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Generalized relation between the relative entropy and dissipation for nonequilibrium systems
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Recently, Kawai, Parrondo, and Van den Broeck have related dissipation to time-reversal asymmetry. We
generalized the result by considering a protocol where the physical system is driven away from an initial thermal
equilibrium state with temperatureβ0 to a final thermal equilibrium state at a different temperature. We illustrate
the result using a model with an exact solution, i.e., a particle in a moving one-dimensional harmonic well.
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I. INTRODUCTION

Irreversible thermodynamic processes are the ones that can-
not be closed. In other words, the system and its surroundings
never return to their original states. There are a number of
features associated with such processes which include (i) dis-
sipation; (ii) asymmetry in the arrow of time; and (iii) bro-
ken equilibrium. In recent years, some relations have been
stated between dissipation and time-reversal asymmetry [1–
10]. Here, we will focus on the relation obtained by Kawai,
Parrondo, and Van den Broeck (KPV), which is expressed by
the following [5],

β 〈Wdiss〉 ≥ D[ρF(z, t) ‖ ρR(z
∗,τ − t)]. (1)

In this relation,〈Wdiss〉 is the average work dissipated during
the process in which the system evolved from one canonical
equilibrium state at a temperatureT into another at the same
temperature. Based on the second law, the average work per-
formed on the system must exceed the difference between the
free energy in the initial equilibrium state and that in the final
equilibrium one, i.e.〈W 〉 ≥ ∆F = FB −FA [11]. The dissi-
pated work is defined as〈Wdiss〉 = 〈W 〉 − ∆F . D(ρF(z, t) ‖
ρR(z∗,τ − t)) denotes the relative entropy [12], a measure of
the distinction betweenρF , i.e. the time-dependent phase-
space density, during the forward process (A → B) andρR, i.e.
the time-dependent phase-space one, during the reverse pro-
cess (B → A). z = (x,p) designates a point in the phase space,
and the asterisk denotes the reversal of momenta,p −→ −p.
For the case of the Hamiltonian dynamics, where the system
evolves deterministically, Eq. (1) is an equality; i.e., the aver-
age dissipated work can be expressed by [7],

β 〈Wdiss〉 =
∫

dzρF(z, t) ln[
ρF(z, t)

ρR(z∗,τ − t)
]

= D[ρF(z, t) ‖ ρR(z
∗,τ − t)]. (2)

Consider a system that is driven far from equilibrium by a
protocol, where the inverse temperature of the initial and final
equilibrium states areβ0 andβτ , respectively. Our goal is to
generalize Eq. (2) to this kind of process. A basic motivation
to study this generalized relation is its possible application to
the evolution of black holes that we will discuss elsewhere.
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This will be attempted in Sec. 2. In Sec. 3, we will consider
two solvable models for the generalized equation.

II. GENERALIZATION OF KPV EQUATION

We consider a system that is initially coupled with a reser-
voir in the reverse temperatureβ0. The reservoir is then re-
moved. Subsequently, fromt = 0 to a later timet = τ, the ex-
ternal forces are turned on according to some arbitrary but pre-
determined schedule, or protocol,λt . The microscopic evolu-
tion of the system during this time interval is described by
the trajectoryzt = (p,q). The Hamiltonian of the system is
denoted byH(λt ,zt ). At time t = τ, the system is coupled
with a reservoir in the reverse temperatureβτ , again. Simi-
lar to the derivation of the Crooks equality [7], we consider
two processes which are labeled forward(F) and reverse(R).
The initial phase-space densities for the forward and reverse
processes are given by(I ≡ F or R)

ρ I
0(z0,λ0) =

1
Z0

exp[−β0H(zI
0,λ0)], (3)

andZt =
∫

dzt exp[−βtH(zt ,λt)] is partition function at time
t = 0 or t = τ. It should be noted that temperature is only
defined for the initial and final states and not for any state
between the two. By combining Eq. (3) and definition of the
partition function, we get

ρF
0

ρR
0
=

Zτ
Z0

exp[βτ H(zR
0 ;λτ)−β0H(zF

0 ;λ0)]. (4)

According to the definition of free energy given byF(λt) =

−β−1
t lnZ(λt), Eq. (4) can be rewritten as follows:

ρF
0

ρR
0

= exp[−∆(β F)]exp[βτ H(zR
0;λτ )−β0H(zF

0 ;λ0)]. (5)

Note that∆(β F) = βτ Fτ −β0F0. Assume that the work per-
formed on the system is defined by [7, 13–15]

W [zt ] =
∫ τ

0
dtλ̇

∂H
∂λ

(zt ,λt). (6)

Then, based on this definition, we have [7]

W [zt ] = H(zF
τ ;λτ)−H(zF

0 ;λ0). (7)
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Using Eq. (7), Eq. (5) can be simplified as

ρF
0

ρR
0
= exp[−∆(β F)+βτW +(βτ −β0)H0], (8)

whereH0 ≡ H(zF
0 ;λ0). We can rewrite Eq. (8) as

ln(
ρF

0

ρR
0
) =−∆(β F)+βτW +(βτ −β0)H0. (9)

We can use the definition of average as,
∫

dz0ρ0(z0)A =<
A >ρ0, where, A is an arbitrary normalized function
[
∫

dz0A(z0,0) = 1]. Therefore, we can write equality (9) as

∫

dz0 ln(
ρF

0

ρR
0
)ρF

0 = 〈ln(ρF
0

ρR
0
)〉ρF

0
=

−∆(β F)+βτ〈W 〉ρF
0
+(βτ −β0)〈H0〉ρF

0
. (10)

Since the phase-space density is conserved along any Hamil-
tonian trajectory, i.e.,ρF

0 = ρF andρR
0 = ρR and based on the

definition of the relative entropy

∫

dzρF(z, t) ln[
ρF(z, t)

ρR(z∗,τ − t)
] = D[ρF(z, t) ‖ ρR(z

∗,τ − t)],

(11)

we obtain the following generalized form of Eq. (2):

D(ρF ‖ ρR) =−∆(β F)+βτ〈W 〉ρF
0
+(βτ −β0)〈H0〉ρF

0
. (12)

The above expression is valid for the deterministic trajecto-
ries of the system, including information about every degree
of freedom. If only partial information about the system is
available, the relative entropy is reduced and we will have an
inequality.
Sincez = (q, p) in deterministic dynamics represents all po-
sition and momentum variables and,ρ(q, p) surrounds the
phase-space trajectory going throughz=(q, p), Therefore, we
can consider a partition of the entire phase space [5].This par-
tition is described by a sequencez0,z1, ...zn. Corresponding
phase space distributions for the forward and backward pro-
cesses are given by

ρF
n =

∫

zn

ρF
0 (p,q)dqd p, ρR

n =

∫

z∗n
ρR

0 (p,q)dqd p. (13)

By integrating Eq. (9) overzn we obtain

〈exp[−βτW − (βτ −β0)H0]〉F
n =

∫

zn
ρF

0 (p,q)exp(−βτW − (βτ −β0)H0)dqd p

ρF
n

=
ρR

n

ρF
n

exp[−∆(β F)]. (14)

Now, by using〈exp(−x)〉 ≥ exp〈−x〉, we can rewrite Eq. (14)
as:

〈βτW +(βτ −β0)H0〉F
n ≥ ∆(β F)+ ln

ρF
n

ρR
n
. (15)

By performing an average over the different subsets, we will
have

〈βτW +(βτ −β0)H0〉F = ΣnρF
n 〈βτW +(βτ −β0)H0〉F

n .

(16)

Finally, considering Eqs. (15) and (16) yields the following
generalized relations:

〈βτW +(βτ −β0)H0〉F −∆(β F) ≥
∫

ln(
ρF

n

ρR
n
)dρF

n , (17)

〈βτW +(βτ −β0)H0〉F −∆(β F) ≥ D(ρF
n ‖ ρR

n ). (18)

Equation (18) is the basic result of this Brief Report. In Sec.
3, we will consider an example that corresponds to an exact
equality as in Eq. (12).

III. PARTICLE IN A MOVING HARMONIC WELL

In this section, we analyze Eq. (12) for a particle with mass
m which is trapped in a harmonic well with a spring constant
k. The Hamiltonian of the particle is given by

H(x, p,λ ) =
p2

2m
+

k
2
(x−λ )2. (19)

We will consider processes during which the center of the well
is moved either rightward or leftward at a constant speed,
u. These correspond to the forward and reverse protocols,
λF(t) = ut andλR(t) = u(τ − t), whereτ is the total time in-
terval. Along this time interval, the initial and final reverse
temperatures areβ0 andβτ , respectively, during the forward
process, and vice versa during the reverse process. We con-
sider two dynamics for this example: Hamiltonian dynamics
and Langevin dynamics.

A. Hamiltonian dynamics

In this section we assume that the system is thermally iso-
lated from environment after the initial equilibration stage.
Explicit expressions for the initial equilibrium densities are
given by the following Gaussian distributions:

ρF(z,0) =
β0

2π

√

k
m

exp[−β0(
p2

2m
+

kx2

2
)], (20)

ρR(z,0) =
βτ
2π

√

k
m

exp[−βτ(
p2

2m
+

k
2
(x− uτ)2)]. (21)

By considering that in this situation the system evolves under
the Hamiltonian dynamics, the equations of motions are given
by

ẋF =
pF

m
, ṗF =−k(xF − ut), (22)

ẋR =
pR

m
, ṗR =−k(xR − uτ + ut). (23)
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Due to the Gaussian nature of the initial densities [Eqs.
(20) and (21)] and the linearity of the equations of mo-
tion, the distribution remains Gaussian for all times. There-
fore, according to the relations of means and covari-
ances for two-dimensional Gaussian distributions, (fG(z) =

1
2π

√
detσ

exp[1
2(z− z)T .σ−1.(z− z)]), [7] and consider that the

relative entropy between two Gaussian distributions,fG(z)
andgG(z∗), is

D[ fG(z) ‖ gG(z
∗)] = −1+

1
2
[ln(

detσg

detσ f
)+Tr(σ−1

g .σ∗
f )]

+
1
2
(z∗f − zg)

T .σ−1
g .(z∗f − zg), (24)

whereσ∗
xp =−σxp and all other elements ofσ∗ are unaltered

[16]. We have

D[ρF(z, t) ‖ ρR(z
∗,τ − t)] = −1+ ln(

β0

βτ
)+ (

βτ

β0
)

+ βτ mu2[1− cos(wτ)]. (25)

By considering the relations for means and variances that we
obtain here, we can say that the means and variances are the
same with the results in Ref. [7]; the only difference is that
here we haveβ0 in t = 0 andβτ in t = τ. Also, according to
the following relations

〈W 〉ρF
0

= −uk
∫ τ

0
[xF(t)− ut]

= uk
∫ τ

0
[
sin(wt)

w
]

= mu2[1− cos(wτ)], (26)

〈H0〉ρF
0
=

1
β0

, −[∆(β F)] = ln(
β0

βτ
). (27)

The left-hand side of Eq. (12) is equal to

βτ mu2[1− cos(wτ)]+ (βτ −β0)
1
β0

+ ln(
β0

βτ
). (28)

So, we have

βτ〈W 〉ρF
o
+(βτ −β0)〈H0〉ρF

0
−∆(β F) =

(βτ −β0)
1
β0

+ ln(
β0

βτ
)+βτmu2[1− cos(wτ)]. (29)

Therefore, comparison of Eqs. (25) and (29) yields the fol-
lowing equation for a Hamiltonian dynamics:

βτ〈W 〉ρF
0
+(βτ −β0)〈H0〉ρF

0
−∆(β F) =

D[ρF(z, t) ‖ ρR(z
∗,τ − t)], (30)

which is a special case of Eq. (12).

B. Overdamped Langevin dynamics

In this section we consider a system that interacts with
its environment so that we may use overdamped Langevin
dynamics[7]. For the forward process the Fokker-Planck
equation forρF(x, t) is

∂
∂ t

ρF(x, t) =
k
γ

∂
∂x

[(x− ut)ρF(x, t)]+
1

γβ
∂ 2

∂x2 ρF(x, t). (31)

whereγ is the friction coefficient. By the use of the means
and variances for forward and reverse processes,

xF(t) = ut − γu
k
(1− e−kt/γ), σ2

F =
1

β0k
, (32)

xR(t) = u(τ − t)+
γu
k
(1− e−k(τ−t)/γ), σ2

R =
1

βτ k
, (33)

we have the following results for the relative entropy and av-
erage work:

D[ρF(x, t) ‖ ρR(x,τ − t)] =−1+ ln(
β0

βτ
)+ (

βτ

β0
)

+
2βτγ2u2

k
{1− e−kτ/2γcosh[

k
γ
(

τ
2
− t)]}2, (34)

〈W 〉ρF
0

= −uk
∫ τ

0
[xF(t)− ut]

= γu2[τ − γ
k
(1− e−kτ/γ)]. (35)

In this situation, we have to demonstrate the validity of in-
equality (18). We note that the left-hand side of this inequality
is

〈βτW +(βτ −β0)H0〉F −∆(β F) = βτ γu2[τ − γ
k
(1− e−kτ/γ)]+ (βτ −β0)

1
β0

+ ln(
β0

βτ
), (36)

andD(ρF
n ‖ ρR

n ) has a maximum value att = τ/2. Combining
Eqs. (34) and (36) we have

〈βτW +(βτ −β0)H0〉F −∆(β F) ≥ D(ρF
n ‖ ρR

n ),

where the inequality is valid for anyζ = kτ
γ ≥ 0. Therefore the

validity of inequality (18) for overdamped Langevin dynamics
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is demonstrated.

IV. CONCLUSION

We extended a known relation between the dissipated work
and time-reversal asymmetry to a more general case by as-
suming a protocol which starts from an equilibrium state and
moves to another equilibrium where the initial and final tem-

peratures are different (it should be noted that we do not need
to define temperatures between the two equilibria). Time-
reversal asymmetry is more clear in this kind of process; how-
ever, the definition of dissipated work is not completely un-
derstood in this situation. It will be interesting to consider
more general cases, as they will provide a better understand-
ing of the relationship between the time-reversal asymmetry
and dissipation and other aspects of non-equilibrium statisti-
cal mechanics.
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