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Abstract 

  In this paper a theoretical model is developed for the dispersion problem in 
porous media in which the flow is one dimensional and the average flow is 
unsteady. The Numerical Solution and graphical illustration of the dispersion 
problem is presented by means of Adomian Decomposition method for 
nonlinear partial differential equations and Mathematica 7.0. 
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1. Introduction 
 
                In a miscible displacement process a fluid is displaced in a porous 
medium by another fluid that is miscible with the first fluid. Miscible  
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displacement in porous media plays a prominent role in many engineering and 
science fields such as oil recovery in petroleum engineering, contamination of 
ground water by waste product disposed under ground movement of mineral in 
the soil and recovery of spent liquors in pulping process. Among Many flow 
problems in porous media, one involves fluid mixtures called miscible fluids. A 
miscible fluid is a single phase fluid consisting of several completely dissolved 
homogenous fluid species, a distinct fluid-fluid interface doesn’t exist in a 
miscible fluid. The flow of miscible fluid is an important topic in petroleum 
industry; an enhanced recovery technique in oil reservoir involves injecting a fluid 
(solvent) that will dissolve the reservoir’s oil. 
 
 
   These problems of dispersion have been receiving considerable attention 
from chemical, environmental and petroleum engineers, hydrologists, 
mathematicians and soil scientists. Most of the works reveal common assumption 
of homogenous porous media with constant porosity, steady seepage flow 
velocity and constant dispersion coefficient. For such assumption Ebach and 
White [4] studied the longitudinal dispersion problem for an input concentration 
that varies periodically with time. Al-Niami and Rushton [1] studied the analysis 
of flow against dispersion in porous media. Hunt [6] applied the perturbation 
method to longitudinal and lateral dispersion in no uniform seepage flow through 
heterogeneous aquifers. Meher and Mehta [8, 9] studied the Dispersion of 
Miscible fluid in semi infinite porous media with unsteady velocity distribution 
from different point of view. 
  
 
  The present paper discusses the approximate solution of the nonlinear 
differential equation for longitudinal dispersion phenomena which takes places 
when miscible fluids mix in the direction of flow. The mathematical formulation 
of the problem yields a non linear partial differential equation. Solution has been 
obtained by using Adomian decomposition method. 
 
 
 
 2. Mathematical Formulation and Solution of the Problem 
 
The problem is to find the concentration as a function of time‘t’ and position ‘x’ 
as the two miscible fluid flow through porous media on either sides of the mixed 
region . The single fluid equation describes the motion of fluid [14]. Here the 
mixing takes place longitudinally as well as transversely at t = 0 and a dot of fluid 
having [ 0C ] concentration is injected over the phase. The dot moves in the 
direction of flow as well as perpendicular to the flow. Finally it takes the shape of 
the ellipse with a different concentration [ nC ]. 
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    Fig: 1. (Dispersion of an instantaneous point source in a uniform flow field) 

 
        According to Darcy’s law the equation of continuity for the mixture in 

case of incompressible fluids is given by ( ) 0. =∇+
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ρρ                                     (1) 

Where ‘ ρ ’is the density for mixture and ‘ v ’is the pore seepage velocity. 
The equation of diffusion for a fluid flow through a homogeneous porous 

medium with out increasing or decreasing the dispersing material Polubarinova 

[10] is given by              ( ) ⎥
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Where ‘C’ is the concentration of a fluid in a porous media. D  is the Coefficient 
of dispersion with nine components ijD . In a laminar flow for an Incompressible 
fluid through homogeneous porous medium, density ’ ρ ’ is constant. Then 

equation (2) becomes,       ( )CDCv
t
C

∇∇=∇+
∂
∂ ..                                                 (3)                                

Let us assume that the seepage velocity v  is along the x- axis, then ),( txuv =  
and the non zero components will be  γ=≈ LDD11  (coefficient of longitudinal 
dispersion) and other Components will be zero Polubarinova [10].  

Equation (3) becomes  2
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Where u is the component velocity along x-axis which is time dependent as well 
as concentration along x axis in 0≥x  direction and 0>LD  and it is the cross 

sectional flow velocity in porous media. ,),(
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txCu =  Where 0>x and for 0 1C ≅  

by Mehta[9].Equation (4) becomes    02
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This is the non linear Burger’s equation for longitudinal dispersion of miscible 
fluid flow through porous media. 
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The theory that follows is confined to dispersion in unidirectional seepage 

flow through semi-infinite homogeneous porous media. The seepage flow velocity 
is assumed unsteady. The dispersion systems to be considered are subject to an 
input concentration of contaminants 0C . The porous medium is considered as 
nonadsorbing. Consider the input concentration is 0C .The governing partial 
differential equation (5) for longitudinal hydrodynamic dispersion with in a semi-
infinite nonadsorbing porous medium in a unidirectional flow field in which γ  is 
the longitudinal dispersion coefficient, C is the average cross-sectional 
concentration, u is the unsteady seepage velocity, x is a coordinate parallel to flow 
and t is time. 

The initial and boundary conditions are 0

1

( ,0) ( ) , 0
(0, ) ( ) 1, 0 ( )

xC x C x e x
C t C t t say

−= = ≥
= = ≥

                 (6) 

Since Concentration is decreasing as x with distance x. Therefore for the sake of 
convenience f(x) is considered as negative exponential function Mehta [9].  
 
 
3. Adomian Decomposition Method A Theoretic Approach 
 
We solve equation (4) for ),( txCLt  and ),( txCLx  separately and we get 

),(),(),( txNCtxCLtxCL xt −= γ                                                                             (7)  
),(),((),( 1 txNCtxCLtxCL tx += −γ                                                                         (8)                                

Let 11 −−
xt andLL  be the inverse operators of ),( txCLt and ),( txCLx  respectively, 

given by the form: 1−
tL = ∫ dt(.)  and 1−

xL  = ∫∫ dxdx(.)                                            (9) 
Then operating both sides of equation (7) and (8) with the inverse operators (9) 
we obtain 
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Where A and B can be determined subjected to the corresponding initial and 
boundary condition (6) and we obtain: A= 1, CBe x =− =1                                    (12) 
Now adding (10) and (11) and dividing by 2, we get the following form 
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We write the parameterized form of (13)  
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and the parameterized decomposition forms of C and NC as 
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Where nA the Adomian’s special polynomials are to be determined. Here the 
parameter λ  looks like a perturbation parameter; but actually is not a perturbation 
parameter; it is used only for grouping the terms. Now substitution of (15) and (16) 
into (14) gives       
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If we compare like power terms of λ  from both sides of equation (17) and taking 
under consideration that parameter λ  is being proved that has the unique value 
λ =1 Cherruault[3] we get  
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Next we determine Adomian’s special Polynomials sAn ' . 

 
4. Determination of Adomian’s Special Polynomials 
 
The nA  polynomials are determined in such a way that each nA  depend only on 

nCCC ,........., 10  for n = 0, 1, 2, 3….n, i.e. 
),,(),,(),( 21022101100 CCCAACCAACAA ===  etc. In order to do this we 

substitute (15) in to (16) and we have 
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From (16) we conclude that the Adomian polynomials have the following form: 
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…………………………………………….. 
 
Hence, the polynomial 0A  has the following form: 
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If we suggest as a solution of C as an approximation of only two terms of the form  
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We use Mathematica 7.0 in order to get numerical results….. 
 
C0=1/2{Exp[-x]+1} 
xC0=D[C0,x] 
tC0=D[C0,t] 
dC0=D[C0,x,x] 
a=Integrate[-{Exp[-2x]+Exp[-x]}/4,x,x] 
b=Integrate[n/2{Exp[-x]}+{Exp[-2x]+Exp[-x]}/4,t] 
u1=Expand[1/2(b+n^-1a)] 
u=Expand [C0+C1] 
p=Expand[C/.{t→.01,n→1}] 
Plot[{p},{x,0,.9}] 
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TABLE-1 

 

x/t 0.001 0.002 0.003 .004 .005 .006 .007 .008 .009 .01 

.1 .81417 .814612 .815054 .815495 .81594 .816378 .81682 .81726 .817704 .81815 

.2 .78647 .786858 .787249 .78764 .78803 .788421 .78881 .78920 .789594 .78999 

.3 .76100 .761349 .761696 .762042 .76239 .762735 .76308 .76343 .763774 .76412 

.4 .73764 .737944 .738251 .738559 .73887 .739174 .73948 .73979 .740096 .74040 

.5 .71623 .7165 .716773 .717047 .71732 .717593 .71786 .71814 .718414 .71869 

.6 .69664 .696879 .697122 .697366 .69761 .697853 .69809 .69834 .698583 .69883 

.7 .67873 .678947 .679164 .679382 .67960 .679816 .68003 .68025 .680467 .68068 

.8 .66238 .662577 .66277 .662964 .66316 .663352 .66354 .66374 .663933 .66413 

.9 .64747 .647644 .647817 .647991 .6482 .648337 .64851 .64868 .648856 .64903 

1 .63388 .634035 .63419 .634345 .6345 .634655 .63481 .634965 .635119 .63527 

 

 

 

TABLE-2 

  x/t .01 .02 .03 .04 .05 .06 .07 .08 .09 .1 

.1 .818145 .822562 .826978 .831395 .835811 .840228 .844645 .84906 .85348 .85789 

.2 .789985 .793893 .797801 .801709 .805617 .809525 .813434 .81734 .82125 .82516 

.3 .764121 .767585 .771049 .774513 .777977 .781441 .784905 .78837 .791833 .79530 

.4 .740404 .743479 .746555 .74963 .752705 .755781 .758856 .76193 .765007 .76808 

.5 .718687 .721421 .724156 .72689 .729624 .732359 .735093 .73781 .740562 .74330 

.6 .698827 .701261 .703696 .70613 .708565 .710999 .713434 .71587 .718303 .72074 

.7 .680684 .682854 .685025 .687195 .689366 .691536 .693706 .69588 .698047 .70022 

.8 .664126 .666064 .668001 .669939 .671876 .673813 .675751 .67769 .679625 .68156 

.9 .649029 .650761 .652492 .654223 .655954 .657686 .659417 .66115 .662879 .66461 

1 .635274 .636823 .638372 .63992 .641469 .643018 .644567 .64612 .647664 .64921 
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Graph-1 0<x<1 for fixed t=0,.01,----.    Graph-2 0<t<.1, for fixed x=0,.1,---1                                      
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Graph-3  0<x<1 for fixed t=0,.001,----.01  Graph-4 0<t<.01, for fixed x=0,.1,---1                
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Graph-5 for 0<x<1, 0<t<.1                        Graph-6 for 0<x<1, 0<t<.01                                     
 Plot3D[{1/2-Exp[-2x]/32+(3Exp[-x])/8+1/8Exp[-2x]*t+(3Exp[-x]*t)/8},{x,0,1},{t,0,.1}]         
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Exact Solution 
 
Graph-7 for 0<x<1, 0<t<.01                              Graph-8 for 0<x<1, 0<t<.1 
 

                                                                     

 
 
Conclusion Remark 
 
Numerical and Graphical solutions have been developed for predicting the 
possible concentration of a given dissolved substance in unsteady unidirectional 
seepage flows through semi-infinite, homogeneous, isotropic porous media 
subject to the source concentrations that vary negative exponentially with distance. 
Finally here we make a comparison of numerical solution with the approximate 
solution which shows Concentration decreases with distance and slightly 
increases with time. The solution express by equation (21) show that approximate 
value of concentration (up to two terms) at any x for t >0. The analytical 
expressions obtained here are useful to the study of salinity intrusion in 
groundwater, helpful in making quantitative predictions on the possible 
contamination of groundwater supplies resulting from groundwater movement 
through buried wastes. 
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