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Generalized relation between therelative entropy and dissipation for nonequilibrium systems
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Recently, Kawai, Parrondo, and Van den Broeck have relatipation to time-reversal asymmetry. We
generalized the result by considering a protocol whereltlysipal system is driven away from an initial thermal
equilibrium state with temperatuf to a final thermal equilibrium state at a different tempamtiVe illustrate
the result using a model with an exact solution, i.e., a glarth a moving one-dimensional harmonic well.

PACS numbers: 05.70.Ln, 05.20.-y, 05.40.-a

I. INTRODUCTION This will be attempted in Sec. 2. In Sec. 3, we will consider
two solvable models for the generalized equation.

Irreversible thermodynamic processes are the ones that can
not be closed. In other words, the system and its surrousding
never return to their original states. There are a number of
features associated with such processes which includes{i) d
sipation; (ii) asymmetry in the arrow of time; and (iii) bro- We consider a system that is initially coupled with a reser-
ken equilibrium. In recent years, some relations have beewoir in the reverse temperatufla. The reservoir is then re-
stated between dissipation and time-reversal asymmetry [Imoved. Subsequently, frotr= 0 to a later time = 1, the ex-
10]. Here, we will focus on the relation obtained by Kawai, ternal forces are turned on according to some arbitrarytaut p
Parrondo, and Van den Broeck (KPV), which is expressed byletermined schedule, or protoca|, The microscopic evolu-

1. GENERALIZATION OF KPV EQUATION

the following [5], tion of the system during this time interval is described by
the trajectoryz = (p,q). The Hamiltonian of the system is
BMaiss) > DIpr (zt) || pr(Z', T —1)]. (1)  denoted byH (A, z). Attimet = 1, the system is coupled

) ) _ . . with a reservoir in the reverse temperatye again. Simi-
In this relation,(Wiss) is the average work dissipated during |or 16 the derivation of the Crooks equalify [7], we consider
the process in which the system evolved from one canonicg,,q processes which are labeled forwéFd and revers¢R).
equilibrium state at a temperatufeinto another at the same 14 initial phase-space densities for the forward and ssver
temperature. Based on the second law, the average work Pfocesses are given ly=F orR)
formed on the system must exceed the difference between the
free energy in the initial equilibrium state and that in theafi | 1
equilibrium one, i.e.(W) > AF = Fg — Fa [11]. The dissi- Po(20,A0) = Zexp[—ﬁoH(Z'Mo)]a @)
pated work is defined a8\giss) = (W) — AF. D(pe(zt) ||
pr(Z*, T —1)) denotes the relative entropy [12], a measure ofandz; = [ dz exg—BH(z,At)] is partition function at time
the distinction betweempr, i.e. the time-dependent phase-t = 0 ort = 1. It should be noted that temperature is only
space density, during the forward proce&s{ B) andpr, i.e.  defined for the initial and final states and not for any state
the time-dependent phase-space one, during the reverse pisetween the two. By combining Ed.](3) and definition of the
cess B— A). z= (x,p) designates a point in the phase space partition function, we get
and the asterisk denotes the reversal of momenta; —p. .
For the case of the Hamiltonian dynamics, where the system o} Z: ) ]
evolves deterministically, Eq. (1) is an equality; i.ee tver- p_%* =7 expBrH (55 Ar) — BoH (Z55 A0))- (4)
age dissipated work can be expressed by [7],

According to the definition of free energy given ByA;) =

B Wyiss) = /dzpp(z,t)ln[%] —BInZ(A), Eq. [2) can be rewritten as follows:
. R LT
_ _ F
- D[pF (th) H pR(Z*a T t)] (2) p_% _ exp[—A(BF)] eXQBTH(Zg;/\T) _ BOH (Zg;/\o)]- (5)

Consider a system that is driven far from equilibrium by a "©

protocol, where the inverse temperature of the initial andlfi  \ote thatA(BF) = BrF; — BoFo. Assume that the work per-

equilibrium states arfy and;, respectively. Our goal is t0  5rmed on the system is defined by/[[7] 13-15]
generalize Eq. (2) to this kind of process. A basic motivatio i

to study this generalized relation is its possible applicato T . 9H
the evolution of black holes that we will discuss elsewhere. Wiz| = '/0 dtA ﬁ(zta)\t)- (6)
Then, based on this definition, we have [7]
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Using Eq. [(¥), Eq.[(5) can be simplified as By performing an average over the different subsets, we will
have
P§
op ~ ORABR) W (B —folol. B gt (B~ Bo)Ho)T = Enof (BW + (B: — Bo)Ho)
(16)

whereHy =H (zg ;Ao). We can rewrite Eq[{8) as
Finally, considering Eqgs.[{15) and {16) yields the follog/in

W%) — _A(BF) + BW + (B; — Bo)Ho. ©) generalized relations:
0 . oF
F P F
We can use the definition of average d€jzopo(z0)A =< (B:W + (Br — Bo)Ho)” —A(BF) > / In(p—%)dpn (A7)
A >, where, A is an arbitrary normalized function E F iR
[j‘dzo(iA(zo,O) = 1]. Therefore, we can write equalityl(9) as {B:W + (Br — Po)Ho)" —A(BF) = D(py || on).  (18)
of of Equation[(IB) is the basic result of this Brief Report. In Sec
/dzoln(—OR)pg = <In(—°R)>pF = 3, we will consider an example that corresponds to an exact
Po Po ™ equality as in Eq.[(12).
—A(BF) + Br(W) g + (B — Bo) (o). (10)
Since the phase-space density is conserved along any Hamil- 11l. PARTICLE IN A MOVING HARMONIC WELL
tonian trajectory, i.e pf = pF andpft = pR and based on the
definition of the relative entropy In this section, we analyze Ed._{12) for a particle with mass
. (zt) mwhich is trapped in a harmonic well with a spring constant
/dzp,: (zt) In[%] =Dl[pr(zt) || pr(Z", T —1)], k. The Hamiltonian of the particle is given by
R y U
(11)
PPk 2
we obtain the following generalized form of EQ] (2): H(x,p,A) = >m T Q(X_ A)°. (19)

D(pF || pR) = —A(BF) + Br (W) e + (Br — Bo)(Ho) ¢ -(12)  We will consider processes during which the center of thé wel
° ° is moved either rightward or leftward at a constant speed,

The above expression is valid for the deterministic traject u. These correspond to the forward and reverse protocols,
ries of the system, including information about every degre Ag(t) = ut andAg(t) = u(t —t), wherer is the total time in-
of freedom. If only partial information about the system isterval. Along this time interval, the initial and final reser
available, the relative entropy is reduced and we will have atemperatures arfy and 3;, respectively, during the forward
inequality. process, and vice versa during the reverse process. We con-
Sincez = (q, p) in deterministic dynamics represents all po- sider two dynamics for this example: Hamiltonian dynamics
sition and momentum variables and(q, p) surrounds the and Langevin dynamics.
phase-space trajectory going throwgh (g, p), Therefore, we
can consider a partition of the entire phase space [5].Tdris p

tition is described by a sequenzgz,...z,. Corresponding A. Hamiltonian dynamics
phase space distributions for the forward and backward pro-
cesses are given by In this section we assume that the system is thermally iso-

lated from environment after the initial equilibration gta
o :/ o& (p,q)dgdp, p,?:/ p&(p,q)dadp. (13)  Explicit expressions for the initial equilibrium densttiare
n % given by the following Gaussian distributions:
By integrating Eq.[(9) ovez, we obtain

_ B \f P ke
(ex—BW — (Br — o)Hol)§ = Pr(z0) = oA -Polomt )k (O
20 PG (P, @) exp(—BrW — (Br — Bo)Ho)dqdp
L : TpF (B Polto PrR(2,0) = exd— P ( —+ (X ut)?)]. (21)
n
- pn D exf—A(BF)). (14) By consi_derir_wg that in this situation the system evolvesaund
3 the Hamiltonian dynamics, the equations of motions arergive
Now, by using(exp(—x)) > exp{—x), we can rewrite Eq[(14) by
as: Xe = o, e = ki ), (22)
F
(BeW + (B — Bo)Ho)ly > A(BF) + Zg. (15) = B pre ke-urw).  (29)
n
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Due to the Gaussian nature of the initial densities [EqsTherefore, comparison of Eqd_{25) andl(29) yields the fol-
(20) and [211)] and the linearity of the equations of mo-lowing equation for a Hamiltonian dynamics:

tion, the distribution remains Gaussian for all times. Eaer

fore, according to the relations of means and covari-

ances for two-dimensional Gaussian distributiorfg,(f) = Br <W>pg + (B —Bo)(Ho)pg —A(BF) =

1 15 AT =1 (7_ > ;
2nvads exp3(z—2)".07".(z-2))), [7] a.md C(.)ns-|der. that the Dok (2.t) || pr(Z', T —1)], (30)
relative entropy between two Gaussian distributiofis(z)
andgg(z'), is which is a special case of Eq_{12).
1 detag -1 * . .
D[fc(2) || 9c(Z")] = —1+4 =[In( )+ Tr(oy ~.07)) B. Overdamped Langevin dynamics
2 deto; 9
+ }(7; _79)1—.0'971.(2’? —-2), (24) In this section we consider a system that interacts with
2 its environment so that we may use overdamped Langevin
wherea;, = —0y, and all other elements af* are unaltered dynamms[?]. For _the forward process the Fokker-Planck
[1€]. We have equation forpg (x,t) is
_ Bo, . Br 0 K9 10
Dlpr(z 1) || pr(z, T=0] = —1+In(57)+(5) atPF O = oL (x— WP O] + 2 p 55 pr (1) (31)

2
+ Brmut(1—cogwr)]. (25) wherey is the friction coefficient. By the use of the means

By considering the relations for means and variances that w@"d variances for forward and reverse processes,
obtain here, we can say that the means and variances are the

same with the results in Refi|[7]; the only difference is that Xe(t) =ut — E(l—e"‘t/y), of = 1 (32)
here we havey int =0 andf; int = 1. Also, according to k Po
the following relations
g %r(t) = u(t—t) + (1 e V) g2 1 (33)
W)es = _Uk'/o X (t) — ut] K » R B
T sin(wt) . .
= uk / [ ] we have the following results for the relative entropy and av
erage work:
= mu?[1— cogwr)], (26)
DIpe (1) | el T~ = ~1-+In( )+ (B1)
1 Bo

H =, —[A(BF)] =In(Z). 27 2

ol Bo ABF) (Br) @) +—ZBT|Z2 Y- e*kT/ZVcosh[; (g —-1)}% (34)
The left-hand side of EqL_(12) is equal to

ﬁo T
Brmu?(1— coswr)] + (B~ fo) g +In(2).  (28) Wygs = —uk [ [Re(t) -
T

So, we have = nWilr— E(l— Ca (35)

Br<W>pg +(Br —Bo)(Ho>pF —A(BF) = In this situation, we have to demonstrate the validity of in-

1 Bo equality [I8). We note that the left-hand side of this indigyia
(B: —BO)BO In(B )+ Brmu?[1—cogwr)]. (29) s

Bo

(BT

(BN + (B — Bo)Ho)" —B(BF) = Boyt?[r — Y (1 /) 1 (B — o) +1n(E2), (36)

B

andD(pf || pR) has a maximum value &t= 1/2. Combining  where the inequality is valid for an/= k—; > 0. Therefore the
Egs. [3%) and(36) we have validity of inequality [I8) for overdamped Langevin dynasi

(B:W + (Br — Bo)Ho)™ — A(BF) > D(pf; || o),
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is demonstrated. peratures are different (it should be noted that we do nad nee
to define temperatures between the two equilibria). Time-
reversal asymmetry is more clear in this kind of process;-how
IV. CONCLUSION ever, the definition of dissipated work is not completely un-
derstood in this situation. It will be interesting to coresid
We extended a known relation between the dissipated worRiore general cases, as they will provide a better understand
and time-reversal asymmetry to a more general case by aig of the relationship between the time-reversal asymynetr
suming a protocol which starts from an equilibrium state andand dissipation and other aspects of non-equilibriumsgtati
moves to another equilibrium where the initial and final tem-cal mechanics.
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