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A NOTE ON q-BERNSTEIN POLYNOMIALS

Taekyun Kim

Abstract. Recently, Simsek-Acikgoz([17]) and Kim-Jang-Yi([9]) have studied the q-

extension of Bernstein polynomials. In this paper we propose the q-extension of Bern-
stein polynomials of degree n, which are different q-Bernstein polynomials of Simsek-

Acikgoz([17]) and Kim-Jang-Yi([9]). From these q-Bernstein polynomials, we derive
some fermionic p-adic integral representations of several q-Bernstein type polynomials.

Finally, we investigate some identities between q-Bernstein polynomials and q-Euler

numbers.

§1. Introduction

Let C[0, 1] denote the set of continuous function on [0, 1]. For f ∈ C[0, 1], Bernstein
introduced the following well known linear operators (see [1, 3]):

(1) Bn(f |x) =
n
∑

k=0

f(
k

n
)

(

n

k

)

xk(1− x)n−k =
n
∑

k=0

f(
k

n
)Bk,n(x).

Here Bn(f |x) is called Bernstein operator of order n for f . For k, n ∈ Z+(= N∪{0}),
the Bernstein polynomials of degree n is defined by

(2) Bk,n(x) =

(

n

k

)

xk(1− x)n−k, (see [1, 2, 3]).

A Bernoulli trial involves performing an experiment once and noting whether a par-
ticular event A occurs. The outcome of Bernoulli trial is said to be “success” if A
occurs and a “failure” otherwise. Let k be the number of successes in n independent
Bernoulli trials, the probabilities of k are given by the binomial probability law:

pn(k) =

(

n

k

)

pk(1− p)n−k, for k = 0, 1, · · · , n,
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where pn(k) is the probability of k successes in n trials. For example, a communication
system transmit binary information over channel that introduces random bit errors
with probability ξ = 10−3. The transmitter transmits each information bit three
times, an a decoder takes a majority vote of the received bits to decide on what the
transmitted bit was. The receiver can correct a single error, but it will make the wrong
decision if the channel introduces two or more errors. If we view each transmission
as a Bernoulli trial in which a “success” corresponds to the introduction of an error,
then the probability of two or more errors in three Bernoulli trial is

p(k ≥ 2) =

(

3

2

)

(0.001)2(0.999) +

(

3

3

)

(0.001)3 ≈ 3(10−6), see [18].

By the definition of Bernstein polynomials(see Eq.(1) and Eq.(2)), we can see that
Bernstein basis is the probability mass function of binomial distribution. In the refer-
ence [15] and [16], Phillips proposed a generalization of classical Bernstein polynomials
based on q-integers. In the last decade some new generalizations of well known posi-
tive linear operators based on q-integers were introduced and studied by several au-

thors(see [1-21]). Let 0 < q < 1. Define the q-numbers of x by [x]q = 1−qx

1−q
(see [1-21]).

Recently, Simsek-Acikgoz([17]) and Kim-Jang-Yi([9]) have studied the q-extension of
Bernstein polynomials, which are different Phillips q-Bernstein polynomials. Let p be
a fixed odd prime number. Throughout this paper Zp, Qp, and Cp denote the rings of
p-adic integers, the fields of p-adic rational numbers, and the completion of algebraic
closure of Qp, respectively. The p-adic absolute value in Cp is normalized in such way
that |p|p = 1

p
. As well known definition, Euler polynomials are defined by

(3)
2

et + 1
ext =

∞
∑

n=0

En(x)
tn

n!
, (see [1-14]).

In the special case, x = 0, En(0) = En are called the n-th Euler numbers. By (3), we
see that the recurrence formula of Euler numbers is given by

(4) E0 = 1, and (E + 1)n + En = 0 if n > 0, (see [12]),

with the usual convention of replacing En by En. When one talks of q-analogue, q is
variously considered as an indterminate, a complex number q ∈ C, or a p-adic number
q ∈ Cp. If q ∈ C, we normally assume |q| < 1. If q ∈ Cp, we normally always assume
that |1 − q|p < 1. As the q-extension of (4), author defined the q-Euler numbers as
follows:

(5) E0,q = 1, and (qEq + 1)n + En,q = 0 if n > 0, ( see [21]),

with the usual convention of replacing En
q by En,q. Let UD(Zp) be the space of

uniformly differentiable function on Zp. For f ∈ UD(Zp), the fermionic p-adic q-
integral was defined by

(6) Iq(f) =

∫

Zp

f(x)dµ−q(x) = lim
N→∞

1

1 + qp
N

pN
−1
∑

x=0

f(x)(−q)x, (see [12]).
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In the special case, q = 1, I1(f) is called the fermionic p-adic integral on Zp (see [12,
21]). By (6) and the definition of I1(f), we see that

(7) I1(f1) + I1(f) = 2f(0), where f1(x) = f(x+ 1).

For n ∈ N, let fn(x) = f(x+ n). Then we can also see that

(8) I1(fn) + (−1)n−1I1(f) = 2

n−1
∑

l=0

(−1)n−l−1f(l), (see [21]).

From (5), (7) and (8), we note that

(9)

∫

Zp

e[x]qtdµ−1(x) =

∞
∑

n=0

En,q

tn

n!
=

∞
∑

n=0

(

2

(1− q)n

n
∑

l=0

(

n

l

)

(−1)l

1 + ql

)

tn

n!
.

Thus we have

En,q =
2

(1− q)n

n
∑

l=0

(

n

l

)

(−1)l

1 + ql
, (see [21]).

In [21], the q-Euler polynomials are defined by

(10) En,q(x) =

∫

Zp

[y + x]nq dµ−1(x) =
1

(1− q)n

n
∑

l=0

(

n

l

)

(−1)l
qlx

1 + ql
.

By (9) and (100, we get

(11) En,q(x) =

n
∑

l=0

(

n

l

)

qlxEl,q = (qxEq + 1)n,

with the usual convention of replacing En
q by En,q. In this paper we firstly consider the

q-Bernstein polynomials of degree n in R, which are different q-Bernstein polynomials
of Simsek-Acikgoz([17]) and Kim-Jang-Yi([9]). From these q-Bernstein polynomials,
we try to study for the fermionic p-adic integral representations of the several q-
Bernstein type polynomials on Zp. Finally, we give some interesting identities between
q-Bernstein polynomials and q-Euler numbers.

§2. q-Bernstein Polynomials

For n, k ∈ Z+, the generating function for Bk,n(x) is introduced by Acikgoz and
Araci as follows:

(12) F (k)(t, x) =
te(1−x)txk

k!
=

∞
∑

n=0

Bk,n(x)
tn

n!
, (see [1, 9, 10, 17]).
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For k, n ∈ Z+, 0 < q < 1 and x ∈ [0, 1], consider the q-extension of (12) as follows:
(13)

F (k)
q (t, x) =

(t[x]q)
ke

[1−x] 1
q
t

k!
=

[x]kq
k!

∞
∑

n=0

[1− x]n1
q

n!
tn+k =

∞
∑

n=k





n![x]kq [1− x]n−k
1

q

(n− k)!k!





tn

n!

=
∞
∑

n=k

(

n

k

)

[x]kq [1− x]n−k
1

q

tn

n!
=

∞
∑

n=k

Bk,n(x, q)
tn

n!
.

Because Bk,0(x, q) = Bk,1(x, q) = · · · = Bk,k−1(x, q) = 0, we obtain the following
generating function for Bk,n(x, q):

F (k)
q (t, x) =

(t[x]q)
ke

[1−x] 1
q
t

k!
=

∞
∑

n=0

Bk,n(x, q)
tn

n!
, where k ∈ Z+ and x ∈ [0, 1].

Thus, for k, n ∈ Z+, we note that

(14)
Bk,n(x, q) =

(

n

k

)

[x]kq [1− x]n−k
1

q

, if n ≥ k ,

= 0, if k < n.

By (14), we easily get limq→1 Bk,n(x, q) = Bk,n(x). For 0 ≤ k ≤ n, we have

[1− x] 1
q
Bk,n−1(x, q) + [x]qBk−1,n−1(x, q)

= [1− x] 1
q

(

n− 1

k

)

[x]kq [1− x]n−k−1
1

q

+ [x]q

(

n− 1

k − 1

)

[x]k−1
q [1− x]n−k

1

q

=

(

n− 1

k

)

[x]kq [1− x]n−k
1

q

+

(

n− 1

k − 1

)

[x]kq [1− x]n−k
1

q

=

(

n

k

)

[x]kq [1− x]n−k
1

q

,

and the derivative of the q-Bernstein polynomials of degree n are also polynomials of
degree n− 1.

d

dx
Bk−1,n(x, q)

= k

(

n

k

)

[x]k−1
q [1− x]n−k

1

q

(

log q

q − 1

)

qx +

(

n

k

)

[x]kq(n− k)[1− x]n−k−1
1

q

(

log q

1− q

)

qx

=
log q

q − 1
qx
(

n

(

n− 1

k − 1

)

[x]k−1
q [1− x]n−k

1

q

− n

(

n− 1

k

)

[x]kq [1− x]n−1−k
1

q

)

= n (Bk−1,n−1(x, q)−Bk,n−1(x, q))
log q

q − 1
qx.

Therefore, we obtain the following theorem.
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Theorem 1. For k, n ∈ Z+ and x ∈ [0, 1], we have

[1− x] 1
q
Bk,n−1(x, q) + [x]qBk−1,n−1(x, q) = Bk,n(x, q),

and
d

dx
Bk,n(x, q) = n (Bk−1,n−1(x, q)−Bk,n−1(x, q))

log q

q − 1
qx.

Let f be a continuous function on [0, 1]. Then the q-Bernstein operator of order n
for f is defined by

(15) Bn,q(f |x) =

n
∑

k=0

f(
k

n
)Bk,n(x, q), where 0 ≤ x ≤ 1 and n ∈ Z+.

By (14) and (15), we see that

Bn,q(1|x) =
n
∑

k=0

Bk,n(x, q) =
n
∑

k=0

(

n

k

)

[x]kq [1− x]n−k
1

q

=
(

[x]q + [1− x] 1
q

)n

= 1.

Also, we get from (15) that for f(x) = x,

Bn,q(x|x) =

n
∑

k=0

k

n

(

n

k

)

[x]kq [1− x]n−k
1

q

=

n−1
∑

k=0

(

n− 1

k

)

[x]k+1
q [1− x]n−k−1

1

q

= [x]q.

The q-Bernstein polynomials are symmetric polynomials in the following sense:

Bn−k,n(1− x,
1

q
) =

(

n

n− k

)

[1− x]n−k
1

q

[x]kq = Bk,n(x, q).

Thus, we obtain the following theorem.

Theorem 2. For n, k ∈ Z+ and (x ∈ [0, 1], we have

Bn−k,n(1− x,
1

q
) = Bk,n(x, q).

Moreover, Bn,q(1|x) = 1 and Bn,q(x|x) = [x]q.

From (15), we note that

(16)

Bn,q(f |x) =

n
∑

k=0

f(
k

n
)Bk,n(x, q) =

n
∑

k=0

f(
k

n
)

(

n

k

)

[x]kq [1− x]n−k
1

q

=
n
∑

k=0

f(
k

n
)

(

n

k

)

[x]kq

n−k
∑

j=0

(

n− k

j

)

(−1)j [x]jq.
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By the definition of binomial coefficient, we easily get
(

n

k

)(

n− k

j

)

=

(

n

k + j

)(

k + j

k

)

.

Let k + j = m. Then we have

(17)

(

n

k

)(

n− k

j

)

=

(

n

m

)(

m

k

)

.

From (16) and (17), we have

(18) Bn,q(f |x) =
n
∑

m=0

(

n

m

)

[x]mq

m
∑

k=0

(

m

k

)

(−1)m−kf(
k

n
).

Therefore, we obtain the following theorem.

Theorem 3. For f ∈ C[0, 1] and n ∈ Z+, we have

Bn,q(f |x) =

n
∑

m=0

(

n

m

)

[x]mq

m
∑

k=0

(

m

k

)

(−1)m−kf(
k

n
).

It is well known that the second kind stirling numbers are defined by

(19)
(et − 1)k

k!
=

1

k!

k
∑

l=0

(

k

l

)

(−1)k−lelt =

∞
∑

n=0

s(n, k)
tn

n!
, for k ∈ N, (see [12, 21]).

Let ∆ be the shift difference operator with ∆f(x) = f(x + 1) − f(x). By iterative
process, we easily get

(20) ∆nf(0) =
n
∑

k=0

(

n

k

)

(−1)n−kf(k).

From (19) and (20), we can easily derive the following equation (21).

(21)
1

k!
∆k0n = s(n, k).

By (18) and (20) we obtain the following theorem.

Theorem 4. For f ∈ C[0, 1] and n ∈ Z+, we have

Bn,q(f |x) =

n
∑

k=0

(

n

k

)

[x]kq∆
kf(

0

n
).

In the special case, f(x) = xm(m ∈ Z+), we have the following corollary.
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Corollary 5. For x ∈ [0, 1] and m,n ∈ Z+, we have

nmBn,q(x
m|x) =

n
∑

k=0

(

n

k

)

[x]kq∆
k0m,

and

nmBn,q(x
m|x) =

n
∑

k=0

(

n

k

)

[x]kqk!s(m, k).

For x, t ∈ C and n ∈ Z+ with n ≥ k, consider

(22)
n!

2πi

∫

C

([x]qt)
k

k!
e
([1−x] 1

q
t) dt

tn+1
,

where C is a circle around the origin and integration is in the positive direction. We
see from the definition of the q-Bernstein polynomials and the basic theory of complex
analysis including Laurent series that

(23)

∫

C

([x]qt)
k

k!
e
([1−x] 1

q
t) dt

tn+1
=

∞
∑

m=0

∫

C

Bk,m(x, q)tm

m!

dt

tn+1
= 2πi

(

Bk,n(x, q)

n!

)

.

We get from (22) and (23) that

(24)
n!

2πi

∫

C

([x]qt)
k

k!
e
([1−x] 1

q
t) dt

tn+1
= Bk,n(x, q),

and

(25)

∫

C

([x]qt)
k

k!
e
([1−x] 1

q
t) dt

tn+1
=

[x]kq
k!

∞
∑

m=0

(

[1− x]m1
q

m!

∫

C

tm−n−1+kdt

)

= 2πi





[x]kq [1− x]n−k
1

q

k!(n− k)!



 =
2πi

n!

(

n

k

)

[x]kq [1− x]n−k
1

q

.

By (22) and (25), we see that

(26)
n!

2πi

∫

C

([x]qt)
k

k!
e
([1−x] 1

q
t) dt

tn+1
=

(

n

k

)

[x]kq [1− x]n−k
1

q

.

From (24) and (26), we note that

Bk,n(x, q) =

(

n

k

)

[x]kq [1− x]n−k
1

q

.
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By the definition of q-Bernstein polynomials, we easily get

(

n− k

n

)

Bk,n(x, q) +

(

k + 1

n

)

Bk+1,n(x, q)

=

(

(n− 1)!

k!(n− k − 1)!

)

[x]kq [1− x]n−k
1

q

+

(

(n− 1)!

k!(n− k − 1)!

)

[x]k+1
q [1− x]n−k−1

1

q

=
(

[1− x] 1
q
+ [x]q

)

Bk,n−1(x, q) = Bk,n−1(x, q).

Therefore, we can write q-Bernstein polynomials as a linear combination of polyno-
mials of higher order.

Theorem 6. For k, n ∈ Z+ and x ∈ [0, 1], we have

(

n+ 1− k

n+ 1

)

Bk,n+1(x, q) +

(

k + 1

n+ 1

)

Bk+1,n+1(x, q) = Bk,n(x, q).

We easily get from (14) that for n, k ∈ N,

(

n− k + 1

k

)

(

[x]q
[1− x] 1

q

)

Bk−1,n(x, q)

=

(

n− k + 1

k

)

(

[x]q
[1− x] 1

q

)

(

n

k − 1

)

[x]k−1
q [1− x]n−k+1

1

q

=

(

n!

k!(n− k)!

)

[x]kq [1− x]n−k
1

q

= Bk,n(x, q).

Therefore, we obtain the following corollary.

Corollary 7. For k, n ∈ N and x ∈ [0, 1], we have

(

n− k + 1

k

)

(

[x]q
[1− x] 1

q

)

Bk−1,n(x, q) = Bk,n(x, q).

By (14) and binomial theorem, we easily see that

Bk,n(x, q) =

(

n

k

)

[x]kq

n−k
∑

l=0

(

n− k

l

)

(−1)l[x]lq =
n
∑

l=k

(

l

k

)(

n

k

)

(−1)l−k[x]lq.

Therefore, we obtain the following theorem.
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Theorem 8. For k, n ∈ Z+ and x ∈ [0, 1], we have

Bk,n(x, q) =
n
∑

l=k

(

l

k

)(

n

k

)

(−1)l−k[x]lq.

It is possible to write [x]kq as a linear combination of the q-Bernstein polynomials
by using the degree evaluation formulae and mathematical induction. We easily see
from the property of the q-Bernstein polynomials that

n
∑

k=1

(

k

n

)

Bk,n(x, q) =

n−1
∑

k=0

(

n− 1

k

)

[x]k+1
q [1− x]n−k−1

1

q

= [x]q,

and that

n
∑

k=2

(

k
2

)

(

n
2

)Bk,n(x, q) =

n−2
∑

k=0

(

n− 2

k

)

[x]k+2
q [1− x]n−2−k

1

q

= [x]2q.

Continuing this process, we get

n
∑

k=j

(

k
j

)

(

n
j

)Bk,n(x, q) = [x]jq, for j ∈ Z+.

Therefore, we obtain the following theorem.

Theorem 9. For n, j ∈ Z+ and x ∈ [0, 1], we have

n
∑

k=j

(

k
j

)

(

n
j

)Bk,n(x, q) = [x]jq.

In [7], the q-stirling numbers of the second kind are defined by

(27) sq(n, k) =
q−(

k

2
)

[k]q!

k
∑

j=0

(−1)jq(
j

2)
(

k

j

)

q

[k − j]nq ,

where
(

k
j

)

q
=

[k]q!
[j]q![k−j]q!

and [k]q! =
∏k

i=1[i]q. For n ∈ Z+, it is known that

(28) [x]nq =

n
∑

k=0

q(
k

2
)
(

x

k

)

q

[k]q!sq(n, k), (see [7, 21]).

By (27), (28) and Theorem 7, we obtain the following corollary.
9



Corollary 10. For n, j ∈ Z+ and x ∈ [0, 1], we have

n
∑

k=j

(

k
j

)

(

n
j

)Bk,n(x, q) =

j
∑

k=0

q(
k

2)
(

x

k

)

q

[k]q!sq(j, k).

§3. On fermionic p-adic integral representations of q-Bernstein polynomials

In this section we assume that q ∈ Cp with |1− q|p < 1. From (10) we note that
(29)

En, 1
q
(1− x) =

∫

Zp

[1− x+ x1]
n
1

q

dµ−1(x1) = (−1)nqn
∫

Zp

[x+ x1]
n
q dµ−1(x1), (see [21]).

From (29) we have

∫

Zp

[1− x]n1
q

dµ−1(x) = qn(−1)n
∫

Zp

[x− 1]nq dµ−1(x)

=

∫

Zp

(1− [x]q)
n
dµ−1(x) = (−1)nqnEn, 1

q
(−1) = En,q(2).

By (5) and (10), we easily get

En,q(2) = 2 + En,q, if n > 0.

Thus, we obtain the following theorem.

Theorem 11. For n ∈ N, we have

∫

Zp

[1− x]n1
q

dµ−1(x) =

∫

Zp

(1− [x]q)
n
dµ−1(x) = 2 +

∫

Zp

[x]nq dµ−1(x).

By using Theorem 11, we derive our main results in this section. Taking the
fermionic p-adic integral on Zp for one q-Bernstein polynomials in (14), we get

(30)

∫

Zp

Bk,n(x, q)dµ−1(x) =

(

n

k

)
∫

Zp

[x]kq [1− x]n−k
1

q

dµ−1(x)

=

(

n

k

) n−k
∑

l=0

(

n− k

l

)

(−1)l
∫

Zp

[x]k+l
q dµ−1(x)

=

(

n

k

) n−k
∑

l=0

(

n− k

l

)

(−1)lEk+l,q.

10



From (14) and Theorem 2, we note that

(31)

∫

Zp

Bk,n(x, q)dµ−1(x) =

∫

Zp

Bn−k,n(1− x,
1

q
)dµ−1(x)

=

(

n

k

) k
∑

j=0

(

k

j

)

(−1)k+j

∫

Zp

[1− x]n−j
1

q

dµ−1(x).

For n > k, by (31) and Theorem 11, we get

(32)

∫

Zp

Bk,n(x, q)dµ−1(x) =

(

n

k

) k
∑

j=0

(

k

j

)

(−1)k+j

(

2 +

∫

Zp

[x]n−j
q dµ−1(x)

)

= 2 +En,q, if k = 0

=

(

n

k

) k
∑

j=0

(

k

j

)

(−1)k+jEn−j,q, if k > 0.

From m,n, k ∈ Z+ with m+ n > 2k, the fermionic p-adic integral for multiplication
of two q-Bernstein polynomials on Zp can be given by the following relation:

(33)

∫

Zp

Bk,n(x, q)Bk,m(x, q)dµ−1(x) =

(

n

k

)(

m

k

)
∫

Zp

[x]2kq [1− x]n+m−2k
1

q

dµ−1(x)

=

(

n

k

)(

m

k

) 2k
∑

j=0

(

2k

j

)

(−1)j+2k

∫

Zp

[1− x]n+m−j
1

q

dµ−1(x)

=

(

n

k

)(

m

k

) 2k
∑

j=0

(−1)j+2k

(

2 +

∫

Zp

[x]n+m−j
q dµ−1(x)

)

.

From (33), we have

∫

Zp

Bk,n(x, q)Bk,m(x, q)dµ−1(x) = 2 + En+m,q, if k = 0

=

(

n

k

)(

m

k

) 2k
∑

j=0

(

2k

j

)

(−1)j+2kEn+m−j,q, if k > 0.

For m, k ∈ Z+, it is difficult to show that
(34)
∫

Zp

Bk,n(x, q)Bk,m(x, q)dµ−1(x) =

(

n

k

)(

m

k

) n+m−2k
∑

j=0

(

n+m− 2k

j

)

(−1)jEj+2k,q.

Continuing this process we obtain the following theorem.
11



Theorem 12. (I). For n1, · · · , ns, k ∈ Z+ (s ∈ N) with n1 + · · ·+ ns > sk, we have

∫

Zp

(

s
∏

i=1

Bk,ni
(x, q)

)

dµ−1(x) = 2 + En1+···+ns,q, if k = 0,

and
∫

Zp

(

s
∏

i=1

Bk,ni
(x, q)

)

dµ−1(x) =

s
∏

i=1

(

ni

k

) sk
∑

j=0

(

sk

j

)

(−1)sk−jEn1+···+ns−j,q, if k > 0.

(II). Let k, n1, · · ·ns ∈ Z+ (s ∈ N). Then we have

∫

Zp

(

s
∏

i=1

Bk,ni
(x, q)

)

dµ−1(x)

=

(

s
∏

i=1

(

ni

k

)

)

∑
s
i=1

ni−sk
∑

j=0

(∑s

i=1 ni − sk

j

)

(−1)jEj+sk,q.

By Theorem 12, we obtain the following corollary.

Corollary 13. For n1, · · · , ns, k ∈ Z+ (s ∈ N) with n1 + · · ·+ ns > sk, we have
∑s

i=1
ni−sk
∑

j=0

(∑s

i=1 ni − sk

j

)

(−1)jEj+sk,q = 2 + En1+···+ns,q, if k = 0,

and ∑s
i=1

ni−sk
∑

j=0

(∑s

i=1 ni − sk

j

)

(−1)jEj+sk,q

=
sk
∑

j=0

(

sk

j

)

(−1)sk−jEn1+···+ns−j,q, if k > 0.

Let m1, · · · , ms, n1, · · · , ns, k ∈ Z+ (s ∈ N) with m1n1 + · · ·+msns > (m1 + · · ·+
ms)k. By the definition of Bms

k,ns
(x, q), we can also easily see that

∫

Zp

(

s
∏

i=1

Bmi

k,ni
(x, q)

)

dµ−1(x)

=
s
∏

i=1

(

ni

k

)mi
k
∑s

i=1
mi

∑

j=0

(

k
∑s

i=1 mi

j

)

(−1)k
∑s

i=1
mi−j

∫

Zp

[1− x]
∑

s
i=1

nimi−j
1

q

dµ−1(x)

=

s
∏

i=1

(

ni

k

)mi
k
∑

s
i=1

mi
∑

j=0

(

k
∑s

i=1 mi

j

)

(−1)k
∑

s
i=1

mi−j
(

2 + E∑
s
i=1

mini−j,q

)

.
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