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Abstract 

 
In this paper, a powerful analytical method, called He’s amplitude-frequency 
formulation (HAFF) is used to obtain a periodic solution of nonlinear oscillators 
differential equation that governs the oscillations of a conservative autonomous 
system with one degree of freedom. 
We illustrate the usefulness and effectiveness of the proposed technique.  Some 
examples are given to illustrate the accuracy and effectiveness of the method. The 
method can be easily extended to other nonlinear systems and can therefore be 
found widely applicable in engineering and other science. 
  
Keywords: Nonlinear Oscillators, He’s Amplitude-Frequency Formulation, 
Periodic Solution. 
  
 
1-  Introduction 
  
The study of nonlinear problems is of crucial importance not only in all areas of 
physics but also in engineering and other disciplines, since most phenomena in 
our world are essentially nonlinear and are described by nonlinear equations. It is  



322                                                                             J. Langari and M. Akbarzade 
 
 
very difficult to solve nonlinear problems and, in general, it is often more difficult 
to get an analytic approximation than a numerical one for a given nonlinear 
problem. There are several methods used to find approximate solutions to 
nonlinear problems such as modified Lindstedt–Poincare method [9-12], 
variational iteration method [13], homotopy perturbation method [1-5] and energy 
balance method [6-8, 16] were used to handle strongly nonlinear systems. He’s 
amplitude-frequency formulation (HAFF) was paid attention recently; it is proven 
this method is very effective to determine the angular frequencies of strongly 
nonlinear oscillators with high accuracy [15]. Some examples reveal that even the 
lowest order approximations are of high accuracy. 
 
 
2- Basic idea  
 
First we consider the motion of a ball bearing oscillation in a glass tube that is 
bent into a curve such that the restoring force depends upon the cube of the 
displacement u. the governing equation, ignoring frictional losses, is [14]: 
 

 
 

Fig. 1. The motion of a ball bearing oscillation 
 

3 0 ,  (0)  ,  (0) 0u u u A uε′′ ′+ = = =  
(1) 

According to He’s amplitude-frequency formulation [15], we choose two trial 
functions 1 cosu A t= and 2 cosu A tω= where ω  is assumed to be the frequency 
of the nonlinear oscillator Eq (1). Substituting 1u  and 2u into Eq. (1), we obtain, 
respectively, the following residuals: 

3 3
1 cos( ) cos ( )R A t A tε= − +  (2) 

And 
2 3 3

2 cos( ) cos ( )R A t A tω ω ε ω= − + , (3) 

If, by chance, 1u  or  2u , is chosen to be the exact solution, then the residual, Eq. 
(2) or Eq. (3), is vanishing completely. In order to use He’s amplitude-frequency 
formulation, we set: 

1

3

 
4

11 1 1 0
1

1 32
4 4 16cos( )  , 2

T A A
R R t dt T

T

π ε π
π

π

⎛ ⎞− +⎜ ⎟
⎝ ⎠= = =∫  

(4) 

And: 
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( )2
2 2

 
4

22 2 2 0
2

3 44 1 2cos( )  ,  
8

T A A
R R t dt T

T

ε π ω π πω
π ω

− +
= = − =∫  

(5) 

Applying He’s frequency-amplitude formulation [15], we have: 
 

2 2
2 1 22 2 11

22 11

R R
R R

ω ωω −
=

−
 

(6) 

Where: 
1 21 , ω ω ω= = (7) 

We, therefore, obtain: 
2 23

4
Aω ε=  

(8) 

The first order approximate solution is obtained, which reads: 
23

4
Aω ε=  

(9) 

Its period can be written in the form: 
1 1 1

2

2 4 7.2552
3 3
4

T A A
A

π π ε
εε

− − −= = =  
(10) 

The exact period [14] is -1 17.4163T A ε −= .  Therefore, it can be easily proved that 
the maximal relative error is less than 2.17%. 
If there is no small parameter in the equation, the traditional perturbation methods 
cannot be applied directly. 
 
3-  Applications 
 
In order to assess the advantages and the accuracy of the He’s amplitude-
frequency formulation (HAFF); we will consider the following examples. 
 
3.1-  Example 1 
 
We consider the the well-known Duffing equation [14]: 
 

 
 

Fig. 2. The physical model of Duffing equation 
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3 0 u u uε′′ + + =  
(11) 

With initial condition of:   (0)  ,  (0) 0u A u ′= =  
According to He’s amplitude-frequency formulation [15], we choose 
two trial functions 1 cosu A t= and 2 cosu A tω= where ω  is assumed to 
be the frequency of the nonlinear oscillator Eq (11). Substituting 1u  and 

2u into Eq. (11), we obtain, respectively, the following residuals: 

 

3 3
1 cos ( )R A tε=  (12) 

And 
2 3 3

2 cos( ) cos( ) cos ( )R A t A t A tω ω ω ε ω= − + + , (13) 
In order to use He’s amplitude-frequency formulation, we set: 

1 34
11 1 1 0

1

4 3cos( )  ,  2
8

T

R R t dt A T
T

ε π= = =∫  
(14) 

And: 
( )2

2 2
 

4
22 2 2 0

2

3 4 44 1 2cos( )  ,  
8

T A A
R R t dt T

T

ε π ω π π πω
π ω

− +
= = =∫  

(15) 

Applying He’s frequency-amplitude formulation [15], we have: 
2 2

2 1 22 2 11

22 11

R R
R R

ω ωω −
=

−
 

(16) 

Where: 
1 21 , ω ω ω= = (17) 

We, therefore, obtain: 
2 231

4
Aω ε= +  

(18) 

The first order approximate solution is obtained, which reads: 
231

4
Aω ε= +  

(19) 

What is rather surprising about the remarkable range of validity of (19) is that the 
actual asymptotic period asε →∞  is also of high accuracy. 

 / 2

2 0

2 3 / 4lim 0.9294
1 0.5sin

exT dx
T x

π

ε π→∞
= =

−
∫  

(20) 

The lowest order approximation given by (19) is actually within 7.6% of the exact 
frequency regardless of the magnitude of 2Aε . 
 
3.2-  Example 2 
 
We consider the quadratic nonlinear oscillator [17]: 
 2 0 u u uε′′ + + =  (21) 
With initial condition of:   (0)  ,  (0) 0u A u ′= =  
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According to He’s amplitude-frequency formulation [15], we choose two trial 
functions 1 cosu A t= and 2 cosu A tω= where ω  is assumed to be the frequency 
of the nonlinear oscillator Eq. (21). Substituting 1u  and 2u into Eq. (21), we 
obtain, respectively, the following residuals: 

2 2
1 cos ( )R A tε=  (22) 

And 
2 2 2

2 cos( ) cos( ) cos ( )R A t A t A tω ω ω ε ω= − + + , (23) 
In order to use He’s amplitude-frequency formulation, we set: 

1 2 
4

11 1 1 0
1

4 4cos( )  ,  2
3

T AR R t dt T
T

ε π
π

= = =∫  
(24) 

And: 
( )2

2
 

4
22 2 2 0

2

8 3 34 1 2cos( )  ,  
6

T A A
R R t dt T

T

ε ω π π πω
π ω

− +
= = =∫  

(25) 

Applying He’s frequency-amplitude formulation [15], we have: 
2 2

2 1 22 2 11

22 11

R R
R R

ω ωω −
=

−
 

(26) 

Where: 
1 21 , ω ω ω= = (27) 

We, therefore, obtain: 
2 81

3
Aω ε

π
= +  

(28) 

The first order approximate solution is obtained, which reads: 
81

3
Aω ε

π
= +  

(29) 

Application of the Lindstedt–Poincare´ method to Eq. (21) gives the following 
second approximation [27]: 

2

2 2 2

3
2 3

2 2 2

( , ) cos ( )( 3 2cos cos 2 )
6

29 1 1( ) 1 cos cos 2 cos3 ( )
3 48 3 16

Au t A t t t

A t t t O

ε ω ε ω ω

ε ω ω ω ε

= + − + + +

⎡ ⎤− + + + +⎢ ⎥⎣ ⎦

 

(30) 

And: 
2

2 3
2

51 ( ) , 0 1
12
A O Aω ε ε

⎛ ⎞
= − + < <<⎜ ⎟

⎝ ⎠
 

(31) 

The Lindstedt–Poincare´ method usually applies to weakly nonlinear oscillator 
problems [9-12]. The method of He’s frequency-amplitude formulation is capable 
of producing analytical approximation to the solution to the nonlinear system, 
valid even for the case where the nonlinear terms are not ‘‘small’’. And also in 
order to compare with harmonic balance result we write [17]: 
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81
3HB Aω ε
π

= +  

 

 
 
 
 

(32) 

3.3-  Example 3 
We consider the quadratic and cubic nonlinear oscillator [18]: 
 2 3 0 u u u uε′′ + + + =  (33) 
With initial condition of:   (0)  ,  (0) 0u A u ′= =  
According to He’s amplitude-frequency formulation [15], we choose two trial 
functions 1 cosu A t= and 2 cosu A tω= where ω  is assumed to be the frequency 
of the nonlinear oscillator Eq. (33). Substituting 1u  and 2u into Eq. (33), we 
obtain, respectively, the following residuals: 

2 2 3 3
1 cos ( ) cos ( )R A t A tε= +  (34) 

And 
2 2 2 3 3

2 cos( ) cos( ) cos ( ) cos ( )R A t A t A t A tω ω ω ε ω ω= − + + + , (35) 
In order to use He’s amplitude-frequency formulation, we set: 

1 2 34
11 1 1 0

1

4 1 4 6cos( )  ,  2
3 16

T

R R t dt A A T
T

ε π π
π
⎛ ⎞= = + =⎜ ⎟
⎝ ⎠∫  

(36) 

And: 

( )
2 2 24

22 2 2 0
2

4 2cos( ) 32 12 9 12  ,  
24

T AR R t dt A A T
T

πω ε ω π π π
π ω

= = − + + =∫  
(37)

Applying He’s frequency-amplitude formulation [15], we have: 
2 2

2 1 22 2 11

22 11

R R
R R

ω ωω −
=

−
 

(38) 

Where: 
1 21 , ω ω ω= = (39) 

We, therefore, obtain: 
2 28 31

3 4
A Aω ε

π
= + +  

(40) 

The first order approximate solution is obtained, which reads: 
28 31

3 4
A Aω ε

π
= + +  

(41) 

Application of the Lindstedt–Poincare´ method to Eq. (33) gives the following 
second approximation [14]: 

2

2 2 2

3 2 2 2
2 3

2 2 2

( , ) cos ( )( 3 2cos cos2 )
6

174 27 2 3( ) cos cos2 cos3 ( )
3 288 3 32

Au t A t t t

A t t t O

ε ω ε ω ω

ε ε εε ω ω ω ε

= + − + + +

⎡ ⎤⎛ ⎞ ⎛ ⎞− +
− + + + +⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦

 

(42) 
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And: 
 

2
2 3

2
9 101 ( ) , 0 1

24
A O Aεω ε

⎛ ⎞−
= + + < <<⎜ ⎟

⎝ ⎠
 

(43) 

We see that the first approximations obtained in this paper are more accurate than 
Lindstedt–Poincare´ results for large amplitudes. And also in order to compare 
with harmonic balance result we write [18]: 

28 31
3 4HB A Aω ε
π

= + +  

 
 

(44) 

4-  Conclusions 
 
This paper has proposed a new method for solving accurate analytical 
approximations to strong nonlinear oscillations.  
The solution procedure of He’s amplitude-frequency formulation (HAFF) is of 
deceptive simplicity and the insightful solutions obtained are of high accuracy 
even for the one-order approximation. The method, which is proved to be a 
powerful mathematical tool to the search for natural frequencies of nonlinear 
oscillators, can be easily extended to any nonlinear equation, we think that the 
method has a great potential and can be applied to other strongly nonlinear 
equations. 
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