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Abstract 
 
An analytical approach is used to derive a new exact solution of a problem of one-
dimensional unsteady adiabatic flow of a plane and cylindrical strong shock wave 
propagating in a plasma whose density ahead of the shock front is assumed to 
vary as a power of the distance from the source of explosion. The plasma is 
assumed to be an ideal gas with infinite electrical conductivity permeated by a 
transverse magnetic field. A complete investigation is made for the cases of 
planer, and cylindrical flows in the presence of magnetic field. An analytical 
solution of the problem is obtained in terms of flow variables velocity, density and 
the pressure in the presence of the magnetic field which exhibits space time 
dependence. Also, the analytical expression for the total energy under the 
influence of transverse magnetic field is determined. 
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1 Introduction 
 
The occurrence of shock waves in a gaseous medium has drawn the attention of 
several investigators during past decades. The propagation of shock waves under 
the influence of strong magnetic field constitutes a problem of great interest to 
researchers in a variety of fields such as astrophysics, nuclear science, geo-
physics and plasma physics. Korobeinikov [1], Greifinger and Cole [2] and 
Hunter [3] studied the problem of blast wave propagation in a homogeneous and 
inhomogeneous medium. The pioneering studies of this phenomenon were carried 
out by Taylor and Sedov [4] and their numerical solution based on self-similarity 
consideration were found in good agreement with experimental results. A number 
of analytical solutions for the blast wave propagation have been obtained by 
Rogers [5], Bach and Lee [6], Laumbach and Probstein [7], Sachdev [8], 
Poslavskii [9], Chisnell [10] and Murata [11]. Laumbach and Probstein [7] and 
Sachdev [8] used an approach, based on the shock propagation theory of Brinkley 
and Kirkwood [12], which permits a simple analytical solution to be obtained 
directly from the governing equations. Chisnell [10] provided an analytical 
solution of the problem of converging shock waves by the study of singular points 
of the differential equations. 
A further contribution towards the determination of exact solution of gasdynamic 
equations, involving discontinuities, via Lie group transformation has been carried 
out by many authors e.g. Oliveri and Speciale [13-14], Radha and Sharma [15], 
Pandey et al. [16], Singh et al. [17] . Oliveri and Speciale [13-14] used 
substitution principle to obtain an exact solution for unsteady equation of perfect 
gas and ideal magnetogasdynamic equation. 
Rogers [5] and Murata [11] obtained the closed form solution for spherical blast 
wave problem, when the density of the gas ahead of the shock front varies as a 
power of the distance from the origin. Singh et al. [17] used the method of Lie 
group transformation to obtain an approximate analytical solution to the system of 
first order quasi-linear partial differential equations that governs a one 
dimensional unsteady planer, cylindrically symmetric and spherically symmetric 
motion in a non-ideal gas, involving strong shock waves.    
In the present paper, we have considered the problem of propagation of a one-
dimensional unsteady non-planer flow of an inviscid ideal gas permeated by a 
transverse magnetic field with infinite electrical conductivity. It is assumed that 
mass density distribution in the medium follows a power law of the radial distance 
from the point of explosion. An analytical solution of the problem is obtained in 
terms of flow variables velocity, density and the pressure in the presence of the 
magnetic field. Also, the analytical expression for the total energy under the  
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influence of transverse magnetic field is determined. To our knowledge, such an 
analytic solution influenced by the transverse magnetic field, which exhibits space 
time dependence has not been discussed in the past. 
     
 
2 Formulation of the Problem 
 
Assuming the electrical conductivity to be infinite and the direction of the 
magnetic field orthogonal to the trajectories of the gas particles, the governing 
equations for a one-dimensional unsteady non-planer motion can be written as 
[1,18] 

,0/)1(,,, =−+++ rumuu rrt ρρρρ              (1) 
,0),,(,, 1 =+++ −

rrrt hpuuu ρ               (2) 
,0),,(,, 2 =+−+ rtrt uaupp ρρ                          (3) 

,0/)1(2,2,, =−+++ rumhhuuhh rrt              (4) 
where u is the gas velocity; ρ  is the density; p  is the pressure;γ  is the constant 
specific heat ratio; t  is the time; r  is the single spatial co-ordinate being either 
axial in flows with planer geometry, or radial in cylindrically symmetric flows; 

ργ /2 pa = is the equilibrium speed of sound ; h  is the magnetic pressure defined 
by 2/2Hh μ=  with μ  as magnetic permeability and H  is the transverse 
magnetic field; 1=m  and 2 correspond, respectively, to planer and cylindrical 
symmetry. A comma followed by a subscript r  or t  denotes partial differentiation 
unless stated otherwise. The system of equation (1)-(4) is supplemented with an 
equation of state ,RTp ρ=  where R is the gas constant and T is the temperature. 
It is well known that a shock wave may be initiated in the flow region, and once it 
is formed, it will propagate by separating the portions of continuous region. At 
shock, the correct generalized solution satisfies the Rankine- Hugoniot jump 
conditions. Let )(tr χ=  be the strong shock with the shock speed dtdW χ=  
propagating into the medium characterized by, 

.)(),(,0),( 000 rhhrppur ==== ρρ                                                      (5) 
Therefore, the boundary conditions at the shock front can be written as [1] 
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where 0a  is the sound speed of the undisturbed medium, 2
00 /2 WhCo ρ=  is the 

shock Cowling number and the suffix 0  denote evaluation of the flow parameters 
just ahead of the shock respectively. 
Since the initial energy input 0E  of explosion is very large, the shocks speed 

0aW >>  so that 00 →Wa in the strong shock limit. 
Therefore, the Rankine-Hugoniot jump conditions in the case of strong shock 
waves can be written as 
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It is assumed that at time 0=t , an explosion takes place over a plane or along a 
line accompanied by release of a finite amount of energy E . A plane or cylindrical 
strong shock is instantaneously formed which begins to propagate outward into a 
perfectly conducting gas at rest. The density 0ρ  is assumed to vary as the inverse 
power of the radial distance from the source of explosion  

δχρρ −= c0 ,                                                                                                        (12) 
where δ  and cρ  are constants. 
The total energy E  inside a blast wave is equal to the energy supplied by the 
explosive and thus constant. The total energy is given by the expression 
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which represents the sum of the kinetic and internal energies of the gas. 
 
 
3. Analytical Solution with Shocks 
 
With the help of equation (10), equation (11) can be written as 
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After using equation (14), the governing equations (2), (3) and (4) can be 
transformed to 
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Using equations (15) and (16), and then integrating with respect to r , we get 

,)()1( tur m ξρ =−−                                                                                               (18) 
where )(tξ is an arbitrary function of integration. 
Using the solution (18), equation (1) reduces of the form 
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On solving equations (16) and (19), we have 
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Plugging in equation (20) in equation (19) and then integrating, we obtained 

λ

ξ
ξ

t
0= , where

1

)1(
)1)(1(1

)1(
)3)(1(1

−

⎭
⎬
⎫

⎩
⎨
⎧

+
−−

+
⎭
⎬
⎫

⎩
⎨
⎧

+
+−

+=
γ

γ
γ

γλ mm ,                            (21) 

and 0ξ  is arbitrary constant.  
With the help of boundary condition (10), we can obtain the analytical expression 
of the distance χ  as  
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Using the Rankine-Hugoniot jump condition (10) and power law of the density 
(12) gives a value of the constant δ  as 
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Consequently, with the help of equation (20), the analytical solutions of the flow 
variables and total energy in the presence of the magnetic field is given by 
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In view of above solution (24), the analytical expression for the total energy is 
given by 
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It may be noted here that in the absence of the magnetic field, the analytical 
solutions (24) and (25) obtained in this manner which exhibits space time  
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dependence, is a well known solution to the blast wave problem under the 
consideration that the energy released in the blast wave is conserved, is carried out 
by various approaches {[1],[11]}. 
 
 
4 Concluding Remarks 
 
In the present investigation, a simple analytic method is used to obtain the 
solution of the problem of the propagation of a one-dimensional unsteady 
adiabatic non-planer shock wave through a perfectly conducting inviscid gas 
permeated by a transverse magnetic field. The density ahead of the shock front is 
assumed to vary according to power of the distance from the source of explosion. 
Here, it is assumed that the atmospheric pressure and magnetic pressure satisfy 
the related Rankine-Hugoniot conditions automatically. Then, the governing 
equations are integrated to provide the shock front as a function of time. An exact 
solution of the problem in form of power in the distance and time is obtained. It 
may be remarked that in the absence of the magnetic field, such an analytical 
solutions, are in close agreement with earlier results obtained {[1], [11]}.  
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