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BEURLING-FOURIER ALGEBRAS, OPERATOR

AMENABILITY AND ARENS REGULARITY

HUN HEE LEE AND EBRAHIM SAMEI

Abstract. We introduce the class of Beurling-Fourier algebras on lo-
cally compact groups and show that they are non-commutative analogs
of classical Beurling algebras. We obtain various results with regard
to the operator amenability, operator weak amenability and Arens reg-
ularity of Beurling-Fourier algebras on compact groups and show that
they behave very similarly to the classical Beurling algebras of discrete
groups. We then apply our results to study explicitly the Beurling-
Fourier algebras on SU(2), the 2 × 2 unitary group. We demonstrate
that how Beurling-Fourier algebras are closely connected to the amenabil-
ity of the Fourier algebra of SU(2). Another major consequence of our
results is that our investigation allows us to construct families of uni-
tal infinite-dimensional closed Arens regular subalgebras of the Fourier
algebra of certain products of SU(2).

Beurling algebras play an important role in different areas of harmonic
analysis. These are L1-algebras associated to locally compact groups when
we put extra “weight” on the groups (see Section 1.2). The basic properties
of these algebras are well-known since the works of Beurling [1], [2], and
Domar [8], for abelian groups, and Reiter [35] for the general case (see also
[7], [12], [22], [23], [24], and [37]). For example, it is shown in [8] that the
Beurling algebra L1(G,ω) is ∗-regular for G abelian if and only if the weight
ω is symmetric and non-quasianalytic. Also various aspects of cohomologies
and Arens regularities of Beurling algebras have been studied by several
authors, most notably Grønbæk [22], [23], and Dales and Lau [7]. It is
shown that L1(G,ω) is amenable as a Banach algebra if and only if G is
amenable as a locally compact group and {ω(x)ω(x−1) : x ∈ G} is bounded
[23]. This demonstrates that in most cases, the amenability of Beurling
algebras forces the weight to be trivial. On the other hand, even though
the group algebra L1(G) is not Arens regular when G is infinite, for a large
classes of weights, it can happen that ℓ1(G,ω) will be Arens regular [7].

The aim of the present paper is to develop the corresponding “dual the-
ory” for the classical Beurling algebras. That is, we consider the Fourier
algebra A(G) of a locally compact group G, and the question of how could
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we interpret Beurling algebras in this context and what would be their basic
properties? In the language of Kac algebras [10] (or more generally locally
compact quantum groups - see [30]), A(G) is interpreted as the dual ob-
ject of L1(G) in the sense of generalized Pontryagin duality. In particular,

when G is abelian, with dual group Ĝ, then A(G) ∼= L1(Ĝ) via the Fourier

transform. Thus for an abelian group G and a weight ω on Ĝ, we define the
Beurling-Fourier algebra A(G,ω) to be the Fourier transform of Beurling al-

gebra L1(Ĝ, ω) [35, Section 6.3]. In the general non-abelian setting though,

Ĝ is not a group and so the extension of this idea is more delicate!
In order to achieve our goal, we need to focus on the somewhat non-

standard interpretation of the weight ω. Consider the co-multiplication

Γ : L∞(G) → L∞(G×G), f 7→ Γf,

where

Γf(s, t) = f(st).

This Γ can be easily extended to unbounded Borel measurable functions on
G using the same formula. Now let ω : G→ (0,∞) be a continuous function.
Then the submutiplicativity of ω (i.e. ω being a weight) is clearly equivalent
to the condition

(0.1) Γ(ω)(ω−1 ⊗ ω−1) ≤ 1.

Now let V N(G) be the group von Neumann algebra of G, and let Γ be
the usual co-multiplication on V N(G) defined by

(0.2) Γ : V N(G) → V N(G×G), λ(s) 7→ λ(s)⊗ λ(s),

where λ is the left regular representation of G. In Section 2.1, we consider
a dual version of weight functions satisfying a dual version of (0.1), which
requires an extension of the ∗-isomorphism Γ in (0.2) for certain unbounded
operators. For a fixed representation V N(G) ⊂ B(H), we define a weight
on the dual of G to be a “suitable” densely defined (possibly unbounded)
operator W acting on H which is affiliated to V N(G) (Definition 2.4). To
simplify our computation, we make a further assumption that W has a
bounded inverseW−1 ∈ V N(G). One major condition thatW has to satisfy
is the corresponding dual version of (0.1):

Γ(W )(W−1 ⊗W−1) ≤ 1V N(G×G).

We show that this is the natural extension of a weight on duals of non-abelian
groups. Furthermore, (see Definition 2.6), we define

V N(G,W−1) := {AW : A ∈ V N(G)}

and equip V N(G,W−1) with an operator space structure induced by the
natural linear isomorphism

Φ : V N(G) → V N(G,W−1), A 7→ AW.
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We will denote the predual of V N(G,W−1) by A(G,W ) and show that it is
a completely contractive Banach algebra. We call A(G,W ) the Beurling-

Fourier algebras on G.
In the reminder of Section 2, we show that our approach allows us to

construct various classes of weights on duals of not necessary abelian groups,
namely compact groups and Heisenberg groups. In Sections 2.2, we compute
certain central weights on duals of compact groups. By central weights,
we mean those weights that roughly speaking commute with elements of

V N(G) (Definition 2.4). We show that these central weight on Ĝ, the dual
of a compact group G, are of the form

W =
⊕

π∈Ĝ

ω(π)1Mdπ
,(0.3)

where ω : Ĝ→ (δ,∞), for some δ > 0, is a function satisfying (2.12). In this
case, we write A(G,ω) instead of A(G,W ). When G is abelian, the relation
(2.12) is exactly the submultiplicity of ω. However we also construct central
weights on duals of non-abelian compact groups using (2.12)(see Example
2.15). One family of weights which are of particular interest to us is (a ≥ 0),

ωa(π) = daπ (π ∈ Ĝ).(0.4)

We also characterize certain forms of central weights on duals of Heisenberg
groups in terms of weights on their center (Section 2.3 and Definition 2.18).

Section 3 is devoted to study operator amenability, operator weak amenabil-
ity, and Arens regularity of the Beurling-Fourier algebra A(G,ω) when G
is compact and W is the central weight (0.3). In Section 3.2, we first com-
pute the operator amenability constant of A(G,ω) for G finite and use it
to characterize the operator amenability of A(G,ω) when G is an arbitrary
product of finite groups and ω is the corresponding weight associated to this
product. By applying this result to products of S3, the permutation group
on {1, 2, 3}, we construct Beurling-Fourier algebra with arbitrary operator
amenability constant. This is in contrast to the Fourier algebra of compact
group since the operator amenability constant is always 1 [36]. We then
change our focus and show that for a compact group G, A(G,ω) fails to
be operator amenable if Ω(π) = ω(π)ω(π) → ∞ whenever π → ∞ in the
discrete topology. This provides, for instance, central weights (such as the
one defined in (0.4)) on compact connected semisimple Lie groups whose
Beurling-Fourier algebras are not operator amenable. On some other di-
rection, we show that A(G,ω) is always operator weakly amenable if G is
totally disconnected (Section 3.3). Finally in Section 3.4, we present various
classes of central weights whose Beurling-Fourier algebras are Arens regular
or fails to be Arens regular. For instance, we show that A(G,ωa) is Arens
regular if G is a compact connected semi-simple Lie group and ωa is a weight
satisfying (0.4). All of these results go parallel to the analogous results in
[7], [22], and [23] for classical Beurling algebras.
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In Section 4, we apply the results of the preceding section to study explic-
itly Beurling-Fourier algebras on SU(2). We present various classes weights

on ŜU(2) and show the interesting fact that their Beurling-Fourier alge-
bras behave vary similarly to the corresponding Beurling algebras on the

Z = T̂, where we regard T as the maximal torus of SU(2). In Section 4.3,
we explain in details the intriguing connection between Beurling-Fourier al-
gebras on SU(2) and the fundamental work of B. E. Johnson in [28] on
non-amenability of the Fourier algebra A(G) for a compact connected non-
abelian Lie group G. We should say that this was one of the major motiva-
tions for us to do this project.

The final Section 4.5 is perhaps the most surprising to us because there
are no corresponding results in the classical Beurling algebras! We construct
unital infinite-dimensional closed subalgebras of the Fourier algebra of cer-
tain products of SU(2) which are Arens regular. We actually show that they
are of the form A(SU(2), ω2n ), where n ∈ N and ω2n is the weight defined in
(0.4). This is remarkable because this can not happen for the classical Beurl-
ing algebras! There are unital infinite-dimensional Arens regular Beurling
algebras but they can never be closed subalgebras of some group algebra.
These connections are certainly worthwhile further investigations.

In collaboration with M. Ghandehari, we have obtained further results
concerning Beurling-Fourier algebras of Heiesenberg groups Hd = Cd × R

(d ∈ N) and n×n special unitary groups SU(n) which will appear in the sub-
sequent article [20]. We would like to point out that J. Ludwig, N. Spronk,
and L. Turowska in [31] have also considered and studied the properties of
Beurling-Fourier algebras on compact groups. However they have mainly
focued on the question of determining the spectrum of Beurling-Fourier al-
gebras. Their investigation is parallel to ours and provides a very good
complement to our paper.

1. Preliminaries

1.1. Fourier algebras. Let G be a locally compact group with a fixed left
Haar measure. We denote the group algebra of G with L1(G). Given a
function f on G the left and right translation of f by x ∈ G is denoted by
(Lxf)(y) = f(xy) and (Rxf)(y) = f(yx), respectively. Let P (G) be the set
of all continuous positive definite functions on G and let B(G) be its linear
span. The space B(G) can be identified with the dual of the group C∗-
algebra C∗(G), this latter being the completion of L1(G) under its largest
C∗-norm. With the pointwise multiplication and the dual norm, B(G) is a
commutative regular semisimple Banach algebra. The Fourier algebra A(G)
is the closure of B(G) ∩ Cc(G) in B(G). It was shown in [11] that A(G)
is a commutative regular semisimple Banach algebra whose carrier space
is G. Also, if λ is the left regular representation of G on L2(G) then, up
to isomorphism, A(G) is the unique predual of V N(G), the von Neumann
algebra generated by the representation λ.
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Let Ĝ be the collection of all equivalence classes of weakly continuous
irreducible unitary representations of G into B(Hπ) for some Hilbert space

Hπ. Ĝ can be regarded as the dual of G. If G is abelain, the Ĝ is the set
of continuous characters from G into T = {z ∈ C | |z| = 1} which forms a
locally compact abelian group with compact-open topology. The well-known

Fourier transform gives us the identification L1(G) ∼= A(Ĝ) isometrically as
Banach algebras.

If G is a compact group, then for all π ∈ Ĝ, Hπ is finite-dimensional.
We denote dπ = dimHπ, Mdπ to be the matrix representation of B(Hπ),

and use the convention that dπ is the dimension of π. If π ∈ Ĝ, we fix an
orthonormal basis {ξπ1 , . . . , ξ

π
dπ
} for Hπ and define

(1.1) πij : G→ C , πij(s) = 〈π(s)ξπj | ξπi 〉

for i, j = 1 . . . dπ. We recall the well-known fact that

(1.2) T (G) = span{πij : π ∈ Ĝ, i, j = 1, . . . , dπ}

is uniformly dense in C(G), the space of continuous functions on G. The
Fourier transform on L1(G) is the one-to-one ∗-linear mapping F defined by

(1.3) F : L1(G) →
∞⊕

π∈Ĝ

Mdπ , f 7→ (f̂(π))π∈Ĝ,

where f̂(π) =

∫

G
f(t)π(t)dt ∈Mdπ and π is the conjugate representation of

π. Moreover,

(1.4) F(T (G)) =
{⊕

π∈F

Aπ : Aπ ∈Mdπ , F ⊂ Ĝ is finite
}
.

Note that if A =
⊕

π∈F Aπ with F ⊂ Ĝ finite, then

(1.5) f(x) = F−1(A)(x) =
∑

π∈F

dσtr(Aππ(x)), x ∈ G.

Also if we regard L1(G) as convolution operators on L2(G), then L1(G) is
a subalgebra of V N(G) and F induces an ∗-isomorphism

(1.6) F : V N(G) ∼=

∞⊕

π∈Ĝ

Mdπ .

Note that the above direct sums over Ĝ assume the repetition of the same

component dπ-times for π ∈ Ĝ. It follows from the preceding identification
that

A(G) = {f ∈ C(G) : ‖f‖A(G) =
∑

π∈Ĝ

dπ‖f̂(π)‖1 <∞},

where ‖ · ‖1 is the trace-class norm on Mdπ . See [25, sections 27 and 34] for
complete details.
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1.2. Beurling algebras. Let G be a locally compact group. A weight on
G is a continuous function ω : G→ (0,∞) such that

ω(st) ≤ ω(s)ω(t) (s, t ∈ G).

Sometimes we allow a weight ω just to be measurable and locally finite
(i.e. bounded on every compact subset of G), but it is known that ([35,
Theorem 3.7.5]) for every measurable weight ω there is a continuous weight
ω′ equivalent to ω.

For a (continuous) weight w we define weighted spaces

L1(G,ω) := {f Borel measurable : ‖f‖L1(G,ω) = ‖ωf‖L1(G) <∞}

and

L∞(G,
1

ω
) := {f Borel measurable : ‖f‖L∞(G, 1

ω
) =

∥∥∥∥
f

w

∥∥∥∥
L∞(G)

<∞},

which are isometric to L1(G) and L∞(G), respectively. Moreover, L∞(G, 1ω )

is the dual of L1(G,ω) with the duality bracket

〈f, g〉 =

∫

G
f(x)g(x)dµ(x), f ∈ L1(G,ω), g ∈ L∞(G,

1

ω
),

where µ is the left Haar measure on G.
For discrete G we denote L1(G,ω) by ℓ1(G,ω). With the convolution

multiplication L1(G,ω) becomes a Banach algebra (due to the mutiplicativ-
ity of the weight), and the algebras L1(G,ω) are called the Beurling algebras
on G. For more details see [7, Chapter 7].

1.3. Operator spaces. We will now briefly remind the reader about the
basic properties of operator spaces. We refer the reader to [9] for further
details concerning the notions presented below.

Let H be a Hilbert space. Then there is a natural identification between
the space Mn(B(H)) of n× n matrices with entries in B(H) and the space
B(Hn). This allows us to define a sequence of norms {‖·‖n} on the spaces
{Mn(B(H))}. If V is any subspace of B(H), then the spaces Mn(V ) also
inherit the above norm. A subspace V ⊆ B(H) together with the family
{‖·‖n} of norms on {Mn(V )} is called a concrete operator space. This leads
us to the following abstract definition of an operator space:

Definition 1.1. An operator space is a vector space V together with a
family {‖·‖n} of Banach space norms on Mn(V ) such that for each A ∈
Mn(V ), B ∈Mm(V ) and [aij], [bij ] ∈Mn(C)

i)

∥∥∥∥
[
A 0
0 B

]∥∥∥∥
n+m

= max{‖A‖n , ‖B‖m}

ii) ‖[aij]A[bij ]‖n ≤ ‖[aij ]‖ ‖A‖n ‖[bij ]‖
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Let V,W be operator space, ϕ : V →W be linear. Then

‖ϕ‖cb = sup
n
{‖ϕn‖}

where ϕn :Mn(V ) →Mn(W ) is given by

ϕn([vij ]) = [ϕ(vij)].

We say that ϕ is completely bounded if ‖ϕ‖cb < ∞; is completely con-
tractive if ‖ϕ‖cb ≤ 1 and is a complete isometry if each ϕn is an isometry.

Given two operator spaces V and W , we let CB(V,W ) denote the space
of all completely bounded maps from V to W . Then CB(V,W ) becomes a
Banach space with respect to the norm ‖·‖cb and is in fact an operator space
via the identification Mn(CB(V,W )) ∼= CB(V,Mn(W )).

It is well-known that every Banach space can be given an operator space
structure, though not necessarily in a unique way. It is also clear that any
subspace of an operator space is also an operator space with respect to
the inherited norms. Moreover, for duals and preduals of operator spaces,
there are canonical operator space structures. As such the predual of a von
Neumann algebra and the dual of a C∗-algebras respectively, the Fourier
and Fourier-Stieltjes algebras inherit natural operator space structures.

Given two Banach spaces V and W , there are many ways to define a
norm on the algebraic tensor product V ⊗W . Distinguished amongst such
norms is the Banach space projective tensor product norm which we denote
by V ⊗γW . A fundamental property of the projective tensor product is that
there is a natural isometry between (V ⊗γ W )∗ and B(V,W ∗). Given two
operator spaces V andW , there is an operator space analog of the projective
tensor product norm which we denote by V ⊗̂W . In this case, we have a
natural complete isometry between (V ⊗̂W )∗ and CB(V,W ∗).

Definition 1.2. A Banach algebra A that is also an operator space is called
a completely contractive Banach algebra if the multiplication map

m : A⊗̂A→ A, u⊗ v 7→ uv

is completely contractive. In particular, both B(G) and A(G) are completely
contractive Banach algebras (see [11]).

Let A be a completely contractive Banach algebra. An operator space X
is called a completely bounded A-bimodule, if X is a Banach A-bimodule and
if the maps

A⊗̂X → X , u⊗ x 7→ ux

and
X⊗̂A→ X , x⊗ u 7→ xu

are completely bounded. In general, if X is a completely bounded A-
bimodule, then its dual space X∗ is a completely bounded A-bimodule via
the actions

(u · T )(x) = T (xu) , (T · u)(x) = T (ux)

for every u ∈ A, x ∈ X, and T ∈ X∗.
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A is operator amenable if, for every completely contractive Banach X-
bimodules, every completely bounded derivation from A into X∗ is inner.
One characterization of operator amenability is that A is operator amenable
if and only if it has a vertual diagonal [27] i.e. there is M ∈ (A⊗̂A)∗∗ such
that

a ·M =M · a , am∗∗(M) = m∗∗(M)a = a (a ∈ A),

where a · (b ⊗ c) = ab ⊗ c, (b ⊗ c) · a = b ⊗ ca, and π : A ⊗ A → A is the
multiplication operator. A is operator weakly amenable if every completely
bounded derivation from A into A∗ is inner [19].

1.4. Arens regular Banach algebras. Let A be a (completely contrac-
tive) Banach algebra. We can define two products on A∗∗, the second dual
of A, known as the first and second Arens products as follows: For every
F,E ∈ A∗∗ with F = w∗ − limα fα, and E = w∗ − limβ gβ , {fα}, {gβ} ⊂ A,
we let the first (second) Arens product be

F�E = w∗ − lim
α

lim
β
fαgβ and F ⋄E = w∗ − lim

β
lim
α
gβfα.

We say that A is Arens regular if the first and second Arens products
always coincide i.e.

F�E = F ⋄ E, ∀F,E ∈ A∗∗.

If A is Arens regular, then every closed subalgebra of A or a quotient of A
is also Arens regular. It is well-known that C∗-algebras (or more generally,
operator algebras) are Arens regular. However the group algebra L1(G) is
Arens regular if and only if G is finite [7].

Also the Arens regularity of the Fourier algebra A(G) implies that G is
discrete, non-amenable, and does not contain a copy of F2, the free group
on two generators [14], [15]. It is still an open question whether the Arens
regularity of A(G) implies that G is finite.

2. Beurling-Fourier algebra on a locally compact group

2.1. General construction. We begin the construction of a dual object of
classical Beurling algebras by the following reformulation of the multiplica-
tivity of weight functions.

Let G be a locally compact group and recall the co-multiplication

Γ : L∞(G) → L∞(G×G), f 7→ Γf,

where Γf(s, t) = f(st). This Γ can be easily extended for unbounded Borel
measurable functions on G using the same formula.

Now let ω : G → (0,∞) be a continuous function. Then the submulti-
plicativity of ω is clearly equivalent to the condition

(2.1) Γ(ω)(ω−1 ⊗ ω−1) ≤ 1.

Our aim is first to define a dual version of weight functions satisfying a
dual version of (2.1), which requires an extension of a ∗-isomorphism for
certain unbounded operators. We will describe the process in the following
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lemma. We refer the reader to [4, Chapters X.1 and X.2] and [29, Chapter
5.5.6] for the definition and basic properties of unbounded operators.

Lemma 2.1. Let M ⊆ B(H) and N ⊆ B(K) be von Neumann algebras
and Φ : M → N be a ∗-isomorphism. We suppose that

(1) there is an increasing net of projections (Ei)i∈I ⊆ M such that
D :=

⋃
i∈I Ei(H) is dense in H,

(2) there is a closed operator W on H with the domain containing D
such that WEi’s are bounded self-adjoint operators in M, and

(3) D′ :=
⋃

i∈I Φ(Ei)(K) is dense in K.

Then, the linear operator B defined on D′ by

B(k) := Φ(WEi)(k) for k ∈ Φ(Ei)(K)

is a closable operator on K, whose closure is self-adjoint.

Proof. Since (Ei)i∈I is increasing, (Φ(Ei))i∈I is also an increasing net of
projections in N , so that B is well-defined. Now we can apply the same
argument as in [29, Lemma 5.6.1] to show that B is closable with the self-
adjoint closure acting on K. �

Definition 2.2. Suppose that we are in the same situation as in Lemma
2.1. We define Φ(W ) acting on K by Φ(W ) := B, where B is the closure of
B.

Remark 2.3. (1) The above definition of Φ(W ) is an extension of Φ in the
following sense. If W is bounded with the domain H, then Φ(W ) defined
in Definition 2.2 (denoted by T ) and the original Φ(W ) (denoted by S)
coincide on a dense subspace of K. Indeed, if we put Wi = WEi, i ∈ I,
where Ei’s are the projection in Lemma 2.1, then we haveWi →W strongly,
and so, W ∈ M. Moreover since Wi’s and W are uniformly bounded, we
have actually Wi → W σ-strongly. Thus, Φ(Wi) → S σ-strongly. From the
definition it is clear that Φ(Wi)x → Tx for all x ∈ D′, so that Tx = Sx for
all x ∈ D′, and D′ is dense in K.

(2) We will use the convention that if two bounded operators S, T , acting
on a Hilbert space, coincide on a dense subspace, then we identify S and T ,
and we use the notation S = T .

Now we go back to the definition of a dual version of weight functions.
Let V N(G) be the group von Neumann algebra, and let Γ be the usual
co-multiplication on V N(G) defined by

Γ : V N(G) → V N(G×G), λ(s) 7→ λ(s)⊗ λ(s),

where λ is the left regular representation of G. Recall that a densely defined
(possibly unbounded) operator T acting on H is said to be affiliated to M,
a von Neumann algebra in B(H), if UTU∗ = T for any unitary U ∈ M′

[29, Chapter 5.5.6], and that T is called boundedly invertible if there is a
bounded operator S : H → H such that TS = idH and ST ⊆ idH [4, 1.14
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Definition]. In the latter case, the choice of S is unique so we denote S by
T−1 and call it the bounded inverse of T .

Definition 2.4. Let G be a locally compact group, and let V N(G) ⊆ B(H)
be a fixed representation of V N(G). A closed densely defined positive oper-
ator W on H affiliated to V N(G) with the bounded inverse W−1 ∈ V N(G)
is called a weight on the dual of G if

(1) W satisfies the conditions in Lemma 2.1 with M = V N(G), N =
V N(G×G) ⊆ B(H ⊗2 H), and Φ = Γ,

(2) D0 := {x ∈ H ⊗2 H : (W−1 ⊗W−1)x ∈ D′} is dense in H ⊗2 H,
(3) Γ(W )(W−1 ⊗ W−1) is bounded on D0 (we still denote its unique

extension to H ⊗2 H by Γ(W )(W−1 ⊗W−1)),
(4) Γ(W )(W−1 ⊗W−1) ≤ 1V N(G×G), and

(5) V N(G)W−1 := {AW−1 : A ∈ V N(G)} is w∗-dense in V N(G).

We say that a weight W on the dual of G is central if WEi ∈ V N(G)′ for
any i ∈ I, where (Ei)i∈I is the net of projections in Lemma 2.1.

Remark 2.5. (1) In this paper, we will usually exploit the representation of
V N(G) coming from the representation theory of the groupG in the concrete
examples, namely the case of compact groups and the case of Heisenberg
groups.

(2) We require our weight W to be boundedly invertible in order to avoid
unnecessary difficulties of unbounded inverses. Of course, we sacrifice some
generality here, but all of our examples show that this is a reasonable re-
striction.

Definition 2.6. For a weight W on the dual of G we define

V N(G,W−1) := {AW : A ∈ V N(G)}.(2.2)

Hence each element of V N(G,W−1) is a densely defined operator on H. We
put the canonical linear structure on V N(G,W−1). Since W−1 ∈ V N(G),
it follows that the mapping

Φ : V N(G) → V N(G,W−1), A 7→ AW(2.3)

is a linear isomorphism. We endow an operator space structure on V N(G,W−1)
so that Φ induces a complete isometry. In particular,

‖AW‖V N(G,W−1) = ‖A‖V N(G) .

We will denote the predual of V N(G,W−1) by A(G,W ).
Finally we define C∗

r (G,W
−1) by

C∗
r (G,W

−1) := {AW : A ∈ C∗
r (G)}.

Clearly Φ|C∗
r (G) is a complete isometry between C∗

r (G) and C
∗
r (G,W

−1).
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Remark 2.7. (1) The above definition of A(G,W ) is an abstract one, but we
have a natural realization of A(G,W ) as follows. For any φ ∈ A(G), W−1φ
is an element in A(G) satisfying

(W−1φ)(A) = φ(AW−1), A ∈ V N(G).

Hence we have

A(G,W ) = {W−1φ : φ ∈ A(G)}(2.4)

with the duality bracket

〈W−1φ,AW 〉 = φ(A)(2.5)

for φ ∈ A(G) and A ∈ V N(G). Moreover, Φ is w∗-w∗ continuous and its
preadjoint Φ∗ : A(G,W ) → A(G) is given by

Φ∗(W
−1φ) = φ.

(2) The condition (5) of Definition 2.4 is redundant if the weight W is
central. Indeed, V N(G)W−1 is w∗-dense in V N(G) if and only if the map
A(G) → A(G), ϕ 7→ W−1ϕ is one-to-one. Now suppose that W−1ϕ = 0.
Then WEiW

−1ϕ = 0, i ∈ I, where Ei’s are the projection in Lemma 2.1.
HoweverWEi ∈ V N(G)′, and so, WEiW

−1ϕ =W−1ϕWEi = Ei → 1V N(G)

strongly. Hence ϕ = 0.
(3) Since W−1 ∈ V N(G), the inclusion map (or the formal identity)

j : V N(G) → V N(G,W−1), A 7→ (AW−1)W is a completely bounded w∗-
w∗ continuous map with ‖j‖cb ≤

∥∥W−1
∥∥ . Moreover, j has a dense range

since Φ−1 ◦ j : V N(G) → V N(G), A 7→ AW−1 has a dense range by
Definition 2.4 (5). This implies that the preadjoint of j, j∗ : A(G,W ) →
A(G) is completely bounded and one-to-one. Note that j∗ is clearly the
formal identity. Thus we can (and will) assume that A(G,W ) ⊆ A(G) and
view any element φ ∈ A(G,W ) as a continuous function on G vanishing at
infinity.

(4) We do not know whether W ⊗W always defines a weight on the dual
of G×G. Nevertheless we can formally define V N(G×G,W−1⊗W−1) and
A(G×G,W ⊗W ) similar to (2.2) and (2.4), respectively. This induces the
natural complete isometry

Ψ : V N(G×G) → V N(G×G,W−1 ⊗W−1), A⊗B 7→ (A⊗B)(W ⊗W ).

(2.6)

In fact, we can identify
(
A(G,W )⊗̂A(G,W )

)∗
= V N(G×G,W−1 ⊗W−1).

Indeed, from (2.3) and (2.6) we have the following composition of complete
isometries

A(G,W )⊗̂A(G,W )
Φ∗⊗Φ∗−→ A(G)⊗̂A(G) ∼= A(G×G)

Ψ−1
∗−→ A(G×G,W ⊗W ),

which can be easily checked to be the formal identity.
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Now we would like to endow a completely contractive Banach algebra
structure on A(G,W ). Recall that the Banach algebra structure of A(G)
comes from the co-multiplication Γ, so that we will consider an appropri-
ate map V N(G,W−1) → V N(G × G,W−1 ⊗ W−1), which is essentially
the extension of Γ. By (3) in Definition 2.6 we have a normal complete
contraction

Γ̃ : V N(G) → V N(G×G),

defined by

A 7→ Γ(A)Γ(W )(W−1 ⊗W−1).

We define the w∗-w∗ continuous complete contraction

ΓW : V N(G,W−1) → V N(G×G,W−1 ⊗W−1)

by

(2.7) ΓW := Ψ ◦ Γ̃ ◦ Φ−1.

We can say that ΓW is essentially an extension of Γ in the following sense.

Theorem 2.8. Let G be a locally compact group, and let W be a weight on
the dual of G. Then the following diagram is commutative:

V N(G)
Γ

//

j
��

V N(G×G)

j⊗j
��

V N(G,W−1)
ΓW

//
V N(G×G,W−1 ⊗W−1).

Proof. It suffices to show that for every A ∈ V N(G),

(2.8) ΓW (A)x = Γ(A)x

for all x ∈ D(W ) ⊗ D(W ), where D(W ) is the domain of W . Let Wi =
WEi, i ∈ I, where Ei’s are the projection in Lemma 2.1. Then we have
W−1Wix → x for all x ∈ D =

⋃
i∈I Ei(H). Since W−1Wi’s are uniformly

bounded and D is dense in H, we have W−1Wi → 1V N(G) σ-strongly. Thus

Γ(W−1)Γ(Wi) → 1V N(G×G) σ-strongly. Since

Γ(Wi)x→ Γ(W )x

for all x ∈ D′ =
⋃

i∈I Γ(Ei)(H ⊗2 H), we have Γ(W−1)Γ(W )x = x for all
x ∈ D′, so that for every A ∈ V N(G)

Γ(AW−1)Γ(W )(W−1 ⊗W−1)x = Γ(A)Γ(W−1)Γ(W )(W−1 ⊗W−1)x

= Γ(A)(W−1 ⊗W−1)x

for all x ∈ D0 = {x ∈ H ⊗2 H : (W−1 ⊗W−1)x ∈ D′}. Since D0 is dense
in H ⊗2 H ((2) of Definition 2.4) and both operators are bounded ((3) of
Definition 2.4), we have

Γ(AW−1)Γ(W )(W−1 ⊗W−1) = Γ(A)(W−1 ⊗W−1).
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Thus

ΓW (A) = Ψ(Γ̃(Φ−1(A)))

= Ψ(Γ̃(AW−1))

= Ψ(Γ(AW−1)Γ(W )(W−1 ⊗W−1))

= Ψ(Γ(A)(W−1 ⊗W−1))

= Γ(A)(W−1 ⊗W−1)(W ⊗W ).

Hence (2.8) follows. �

We are now ready to define a suitable completely contractive Banach
algebra structure on A(G,W ). Indeed, since ΓW is a complete contraction
and also a w∗-w∗ continuous mapping, the preadjoint ΓW

∗ of ΓW defines
a completely contractive Banach algebra structure on A(G,W ). This will
allow us to present the following definition.

Definition 2.9. Let G be a locally compact group, and letW be a weight on
the dual of G. The completely contractive Banach algebra A(G,W ) defined
in Definition 2.6 with the multiplication

ΓW
∗ : A(G,W )⊗̂A(G,W ) → A(G,W )

is called the Beurling-Fourier algebra on G.
We will use the notation

φ ·A(G,W ) ψ = ΓW
∗ (φ⊗ ψ), φ, ψ ∈ A(G,W ),

while
φ ·A(G) ψ = Γ∗(φ⊗ ψ), φ, ψ ∈ A(G).

Remark 2.10. (1) It follows from the commuting diagram in Theorem 2.8
that the following diagram is also commutative:

A(G ×G,W ⊗W )
ΓW
∗

//

ι∗⊗ι∗
��

A(G,W )

ι∗
��

A(G×G)
Γ∗

// A(G).

This implies that for every φ,ψ ∈ A(G,W ),

φ ·A(G,W ) ψ = ΓW
∗ (φ⊗ ψ) = Γ∗(φ⊗ ψ) = φ ·A(G) ψ,

or equivalently, the multiplication on A(G,W ) can be be understood as the
pointwide multiplication of continuous functions so that A(G,W ) can be
viewed as a subalgebra of A(G).

(2) The definition of the Banach algebra structure on A(G,W ) for a weight
W on the dual of G is somewhat technical since we are working with general
unbounded operators. If W is bounded or at least V N(G) is semifinite with
a trace τ andW is τ -measurable, then the above construction becomes much
easier, since the extension of ∗-isomorphism can be easily understood ([33,
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Lemma 2.4]). However, the weight W we are interested in is usually pretty
much unbounded, so that W is not even τ -measurable.

2.2. Central weights on the dual of compact groups. We will show in
this section how we can construct central weights on the duals of compact
groups. We will see, eventually, that they are a generalization of classical
weights on discrete groups.

Let G be a compact group. Then from (1.6),

V N(G) ∼=
⊕

π∈Ĝ

Mdπ ⊆ B(H),

where H =
⊕

π∈Ĝ
ℓ2dπ . Note that the above direct sums over Ĝ assume the

repetition of the same component dπ-times for π ∈ Ĝ. For the rest of this
article, we always consider the above representation of V N(G).

Before proceeding further we need to know how the co-multiplication on
V N(G) is translated in the above representation of V N(G). Note that the
left regular representation λ has the decomposition λ ∼=

⊕
π∈Ĝ π. Consider

a central element W ∈ V N(G) defined by

W =
⊕

π∈Ĝ

ω(π)1Mdπ
,

where ω(π)’s are positive numbers and F = {π ∈ Ĝ : ω(π) > 0} is a finite
set. Then from (1.3), (1.4) and the Fourier inversion formula (1.5) we have
that

F(f) = (f̂(π))π∈Ĝ =W or W = F
( ∫

G
f(x)λ(x)dx

)
,

where

f(x) =
∑

σ∈Ĝ

dσω(σ)tr(σ(x)), (x ∈ G).

Thus

Γ(W ) = F
(∫

G
f(x)λ(x)⊗ λ(x)dx

)

=
⊕

π,π′∈Ĝ

∫

G
f(x)π(x)⊗ π′(x)dx

=
⊕

π,π′∈Ĝ

N⊕

k=1

∫

G
f(x)τk(x)dx,

where

(2.9) π ⊗ π′ ∼=

N⊕

k=1

τk
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for some (τk)Nk=1 ⊆ Ĝ. Note that we are allowing the repetition of τk’s, so

that it is possible that τk ∼= τ l for some k 6= l. By the Schur orthogonality
relation,

Γ(W ) =
⊕

π,π′∈Ĝ

N⊕

k=1

∫

G

∑

σ

dσw(σ)

dσ∑

i=1

σii(x)τk(x)dx

=
⊕

π,π′∈Ĝ

N⊕

k=1

w(τk)1Md
τk
.

We can change the order of the direct sum using the following notation.

Definition 2.11. Let ρ be a continuous finite-dimensional (unitary) repre-

sentation of G. We recall that the support of ρ in Ĝ is the (finite) set of
continuous finite-dimensional irreducible unitary representation of G that
appear in the decomposition of ρ, i.e.

suppρ = {τi ∈ Ĝ | ρ ∼= ⊕n
i=1τi}.

Using the preceding definition and the fact that F = {π ∈ Ĝ : ω(π) > 0},
we can write

(2.10) Γ(W ) =
⊕

σ∈F

⊕

π,π′∈Ĝ
σ∈ supp π⊗π′

w(σ)1Mdσ
.

Now we consider a function ω : Ĝ → (δ,∞) for some δ > 0. We would
like to construct a central weight associated to ω. Let F be the set of all

finite subset of Ĝ directed by the inclusion. For every F ∈ F , let EF be the
projection in V N(G) defined by

EF =
⊕

π∈F

1Mdπ
.

It is clear that (EF )F∈F is an increasing net of projections in V N(G) and
D =

⋃
F∈F EF (H) is dense in H. Let WF be the operator in V N(G) given

by

WF :=
⊕

π∈F

ω(π)1Mdπ
.

Consider the linear operator W0 with the domain D defined by

W0(h) :=WF (h), h ∈ EF (H).

If we apply the same argument as in [29, Lemma 5.6.1], then we can show
that W0 is closable with the self-adjoint closure. We will denote this closure
by

(2.11) W =
⊕

π∈Ĝ

ω(π)1Mdπ
.

We can exactly determine when W is a weight on the dual of G.
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Theorem 2.12. Let G be a compact group, and let ω : Ĝ → (δ,∞) be
a function, where δ > 0. The operator W constructed in (2.11) defines a
central weight on the dual of G if and only if

ω(σ) ≤ ω(π)ω(π′)(2.12)

for all σ, π, π′ ∈ Ĝ with σ ∈ suppπ ⊗ π′.

Proof. Following the construction of W , it is routine to verify that W is
a closed densely defined positive operator on H =

⊕
π∈Ĝ ℓ

2
dπ

affiliated to

V N(G). Also W has the inverse

W−1 =
⊕

π∈Ĝ

ω(π)−11Mdπ
∈ V N(G),

since ω is bounded away from zero. Moreover, (2.10) implies that

Γ(EF ) =
⊕

σ∈F

⊕

π,π′∈Ĝ
σ∈ suppπ⊗π′

1Mdσ
.

Thus it is clear that D′ =
⋃

F∈F Γ(EF )(H⊗2H) is dense in H⊗2H, so that
we can apply Lemma 2.1 to define Γ(W ). Note that we have

Γ(W )Γ(EF ) =
⊕

σ∈F

⊕

π,π′∈Ĝ
σ∈ suppπ⊗π′

w(σ)1Mdσ
.

On the other hand,

W−1 ⊗W−1 =
⊕

π,π′∈Ĝ

ω(π)−1ω(π′)−11Mdπ
⊗ 1Md

π′

=
⊕

σ∈Ĝ

⊕

π,π′∈Ĝ
σ∈ suppπ⊗π′

ω(π)−1ω(π′)−11Mdσ
,

and so the condition (2) of Definition 2.4 is clearly satisfied. Moreover,

Γ(W )(W−1 ⊗W−1) =
⊕

σ∈Ĝ

⊕

π,π′∈Ĝ
σ∈ suppπ⊗π′

ω(σ)ω(π)−1ω(π′)−11Mdσ
.(2.13)

Hence the condition (4) of Definition 2.4 is equivalent to the relation (2.12).

Finally, it is clear that WF ∈ V N(G)′ for every finite subset F of Ĝ, and
so, by Remark 2.7(2), the condition (5) of Definition 2.4 is satisfied. Con-
sequently, W is a central weight on the dual of G if and only if (2.12) is
satisfied. �

The preceding theorem leads us to the following definition. This idea was
also considered by J. Ludwig, N. Spronk, and L. Turowska [31].
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Definition 2.13. Let G be a compact group, and W =
⊕

π∈Ĝ
ω(π)1Mdπ

be a central weight on the dual of G for a function ω : Ĝ → (δ,∞) (δ > 0)
satisfying (2.12). For convenience, we use ω to represent W , A(G,ω) to
represent A(G,W ), V N(G,ω−1) to represent V N(G,W−1), C∗

r (G,ω
−1) to

represent C∗
r (G,W

−1), and use the terminology that ω is a central weight

on Ĝ. Finally, we define the symmetrization of ω, denoted by Ω, to be

Ω(π) = ω(π)ω(π) (π ∈ Ĝ).

In particular, we have the completely isometric identification

A(G,W ) = C∗
r (G,W

−1)∗.

Remark 2.14. (1) Since A(G,ω) ⊆ A(G) boundedly, we can understand each
element in A(G,ω) as a continuous function on G. More precisely, we have

A(G,ω) ∼= {f ∈ C(G) : ‖f‖A(G,ω) =
∑

π∈Ĝ

dπω(π)‖f̂ (π)‖1 <∞}.

(2) It is easy to verify that the symmetrization Ω of ω is also a central

weight on Ĝ. It is also easy to check that for any two central weights ω1

and ω2 on Ĝ, the function ω1ω2 defined by

(ω1ω2)(π) = ω1(π)ω2(π), π ∈ Ĝ

is again a central weight on Ĝ.
(3) Let {Gi}i∈I be a family of compact groups, and F (I) be the set of

finite subsets of I. It follows from [25, Theorem 27.43 ] that the dual of∏
i∈I Gi consist of all the representations

(πi)i∈F :
∏

i∈F

Gi → B(⊗i∈FHπi
) , (xi)i∈F 7→ ⊗i∈Fπi(xi) (F ∈ F (I)).

Now suppose that, for every i ∈ I, ωi is a central weight on Ĝi. Then it is
straightforward to see that the product function

∏
i∈I ωi given by

(
∏

i∈I

ωi)((πi)i∈F ) =
∏

i∈F

ωi(πi)

is again a central weight on the dual of
∏

i∈I Gi provided that
∏

i∈I ωi is
bounded away from zero as well.

Let m ∈ N, and T(m) denotes the m-times Cartesian product of T. There

are various classical weight associated to T̂(m) = Z(m) such as

n 7→ (1 + ln(1 + ‖n‖))a, n 7→ (1 + ‖n‖)a (a > 0),

where ‖n‖ is the natural norm on Z(m). Since the dual of a non-abelian
compact group G is not a group anymore, we can not use this idea to

define weights on Ĝ. However, as we see in the following example, our

generalization allows us to define very natural weights on Ĝ.
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Example 2.15. Let G be a compact group, and let a ≥ 0. We define the

functions σa and ωa from Ĝ into [1,∞) by

σa(π) = (1 + ln dπ)
a (π ∈ Ĝ),(2.14)

ωa(π) = daπ (π ∈ Ĝ).(2.15)

It follows from the tensor formula (2.9) that both σa and ωa satisfy (2.12),

and so, they are central weights on Ĝ. Since the irreducible representations
of abelian groups are 1-dimensional, the preceding weights are trivial if G is
abelian. Thus they are interesting for compact non-abelian groups.

2.3. Central weights on the dual of the Heisenberg groups. Let
Hd (d ≥ 1) be the Heisenberg group on Cd × R. Our references for the
Heisenberg groups are [39, Chapter 1] and [13, Examples 6.7 and 7.6]. For
h ∈ R∗(= R \ {0}) we consider the Schrödinger representations of Hd acting
on H = L2(Rd) defined by

πh(z, t)ϕ(ξ) = eihteih(x·ξ+
1
2
x·y)ϕ(ξ + y),

where · is the usual inner product in Rd, z = x+ iy, x, y ∈ Rd and ϕ ∈ H.
The Haar measure on Hd is just the Lebesgue measure on Cd × R, which
will be denoted by dzdt. The Fourier transform on Hd is defined as follows:

f̂Hd(h) =

∫

Hd

f(z, t)πh(z, t)dzdt, h ∈ R∗

for f ∈ L1(Hd), and the Plancherel theorem says
∫

R∗

∥∥∥f̂Hd(h)
∥∥∥
2

S2(H)
dµ(h) =

∫

Hd

|f(z, t)|2 dzdt,

where S2(H) is the Hilbert-Schmidt class on H, dµ(h) = |h|d

(2π)d+1 dh on R∗

and f ∈ L1(Hd) ∩ L
2(Hd). Moreover, it is well known that

(2.16) λ
unitarily

∼=

∫ ⊕

πhdµ(h),

where λ is the left regular representation of Hd, and

V N(Hd) ∼= L∞(µ;B(H)) ⊆ B(H),

where H = L2(µ;S2(H)). Note that the above vector-valued L∞ space
L∞(µ;B(H)) can be naturally identified with the von Neumann algebra
tensor product L∞(µ)⊗̄B(H).

Lastly, we recall the Fourier inverse transform

F−1 : L1(µ;S1(H)) → L∞(Hd), X = (X(h)) 7→ F−1(X),

where

F−1(X)(z, t) =

∫

R∗

tr(πh(z, t)X(h))dµ(h),
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S1(H) is the trace class on H and L1(µ;S1(H)) refers to a vector-valued L1

space.
As in the compact group case, we need to know how the co-multiplication

is translated in this setting. In order to achieve this, we first need the
following lemma.

We fix an orthonormal basis (ξi)i≥1 for H, and let Pji ∈ B(H) is the
operator defined by

Pji(η) = 〈η, ξi〉ξj , i, j ≥ 1.(2.17)

Then we get the following substitute for Schur orthogonality.

Lemma 2.16. Let g be a function in S(R), the Schwarz class on R.

g(h′)δikδjl

=

∫

R∗

∫

Hd

g(h)〈πh(z, t)ξj , ξi〉〈πh′(z, t)ξk, ξl〉dzdtdµ(h), i, j, k, l ≥ 1(2.18)

for every h′ ∈ R∗.

Proof. Let X = g ⊗ Pji, i, j ≥ 1. If we take Fourier inverse transform, then
we get

f(z, t) = F−1(X)(z, t) =

∫

R∗

g(h)tr(πh(z, t)Pji)dµ(h)

=

∫

R∗

g(h)〈πh(z, t)ξj , ξi〉dµ(h), (z, t) ∈ Hd.

From the inversion theorem ([39, theorem 1.3.2]) we recover X as the Fourier
transform of f , so that we have

X(h′) = g(h′)Pji

=

∫

R∗

∫

Hd

g(h)〈πh(z, t)ξj , ξi〉πh′(z, t)dzdtdµ(h)

for every h′ ∈ R∗. Since 〈Pjiξk, ξl〉 = 〈ξk, ξi〉〈ξj , ξl〉, we get the conclusion.
�

Now let W = w ⊗ idn for some strictly positive w ∈ S(R) and n ≥ 1,
where idn =

∑n
i=1 Pii, the n× n upper-left corner of 1B(H). We set

f(z, t) = F−1(W )(z, t) =

∫

R∗

w(h)χn
πh
(z, t)dµ(h), (z, t) ∈ Hd,

where

χn
πh
(z, t) =

n∑

i=1

〈πh(z, t)ξi, ξi〉.(2.19)

Then we have Γ(W ) =
∫
Hd
f(z, t)λ(z, t) ⊗ λ(z, t)dzdt, and if we focus on a

particular point (h′, h′′) ∈ R∗ × R∗, then by (2.16) we have
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Γ(W )(h′, h′′) =

∫

Hd

f(z, t)πh′(z, t) ⊗ πh′′(z, t)dzdt

=

∫

R∗

∫

Hd

w(h)χn
πh
(z, t)πh′(z, t) ⊗ πh′′(z, t)dzdt

for almost every (h′, h′′) ∈ R∗ × R∗. By the Stone-von Neumann theorem
([13, Theorem 6.49]) for h′ + h′′ 6= 0 (note that the cases h′ + h′′ = 0 are
measure zero with respect to µ× µ) we have

πh′ ⊗ πh′′
∼=

⊕

α

παh′+h′′ ,

where παh′+h′′ are copies of πh′+h′′ . Thus, by (2.18) and (2.19) we have

Γ(W )(h′, h′′) =
⊕

α

∫

R∗

∫

Hd

w(h)χn
πh
(z, t)παh′+h′′(z, t)dzdtdµ(h)

=
⊕

α

w(h′ + h′′)idn

for almost every (h′, h′′) ∈ R∗ × R∗. Note that the above equality can be
extended to any ω ∈ L∞(R) since S(R) is w∗-dense in L∞(R), and we can
replace idn by 1B(H) by w∗-w∗ continuity. Thus, for any ω ∈ L∞(R) and
W = ω ⊗ 1B(H) we have

(2.20) Γ(W )(h′, h′′) = w(h′ + h′′)1B(H) ⊗ 1B(H)

for almost every (h′, h′′) ∈ R∗×R∗. Note that we used the fact that
⊕

α 1B(H)

is identified with 1B(H) ⊗ 1B(H).
Now we consider a continuous positive function ω on R which is bounded

away from zero. We would like to construct a central weight associated to
ω. For m ∈ N, we consider the projection Em in V N(Hd) given by

Em = 1[−m,m] ⊗ 1B(H).

It is clear that (Em)m≥1 is an increasing net of projections in V N(Hd) and
D =

⋃
m≥1Em(H) is dense in H = L2(µ;S2(H)). Let Wm be the operator

in V N(Hd) given by

Wm := (ω1[−m,m])⊗ 1B(H).

Consider a linear operator W0 with the domain D defined by

W0(h) :=Wm(h), h ∈ Em(H).

If we apply the same argument as in [29, Lemma 5.6.1], then we can show
that W0 is closable with the self-adjoint closure. We will denote this closure
by

(2.21) W = ω ⊗ 1B(H).

Similar to the compact groups, we can exactly determine when W defines a
weight on the dual of G.
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Theorem 2.17. Let w : R → (δ,∞) be a continuous function, where δ > 0.
The operator W constructed in (2.21) defines a central weight on the dual
of the Heisenberg group Hd if and only if

(2.22) w(h′ + h′′) ≤ w(h′)w(h′′)

for every h′ and h′′ in R.

Proof. Following the construction of W , it is routine to verify that W is a
closed densely defined positive operator on Hd affiliated to V N(Hd). Also
W has the bounded inverse

W−1 = ω−1 ⊗ 1B(H),

since ω is bounded away from zero. Moreover, (2.20) implies that

Γ(Em)(h′, h′′) = 1[−m,m](h
′ + h′′)1B(H) ⊗ 1B(H)

for almost every (h′, h′′) ∈ R∗ × R∗. Thus it is clear that

D′ =
⋃

m≥1

Γ(Em)(H ⊗2 H)

is dense in H ⊗2 H, so that we can apply Lemma 2.1 to define Γ(W ). Note
that

Γ(W )(h′, h′′) = 1[−m,m](h
′ + h′′)w(h′ + h′′)1B(H) ⊗ 1B(H)

on Γ(Em)(H ⊗2 H), for every m ≥ 1 and almost every (h′, h′′) ∈ R∗ × R∗.
On the other hand,

(W−1 ⊗W−1)(h′, h′′) = w−1(h′)w−1(h′′)1B(H) ⊗ 1B(H)

for every (h′, h′′) ∈ R∗ × R∗. Then clearly D′ and D0 = {x ∈ H ⊗2 H :
(W−1 ⊗ W−1)x ∈ D′} both contain C00(R

∗ × R∗) ⊗ S2(H ⊗ H), where
C00(R

∗ × R∗) refers to the space of continuous functions on R∗ × R∗ with
compact support. Moreover,W−1⊗W−1 preserves C00(R

∗×R∗)⊗S2(H⊗H),
and since C00(R

∗ ×R∗)⊗ S2(H⊗H) is dense in H ⊗2 H, the condition (2)
of Definition 2.4 is satisfied. Moreover, the condition (4) of Definition 2.4 is
equal to

w(h′ + h′′) ≤ w(h′)w(h′′)

for almost every h′ and h′′ in R∗ which is equivalent to the relation (2.22)
since w is continuous. Finally, it is clear that Wm ∈ V N(G)′ for every
m ∈ N, and so, by Remark 2.7(2), the condition (5) of Definition 2.4 is
satisfied. Consequently, W = ω ⊗ 1B(H) defines a weight on the dual of Hd

if and only if (2.22) holds. �

The preceding theorem is the motivation behind the following definition.

Definition 2.18. Let W = ω ⊗ 1B(H) be a central weight on the dual of
Hd for a continuous function ω : R → (δ,∞) (δ > 0) satisfying (2.22). For
convenience, we use ω to representW , A(Hd, ω) to represent A(Hd,W ), and

use the terminology that ω is a central weight on Ĥd.
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Example 2.19. Let a ≥ 0. We define the function τa : R → [1,∞) by

τa(x) = (1 + |x|)a (x ∈ R).(2.23)

By Theorem 2.17 and Definition 2.18, τa is a central weight on Ĥd.

3. Compact groups

Throughout this section, G is always assumed to be a compact group. We
start with showing certain functorial property that holds for the Beurling-
Fourier algebras.

3.1. Functorial Property. Consider the map Q : A(G × G) → C(G)
defined by

Qw(s) =

∫

G
w(sr, r)dr.

We denote the image of Q by A∆(G). We endow A∆(G) with the operator
space structure which makes Q a complete quotient map. We also note that

N : A∆(G) → A(G×G), Nu(s, t) = u(st−1)

is a complete isometry. As in [17, Theorem 2.6], if we repeat the procedure
above we obtain

(3.1) A∆n+1(G) = Q(A∆n(G×G)) (n ∈ N).

We can do a similar construction with

Q̌ : A(G ×G) → C(G), Q̌w(s) =

∫

G
w(st, t−1)dt.

We denote the image of Q̌ by Aγ(G). We endow Aγ(G) with the operator

space structure which makes Q̌ a complete quotient map. We also note that

Ň : Aγ(G) → A(G×G : ∆̌), Ňu(s, t) = u(st)

is a complete isometry. If we repeat the procedure above we obtain

(3.2) Aγn+1(G) = Q̌(Aγn(G×G)) (n ∈ N ∪ {0}).

It follows immediately that, for each n ∈ N, Aγn(G) is a closed unital sub-

algebra of the Fourier algebra A(G(2n)). Moreover, by [17, Theorem 4.1],

(3.3) ‖f‖Aγn (G) =
∑

π∈Ĝ

d2
n+1

π

∥∥∥f̂(π)
∥∥∥
1
.

Let ω be a central weight on Ĝ, and let Ω be the symmetrization of ω
(Definition 2.13). Since A(G × G,ω × ω) is a subalgebra of A(G × G), we
can restrict the map Q to A(G×G,ω × ω). We denote

A∆(G,Ω) = Q(A(G×G,ω × ω))
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and endow A∆(G,Ω) with the operator space structure so that it became
a complete quotient of A(G × G,ω × ω). It is clear that A∆(G,Ω) is a
completely contractive Banach algebra. Moreover

N : A∆(G,Ω) → A(G ×G,ω × ω), Nu(s, t) = u(st−1)

induces a completely isometric algebraic monomorphism from A∆(G,Ω) into
A(G×G,ω × ω).

The following theorem explains the motivation behind using Ω in the
preceding definition.

Theorem 3.1. Let G be a compact group, and let ω be a central weight on

Ĝ. Then

A∆(G,Ω) = {f ∈ C(G) :
∑

π∈Ĝ

d3/2π Ω(π)
∥∥∥f̂(π)

∥∥∥
2
<∞}.

Moreover, for every f ∈ A∆(G,Ω), we have:

‖f‖A∆(G,Ω) = inf{‖u‖ω×ω : u ∈ A(G×G,ω × ω), Qu = f}

=
∑

π∈Ĝ

d3/2π Ω(π)‖f̂(π)‖2.

Proof. It suffices to show that, for f ∈ C(G),

f ∈ A∆(G,Ω) iff
∑

π∈Ĝ

d3/2π Ω(π)‖f̂(π)‖2 <∞.

We note that f ∈ A∆(G,Ω) if and only ifNf ∈ A(G×G,ω×ω), in which case
‖f‖A∆(G,Ω) = ‖Nf‖ω×ω. On the other hand, following a similar argument
as in the proof of Theorem 2.2 in [17], we can compute ‖Nf‖ω×ω, which is∑

π∈Ĝ
d
3/2
π Ω(π)‖f̂(π)‖2. This completes the proof. �

We collect some notations for ideals which we will need in this section.

Definition 3.2. Let E be a closed subset of G. We define

E∗ := {(s, t) ∈ G×G : st−1 ∈ E}.

For any central weight ω on Ĝ we define the ideal Iω(E) to be the ‖·‖A(G,ω)-
closure of {f ∈ T (G) : f = 0 on E}. Similarly,

I∆,Ω(E) = {f ∈ A∆(G,Ω) : f = 0 on E}

and

Iω×ω(E
∗) = {g ∈ A∆(G×G,ω × ω) : g = 0 on E∗}.

Theorem 3.3. Let G be a compact group, and let ω be a central weight on

Ĝ. If E is a closed subset of G, then we have
(i) QIω×ω(E

∗) = I∆,Ω(E).
(ii) Iω×ω(E

∗) is the closed ideal generated by NI∆,Ω(E).
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Proof. Since ω is bounded away from zero, A(G × G,ω × ω) satisfies the
assumption of [17, Theorem 1.4]. Thus it is a special case of [17, Theorem
1.4]. �

The following proposition is shown to hold in [35, Theorem 3.7.13] when
G is abelian. We prove it for the general case with a different method and
later use it to relate the properties of different Beurling-Fourier algebras
together. But first we need the following definition.

Definition 3.4. For a closed subgroup H of G, we say that π ∈ Ĝ is an

extension of τ ∈ Ĥ if τ ∈ suppπ|H , where π|H is the representation on H
obtained by restricting on H.

Proposition 3.5. Let ω be a central weight on Ĝ, and let H be a closed

subgroup of G. Define the function ωH : Ĥ → (0,∞) by

ωH(π) = inf{ω(π̃) | π̃ is an extenstion of π}.

Then:
(i) ωH is a central weight on Ĥ.
(ii) The restriction map RH : T (G) → T (H) extends to a complete quotint
map from A(G,ω) onto A(H,ωH).

Proof. (i) By [25, 27.46], ωH is well-defined. We will show that ωH is a

weight on Ĥ. Let π, ρ ∈ Ĥ and τ ∈ Ĥ such that τ ∈ supp (π⊗ ρ). We want
to prove that

ωH(τ) ≤ ωH(π)ωH(ρ),

or equivalently,

(3.4) ωH(τ) ≤ ω(π̃)ω(ρ̃),

for every extension π̃ and ρ̃ of π and ρ, respectively. Let

(3.5) π̃ ⊗ ρ̃ =
n⊕

i=1

σi,

where σi ∈ Ĝ (note that σi’s may not be all distinct). We claim that, for
some i0, σi0 is an extenstion of τ . To see this, first note that

π̃|H =
m⊕

j=1

πj , ρ̃|H =

p⊕

k=1

ρk,

with πi, ρi ∈ Ĥ with π1 = π, and ρ1 = ρ. Thus

(π̃ ⊗ ρ̃)|H =
(
π ⊗ ρ

)
⊕

( m+p⊕

j+k>2

πj ⊗ ρk

)
.

Since, by our assumption, τ ∈ supp (π⊗ ρ), τ appears in the decomposition

of (π̃⊗ ρ̃)|H into the irreducible elements of Ĥ. Hence, by (3.5), τ appears in
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the decomposition of
⊕n

i=1 σi|H . Therefore, by Schur orthogonality relation,
for some i0, σi0 is an extension of τ . Thus

ωH(τ) ≤ ω(σi0) ≤ ω(π̃)ω(ρ̃),

which proves (3.4). This completes the proof.
(ii) Let ι : C∗

r (H) → C∗
r (G) be the ∗-isomorphism defined by

ι(Lf ) =

∫

H
f(h)λG(h)dh, f ∈ L1(H),

where Lf is the convolution operator by f on L2(H). It is easy to check that
RH |T (H) = ι∗|T (H), so that it suffices to show that ι extends to a complete

isometry from C∗
r (H,ω

−1
H ) into C∗

r (G,ω
−1).

Now we fix n ≥ 1 and consider a finite sequence of distinct representations

(σk)
N
k=1 ⊆ Ĥ. Let A be an element in Mn(V N(H,ω−1

H )) supported on

(σk)
N
k=1, i.e.

A =
n∑

i,j=1

eij ⊗
[ N⊕

k=1

Ak
ij

]
,

where Ak
ij ∈ Mdσk

. From (1.4), (1.5), and (1.6) it follows that for every

1 ≤ i, j ≤ n, there is fij ∈ L1(H) such that

F(Lfij ) =
N⊕

k=1

Ak
ij.

Moreover, for every h ∈ H,

fij(h) =

N∑

k=1

dσk
tr(Ak

ijσk(h)).

Hence we have

ιn([Lfij ]) =
[ ∫

H
fij(h)λG(h)dh

]

=
n∑

i,j=1

eij ⊗
[⊕

π∈Ĝ

∫

H

N∑

k=1

dσk
tr(Ak

ijσk(h))π(h)dh
]
.
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The integrals in the above formula are zero unless there is some σk ∈ supp π,
equivalently, π extends some σk. Thus∥∥ιn([Lfij ])

∥∥

= sup
π∈Ĝ

{ 1

ω(π)

∥∥∥∥∥∥

n∑

i,j=1

eij ⊗

∫

H

N∑

k=1

dσk
tr(Ak

ijσk(h))π(h)dh

∥∥∥∥∥∥
Mn(Mdπ )

}

= sup
σk∈suppπ

{ 1

ω(π)

∥∥∥∥∥∥

n∑

i,j=1

eij ⊗

∫

H

N∑

k=1

dσk
tr(Ak

ijσk(h))σk(h)dh

∥∥∥∥∥∥
Mn(Mdπ )

}

= max
1≤k≤N

1

inf{ω(π) : σk ∈ suppπ}

∥∥∥∥∥∥

n∑

i,j=1

eij ⊗Bk
ij

∥∥∥∥∥∥
Mn(Mdπ )

= max
1≤k≤N

∥∥∥
∑n

i,j=1 eij ⊗Bk
ij

∥∥∥
Mn(Mdπ )

ω−1
H (σk)

= ‖Lf‖Mn(C∗
r (H,ω−1

H
)) ,

where Bk
ij =

∫
H

∑N
k=1 dσk

tr(Ak
ijσk(h))σk(h)dh. By a standard density argu-

ment ι extends to a complete isometry from C∗
r (H,ω

−1
H ) into C∗

r (G,ω
−1).

�

We note that every (infinite) compact group contains (infinite) abelian
subgroups [41]. Thus by the preceding proposition, every Beurling-Fourier
algebra has certain classical Beurling algebras as complete quotients. This
can be very useful particularly when the abelian subgroups can be chosen
so that they contain various information about the original compact group.
This happens, for example, in the case where G is a compact Lie group and
H is any maximal torus of G. We will show in details in Section 4 how
this idea can be applied to relate properties of Beurling-Fourier algebra on
SU(2) and Beurling algebras on T.

3.2. Operator Amenability. In this section, we present certain criteria
for investigating the operator amenability of A(G,ω). We will later show
that this criteria can be applied to large classes of weights. But first, we
need to recall the following terminologies:

We recall that a completely contractive Banach algebra A is K-operator
amenable if there is a virtual diagonal M ∈ (A⊗̂A)∗∗ such that ‖M‖ = K.
The operator amenability constant of A is the smallest K such that A is K-
operator amenable. We also recall that if A is a Banach algebra of continuous
functions on a locally compact space X, then for every x ∈ X, a functional
d ∈ A∗ is called a point derivation at x if

d(ab) = a(x)d(b) + b(x)d(a) (a, b ∈ A).
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Theorem 3.6. Let G be a compact group with the identity e, and let ω be

a central weight on Ĝ. Then:
(i) A(G,ω) is operator amenable if and only if I∆,Ω({e}) has a bounded
approximate identity.
(ii) A(G,ω) is K-operator amenable if and only if there is F ∈ A∆(G,Ω)

∗∗

such that ‖F‖ = K, 〈F, δe〉 = 1, and

f · F = f(e)F (f ∈ A∆(G,Ω)).

(iii) A(G,ω) is operator weakly amenable if and only if I∆,Ω({e})2 = I∆,Ω({e})
is essential, or equivalently, there is no non-zero continuous point derivation
on A∆(G,Ω) at e.

Proof. (i) and (iii). If we let m : A(G,ω)⊗̂A(G,ω) → A(G,ω) be the multi-
plication map, then it is easy to verify that

Iω×ω(∆) = kerm.

Thus following the arguments in [36] and [38], we see that A(G,ω) is operator
amenable (respectively, operator weakly amenable) if and only if Iω×ω(∆)

has a bounded approximate identity (respectively, Iω×ω(∆)2 = Iω×ω(∆)).
Thus the results follows from Theorem 3.3 and the fact that {e}∗ = ∆.
(ii) Let A(G,ω) beK-operator amenable, and letM be a virtual diagonal for
A(G,ω) with ‖M‖ = K. Let Q∗∗ be the second adjoint of
Q : A(G×G,ω×ω) → A∆(G,Ω) defined in Section 3.1, and let F = Q∗∗(M).
Then it is routine to verify that F holds the required properties of (ii). Con-
versely, if such an F ∈ A∆(G,Ω)

∗∗ exits, then M = N∗∗(F ) is a virtual
diagonal for A(G,ω) with ‖M‖ = ‖F‖ = K. �

In [28, Theorem 4.1], B. E. Johnson computed the amenability constant
of the Fourier algebra of a finite group. The following theorem is the quan-
tization of Johnson’s result to Beurling-Fourier algebras on a finite group
and its proof is inspired by that of Johnson’s.

Theorem 3.7. Let G be a finite group, and let ω be a central weight on Ĝ.
Then A(G,ω) is operator amenable with the operator amenability constant∑

π∈Ĝ d
2
πΩ(π)∑

π∈Ĝ
d2π

.

Proof. It is straightforward to verify that δe, the dirac function at {e}, is
the unique element in A∆(G,Ω)

∗∗ = A∆(G,Ω) satisfying the assumption of
Theorem 3.6(ii). Thus it follows from Theorem 3.6(ii) that A(G,ω) is opera-
tor amenable and the operator amenability constant is the ‖·‖A∆(G,Ω)-norm

of δe. However |G|δ̂e(π) = 1B(Hπ) for every π ∈ Ĝ. Therefore, considering

the well-known fact that |G| =
∑

π∈Ĝ
d2π, we have

‖δe‖A∆(G,Ω) =
∑

π∈Ĝ

d
3
2
πΩ(π)‖δ̂e(π)‖2 =

∑
π∈Ĝ

d2πΩ(π)∑
π∈Ĝ d

2
π

.
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�

Corollary 3.8. Let {Gi}i∈N be a family of finite groups, and let, for each

i ∈ N, ωi be the central weight on Ĝi and Ωi its symmetrization. Let G =∏
i∈I Gi and ω =

∏
i∈I ωi. Suppose further that ω is bounded away from

zero. Then A(G,ω) is operator amenable if and only if

MG,ω :=
∏

i∈N

∑
π∈Ĝi

d2πΩi(π)∑
π∈Ĝi

d2π

is convergent. In this case, MG,ω is the operator amenability constant of
A(G,ω).

Proof. It is clear that, for each n ∈ N, there is a complete quotient map
from A(G,ω) onto A(

∏n
i=1Gi,

∏n
i=1 ωi). Also it follows from Theorem 3.7

that the amenability constant of A(
∏n

i=1Gi,
∏n

i=1 ωi) is

n∏

i=1

∑
π∈Ĝi

d2πΩi(π)∑
π∈Ĝi

d2π
.

Therefore the operator amenability constant of A(G,ω) is at least MG,ω.
In particular, if A(G,ω) is operator amenable, then MG,ω is convergent.
Conversely, suppose that MG,ω is convergent. Consider the sequence of
continuous functions {fn} on G defined by

fn({xi}) =

{
1 x1 = · · · = xn = e

0 otherwise.

For each n, we see that

‖fn‖A∆(G,Ω) =

n∏

i=1

∑
π∈Ĝi

d2πΩi(π)∑
π∈Ĝi

d2π
.

In particular, {fn} is bounded in A∆(G,Ω). Let F be a weak∗-cluster point
of {fn} in A∆(G,Ω)

∗∗. Then it is straightforward to verify that F satisfies
the hypothesis of Theorem 3.6(ii). Moreover ‖F‖ =MG,ω. Thus A(G,ω) is
operator amenable with the operator amenability constant MG,ω. �

The preceding corollary has an interesting application when each Gi is S3;
the permutation group on {1, 2, 3}. It is well-known (e.g. [25, 27.61(a)]) that

Ŝ3 have two 1-dimensional elements and one 2-dimensional element. Using
this fact, we can construct Beurling-Fourier algebras on countably infinite
products of S3 so that they are operator amenable. Moreover, we can let
amenability constant be as large as we would like! This is something that
does not happen in the Fourier algebra case since the amenability constant
is always 1 [36].

Theorem 3.9. Let Gi = S3 for every i ∈ N, and let, ωai be the central weight

(2.14) on Ĝi defined in Example 2.15. Let G =
∏

i∈NGi and ω =
∏

i∈N ωi.
Then:
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(i) A(G,ω) is operator amenable if and only if
∑∞

i=1(2
2ai −1) is convergent;

(ii) For every 1 ≤ K < ∞, we can choose {ai} so that the amenability
constant of A(G,ω) is K.

Proof. By Corollary 3.8, A(G,ω) is operator amenable if and only if its
amenability constant which is

∏

i∈N

∑
π∈Ĝi

d2πΩi(π)∑
π∈Ĝi

d2π
=

∏

i∈N

1 + 22ai+1

3
=

∏

i∈N

(1 +
22ai+1 − 2

3
)

is finite. However this happens if and only if
∞∑

i=1

22ai+1 − 2

3
is convergent.

Thus (i) holds since

∞∑

i=1

22ai+1 − 2

3
= 2/3

∞∑

i=1

(22ai − 1).

The proof of (ii) is easy. In fact, there are various way to chose the required

{ai}. For example, we can pick a1 so that K =
1 + 22a1+1

3
and take ai = 0

for i = 2, 3, · · · . �

In [23], N. Grønbæk has shown that the Beurling algebra L1(H,ω) on a
locally compact group H is amenable if and only if H is amenable and Ω is
bounded, where Ω is the symmetrization of ω given by Ω(x) = ω(x)ω(x−1),
x ∈ H. In the below we prove a weaker version of Grønbæk’s result for
Beurling-Foureir algebras on compact groups. This presents a nice duality
to Grønbæk’s criteria.

Theorem 3.10. Let G be a compact group, and let ω be a central weight on

Ĝ. Then the followings holds:
(i) If Ω is bounded, then A(G,ω) is operator amenable;
(ii) If limπ→∞Ω(π) = ∞, then A(G,ω) is not operator amenable.

Proof. (i) If Ω is bounded, then A∆(G,Ω) = A∆(G). However, by [17,
Theorem 3.9(iii)], I∆({e}) has a bounded approximate identity. Hence the
result follows from Theorem 3.6(i).
(ii) Suppose that A(G,ω) is operator amenable. Then by Theorem 3.6(ii)
and going to an appropriate subnet, there is a bounded net {fα}α ⊂ A∆,Ω(G)
such that fα(e) = 1 for all α, and

(3.6) ffα = f(e)fα for all f ∈ A∆(G,Ω).

Since for every n ∈ N and T ∈ Mn, ‖T‖1 ≤ n1/2‖T‖2, and so, we have
A∆(G,Ω) ⊆ A(G,Ω). Therefore we can assume that {fα}α ⊂ A(G,Ω).
Now let g be a weak∗-cluster point of {fα} in A(G,Ω) = C∗

r (G,Ω
−1)∗. Let

I : Ĝ→ ⊕
π∈Ĝ

Mdπ be defined by I(π) = 1B(Hπ) for all π ∈ Ĝ. It is clear that

I is the inverse Fourier transform of δe, the evaluation functional on A(G,Ω)
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at {e}. Now since limπ→∞Ω(π) = ∞, it follows that δe = Ǐ ∈ C∗
r (G,Ω

−1),
and so,

g(e) = 〈g, δe〉 = lim
α
〈fα, δe〉 = 1.

On the other hand, it follows routinely from (3.6) that g(t) = 0 if t 6= e.
Since g is continuous, it follows that G is finite which contradict the fact
that limπ→∞Ω(π) = ∞. This completes the proof.

�

Corollary 3.11. Let G be a compact connected, simple Lie group and let σa
and ωa be the central weights on Ĝ defined in Example 2.15. Then A(G,σa)
or A(G,ωa) is operator amenable if and only if a = 0.

Proof. When a = 0, A(G,σa) = A(G,ωa) = A(G). Hence the result follows
from [36]. For the converse, it is shown in the proof of [34, Lemma 9.1] that,

for any positive integer n, there are only finitely many elements in Ĝ whose
dimension is n. Thus dπ → ∞ as π → ∞. Therefore if a > 0, by Theorem
3.10, neither of A(G,σa) or A(G,ωa) is operator amenable. �

3.3. Operator weak amenability. In this section we consider the question
of whether a Beurling-Fourier algebra on a compact group can be operator
weakly amenable. Our main tool is to use the criterion presented in Theorem
3.6(iii). We first need the following definition.

Definition 3.12. Let π be a continuous finite-dimensional (unitary) rep-

resentation of G, and let ω be a central weight on Ĝ. For each n ∈ N, we
define

n(ω, π) = max{ω(τ) | τ ∈ suppπ}.

Proposition 3.13. Let ω be a central weight on Ĝ. Suppose that, for every

π ∈ Ĝ,

inf{
n(ω, π⊗n)

n
| n ∈ N} = 0,

where π⊗n = π⊗· · ·⊗π, n-times. Then A(G,ω) has no non-zero continuous
point derivation at e.

Proof. Let P 1(G) denote the set of continuous positive-definite functions
on G such that ‖f‖A(G) = f(e) = 1. Each function in P 1(G) is uniquely

determined by a representation π ∈ Ĝ and an orthonormal vector ξ ∈ Hπ so
that f(x) = 〈π(x)ξ | ξ〉. Hence, in particular, A(G,ω) is the ‖·‖A(G,ω)-closure

of span{P 1(G)} which is T (G).
Now let d : A(G,ω) → C be a continuous point derivation at e. We will

show that d = 0 by showing that d vanishes on P 1(G). Let f ∈ P 1(G), and

π ∈ Ĝ and an orthonormal vector ξ ∈ Hπ so that f(x) = 〈π(x)ξ | ξ〉. It is
routine to verify that

(3.7) d(fn) = n[f(e)]n−1d(f) = nd(f) (n ∈ N).
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On the other hand, for each n ∈ N, by Schur orthogonality relation, f̂n(τ) =
0 if τ 6∈ suppπ⊗n. Thus

‖f̂n‖A(G,ω) =
∑

τ∈suppπ⊗n

ω(τ)dτ‖f̂n(τ)‖1

≤ n(ω, π⊗n)
∑

τ∈supp π⊗n

dτ‖f̂n(τ)‖1

= n(ω, π⊗n)‖fn‖A(G)

= n(ω, π⊗n),

where the last equality follows since fn is a positive-definite function, and
so, ‖fn‖A(G) = fn(e) = 1. Therefore, by (3.7),

|d(f)| ≤
‖d‖‖fn‖A(G,ω)

n
≤ ‖d‖

n(ω, π⊗n)

n
(n ∈ N).

So by hypothesis, d(f) = 0. �

The preceding proposition was proven in [37, Proposition 5.1] for G
abelian. Our extension allow us to study operator weak amenability for
the case when G is non-abelian. The following theorem is one application
of Proposition 3.13. Other applications will be given in Section 4.

Theorem 3.14. Let G be a compact, totally disconnected group, and let ω
be a central weight on G. Then A(G,ω) is operator weakly amenable.

Proof. It is well-known that G has a base of the identity consisting of open,
normal compact subgroups of G, and so, G is a projective limit of finite
groups in the sense of [35, Definition 4.1.4] (see also [35, Theorem 4.1.14]).
Hence a similar argument to [25, Theorem 27.43] shows that, for every π ∈

Ĝ, there is a finite group H (which is the quotient of G by some open normal

compact subgroup) so that π ∈ Ĥ. Hence

{τ | τ ∈ suppπ⊗n, n ∈ N} ⊂ Ĥ

is finite. Thus for the weight Ω1(σ) = Ω(σ)dσ , σ ∈ Ĝ (Remark 2.14 (2)), we
have

inf{
n(Ω1, π

⊗n)

n
| n ∈ N} = 0,

for every π ∈ Ĝ. Therefore, by Proposition 3.13, A(G,Ω1) has no contin-
uous point derivation at e. Since A(G,Ω1) ⊆ A∆(G,Ω), the same holds
for A∆(G,Ω). It follows from Theorem 3.6(iii), A(G,ω) is operator weakly
amenable. �

3.4. Arens regularity. In this section, we study the Arens regularity of
Beurling-Fourier algebras. We provide classes of Beurling-Fourier algebras
on compact groups that either satisfy or fail the Arens regularity.
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Definition 3.15. Let W be a weight on A(G). We denote the bounded
operator Γ(W )(W−1 ⊗W−1) by Θ, and we write

Θ =
⊕

π,σ∈Ĝ

Θ(π, σ),

where Θ(π, σ) ∈Mdπ ⊗Mdσ .

The following theorem is proven in [7, Theorem 8.11] in the case where G
is abelian. We extend it to the general case and apply it to construct Arens
regular Beurling-Fourier algebras on non-abelian compact groups.

Theorem 3.16. Let ω be a central weight on Ĝ. Suppose that

lim
π→∞

lim sup
σ→∞

‖Θ(π, σ)‖Mdπ⊗Mdσ
= lim

σ→∞
lim sup
π→∞

‖Θ(π, σ)‖Mdπ⊗Mdσ
= 0.

Then A(G,ω) and all its even duals are Arens regular.

Proof. Since A(G,ω)∗∗ = A(G,ω) ⊕ C∗
r (G,ω

−1)⊥, it suffices to show that

(3.8) Φ�Ψ = Φ ⋄Ψ = 0 (Φ,Ψ ∈ C∗
r (G,ω

−1)⊥).

To see this, first note that, for all n ∈ N,

A(G,ω)(2n) = A(G,ω)⊕
n−1⊕

i=0

[C∗
r (G,ω

−1)⊥](2i),

where X(m), m ≥ 1 implies m-th dual of a Banach space X. Thus if
(3.8) holds, then both Arens products vanishes on

⊕n−1
i=0 [C

∗
r (G,ω

−1)⊥](2i),

which implies that A(G,ω)(2n−2) is Arens regular. We will now prove

(3.8). Suppose that W is the central weight on Ĝ defined in Definition
2.13. Let Φ,Ψ ∈ C∗

r (G,ω
−1)⊥ with norm 1. Using the identification (2.4),

take two nets {fα} and {gβ} in A(G) with ‖fα‖A(G), ‖gβ‖A(G) ≤ 1 such

that W−1fα → Φ and W−1gβ → Ψ in w∗-topology of V N(G,W−1). Let
A ∈ V N(G) with ‖A‖V N(G) ≤ 1. Then, by (2.7),

〈Φ�Ψ, AW 〉

= lim
α

lim
β
〈(W−1fα) ·A(G,W ) (W

−1gβ), AW 〉

= lim
α

lim
β
〈(W−1 ⊗W−1)(fα ⊗ gβ), Γ

W (AW )〉

= lim
α

lim
β
〈fα ⊗ gβ , Γ̃ ◦ Φ−1(AW )〉

= lim
α

lim
β
〈fα ⊗ gβ , Γ(A)Γ(W )(W−1 ⊗W−1)〉

= lim
α

lim
β

∑

π∈Ĝ

∑

σ∈Ĝ

dπdσtr[(f̂α(π)⊗ ĝβ(σ))Γ(A)(π, σ)Θ(π, σ)].

Now let ǫ > 0. By hypothesis, there is a finite set E in Ĝ such that for every

π ∈ Ec := Ĝ \ E, there is a finite set F (depending on ǫ and π) in Ĝ for
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which we have:

(3.9) ‖Θ(π, σ)‖Mdπ⊗Mdσ
≤ ǫ (σ ∈ F c).

Now for every A,B ⊂ Ĝ, let

Ξ(A,B) =
∑

π∈A

∑

σ∈B

dπdσ|tr[(f̂α(π)⊗ ĝβ(σ))Γ(A)(π, σ)Θ(π, σ)]|.

Then, for every α and β,

|〈fα ⊗ gβ , Γ(A)Γ(W )(W−1 ⊗W−1)〉| ≤ Ξ(Ĝ, Ĝ)

= Ξ(E, Ĝ) + Ξ(Ec, F ) + Ξ(Ec, F c).

We will show that

lim
α

lim sup
β

Ξ(E, Ĝ) = lim
α

lim
β

Ξ(Ec, F ) = 0 and Ξ(Ec, F c) ≤ ǫ.

We have

Ξ(E, Ĝ) ≤
∑

π∈E

dπ‖f̂α(π)‖1‖gβ‖A(G)‖Γ(A)‖‖Θ‖

≤
∑

π∈E

dπ‖f̂α(π)‖1

≤
∑

π∈E

d3/2π

dπ∑

i,j=1

|f̂α(π)ij |
2,

where f̂α(π) = [f̂α(π)ij ]. Since E does not depend on α and Φ ∈ C∗
r (G,ω

−1)⊥,
for all π ∈ E we have

(3.10) lim
α
f̂α(π)ij = lim

α
〈fα, πij〉 = 〈Φ, πij〉 = 0,

where πij ’s are the trigonometric polynomials defined in (1.1). Therefore

lim
α

lim sup
β

Ξ(E, Ĝ) = 0

since E is finite. For the second case, note that

Ξ(Ec, F ) ≤
∑

σ∈F

dσ‖fα‖‖ĝβ(σ)‖1‖Γ(A)‖‖Θ‖

≤
∑

σ∈F

dσ‖ĝβ(σ)‖1.

Since F does not depend on n and Ψ ∈ C∗
r (G,ω

−1)⊥, similar to (3.10), we
have

lim
β
ĝβ(σ) = 0

for all σ ∈ F . Hence, because of finiteness of F ,

lim
α

lim
β

Ξ(Ec, F ) = 0.
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Finally

Ξ(Ec, F c) ≤
∑

π∈Ec

∑

σ∈F c

dπdσ‖f̂α(π)‖1‖ĝβ(σ)‖1‖Γ(A)‖‖Θ(π, σ)‖

≤ ǫ
∑

π∈Ec

dπ‖f̂α(π)‖1
∑

σ∈F c

dσ‖ĝβ(σ)‖1,

where the last inequality follows from (3.9). Thus, again since ‖fα‖A(G) and
‖gβ‖A(G) ≤ 1 we have

Ξ(Ec, F c) ≤ ǫ.

since ǫ was arbitrary, it follows that

lim
α

lim
β

〈fα ⊗ gβ, Γ(A)Γ(W )(W−1 ⊗W−1〉 = 0.

Hence this shows that the first Arens product vanishes on C∗
r (G,ω

−1)⊥ and
we are done! The proof for the second Arens product is similar. �

Corollary 3.17. Let G be a compact, connected, simple Lie group, and let

σa be the central weight on Ĝ defined in (2.14). Then A(G,σa) is Arens
regular if a > 0.

Proof. Let Θa be the corresponding operator defined in Definition 3.15 as-

sociated to the weight σa. For every π, ρ ∈ Ĝ, we have

Θa(π, ρ) =

m⊕

k=1

σa(τk)

σa(π)σa(ρ)
1B(Hτk

),

where π ⊗ ρ ∼=
⊕m

k=1 τk is the irreducible decomposition of π ⊗ ρ. Since for
each 1 ≤ k ≤ m, dτk ≤ dπdρ, it follows that

σa(τk) = (1 + ln dτk)
a

≤ (1 + ln dπ)
a + (1 + ln dρ)

a.

= σa(π) + σa(ρ).

Thus

(3.11) ‖Θa(π, ρ)‖ ≤
1

(1 + ln dπ)a
+

1

(1 + ln dσ)a
.

On the other hand, as it was pointed out in the proof of Corollary 3.11,
dπ → ∞ as π → ∞. Therefore, from (3.11), it follows that

lim
π→∞

lim sup
ρ→∞

‖Θa(π, ρ)‖ = lim
ρ→∞

lim sup
π→∞

‖Θa(π, ρ)‖ = 0.

Therefore A(G,σa) is Arens regular by Theorem 3.16. �

The preceding example dealt with Beurling-Foureir algebras on certain
Lie groups. We can also construct Arens regular Beurling-Fourier algebra
on non-abelian totally disconnected groups. We recall that, for each n ∈ N,
the special linear group SL(2, 2n) denotes the set of all 2×2 matrix with the
determinate 1 on a finite field of 2n elements. It is well-known that SL(2, 2n)
is a finite simple group (see [3, Section 2.7]).
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Corollary 3.18. Let G = Π∞
n=1SL(2, 2

n), and let σa be the central weight

on Ĝ defined in (2.14). Then A(G,σa) is Arens regular if a > 0.

Proof. Let Θa be the corresponding operator defined in Definition 3.15 as-
sociated to the weight σa. Similarly to the proof of Corollary 3.17, we have

‖Θa(π, ρ)‖ ≤
1

(1 + ln dπ)a
+

1

(1 + ln dσ)a
(π, ρ ∈ Ĝ).

However it is shown in [3, Section 2.7] that every non-trival continuous
irreducible unitary representation of SL(2, 2n) has dimension at least 2n−1.

Thus dπ → ∞ as π → ∞ on Ĝ. Hence

lim
π→∞

lim sup
ρ→∞

‖Θa(π, ρ)‖ = lim
ρ→∞

lim sup
π→∞

‖Θa(π, ρ)‖ = 0.

Therefore A(G,σa) is Arens regular by Theorem 3.16. �

We finish this section with the following theorem that presents examples of
non-Arens regular Beurling-Fourier algebras on non-abelian compact groups.

Theorem 3.19. Let {Gi}i∈I be an infinite family of non-trivial compact

groups, and let, for each i ∈ I, ωi be a central weight on Ĝi. Let G =
∏

i∈I Gi

and ω =
∏

i∈I ωi. Suppose further that ω is bounded away from zero. Then
A(G,ω) is not Arens regular.

Proof. If J ⊆ I, then it is clear that A(
∏

i∈J Gi,
∏

i∈J ωi) is a quotient of
A(G,ω). Thus it suffices to prove the statement of the theorem when I
is infinite and countable. So we assume that I = N. For each i ∈ N, let

πi ∈ Ĝi be a non-trivial representation. For each m,n ∈ N, let um and vn
be elements of Ĝ defined by

um(x̃) = π2m(x2m) , vn(x̃) = π2n+1(x2n+1) (x̃ = {xi}i∈N ∈ G).

We have

(3.12) um ⊗ vn =

{
π2m × π2n+1 if 2m < 2n+ 1

π2n+1 × π2m if 2m > 2n+ 1.

In particular, {um ⊗ vn}m,n∈N are distinct elements of Ĝ. Now let

fm =
1

dum

χum and gn =
1

dun

χun ,

where χπ is the character of π ∈ Ĝ i.e. χπ(x) = tr[π(x)]. Let A ∈ V N(G)

such that for every π ∈ Ĝ,

F(A)(π) =

{
1Mdum

⊗Mdvn
if π = um ⊗ vn and 2m < 2n + 1,

0 otherwise.
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Suppose thatW is the central weight on Ĝ defined in Definition 2.13. Then,
by Definition 3.15, (2.10), (2.13), and (3.4), we have

Θ(um, vn) = [Γ(W )(W−1 ⊗W−1)](um, vn)

=
⊕

σ∈ suppum⊗vn

ω(σ)ω(um)−1ω(vn)
−1ω(um ⊗ vn)1Mdσ

= ω(um)−1ω(vn)
−1ω(um ⊗ vn)1Mdum

⊗Mdvn

= 1Mdum
⊗Mdvn

.

Thus, by (2.7), for every m,n ∈ N,

〈(W−1fm) ·A(G,W ) (W
−1gn), AW 〉

= 〈(W−1 ⊗W−1)(fm ⊗ gn), Γ
W (AW )〉

= 〈fm ⊗ gm, Γ̃ ◦Φ−1(AW )〉

= 〈fm ⊗ gn, Γ(A)Γ(W )(W−1 ⊗W−1)〉

= dumdvntr[(f̂m(um)⊗ ĝn(vn)Γ(A)(um, vn)Θ(um, vn)]

=

{
1 if 2m < 2n+ 1

0 if 2m > 2n+ 1.

Therefore the repeated limit of (W−1fm) ·A(G,W ) (W
−1gn), AW 〉 exits but

they are not equal. This shows that A(G,ω) is not Arens regular. �

Remark 3.20. We finish this section by pointing out that the proof of the
preceding theorem can be adapted, with almost the same approach, to show
that if {Gi}i∈I is an infinite family of non-trivial compact groups and if ωa is
the weight (2.15) on the dual of

∏
i∈I Gi, then A(G,ωa) is not Arens regular

for any a ≥ 0.

4. The 2× 2 special unitary group

In this section, we apply the results of the preceding section to study
explicitly the behavior of Beurling-Fourier algebras on 2× 2 special unitary
group:

SU(2) = {A ∈M2(C) | A is unitary, detA = 1}.

First we make the following important observation which allows us to cor-

respond various central weights on ŜU(2) to their restriction on Z.

4.1. Restriction of the weight on Z. Let ω be a central weight on ŜU(2).
We can assume that T is a closed subgroup of SU(2) by the identification

eit 7→

[
eit 0
0 e−it

]
(t ∈ [0, 2π]).

By the representation theory of SU(2) [25, 29.18 and 29.20],

ŜU(2) = {πl | l = 0, 1/2, 1, 3/2, . . .},
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and dimπl = 2l + 1. Moreover,

πl(e
it) = diag(ei2lt, ei2(l−1)t, . . . , e−i2lt) (t ∈ [0, 2π]).

Let n ∈ Z, and let χn be the character on T defined by

χn(e
it) = eint (t ∈ [0, 2π]).

Then πl is an extension of χn if and only if |n| ≤ 2l. Hence if we identify Z

with T̂ through the Plancheral map n 7→ χn, we have

(4.1) ωT(n) = inf{ω(πl) | |n| ≤ 2l} (n ∈ Z).

This, in particular, implies that A(T, ωT) is a complete quotient ofA(SU(2), ω)
from Proposition 3.5. We will show in the following sections that A(SU(2), ω)
behave very similarly to that of A(T, ωT).

Example 4.1. Let a ≥ 0 and 0 ≤ b ≤ 1. We define the functions σa, ωa, ρb
from ŜU(2) into [1,∞) by

σa(πl) = (1 + ln(2l + 1))a (πl ∈ ŜU(2)),

ωa(πl) = (2l + 1)a (πl ∈ ŜU(2)),

ρb(πl) = e(2l+1)b (πl ∈ ŜU(2)).

Since dπl
= 2l+1, the first two weights are the one defined in Example 2.15.

Also we know from [25, 29.29] that, for every l, r = 0, 1/2, 1, 3/2, . . .,

(4.2) πl ⊗ πr ∼= π|l−r| ⊕ π|l−r|+1 ⊕ · · · ⊕ π|l+r| =

|l+r|⊕

k=|l−r|

πk.

Therefore it is routine to verify that ρb also defines a weight on ŜU(2).

Moreover, by (4.1), the restriction of the above weights on T̂ = Z corresponds
to the following well-known weights on Z:

σ′a(n) = (1 + ln(1 + |n|))a (n ∈ Z),

ω′
a(n) = (1 + |n|)a (n ∈ Z),

ρ′b(n) = e(1+|n|)b (n ∈ Z).

4.2. Operator amenability and weak amenability. Let a ≥ 0 and 0 ≤
b ≤ 1, and let σ′a, ω

′
a, and ρ

′
b be the weights on Z defined in Example 4.1. N.

Grønbæk has characterized in [22] and [23] when either of A(T, σ′a), A(T, ω
′
a),

or A(T, ρ′b) is amenable or weakly amenable. We summarized them below:
(i) A(T, σ′a) or A(T, ω

′
a) is amenable if and only if a = 0;

(ii) A(T, ρ′b) is amenable if and only if b = 0;
(iii) A(T, σ′a) is always weakly amenable;
(iv) A(T, ω′

a) has no non-zero continuous point derivation at 0 if and only
if 0 ≤ a < 1;

(v) A(T, ω′
a) is weakly amenable if and only if 0 ≤ a < 1/2;

(vi) A(T, ρ′b) has non-zero continuous point derivations at 0 if b > 0;
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(vii) A(T, ρ′b) is never weakly amenable unless b = 0.
We will show in the following theorem that, in most cases, the analogous of

these results holds for the corresponding weights on ŜU(2).

Theorem 4.2. Let a ≥ 0 and 0 ≤ b ≤ 1, and let σa, ωa, and ρb be the

weights on ŜU(2) defined in Example 4.1. Then the following holds:
(i) A(SU(2), σa) or A(SU(2), ωa) is operator amenable if and only if a = 0;
(ii) A(SU(2), ρb) is operator amenable if and only if b = 0;
(iii) A(SU(2), σa) has no non-zero continuous point derivation at e;
(iv) A(SU(2), ωa) has no non-zero continuous point derivation at e if 0 ≤
a < 1;
(v) A(SU(2), ωa) is not operator weakly amenable if a ≥ 1/2;
(vi) A(SU(2), ρb) is never operator weakly amenable unless b = 0.

Proof. (i) and (ii). If a = b = 0, then these Beurling-Foureir algebras are
A(SU(2)). Thus the result follows from [36]. On the other hand, if a, b > 0,
then

lim
πl→∞

σa(πl) = lim
πl→∞

ωa(πl) = lim
πl→∞

ρα(πl) = ∞.

Therefore by Theorem 3.10, neither of A(SU(2), σa), A(SU(2), ωa), nor
A(SU(2), ρb) is operator amenable.
(iii) and (iv). It follows from the tensor formula (4.2) and Schur orthogonal-
ity relation that the conjugate of any representation πl is itself. Moreover,

for every n ∈ N, and πl ∈ ŜU(2), we have

n(σa, π
⊗n
l ) ≤ (1 + lnn+ ln(2l + 1))a , n(ωa, π

⊗n
l ) ≤ [n(2l + 1)]a.

Therefore

inf{
n(σa, π

⊗n
l )

n
| n ∈ N} = 0

for all a ≥ 0 and

inf{
n(ωa, π

⊗n
l )

n
| n ∈ N} = 0

when 0 ≤ a < 1. Thus the results follow from Proposition 3.13.
(v) and (vi). As it was pointed out in Example 4.1,

A(SU(2), σa)|T = A(T, σ′a) and A(SU(2), ωa)|T = A(T, ω′
a).

Hence operator weak amenability of A(SU(2), σa) and A(SU(2), ωa) implies
the weak amenability of A(T, σ′a) and A(T, ω

′
a), respectively. Thus it follows

from [22] that A(SU(2), ωa) is operator weakly amenable only if 0 ≤ a < 1/2
and A(SU(2), ρb) is never operator weakly amenable unless b = 0. �

4.3. Connection with the amenability of A(SU(2)). B. E. Johnson in
his memoirs [26] in 1972 introduced the concept of an amenable Banach al-
gebra and proved his famous theorem: the group algebra L1(G) is amenable
if and only if G is amenable. It was believed that similar conclusion holds
for the Fourier algebra A(G) since A(G) acts in lots of cases like a dual of
L1(G). However it was Johnson himself who proved a remarkable result that
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A(SU(2)) is not amenable [28]. Shortly after Ruan showed in [36] that the
amenability of G corresponds exactly to the “operator amenability” of A(G)
which led to the several applications of operator spaces to harmonic anal-
ysis. Later on, Forrest and Runde [16] settled the question of amenability
for the Foureir algebras: A(G) is amenable if and only if G has an abelian
subgroup of finite index.

We would like to analyze the non-amenability of A(SU(2)) and show its

connection with the Beurling-Fourier algebras on ŜU(2) and the classical
Beurling algebras on Z. Johnson used the properties of the algebra Aγ(G)
defined in (3.2) in a very clear way to obtain his result. His approach
was widely generalized and studied in [17]. By [28, Theorem 3.2] (see also
[17, Corollary 1.5]) the amenability of A(G) implies that the maximal ideal
{f ∈ Aγ(SU(2)) | f(e) = 0} of Aγ(G) has a bounded approximate identity.
However Aγ(G) is nothing but the Beurling-Fourier algebra A(G,ω1) in

(2.15) where ω1(πl) = 1 + 2l for all πl ∈ ŜU(2) (see (3.3)). Since, by
Example 4.1, the restriction of A(SU(2), ω1) on T is A(T, ω′

1), this implies
that {f ∈ A(T, ω′

1) | f(e) = 0} has a bounded approximate identity. Hence
by Theorem 3.6, A(T, ω′

1) is amenable which is impossible by [23]. This
argument can also be applied to the question of weak amenability because
again by a similar argument, the weak amenability of A(SU(2)) implies that
A(T, ω′

1/2) is weakly amenable which is shown to fail in [22].

As we see, the preceding arguments shows that the (weak) amenability
of the Fourier algebra A(SU(2)) is closely related to the (weak) amenability
of a well-known Beurling algebra on Z and it has inherit connection. That
is why A(SU(2)) fails to be amenable or even weakly amenable because the
Beurling algebras are known not to behave well with regard to cohomology.
We believe that these connections are non-trivial and certainly worthwhile
investigating more. For example, it is shown in [18] that A(G) is not weakly
amenable if G is compact, connected, and non-abelain. If we assume further
that G is a Lie group, then again amenability or weak amenability of A(G)
relates closely to the behavior of certain Beurling algebras on a maximal
torus of G. By investigating more this relation, we might be able to have
a better understanding of the structure of Fourier algebras on compact Lie
groups.

4.4. Arens regularity. Let a ≥ 0 and 0 ≤ b ≤ 1, and let σ′a, ω
′
a, and ρ

′
b

be the weights on Z defined in Example 4.1. As it is shown in [7, Theorem
8.11], A(T, σ′a), A(T, ω

′
a), or A(T, ρ

′
b) are Arens regular for a, b > 0. We

will show in the following theorem that the exact analogous of these results

holds for the corresponding weights on ŜU(2).

Theorem 4.3. Let a ≥ 0 and 0 ≤ b ≤ 1, and let σa, ωa, and ρb be the

weights on ŜU(2) defined in Example 4.1. Then:
(i) A(SU(2), σa) or A(SU(2), ωa) is Arens regular if and only if a > 0,
(ii) A(SU(2), ρb) is Arens regular if and only if b > 0.
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Proof. If a = b = 0, then these Beurling-Foureir algebras are A(SU(2)).
Thus the result follows from [14]. For the converse, suppose that a > 0.
Since SU(2) is a compact, connected, simple Lie group, it follows from
Corollary 3.17 that A(SU(2), σa) is Arens regular. For the case of ωa, let

Wa =
⊕

π∈Ĝ

ωa(π)1B(Hπ ),

and let Θa be the Fourier transform of Γ(Wa)(W
−1
a ⊗W−1

a ) (see Definition

3.15). For every πl, πr ∈ ŜU(2), we have

Θa(πl, πr) =

|l+r|⊕

k=|l−r|

ωa(πk)

ωa(πl)ωa(πr)
1B(Hτk

),

where πl ⊗ πr ∼=
⊕|l+r|

k=|l−r| πk is the irreducible decomposition of πl ⊗ πr (see

the tensor formula (4.2)). Since dπk
≤ dπl

+ dπr , it follows that

ωa(πk) ≤ ωa(πl) + ωa(πr).

Thus

‖Θa(πl, πr)‖ ≤
1

(1 + 2l)a
+

1

(1 + 2r)a
.

Hence it follows that

lim
πl→∞

lim sup
πr→∞

‖Θa(πl, πr)‖ = lim
πr→∞

lim sup
πl→∞

‖Θa(πl, πr)‖ = 0.

Therefore A(G,ωa) is Arens regular by Theorem 3.16. The proof of the
Arens regularity of A(SU(2), ρb) when b > 0 is similar to the preceding
case. �

4.5. Arens regular subalgebras of Fourier algebras. It is shown in
[21] that there are closed ideals in L1(Tn) ∼= A(Zn) (n ∈ N) that are Arens
regular. Since these ideals are non-unital, by [40], they can not have bounded
approximate identity.

In this section, we show that we can construct unital, infinite-dimensional
Arens regular closed subalgebras of Fourier algebras on certain products of
SU(2). This goes parallel to the main result of [40] since these subalgebras
are not ideals. In fact, they are of the form of Beurling-Fourier algebras
on SU(2). This is a surprising and at the same time an interesting re-
sult since classical Beurling algebras can never be a closed subalgebra of a
group algebra unless the weight is trivial. However, the relation (3.3) shows
that this can happen for Beurling-Fourier algebras on certain non-abelian
groups. More precisely, it is shown in [32] that for a locally compact group

G, sup{dπ | π ∈ Ĝ} is finite if and only if G is almost abelian i.e. G has
an abelian subgroup of finite index. Thus if G is not almost abelian, then
Aγn(G) defined in (3.2) is a Beurling-Fourier algebra with growing weight
(see also (2.15) and (3.3)). We will see in the following theorem that this
algebras can be Arens regular.
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Theorem 4.4. Let n ∈ N, and let Gn = SU(2) × · · · × SU(2), 2n-times.
Then Aγn(SU(2)) is a unital, infinite-dimensional Arens regular closed sub-
algebra of the Fourier algebra A(Gn).

Proof. Consider the central weight

ω2n(πl) = d2
n

πl
(πl ∈ ŜU(2)).

Then, by (2.15), (3.2), and (3.3), Aγn(SU(2)) = A(SU(2), ω2n ) is a unital,
infinite-dimensional closed subalgebra of A(Gn) and by Theorem 4.3, it is
Arens regular. �
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