
Adv. Theor. Appl. Mech., Vol. 3, 2010, no. 8, 369 - 383 

 

 

Algebraically Explicit Analytical Solution of Three- 
 

Dimensional Hyperbolic Heat Conduction  
 

Equation 
 

Seyfolah Saedodin 

Department of Mechanical Engineering, Faculty of Engineering,  
Semnan University, Semnan, Iran 

S_Sadodin@iust.ac.ir 

 Mohsen Torabi 

Department of Mechanical Engineering, Faculty of Engineering 
Semnan University, Semnan, Iran 

 Torabi_mech@yahoo.com 

 
Abstract 

In this paper, the three-dimensional hyperbolic effect subjected to a cosine heat 
flux boundary condition is carried out. Equations in rectangular coordinates are 
solved. Analytical solution with method of separation of variables is derived. The 
main aim of this paper is to obtain some possibly explicit analytical solution of the 
(1+3)-dimensional hyperbolic heat conduction equation for given initial and 
boundary condition with method of separation of variables. The temperature 
layers and profiles for various relaxation times in three different examples are 
calculated. Also, the reflection of the heat wave in the solid in some examples is 
shown.  

Keywords: Hyperbolic heat conduction; Relaxation time; Separation of variables 
method; Heat wave reflection  

 
1. Introduction 
 
In the last decades, several experiments have shown that the classical theory of 
heat conduction in solids based on Fourier's law may fail when unsteady processes 
are involved. Indeed, the parabolic heat implies an infinite propagation speed of  
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the heat wave. Wave-like thermal response with finite propagation speed, was 
first observed experimentally in solid 4He by Ackerman et al. [1]. In situations 
which include extremely high temperature gradients, extremely large heat fluxes 
and extremely short transient duration, the heat propagation speeds are finite. In 
order to obtain a theory of heat conduction, compatible with a finite propagation 
speed of heat wave, Cattaneo [5], and Vernotte [22] proposed a modification of 
Fourier's law. Which, is now well known as Cattaneo-Vernotte's constitutive 
equation 
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Where q  is the heat flux vector, τ  is the thermal relaxation time, k  is the 
constant thermal conductivity of the material and T∇  is the temperature gradient. 
If equation (1), combined with the conservation of energy gives the hyperbolic 
heat conduction equation 
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Where 
c

k
ρ

α = , ρ , c  and Δ  are thermal diffusivity, mass density, specific heat 

capacity and Laplace’s differential operator, respectively. 

Many analytical and numerical solutions of equation (2) have been solved in the 
literature. Most researches applied hyperbolic heat conduction equation (HHCE), 
in one-dimensional. Roetzel and Das [15] and Sahoo and Roetzel [17] calculated 
the heat exchanger problems. Tang and Araki [20] computed the hyperbolic fin 
problems under the periodic thermal conditions. As well, the thin film problems 
are also investigated by Tan and Yang [19]. Mullis [13] discussed the rapid 
solidification problems. Barletta and Pulvirenti [2] have obtained the temperature 
field in a solid cylinder with constant as well as exponentially decaying boundary 
heat flux. Lor and Chu [9] analyzed the problem with the interface thermal 
resistance. Zhang et al. [24] processed the hyperbolic conduction model with heat 
source term analytically by the method of Laplace Transform. Torii and Yang 
[21] numerically solved the case of a thin film subjected to a symmetrical heating 
on both sides and Lewandowska and Malinowski [8] solved the same problem 
analytically by the method of the Laplace transform. Moosaie [12] investigated 
the hyperbolic conduction in a finite medium with the arbitrary initial conditions. 
Chen [7] combined the Laplace transform, weighting function scheme and the 
hyperbolic shape function to solve the time dependent HHCE with a conservation 
term. Saleh and Al-Nimr [18] employed Laplace transform, software package 
MATLAP and Taylor series, to solve the one-dimensional hyperbolic equation.  

Few papers have been analyzed HHCE in two or three dimensions. Yang [23] 
developed the two-dimensional HHCE in an arbitrary body-fitted coordinate. 
Chen and Lin [6] formulated a numerical scheme, involving the Laplace transform 
technique and the control volume method for the problem. Zhou et al. [25] 
presented a thermal wave model of bioheat transfer, together with a seven-flux 
model. Saedodin and Torabi [16] investigated two-dimensional hyperbolic heat  
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conduction in a cylinder. To the authors' knowledge, there is only one paper that 
has been solved three-dimensional hyperbolic equation analytically. Barletta and 
Zanchini [3] analytically investigated the HHCE in three-dimensions. They 
applied the Laplace transform technique. 

 In this paper, an analytical expression of temperature field is obtained for a three-
dimensional problem of the hyperbolic heat conduction. In fact, the solution of the 
problem is obtained by employing the method of separation of variables. Using 
our analytical solution, we performed sample calculation of temperature surfaces 
and profiles. Also, on those samples, we mention the reflection of the thermal 
wave. 

Nomenclature 
nfgmk CDDCccaCBA ,,,,,,,,, 211221                       Constant coefficients 

c  heat capacity Greek symbols
Fo  Fourier number α Thermal diffusivity 

k  Thermal 
conductivity 

ρ Mass density 

Δ  Laplace's differential 
operator 

L  Height of the solid ∇ Gradient operator 
1l  Length of the solid τ  Thermal relaxation time 
2l  Width of the solid θ  Dimensionless temperature

Ve  Vernotte number ωεξ ,,  Dimensionless spatial 
coordinates 

zyx ,,  Spatial coordinate 
),,,( Foωεξψ

 
Function employed in Eq. 
(12)  

)(),(
),(),(

FoTZ
YX

ω
εξ             Functions employed  

                              in Eq.(19) 
),,( ωεξφ  Function employed in Eq. 

(12) 
q  Heat flux vector   
t  Temporal coordinate gfnkm μηλγβ ,,,,               Eigenvalues 

T  Temperature κ  Parameter defined by Eq. 
(35a) 

∞T  Ambient 
temperature iκ  Parameter defined by Eq. 

(35b) 

iT  Initial temperature lϑ  Parameter defined by Eq. 
(33) 

 
 
2. Problem statement 

There are many kinds of heat flux boundary conditions in natural and technology. 
For heat flux, Mirahmadi et al. [10] utilized Gaussian distribution heat flux. 
Moosaie [11] utilized the time-dependence cosine heat flux. In this paper, we  
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utilized space-dependence cosine function as a heat flux boundary condition in 
one of the six boundary surfaces. 

2.1. Governing differential equation 

Consider a solid, as shown as Fig. 1. For this case, a three-dimensional unsteady 
HHCE without any heat generation can then be expressed as: 
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2.2. Boundary conditions 

For this case the boundary conditions are: 

0),,,0( =
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∞= TtzyT ),,,( 1l  (4b) 

0),,0,( =
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∞= TtzxT ),,,( 2l  (4d) 

∞=TtyxT ),0,,(  (4e) 

)cos()cos(),,,(
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∂
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2.3. Initial conditions 

Consider the solid initially has been at the ambient temperature. Then: 

∞= TTi  (5) 

Hence the initial conditions are:   

∞= TzyxT )0,,,(  (6a) 

0)0,,,( =
∂
∂ zyxT
t

 (6b) 

 

3. Analytical solution 

We introduce the following dimensionless quantities: 
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Where θ  is dimensionless temperature and ωεξ ,, are dimensionless coordinates. 

Fo is the Fourier number, Ve  is the Vernotte number. In our treatment, we assume: 

L== 21 ll  (8) 

By introducing the dimensionless quantities and Eq. (8), we expressed HHCE as: 
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Also, the boundary conditions are: 

0),,,0( =
∂
∂ Foωεθ
ξ

 (10a) 

0),,,1( =Foωεθ  (10b) 

0),,0,( =
∂
∂ Foωξθ
ε

 (10c) 

0),,1,( =Foωξθ  (10d) 
0),0,,( =Foεξθ  (10e) 

)cos()cos(),1,,( εξεξθ
ω
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∂
∂ Fo  (10f) 

and the initial conditions are: 

0)0,,,( =ωεξθ  (11a) 

0)0,,,( =
∂
∂ ωεξθ
Fo

 (11b) 

 

If we want to apply the separation of variables method, first we should split up eq. 
(9) into a set of simpler problems. Carslaw and Jaeger [4] and Özisik [14] 
determined the solution of Eq. (9) from: 

),,(),,,(),,,( ωεξφωεξψωεξθ += FoFo (12) 

Where the temperature ),,( ωεξφ  is taken as the solution of the following Eqs.: 
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Where the temperature ),,,( Foωεξψ  is taken as the solution of the following Eqs.: 
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The solution of the partial differential equation (13) becomes 
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Where mβ and kγ  are eigenvalues of Eqs. 0cos =mβ  and 0cos =kγ , respectively. 
Using boundary condition (14f) and Utilizing orthogonality condition, the 
constant mka  is given as following Eq.: 
 
 



Algebraically explicit analytical solution                                                           375 

 
 

⎥
⎦

⎤
⎢
⎣

⎡
−
−

+
+
+

×

⎥
⎦

⎤
⎢
⎣

⎡
−
−

+
+
+

×
++

=

k

k

k

k

m

m

m

m

kmkm

mka

γ
γ

γ
γ

β
β

β
β

γβγβ

1
)1sin(

1
)1sin(

1
)1sin(

1
)1sin(

)cosh(

1
2222

 (18)

To solve the partial differential equation (15), we should use the following 
separation ansantz: 

)()()()(),,,( FoTZYXFo ωεξωεξψ ≡ (19)
By substituting the Eq. (19) into the Eq. (15) and subtracting to (19): 
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Here 2λ+  is suitable to our problem. Finally, the problem separately expressed in 
ξ - and ε - and ω - and Fo-directions as follows: 
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Solving the Eqs. (21), (23) and (25) we obtain: 

)cos()( ξλξ nAX = (29)
)cos()( εηε fBY = (30)
)sin()( ωμω gCZ = (31)

Where nλ , fη  and gμ  are eigenvalues of Eqs. 0cos =nλ , 0cos =fη and 0cos =gμ , 

respectively. For the Eq. (27), if 041 22 >− lVe ϑ , we obtain: 
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Where  
2241 lVe ϑκ −=  (35a)

iiκκ =  (35b)
By substituting the Eqs. (32) and (34) into initial condition (28) to eliminating 1c  
or 2c : 
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Substituting the Eqs. (29-31) and (36) into (19), the following equation for 
),,,( Foωεξψ  obtain: 
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Where GFN ,, are maximum value of gfn ,,  when the κ  is real for each loop, 
respectively. Finally, using the Eq. (16g) and orthogonality condition 
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As a good comparison, we should solve the three-dimensional parabolic equation. 
If Fourier’s law holds, i.e. in the limit 0→Ve , the values of iκ are always real and 
therefore, ),,,( FoZTXψ becomes 
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4. Result and discussion 

Using our analytical solution, we performed sample calculations of temperature 
surfaces and profiles, based on Eqs. (12), (17), (37) and (39). The results of 
calculations are presented in Figs. 2-5. 
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4.1. Comparison of surface temperature evolvement obtained from Fourier and 
non-Fourier model with same Fourier number 

Fig. 2 shows the surface temperature profiles for the two cases. The Fourier 
number and ε  that we simulated for are 0.4 and zero, respectively. It can be 
perceived from Fig. 2a that, in Fourier model the speed of propagation is 
infinite.Hence, all of the solid can touch the heat flux. But it can be perceived 
from Figs. 2b and 2c that, because of the non-Fourier effect, the heat wave cannot 
touch the other side of the solid at the moment. In addition, it can be seen that, if 
the Vernotte number increases, the traverse distance of the heat wave decreases. 
Furthermore, Fig. 2 shows that, the more Vernotte number, the less thermal 
penetration depth.  

4.2. Comparison of temperature distribution for non-Fourier model with same 
Fourier number but at different Vernotte number along the ω  direction 

Fig. 3 shows temperature profiles along the ω  direction at 4.0=Fo , 5.0== εξ . It 
can be seen from Fig. 3 that, while Vernotte number is bigger than Fourier 
number, there are many points that don’t feel the effect of heat flux. It can be seen 
that, until the heat flux dosen’t touch the other side of the solid, while the 
Vernotte number increases, the dimensionless temperature decreases. But after the 
heat flux touches the other side of the solid, if the Vernotte number increases, the 
dimensionless temperature is decreases. 

4.3. Comparison of temperature distribution for the non-Fourier model with 
different Vernotte number for the unique point 

Fig. 4 shows temperature profiles at the point 5.0=== ωεξ . It can be seen from 
Fig. 4 that, the higher Vernotte number causes each point to be at initial 
temperature, more. Moreover, it can be perceived again from Fig. 4 that, as much 
as the Vernotte number is higher, the point can get to higher temperature during 
the process. Also the thermal wave reflection, causes the existence of a fracture in 
the thermal profile of the point. In the Fig. 5, the fracture of the thermal wave can 
be observed, for the two Vernotte numbers, 0.3 and 0.5. As can be observed in the 
Fig. 5, the reflective wave with the Vernotte number 0.5, could touch and pass the 
point. Therefore, the temperature profile fracture can be seen in the Fig. 4, for this 
Vernotte number. But for the Vernotte number 0.7, the reflective wave cannot 
touch the point till 1=Fo . Hence in Fig. 4, any fracture cannot be observed in the 
temperature profile. 

 

5. Conclusion 

In this paper, the three-dimensional HHCE was solved analytically with the space-
dependence cosine boundary condition by the separation of variables method. We 
perceived that, the more the Vernotte number, the more the Fourier number 
needed for the solid to reach an equilibrium temperature. In addition we  
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investigated the wave reflection and we observed that due to the difference of a 
Vernotte number in a particular Fourier number, the wave reflection can reach the 
considered point, pass that or before reaching this point, the wave reflection 
occurs in the solid and propagates in the solid. 
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Fig. 1. The solid configuration 
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Fig.2. The surface temperature evolution with 4.0=Fo  for different Vernotte 
number (a) Fourier model ( 0=Ve ) (b) 7.0=Ve (c) 9.0=Ve  
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Fig.3. The distribution for the non-Fourier model with the same Fourier number, 
but at different Vernotte number along the ω  direction 

 

 

 

Fig. 4. The temperature distribution for non-Fourier model with different Vernotte 
number for the unique point 
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(a) 

 

(b) 

Fig. 5. The surface temperature evolution and reflection of the heat wave at 
5.0== εξ  for different Vernotte number (a) 5.0=Ve  (b) 7.0=Ve  
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