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Deterministic endless collective evolvement in active nematics
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We propose a simple deterministic dynamic equation and reveal the mechanism of large-scale
endless evolvement of spatial density inhomogeneity in active nematic. We determine the phase
regions analytically. The interplay of density, magnitude of nematic order, and nematic director
is crucial for the long-wave-length instability and the emergence of seemingly fluctuated collective
motions. Ordered nematic domains can absorb particles, grow and divide endlessly. The present
finding extends our understanding of the large-scale and seemingly fluctuated organization in active
fluids.

Assemblies of active particles, which may be a
physical abstraction of running animals[1], flying
birds[2], swimming bacteria[3], migrating cells[4] or even
cytoskeleton[5], have been served as a new building block
for physicists over the last decade or so to understand
the common collective behavior in these non-equilibrium
systems[6]. Active nematic, a recently proposed concept
for a kind of apolar active particles, is formed by driven
rod-like particles with head-tail symmetry through the
randomly driving force along the rod orientation axis at
the single-particle level[7(a)-7(f)]. The symmetry of the
system is not broken by applying such micro-driven forces
until spontaneous symmetry breaking occurs. Recently,
simulations and experiments in active nematic system
show well-organized collective motions with system-sized
fluctuation[7(b)-7(e)]. For example, splitting and merg-
ing of large-scale self-organized structures are exemplified
in the simulation on active nematics[7(c)]. Experiments
also show large-scale collective swarming and swirling in
driven granular rods monolayer[7(d),7(e)]. These obser-
vations lead us to think about the nature of such seem-
ingly fluctuated collective motions. It is currently un-
clear whether these large-scale collective motions arise in
a deterministic manner or as a result of noises applied
upon the system. Moreover, are they genuinely restless
on large scale and evolving without end? These impor-
tant aspects are still not well addressed in previous stud-
ies.

In the present study, we start from a deterministic
equation to study the mechanism of restless collective
evolution in active nematics. We reveal a new phase that
is characterized by the unattainability of stable steady
state. We first identify that, if the steady state can be
reached, the system investigated here favors spatially ho-
mogeneous state. On the other hand, by taking account
of the interplay between particle density and local ne-
matic order (i.e., magnitude and orientation), the linear
stability analysis shows that homogeneous nematic state
can be unstable to fluctuations of small wave number.
Therefore, the system enters into a chaotic phase region
with no stable steady state. Large-scale spatial inhomo-
geneity of density and nematic order is developed as a
result of long-wavelength instability. The spatial inho-

mogeneity in turn changes the direction of the nematic
director, leading to a non-ending evolvement of the sys-
tem. Numerical flux analysis shows that the particle-rich
nematic domains are surrounded by particles fluxes, and
evolve via absorbing particles from low-density isotropic
medium, growing, and extending itself and breaking into
small pieces. More importantly, all these seemingly fluc-
tuated collective motions giving rise to giant number fluc-
tuations are governed by a deterministic equation which
is essentially free of noises.
We notice that one salient feature of simulation rules

for active nematics by Chate et al.[7(c)] is that particle
rotations are governed through inter-particle nematic in-
teraction while spatial translational movements are free
of such interactions. Experimentally particles are driven
along their long axis, inducing strong longitudinal diffu-
sion, and they can thrust into the media with the supply
of kinetic energy[7(e)]. A simple diffusion equation which
follows these observations can be written as(see [8]):

∂tf(r,u, t) = ∇[D‖uu∇+D⊥(I− uu)∇]f(r,u)

+ R[DrRf(r,u) +DrRw(r,u)f(r,u)],
(1)

where D‖ and D⊥ are the parallel and perpendicular
components of the translational diffusion constants. Dr

is the rotational diffusion constant, and the rotational
operator R is defined by R = u× ∂u[9]. f(r,u, t) is the
particle number distribution function where the spatial
coordinate r and the unit vector u denote the center-
of-mass position and long-axis direction of particles, re-
spectively. w(r,u) is a self-consistent interacting poten-
tial which has ±u-symmetry. In two-dimensional(2-D)
case, the most common form of such interacting po-
tential is the excluded-volume-like interaction w(r,u) =
l2
∫

du′|u× u
′|f(r,u′), where l is the particle length.

The diffusion equation Eq.(1) for active nematics
satisfies particle number conservation with the spa-
tial translational current J

s(r,u) = −D‖uu∇f(r,u) −
D⊥(I − uu)∇f(r,u) and the local rotational current
Jr(r,u) = −DrRf(r,u) − DrRw(r,u)f(r,u), which
are independent of each other. The translational cur-
rent is purely diffusive. In the Fourier space as de-
fined by f(r,u) =

∫

drf̃(k,u)e−ik·r, the spatial fluc-
tuation modes are governed by diffusive decaying term
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FIG. 1: Three phases are separated by the blue curves. Polar
plots (a)-(f) indicate the instability regime for κ and θ. The
locations (D0, δ) of their origins are used as the parameters
to produce these plots. (a) |D0| = 0, δ = 0.8, (b) |D0| = 2/3,
δ = 0.4, (c) |D0| = 0, δ = 0.4, (d) |D0| = 1/3, δ = 0.01,
(e) |D0| = 2/3, δ = 0.01, and (f) |D0| = 0, δ = 0.01. The
black and red branches in polar plots represent the cases of
positive and minus D0, respectively. The inset shows the
corresponding instability modes D−1

r λ+

ρ̃,Sρ
|θ=0 for these polar

plots.

−k2(D‖cos
2ϕ + D⊥sin

2ϕ)f̃(k,u), where ϕ is the angle
k makes with u. For positive D‖ and D⊥, all the spa-
tial fluctuation modes decay except for k = 0 which in-
dicates total particle number conservation. Therefore,
as governed by these decaying diffusive modes, the spa-
tial term suggests that only the spatially homogeneous
state will probably be the stable steady state if there
are no particle sources and sinks in the system and at
the boundaries. However, when D‖ 6= D⊥, we will show
that the spatially homogeneous state may become unsta-
ble to fluctuations in the nematic state. Consequently,
the system is deprived of all possible stable steady state
and becomes restless and evolves endlessly, similar to the
deterministic nonperiodic flow found in turbulence[10].

We first examine the spatially homogeneous dynamic
equation derived from Eq.(1) by neglecting the spatial
derivatives: ∂tf(u, t) = R[DrRf(u) + DrRw(u)f(u)].
Determined by the integration kernal of the self-
consistent interacting potential w(u), f(u, t) has ±u-
symmetry. In spatially homogeneous nematic state, we
assume that the nematic director n0 is in the x-axis,
and thus the distribution function can be expanded as
f(u, t) = (2π)−1ρ

∑∞
n=0 an(t)cos2nφ, where ρ is the par-

ticle number density, φ is the angle of the unit vec-
tor u, and n = 0, 1, 2 · · ·∞. The dynamic equation
of the coefficient an(t) is given by (4Dr)

−1
∂tan(t) =

−n2an+
ρl2n2an

(4n2−1)π+ρl2
∑∞

m=1
nmam(a|n−m|−a|n+m|)

(4m2−1)π , where

a0(t) = 1 and a1(t) = 2S(t), since the number den-
sity ρ =

∫

duf(u, t) and the nematic order parameter
S(t) =

∫

ducos2φf(u, t)/ρ. By setting an = 0 for n ≥ 3,

the truncated dynamic equation for the nematic order

parameter can be written as: ∂tS(t)
4Dr

= (ρ̃− 1)S − 3ρ̃2S3

4(5−ρ̃) ,

where ρ̃ = ρ/ρ∗ is the rescaled number density, and the
critical density ρ∗ = 3π/2l2, beyond which the system
enters into a spatially homogenous nematic state.
Next, we examine the linear stability of such spatially

homogeneous nematic state above ρ∗, by expanding the
number distribution function f(r,u) = (2π)−1ρ(r)[1 +
4(uαuβ − δαβ/2)Qαβ(r)] with the inclusion of the align-
ment tensor Qαβ(r) = S(r)(n̂αn̂β(r)−δαβ/2) where n̂(r)
is the unit vector of the nematic director. We assume
that nematic director is along the x axis of the system.
Small fluctuations of density and nematic director near
the ordered nematic state are given by δρ̃(r) = ρ̃(r)− ρ̃0
and Sδny(r) = Qxy(r), respectively. Here, ρ̃0 = ρ0/ρ

∗

is the reduced bulk particle density, and δny(r) is the
y-component of the deviated nematic director. Noting
that n0(r) = x̂ and |n| = 1, δny(r) is the only possible
small fluctuation of nematic director n(r). The resulting
hydrodynamic equations can be obtained from Eq. (1),
yielding

∂tδρ̃ =
Dp

2
∂2
αδρ̃+

Dn

2
(∂2

x − ∂2
y)(ρ̃S)

+2Dnρ̃0S∂x∂yδny, (2)

ρ̃0S∂tδny =
Dn

4
∂x∂yδρ+

Dp

2
ρ̃0S∂

2
αδny, (3)

∂t[ρ̃S(r)] =
Dn

4
(∂2

x − ∂2
y)ρ̃+

Dp

2
∂2
µ(ρ̃S)

+4Drρ̃(ρ̃− 1)S −Dr

3ρ̃3S3

5− ρ̃
, (4)

where Dp = D‖ + D⊥ and Dn = D‖ − D⊥. It is
easy to see that the homogeneous state is stable to fluc-
tuations of coupled nematic director and density field.
Here we consider the stability of the modes that cou-
ple fluctuations of density δρ̃(r) = ρ̃(r) − ρ̃0 and mag-
nitude of nematic order δSρ(r) = ρ̃(r)S(r) − ρ̃0S0 with
δny = 0 around the homogeneous state (ρ̃0, S0), where

S0 =
√

4(5− ρ̃0)(ρ̃0 − 1)/3ρ̃20. The mode of fluctuations
in Fourier components with wave vector k, defined by
δρ̃(r) =

∫

dkρ̃ke
−ik·r and δSρ(r) =

∫

dkSρke
−ik·r, is

governed by

∂t





ρ̃k

Sρk



=−
1

2









Dpk
2 Dn cos2θk

2

Dn cos2θk
2/2

−8Drρ̃0S0

Dpk
2

+16Drδ













ρ̃k

Sρk



 , (5)

where δ = ρ̃ − 1, θ is the angle between wave vector k

and nematic director n0. The eigenvalues of the coeffi-
cient matrix in Eq.(5) are given by D−1

r λ±
ρ̃,Sρ

= −(8δ +

κ2)/2 ±
√

D2
0κ

4 cos22θ/8− 4σD0κ2 cos2θ + 16δ2, where

σ =
√

(4− δ)δ/3, the rescaled coefficient D0 = Dn/Dp,

and the wave number κ =
√

Dp/Drk. The real part
of λ−

ρ̃,Sρ
is always negative, representing stable decaying
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mode. However, the mode λ+
ρ̃,Sρ

becomes positive when

32(D0σ cos2θ + δ)κ2 + (2−D2
0 cos

22θ)κ4 < 0. The coef-
ficient of κ4 is always positive since |D0| ≤ 1, signifying
that for large enough wave numbers, the fluctuations are
always stable. For small wave numbers which describe
large-scale fluctuations, the stability is controlled by the
coefficient of κ2. Thus when (D0σ cos2θ + δ) < 0, the
system becomes unstable on large scale.

The phase map for (D0, δ) is given in Fig. 1. Be-
tween the isotropic and linearly stable nematic phases,
there is a region where spatially homogeneous nematic
state is unstable. It is denoted as a ‘phase with no sta-
ble state’ to emphasize that the only possible form of
steady-state solution is unachievable there. For different
(D0, δ) within the ‘no stable state’ region, the instabil-
ity mode structures (κ, θ) are given by the polar plots
whose central positions represent (D0, δ). Here, each po-
lar plot is composed of horizontal (black) and vertical
(red) branches enclosing unstable fluctuation modes, cor-
responding to D0 < 0 and D0 > 0, revealing that spatial
inhomogeneities are developed parallel and perpendicu-
lar to the nematic director, respectively. The maximum
values κm of κ for the instability regimes are always in
the directions θ = π/2, 3π/2 for D0 > 0 and θ = 0, π
for D0 < 0, respectively. Generally speaking, κm be-
comes larger when (D0, δ) is far from the phase bound-
ary. The inset of Fig. 1 shows the value of D−1

r λ+
ρ̃,Sρ

,

where for small κ, D−1
r λ+

ρ̃,Sρ
> 0 corresponds to the long-

wavelength instability and the onset of large-scale spatial
inhomogeneity.

What will happen in the phase region where there is
no stable steady state? And how the system evolves in
time? To answer these questions we directly integrate
Eq. (1) numerically in this region using alternative im-
plicit algorithm(see [8]). Starting from an isotropic and
spatial-homogeneous initial condition, local ordered ne-
matic domains form at the beginning, accompanied with
quick development of density inhomogeneity. Further
coarsening of these structures leads to the coexistence
of particle-enriched nematic domains and particle-poor
isotropic region where ρ < ρ∗ (Fig. 2a). However, such
a large-scale spatially inhomogeneous structure is unsta-
ble, and it will evolve and become fragmented as shown
in Fig. 2b. The fragmented structure will again coa-
lesce and similar process will repeat aperiodically and
endlessly (see [8] M1.mov). In Fig. 2c-2k, we show how
a particle-rich nematic branch breaks into pieces and re-
unites into a structure with new morphology.

How does the fragmentation process occur? In Fig.
3a-c, we take a close look at the process that a nematic
band breaks up(for a more continuous process, see [8]
M2.mov). In Fig. 3a, after the spontaneous formation
of a nematic band, initially, it is shown that the nematic
director in the high-density ordered region is almost par-
allel to the density stripe boundary. In this case, the

FIG. 2: Density and nematic order profiles are plotted. The
color scale shows the local relative rescaled density value
δ(r) = ρ̃(r) − 1. The length and angle of white segments
show the magnitude and direction of nematic order, respec-
tively. The dynamic parameters are Dr = 2, D⊥ = 0.4,
and D‖ = 2.4. The reduced instability dynamic parameter
D0 = 5/7 and δ = 0.01. The system size is 300 × 300 with
the particle length l = 1. Periodic boundary condition is im-
plemented. Discrete time step ∆t = 0.018 and spatial steps
∆x = ∆y = ∆r = 3. (a)-(b) The snapshots are taken at
times 1.7 × 106∆t and 2.3 × 106∆t. (c)-(k) A close look of
the breaking and coalescing processes of a nematic domain,
at times 1.6×106 , 1.7×106 , 1.71×106 , 1.72×106 , 1.73×106 ,
1.74× 106, 1.75 × 106, 1.76 × 106 and 1.8× 106 in unit ∆t.

nematic director is along the x-axis. For Dn > 0, from
our previous stability analysis, the term − 1

2Dn∂
2
y(ρS)

in Eq.(2) is directly responsible for the development of
such density inhomogeneity. Now, we are interested if
such aligned director field is stable to small fluctuations
δn⊥(r) = n(r)−n0 = (0, δn̂⊥y). To linear order, the dy-
namic equation for δn̂⊥y(r) can be obtained from Eq.(1)
as ρ̃S∂tδn⊥y = 1

2Dp[ρ̃S∂
2
xδn⊥y + δn⊥y∂

2
y ρ̃S], where we

have assumed that there is no spatial variation of ρ̃S
along x-axis. The spatial variation of ρ̃S along the y-axis
is significant since density inhomogeneity is developed in
that direction. Near stripe boundaries, we always have
∂2
y ρ̃S > 0, which makes the fluctuations δn⊥y unstable.

Such instability will induce the change of the nematic
orientation, and this explains why the nematic directors
in Fig. 2 and Fig. 3b are most likely to be oblique to
the density profile boundaries. When the nematic direc-
tors become oblique to the boundary, as shown in Fig.
3b, there is a leakage of particles from the high-density
region. As the particle density in the stripe falls into the
‘no stable state’ region as shown in Fig. 1, the spatial
instability takes place again. This leads to a fragmen-
tation event, as shown in Fig. 3c. It is shown that a
density crevice forms parallel with the nematic director
as spatial instability requires. In Fig. 3d, we show a
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FIG. 3: (a)-(c) Three typical steps that an ordered stripe
breaks, at times 30000∆t, 60000∆t and 63000∆t in sequent.
(d) Twisted spindle shaped structure formed after it breaks off
from a larger ordered structure. The color scale shows the lo-
cal relative rescaled density value δ(r) = ρ̃(r)−1. The length
and angle of white segments show the magnitude and direc-
tion of nematic order, respectively. The black arrow shows
the direction and strength of particle fluxes. (e)-(f) Simula-
tion result shows density inhomogeneity and similar restless
evolvement in active nematics for 9.4 × 104 and 1.1 × 105

simulation sweeps.

twisted-spindle shaped high-density region with local ne-
matic order, which is commonly formed after it breaks
off from a larger ordered structure in Fig. 2e.

We also perform simulations to examine the stability
of homogeneous nematic state on the basis of Eq.(1) (see
[8]). Fig. 3e shows the formation of a particle-enriched
nematic band. We find that such band is also unstable
and undergoes similar process (see [8] M3.mov ), where
the nematic director changes its direction in time and the
fragmentation event takes place afterward (Fig. 3f).

It is worth to notice that all these highly dynamic
structures are surrounded by particle fluxes around
the density profile boundaries. The density currents
are defined as J(r) = (Jx(r), Jy(r)), with Jα(r) =
− 1

2Dp∂αρ(r) − Dn∂β [ρ(r)Qαβ(r)] where the first term
is just ordinary diffusive current and the second term
is the current generated by coupling nematic directors.
As we show in Fig. 3a, inward currents, generated by
(0, 1

2Dn∂y(ρS)) which is included in the second term
of J(r), are directly responsible for the development of
density inhomogeneity. As the time evolves, in Fig.
3b, along the two sides of stripe boundaries the sys-
tem generates anti-parallel currents which also originate
from −Dn∂β [ρ(r)Qαβ(r)], and the particles seem to move

under a self-organized rachet potential[11]. When the
crevice forms in Fig. 3c, particles flow into the low den-
sity region as guided by the nematic directors, accom-
panied with the growth of nematicly ordered tips near
the crevice. In Fig. 3d, as indicated by the density cur-
rents, the twisted-spindle shaped nematic region absorbs
particles from the medium on both sides and generate
outward flux on both tips. In this way it can grow and
extend itself quickly into the low-density medium. With
the presence of these density fluxes around the ordered
structure, it behaves like a creature absorbing, growing,
dividing and dissipating into isotropic medium endlessly.
In summary, the dynamic equation abstracted from

previous simulations and experiments suggests a nemat-
icly ordered phase with no stable steady state. Thus the
system must evolve endlessly. We reveal the statistical
mechanism that governs the large-scale and seemingly
fluctuated collective evolution. We show that, as a result
of long-wavelength instability, density and order inhomo-
geneity develops as guided by nematic director field. The
spatial inhomogeneity in turn changes the directions of
local nematic directors. The changed nematic directors
further guide the fragmentation events, leading to endless
evolution of the system. Finally, it would be interesting
to extend our analysis to other active fluids.
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