors Ψn,m,τ or in ket notation |n,m, τ〉. We can think
of the edge states, when system parameters allow their
existence, as the system’s eigenstates with n = ±1.

III. BOUND STATES AND PERSISTENT

CURRENT OF THE RING

When the mass parameter M is negative (the topo-
logical non-trivial regime), our model accepts solutions
in the (inverted) gap region E ∈ (M,−M). This solu-
tions are exponentially localized near the external and
internal boundaries r = a ± w

2 respectively, and are ad-
dressed as edge states. In Fig. 2(a) we show the edge
state dispersion for a relatively large and wide ring of
radius a = 500 nm and width w = 200 nm calculated
with Eq. (A2) for a boundary condition including both
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L
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16

magnetic flux HF�F0L

E
Hm

eV
L

FIG. 5: (Color online) Dispersion curves for the first bulk-
conducting mode n = 1, as a function of the magnetic flux for
a ring in the inverted regime (M = −10 meV) of radius a =
100 nm and width w = 75 nm (note that this mode originates
from the edge states pushed into the bulk conduction band
by their overlap). States for m = ±1/2, ±3/2 and ±5/2 are
shown, in (a) for the block τ = 1 only, and in (b) for both
blocks τ = ±1 with continuous and dashed lines, respectively.

ring edges. The physical content of this picture can be
undestood remembering that for a given magnetic flux Φ,
the eigenstates of the ring are found at m̄ = m + Φ/Φ0

with m an half-odd integer. It means that with Φ we
can move the eigenstates along the dispersion curves in
Fig. 2(a), always having two subsequent states at uni-
tarily spaced intervals on the m̄-axes, i.e. for Φ = 0 we
have states at m̄ = ±1/2. The curves with squares and
circles represent the internal and external edge states re-
spectively, as calculated from the decoupled boundary
conditions with Eqs. (A8) and (A5). We can also think
of them as originated from edge states of a disk (external
one) and of a hole in a plane (internal one). Their dis-
persions are different because they are centered on two
different effective radii (approximately at r = a ± w

2 ).
We note that their slope (which is an energy) is in fact

approximately given25 by A
r

√

B2−D2

B2 . This emerges nat-

urally from the fact that the radial wave function has to
close on itself in a roundtrip along the circumference.

When the ring width is small enough to permit a fi-
nite overlap of the helical edge states, internal and ex-
ternal edge states get mixed. Consequently, as shown in
Fig. 2(a), the dispersion curve is modified into the anti-
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FIG. 6: (Color online) Spin-dependent persistent currents cal-
culated for N = 1, 2, 3 and 4 electrons in the ring’s first
bulk-propagating mode as a function of the magnetic flux for
a ring of radius a = 100 nm and width w = 75 nm. In (a)
only the spin block τ = 1 is occupied, while in (b) electrons
can occupy both spin-blocks.

crossing upper and lower bands separated by a minigap,
as it was also predicted for a straight TI ribbon of finite
width32. In Fig. 2(b), we show the radial probability
density of the edge state spinors of states at different
points along the upper band for τ = 1. This picture
gives us an understanding of the localization properties
of the edge states near the minigap. The state at m̄ = 0
(at the anticrossing) is equally shared between the in-
ternal and external edges. Away from this anticrossing
point (we plot the states with m̄ = ± 1

2 ), where the dis-
persion curve resembles that of the uncoupled edges, the
edge states are strongly localized near one or the other
boundary. This means that we are able to drag an elec-
tron from one edge of the ring to the other by tuning Φ.
Conversely, for the lower band m̄ = ± 1

2 states exhibit op-
posite localization properties as compared to the upper
band. The implications of this tunability for quantum
information processing will be discussed in Section V.

For certain values of the flux (when a state is in corre-
spondence with m̄ = 0), as expected, the minigap expo-
nentially shrinks with increasing w (see Fig. 3). However
in a fully confined system, as our ring, the discreteness of
levels can also lead to a saturation of the minigap at a fi-
nite value. For sufficiently small w the edge modes can be
pushed into the bulk-region, losing their edge-character
and becoming the first of the bulk-propagating modes.

In this case, the minigap is comparable or larger than
the bulk gap itself (i.e. larger than 2|M |).
The presence of the edge states with energy in the bulk

gap depends on the negativity of the Dirac rest mass
M , while for positive M only bulk states exist. But the
change of the mass sign has also effects on the bulk en-
ergy levels as can be seen in Fig. 4, which shows the
lowest lying eigenergies with m̄ = 1

2 and τ = 1 for a
ring of radius a = 500 nm, width w = 100 nm and for
M = ±10 meV. Therefore the presence of the topological
insulator phase in confined systems can also be deduced
from bulk-propagating properties as measured by optical
spectroscopy or tunneling transport experiments through
the ring.
In Fig. 5, we show the dispersion curve as a function of

the magnetic flux for the first bulk-conducting mode for
a relatively small and narrow ring of radius a = 100 nm
and width w = 75 nm. We select a ring of small radius in
order to enhance the magnitude of the persistent current,
which are proportional to the derivative of the dispersion
curves with respect to the magnetic flux, which is, in
turn, inversely proportional to a. The small confinement
length w leads, instead, to well separated eigenvalues cor-
responding to different radial quantum numbers n. The
energy level spacing, between energy eigenvalues of dif-
ferent radial quantum number n, scales, in fact, with 1/w
(see Fig 9). In Fig. 5(a) we show the states of the spin
block τ = 1 with m = ±1/2, ±3/2 and ±5/2. As can be
seen, also in the absence of the magnetic field, effective
time reversal symmetry (m → −m) is broken within a
single block. The presence of the second spin-block re-
stores time reversal symmetry when Φ = 0, and states
with the same n, and opposite τ and m are time reversal
(or Kramer) partners. The dispersion curve is periodic
in Φ with periodicity given by the flux quantum Φ0.
The persistent current at zero temperature is given by

I = −
∑

n,m,τ

∂En,m,τ

∂Φ
, (34)

where the sum runs over all occcupied states. In Fig. 6
we show the persistent current for a ring with the same
parameters as used for Fig. 5. We consider an electron
occupation number N up to 4 occupying the first radial
mode with positive energy, subtracting the current con-
tribution coming from all states below. In Fig 6(a) we
consider injection of spin-polarized electrons correspond-
ing to τ = 1. As a consequence, the persistent current is
finite even in the absence of a magnetic flux, and its sign
directly reflects the spin polarization. While in Fig 6(b),
both blocks can accommodate electrons and, accordingly,
the current vanishes at zero magnetic field, respecting
the time reversal symmetry of the model. The currents
are periodic in Φ with the same periodicity as the dis-
persion curves in Fig. 5, and show the presence of kinks
whenever different bands cross and electrons are forced
to move from one to the other in order to maintain the
groundstate of the system.



7

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ
æ
æ
æ
æ
æ
æ
æ æ æ æ æ æ æ æ æ

æ

æ

æ

æ

æ

æ

æ

æ
æ
æ
æ æ

æ
æ
æ

æ

æ

æ

æ

æ

æ

æ æ æ æ æ
æ æ

æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ æ

æ
æ
æ
æ
æ
æ
æ
æ
æ
æ æ æ

æ

æ

æ

æ
æ
æ
æ æ æ æ æ æ æ æ æ æ

æ æ
æ
æ
æ
æ
æ
æ
æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ
æ
æ
æ æ

æ
æ
æ

æ

æ

æ

æ

æ

æ

æ æ æ æ æ
æ æ

æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ æ

æ
æ
æ
æ
æ
æ
æ
æ
æ
æ æ æ

æ

æ

æ

æ
æ
æ
æ æ æ æ æ æ æ æ æ æ

æ æ
æ
æ
æ
æ
æ
æ
æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

0.0 0.2 0.4 0.6 0.8 1.0
10.6

10.8

11.0

11.2

11.4

11.6

11.8

12.0

magnetic flux HF�F0L

E
Hm

eV
L

m=-1�2 m=-1�2

m=1�2m=-3�2

FIG. 7: (Color online) Details of the dispersion curve of the
first radial mode in the presence of the Rashba term (α0 =
20 meV nm) for a ring of radius a = 100 nm and width
w = 75 nm. Lines are dispersion curves without the Rashba
term and points after its inclusion (a thin line is used to link
the points to emphasize the spin-splitted bands). The Rashba
term induces a splitting at the crossings of |1,− 3

2
, 1〉 with

|1, 1

2
,−1〉, and of |1,− 1

2
, 1〉 with |1, 3

2
,−1〉 (not visible in this

range of Φ).

The persistent currents in Fig. 6 are calculated for an
edge state (n = 1) pushed into the bulk conduction band
by the overlap between internal and external edge states.
But generally, a similar behavior is observed for other
bulk states of the ring (|n| > 1, not shown), where a
spin-selective behavior is not as obvious as in the contri-
bution from the helical edge states. The reason for this
phenomenon is that the Dirac massM(k) breaks the sym-
plectic symmetry ~p → −~p and σ → −σ in a single block.
In graphene rings with a smooth ring boundary the same
symmetry is broken and leads to a valley-dependent per-
sistent current31. This physics in principle would allow
to use rings in topological insulators as spin-detectors
where the direction of spin is mapped to the direction of
the persistent current. Indeed currents shown in Fig 6(a)
and (b) are well in the range accessible to experiments8.
The persistent current has also been calculated for a disk
in an homogeneous magnetic field34. However, the topol-
ogy of that system is qualitatively different from a ring.

IV. RASHBA SPIN-ORBIT INTERACTION

We consider the inclusion of a Rashba spin-orbit inter-
action as derived in Ref. 35, retaining only terms to first
order in k, which gives the most dominant contribution.
We use cylindrical coordinates and transform it into the
symmetrized basis using Eq. (2). We obtain

HR = α0
(σ0 + σz)

2
(τykx − τxky) (35)

≡ iα0
(σy − iσxτz)

2
e−iτzθ

(

τy∂r − τx
∂θ
r

)

, (36)

where α0 is the Rashba coefficient. In particular, the
Rashba interaction in HgTe quantum well can be tuned

with a gate voltage, so that the induced spin-splitting
gap varies from zero up to tens of meV36.
We note that HR does not commute with H and ĵz,

and therefore will in general mix energy eigenstates of
H . We can still find a conserved physical quantity by
noting that the only effect ofHR is to couple |E1,+〉 with
|E1,−〉. This motivates us to define the total angular
momentum restricted to the E1-band

ĵ(E1)
z = l̂(E1)

z + Ŝ(E1)
z , (37)

where the operators are the same as described in Ta-
ble (6), but their action is now restricted to states of
the E1 band only. This can be obtained by applying the
projector P (E1) = σ0+τzσz

2 to the operators defined in Ta-

ble 6, so that l̂
(E1)
z = l̂zP

(E1) and Ŝ
(E1)
z = ŜzP

(E1). It is

clear that the Rashba term HR must conserve ĵ
(E1)
z and

indeed [HR, ĵ
(E1)
z ] = 0. On the other hand the spinors

Ψn,m,τ are eigenstates of H and eigenstates of ĵ
(E1)
z with

eigenvalue m+ τ

ĵ(E1)
z Ψn,m,τ = ~ (m+ τ)Ψn,m,τ . (38)

Therefore, HR can only couple eigenstates of H from the
blocks τ = 1 and τ = −1 with

m(τ=−1) −m(τ=1) = 2. (39)

The conservation of the “E1-band” total angular mo-
mentum imposes that the only non-trivial matrix ele-
ments exist between the spinors |n,m, 1〉 and |n′,m +
2,−1〉, with n and n′ two quantum numbers of the radial
quantization, and m the quantum number of the total
angular momentum. In the following we will assume the
eigenvalues of two different radial eigenstates (n 6= n′)
to be sufficiently distant in energy, and the Rashba term
sufficiently small, such as to make the mixing induced by
spin-orbit negligible. Actually the strength of the Rashba
term can be tuned in topological insulators, while the dis-
tance between neighbouring radial eigenstates increases
for smaller w, so that we can always restrict ourselves in
a parameter range which makes the previous assumption
valid.
The relevant matrix element of HR is

HR(n,m) = 〈n,m+ 2,−1|HR|n,m, 1〉 =

= iα0

∫

drrχ
(m̄+2,−1)∗
2

(

∂r −
m̄+ 1

2

r

)

χ
(m̄,+1)
1 , (40)

which, using the Bessel function’s property Eq. (25), can
be put in the form

HR(n,m)

=−iα0

∫

drr
[

~hR~Fm̄+ 3

2

]∗

|n,m+2,−1〉

[

~hK ~Fm̄+ 1

2

]

|n,m,1〉
, (41)

with K = diag (K1, ηK1,K2,−K2), and where the coef-

ficients ~h, R and K, in squared parenthesis, are calcu-
lated for the indicated spinors |n,m, τ〉. This expression
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FIG. 8: (Color online) Schematic view of a flux tunable two-
level system. |0〉 and |1〉 states refer to internal and external
edge states, when the splitting hω is the minigap. Another
definition is |1〉 = |τ = +1〉 and |0〉 = |τ = −1〉, when we
are dealing with the spin degree of freedom and the energy
splitting is due to the Rashba interaction.

is valid for both bulk and edge states, for which η = ±1,
respectively.

In Fig. 7, we show the effect of a Rashba term with
α0 = 20 meV×nm on the dispersion relation of the first
bulk modes of a ring with the same parameters as in
Fig. 5. We note that the most significant signature is
the opening of a splitting with an anticrossing behav-
ior between the states |1,− 3

2 , 1〉 and |1, 1
2 ,−1〉, and be-

tween their time reversed ones |1,− 1
2 , 1〉 and |1, 32 ,−1〉

(not shown).

V. COHERENT MANIPULATION OF SPIN

AND EDGE DEGREES OF FREEDOM

An AB-ring in a two-dimensional topological insulator
can be used to process quantum information. Our idea is
to use the magnetic flux to manipulate a two-level system
of states |1〉 and |0〉, which are good system eigenstates,
but which can be coupled by some interaction for spe-
cific values of the flux (see the scheme in Fig. 8). At res-
onance, corresponding to the operational magnetic flux
Φc, the eigenstates of the system can be described by
|U〉 =

(

|1〉+ eiφ|0〉
)

/
√
2 and |L〉 =

(

|1〉 − eiφ|0〉
)

/
√
2,

for the upper (U) and lower (L) band.

We identify in our TI ring two pairs of such two-level
systems. The first one, which is specific to a topological
insulator ring, makes use of the external (|1〉) and internal
(|0〉) edge states, which realize a system similar to that
of a charge-qubit in a double quantum dot37, but where
charge separation is due to the nature of the edge states.
A ring has actually an even number of Kramer’s part-
ner and therefore it is topologically trivial, in the sense
that scattering is allowed between the two different set
of helical edge states localized at the internal and at the
external boundaries. However for sufficiently large w a
degree of the topological protection remains, because the
scattering is suppressed by their localization properties.

As shown in Fig. 2(b), at zero flux, states of the same spin
τ with m = 1/2 and −1/2 are strongly (exponentially)
localized at the external and internal boundary respec-
tively. Let us imagine to inject a state of definite spin τ
into the state m = 1/2 which is strongly localized at a
single edge (see Fig. 2) and then non-adiabatically vary
the flux from zero to the operational value Φc = −Φ0/2,
corresponding to m̄ = 0. In this situation the eigenstates
of the system are equally shared between the two edges
and an energy splitting ~ω (the minigap) arises, due to
the inter-edge overlap. The original state will now be
subjected to Rabi oscillations between the internal and
the external boundaries with angular velocity ω. Read
out of this two-level system could be performed by con-
necting separately, with tunneling contacts, the internal
and external boundary, or measuring the sign of the flux
generated by the persistent current (cf. Fig. 6).

Another, more canonical choice, initially proposed in
Ref. 38 is to use the spin degree of freedom and to asso-
ciate |1〉 = |+〉 and |0〉 = |−〉 with ± referring to the up-
per and lower block of the TI Hamiltonian with τz = ±1.
This two-level system is indeed topologically protected in
a ring for a sufficiently large w, or in a disk or hole geom-
etry, from time-reversal symmetric scattering, but still is
subject to external decoherence sources, like the hyper-
fine interaction with an underlying nuclear spin system.
The tunable Rashba term can offer a way to manipu-
late the spin-degree of freedom39, as implied by Fig. 7,
where a spin splitting gap (~ω) opens between the state
|+〉 = |m, τz = +1〉 and the state |−〉 = |m+2, τz = −1〉
around Φ = Φ0/2. The spin state could be observed by
detected the persistent current, which is opposite for the
two spin states (cf. Fig. 6).

Both spin and edge (charge) two-level systems can
be operated by the magnetic flux. For example, let us
imagine to be initially in state |1〉, in a range of the
flux value for which it is a good eigenstate of the sys-
tem (see Fig. 8). Swiftly turning the magnetic flux
to the operational value Φc, and keeping it there for a
time t, will lead to the final rotated state described by
cos (ωt/2)|1〉+ ie−iφ sin (ωt/2)|0〉. We can switch off the
rotation by restoring the magnetic flux to its initial value.
For the stability of the two-level system it is required that
the dephasing and relaxation time are much larger than
the Rabi period 2π/ω. For these two kinds of two-level
systems (edge and spin), the splitting can be on the order
of 1 meV for reasonable parameters a and w, correspond-
ing to a Rabi period of 4 ps.

One can also exploit the ability to control the local-
ization properties of an edge electron, i.e. the possibil-
ity to move it from the internal to the external bound-
ary by means of the flux, in a ring network. In such a
system, spin qubits can be stored in the edge states lo-
calized on the internal boundary, the position in which
they are protected from the interaction with the network.
Bringing them to the external boundary, corresponds in-
stead to put them in an active position, allowing for their
measurements or for the interaction with qubits on other
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rings.

VI. CONCLUSION

In the present paper we have solved the eigenstates of
a topological insulator for a ring, a disk and a hole struc-
ture, taking HgTe quantum wells as a practical example.
We solved analytically the four-band model with both
linear and quadratic terms, yielding a transcendental sec-
ular equation which we solved numerically as a function
of the magnetic flux threading the ring. We calculated
persistent currents, which can be exploited to measure
the spin state of the system. The effect of a Rashba
spin-orbit term has also been taken into account, show-
ing that its main effect is the opening of a spin-splitting
gap at specific values of the magnetic flux. We proposed
that, in a TI ring, spin and edge (charge) degrees of free-
dom, where either up/down spins or internal/external
edges are used as quantum basis states (two-level sys-
tems), can be coherently processed. Rashba interaction
can be used to manipulate spin, while a finite edge-state
overlap can be exploited to manipulate the edge degree
of freedom, whereas the AB-flux is used to introduce co-
herent dynamics of the two-level system.
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Appendix A: Boundary conditions and secular

equations

1. Bulk-propagating modes

The bulk-propagating eigenstates of a TI ring, of to-
tal angular momentum m, can be written as as a linear
combination of the spinors of the four modes K = ±K1,
and ±iK2 as described by Eqs. (8), (22) and (26). Now,
vanishing boundary conditions (Eq. (32) and (33)) im-
pose the spinor components to be null on the internal
and external border and, toghether with the normaliza-
tion condition, fix both the four coefficients hn and deter-
mine a the secular equation for the system eigenvalues.
We obtain the following secular equation

ℑ(Z) = 0 (A1)

Z =
A2(R2K−(ξ2,1)H+(ξ1,1) +R1K+(ξ2,1)H−(ξ1,1))−A1(R2K−(ξ2,2)H+(ξ1,2) +R1K+(ξ2,2)H−(ξ1,2))

R2A−(K+(ξ2,2)H+(ξ1,1)−K+(ξ2,1)H+(ξ1,2))−R1A+(K−(ξ2,2)H−(ξ1,1)−K−(ξ2,1)H−(ξ1,2))
,

where we adopted the following notations

ξu,v = Kurv; u, v = 1, 2

r1 = a− w

2
; r2 = a+

w

2
g± = gm± 1

2

; g = H,K, I

A1 = I+(ξ2,1)K−(ξ2,1) + I−(ξ2,1)K+(ξ2,1)

A2 = I+(ξ2,2)K−(ξ2,2) + I−(ξ2,2)K+(ξ2,2)

A+ = I+(ξ2,2)K+(ξ2,1)− I+(ξ2,1)K+(ξ2,2)

A− = I−(ξ2,2)K−(ξ2,1)− I−(ξ2,1)K−(ξ2,2)

Once the transcendental equation Eq. (A1) is solved for

the eigenenergy, the coefficients ~h are obtained by solving
the boundary conditions. Note that these results depend
on τ through the terms R1 and R2.
For a given value of the quantum numbersm and τ , the

secular equation gives a series of eigenstates labeled by a
radial quantum number n, with |n| corresponding to the
number of nodes of the second component χ2. Generally
with M < 0 edge states have n = ±1 and bulk propagat-
ing states are labeled by n = ±2,±3,. . . , where ± are for
conduction and valence band states, respectively. When

M > 0 no edge states are present and bulk-propagating
modes are labelled by n = ±1,±2,. . . . As an example, in
Fig. 9, we show the numerical solution for m̄ = 0 of a TI
ring in the inverterd regime (M = −10 meV) of radius
a = 1000 nm and width w = 50, 100 and 200 nm. The
red curve corresponds to ℑ(Z) in Eq. (A1) and its zeros
define the system eigenvalues. Note that the first zero,
for the case with w = 50 nm, corresponds to an edge state
pushed into the bulk conduction band by the overlap be-
tween internal and external edges (and it is therefore the
n = 1 state). The dotted lines correspond to the an-
alytic fit sin

[

K1

(

w −K−1
2

)]

where K1,2 are calculated

at the energy E +M ℓ
w
, with the parameter ℓ ≈ 50 nm.

As can be seen, this fitting curve well reproduces the
spacing between the eigenvalues of the system. The solu-
tions are therefore determined by the energy E for which
K1(w − K−1

2 ) = nπ. With different values of the mass,
we need to adequately fit a new ℓ, which appears to de-
crease with M . For M = 5 and 15 meV the best fit is
given by ℓ = 90 and ℓ = 37 nm, respectively.
In Fig. 10(a) and (b) we show the n = 1 and n = 3

radial modes of the system described in Fig. 9(a), cor-
responding to an energy of 17.2 meV and 96.8 meV, re-
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FIG. 9: (Color online) ℑ(z) defined in Eq. (A1), whose zeros give the eigenvalues of a ring with radius 1000 nm and width 50
(a), 100 (b) and 200 nm (c). The dashed curve is an analytic fitting curve, described in the text.

spectively.

2. Edge states

In the gap spectral regions of a TI ring, we find evanes-
cent solutions (i.e. helical edge states) if M < 0. For a

set of quantum numbersm and τ , Eqs. (8), (22) and (26),
togheter with the definition of Eq. (30), describe the two
spinor components. Now, solving vanishing boundary
conditions (Eq. (32) and (33)) and the normalization of
the wavefunction, we are led to the secular equation

Q = Z (A2)

Q =
A2 (R2K−(ξ2,1)I+(ξ1,1) +R1K+(ξ1,1)I−(ξ1,1))−A1 (R2K−(ξ2,2I+(ξ1,2) +R1K+(ξ1,2)I−(ξ1,2))

R2A− (K+(ξ2,2)I+(ξ1,1)−K+(ξ2,1)I+(ξ1,2))−R1A+ (K−(ξ2,2)I−(ξ1,1)−K−(ξ2,1)I−(ξ1,2))

Z =
A2 (R2K+(ξ1,1)K−(ξ2,1)−R1K−(ξ1,1)K+(ξ2,1))−A1 (R2K+(ξ1,2)K−(ξ2,2)−R1K−(ξ1,2)K+(ξ2,2))

R2A− (K+(ξ1,1)K+(ξ2,2)−K+(ξ1,2)K+(ξ2,1)) +R1A+ (K−(ξ1,1)K−(ξ2,2)−K−(ξ1,2)K−(ξ2,1))
.

This equation fixes the eigenenergies, while the corre-

sponding spinor coefficients ~h can be obtained by solving,
for a fixed energy, the boundary conditions.

a. Isolated boundaries: disk and hole

If we consider w sufficiently large so as to effectively
isolate the two boundaries, or just consider a disk or hole
geometry, we can independently solve the internal (− sign
in Eqs. (32) and (33)) and external (+ sign in Eqs. (32)
and (33)) boundary conditions. The internal boundary
conditions (hole geometry), for themselves, are compati-
ble with h2 = h4 = 0 and give

I+(ξ1,2) + h3I+(ξ2,2) = 0 (A3)

R1I−(ξ2,1) + h3R2I−(ξ2,2) = 0, (A4)

which results in the secular equation

I+(ξ1,2)

I+(ξ2,2)
=

R1

R2

I−(ξ1,2)

I−(ξ2,2)
. (A5)

For a given energy, the coefficients h1 and h3 are then ob-
tained with the same boundary conditions. The problem
of holes in a TI has also been addressed in Ref. 40.

For the external boundary (disk geometry), consistent
with h1 = h3 = 0, we find

K+(ξ1,1) + h4K+(ξ2,1) = 0 (A6)

R1K−(ξ2,1) + h4R2K−(ξ2,1) = 0, (A7)

and, therefore, the secular equation

K+(ξ1,1)

K+(ξ2,1)
=

R1

R2

K−(ξ1,1)

K−(ξ2,1)
. (A8)

Again, the coefficients h2 and h4 are then found imposing
the same boundary conditions for a fixed energy.

Appendix B: Meaning of spin in topological

insulators

The bands of a semiconductor, in the presence of spin-
orbit coupling, are characterized by their real total an-
gular momentum (meaning orbital plus spin). For our
topological insulator we can express the relevant bands
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FIG. 10: (Color online) Radial probability associated with the first and third mode for a ring with a = 1000 nm and w = 50 nm
and with negative Dirac rest mass M = −10 meV.

at the Γ-point as28
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∣
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〉]
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∣

∣
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3
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〉

± Z

∣
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∣

±1

2

〉]

,

where each one of the four pairs obeys
∣

∣Γi,− 1
2

〉

=

−T̂
∣

∣Γi,+
1
2

〉

, with T̂ the time-reversal operator. The
states considered in the effective 4-band model are de-
scribed as24

|E1±〉 = α

∣

∣

∣

∣

Γ6,±
1

2

〉

+ β

∣

∣

∣

∣

Γ8,±
1

2

〉

|H1±〉 =

∣

∣

∣

∣

Γ8,±
3

2

〉

(B1)

with |E1±〉 and |H1±〉 two set of Kramer’s partners. We
can therefore explicitly express the spinor on the block
τ = 1 as

|+〉 = Ψ1 |E1+〉+Ψ2 |H1+〉 (B2)

and similarly we can express its time reversal (we use
here the unsymmetrized basis)

|−〉 = T̂ |+〉 = −Ψ∗
1 |E1−〉 −Ψ∗

2 |H1−〉 . (B3)

We note that the two blocks τ±1, although often referred
to as spin up and spin down blocks, do not exactly corre-
spond to eigenstates up and down of the real spin along

the Z axis. We can indeed, using Eq. (B1), calculate the
real spin expectation value of these two states, obtaining

〈+| ~̂S |+〉 =
β√
3
(Ψ∗

2Ψ1 +Ψ∗
1Ψ2) X̂ +

+
iβ√
3
(−Ψ∗

2Ψ1 +Ψ∗
1Ψ2) Ŷ +

+

(

|Ψ2|2
[

1 + |α|2
]

+
|Ψ1β|2

3

)

Ẑ,

〈−| ~̂S|−〉 = −〈+| ~̂S|+〉. (B4)

It is now clear that if we choose a spin quantization

axis along 〈+| ~̂S|+〉, the orthogonal |±〉 states will corre-
spond to spin up and spin down eigenstates, respectively.
Therefore, in principle, particles injected with spin along
this direction will enter only |+〉 states, conversely the
ones with opposite spin will enter only |−〉 states. We
note moreover that the real spin direction does not de-
pend on the position in the ring, so that it is fixed for
each wavefunction. However the spin quantization direc-
tion depends implicitly on energy through Ψ1 and Ψ2.
In conclusion, in a small enough energy range we can
consider |±〉 as spin states along the spin quantization
axis given by Eq. (B4) and it is meaningful to think of
spin injection or detection processes, where the TI ring is
coupled to external spin-selective materials like ferromag-
netic contacts or helical edge states of a two dimensional
TI.
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