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A NOTE ON ¢-BERNSTEIN POLYNOMIALS

TAEKYUN KIiMm

ABSTRACT. Recently, Simsek-Acikgoz([17]) and Kim-Jang-Yi([9]) have studied the g¢-
extension of Bernstein polynomials. In this paper we propose the g-extension of Bern-
stein polynomials of degree n, which are different ¢g-Bernstein polynomials of Simsek-
Acikgoz([17]) and Kim-Jang-Yi([9]). From these g-Bernstein polynomials, we derive
some fermionic p-adic integral representations of several g-Bernstein type polynomials.
Finally, we investigate some identities between g-Bernstein polynomials and g¢-Euler
numbers.

§1. Introduction

Let C|0, 1] denote the set of continuous function on [0, 1]. For f € C]0, 1], Bernstein
introduced the following well known linear operators (see [1, 3]):

n

) (7o) = 3 1) () * 1= "+ = 32 1) Br(o)
k=0 k

=0

Here B, (f|z) is called Bernstein operator of order n for f. For k,n € Z, (= NU{0}),
the Bernstein polynomials of degree n is defined by

2) Bin(z) = (Z)xk(l — )"k, (see [1, 2, 3]).

A Bernoulli trial involves performing an experiment once and noting whether a par-
ticular event A occurs. The outcome of Bernoulli trial is said to be “success” if A
occurs and a “failure” otherwise. Let k be the number of successes in n independent
Bernoulli trials, the probabilities of k£ are given by the binomial probability law:

ny —k
pn(k) = (k)p (1—p)" ", fork=0,1,---,n,
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where p,, (k) is the probability of k successes in n trials. For example, a communication
system transmit binary information over channel that introduces random bit errors
with probability ¢ = 1073. The transmitter transmits each information bit three
times, an a decoder takes a majority vote of the received bits to decide on what the
transmitted bit was. The receiver can correct a single error, but it will make the wrong
decision if the channel introduces two or more errors. If we view each transmission
as a Bernoulli trial in which a “success” corresponds to the introduction of an error,
then the probability of two or more errors in three Bernoulli trial is

p(k>2)= (‘Z) (0.001)%(0.999) + (2) (0.001)3 =~ 3(107°), see [18].

By the definition of Bernstein polynomials(see Eq.(1) and Eq.(2)), we can see that
Bernstein basis is the probability mass function of binomial distribution. In the refer-
ence [15] and [16], Phillips proposed a generalization of classical Bernstein polynomials
based on ¢-integers. In the last decade some new generalizations of well known posi-
tive linear operators based on g¢-integers were introduced and studied by several au-
thors(see [1-21]). Let 0 < ¢ < 1. Define the g-numbers of x by [z], = 1_‘1; (see [1-21]).

1—
Recently, Simsek-Acikgoz([17]) and Kim-Jang-Yi([9]) have studied the g-extension of
Bernstein polynomials, which are different Phillips g-Bernstein polynomials. Let p be
a fixed odd prime number. Throughout this paper Z,, Q,, and C,, denote the rings of
p-adic integers, the fields of p-adic rational numbers, and the completion of algebraic
closure of Q, respectively. The p-adic absolute value in C, is normalized in such way
that [p|, = %. As well known definition, Euler polynomials are defined by

oo n

et =3 En(a:)%, (sce [1-14]).

n=0

2
et +1

(3)

In the special case, z = 0, E,(0) = E,, are called the n-th Euler numbers. By (3), we
see that the recurrence formula of Euler numbers is given by

(4) Ey=1, and (E+1)"+ E, =0if n > 0, (see [12]),

with the usual convention of replacing E™ by FE,,. When one talks of g-analogue, ¢ is
variously considered as an indterminate, a complex number ¢ € C, or a p-adic number
q € C,. If g € C, we normally assume |g| < 1. If ¢ € C,, we normally always assume
that |1 — ¢|, < 1. As the g-extension of (4), author defined the ¢-Euler numbers as
follows:

(5) Eyp,=1, and (¢E;+1)"+ E, g =01if n > 0, ( see [21]),

with the usual convention of replacing Ei' by E, .. Let UD(Z,) be the space of
uniformly differentiable function on Z,. For f € UD(Z,), the fermionic p-adic ¢-
integral was defined by

© L= [ S@dy) = Jim o 3 @0 (e [12),



In the special case, ¢ = 1, I1(f) is called the fermionic p-adic integral on Z, (see [12,
21]). By (6) and the definition of I1(f), we see that

(7) L(f1) + L(f) = 2/(0), where fi(z) = f(z +1).

For n € N, let f,(x) = f(x +n). Then we can also see that

—

n—

(8) L(fa) + (FD)" ML) =2 ) (F)" (D), (see [21)).

=0

From (5), (7) and (8), we note that

(9) /Z“dul ZEnqn >

( " (n) (—1)l>tn
n l ol
. = — 1)1+¢ ] n!

Thus we have

—~ (m\ (=)
qu: D < ) 7, (see [21]).
— l)1+¢q

In [21], the g-Euler polynomials are defined by

n n lx
1) Buo) = [ el = =3 () 0
D l

By (9) and (100, we get

n

(11) En,q(x):2<l) "B, = (¢"E, +1)",

=0

with the usual convention of replacing Ej by E,, 4. In this paper we firstly consider the
g-Bernstein polynomials of degree n in R, which are different ¢-Bernstein polynomials
of Simsek-Acikgoz([17]) and Kim-Jang-Yi([9]). From these ¢-Bernstein polynomials,
we try to study for the fermionic p-adic integral representations of the several g¢-
Bernstein type polynomials on Z,,. Finally, we give some interesting identities between
g-Bernstein polynomials and ¢-Euler numbers.

§2. g-Bernstein Polynomials

For n,k € Z, the generating function for By ,(x) is introduced by Acikgoz and
Araci as follows:

(k;) te(l—x)txk oo tn
(12) F®(t,2) = ——— = ;}Bk,n(;ﬂ)m, (see [1, 9, 10, 17]).
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For k,n€Z4,0<q<1and z € |0, 1], consider the g-extension of (12) as follows:
(13)

[1-— m]lt n . [] [1—.’13]” k

k 1 n. n
(k) _ (t[z]g)%e R P a t
Fo(t2) = k! - k:' Z = 2 -k | 7l

= Z < ) 1 -z Z By n(x q
Because By o(z,q) = Bri(z,q) = -+ = Bpr-1(x,q) = 0, we obtain the following
generating function for By ,(x,q):
[1—z]1t o)
tlx],)*e a t"
Fq(k)(t,a:) = (tlzlq) X = E)Bk’n(:c,q)a, where k € Z, and z € [0, 1].

Thus, for k,n € Z,, we note that

k
=0, if £k <n.

(14) Bin(z,q) = < )[a:]’;[l —x]g_k, ifn>k,

By (14), we easily get lim,_,; By »(z,q) = Bg,n(x). For 0 < k <n, we have

(1= 2]1 Byn—1(2, ) + [#]¢Br-1,n-1(2,9)
=[1 -z (n ; 1) B x]g_k Ly q(k 1) x]g—k
= (" et (0l - el = (Z)[ AU

and the derivative of the ¢g-Bernstein polynomials of degree n are also polynomials of
degree n — 1.

—k

Y

~n|)—'3

d

_B—n7
dx k1,(93Q)

B L
- ;"f‘iqm (= it aty =" el -y

lo
n (Bk-1,n-1(7,q) — Bkn-1(, Q))qu;qqu~

Therefore, we obtain the following theorem.
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Theorem 1. For k,n € Z and x € [0,1], we have
[1 - x]%Bk,n—l(x7 Q) + [x]qu—l,n—l(m7 Q) = Bk,n<x7 Q)7

and
d logg ,

%Bk,n<x7Q) =n (Bk:—l,n—1<x7Q) - Bk,n—1<x7Q)) q— 1q

Let f be a continuous function on [0, 1]. Then the g-Bernstein operator of order n
for f is defined by

(15) nq(flz) = Zf )Bi.n(z,q), where 0 <z <1andn € Z,.

By (14) and (15), we see that

B, o(1l]x) = ZBk” x,q) = ” (k)[x]’;[l—x]g—k - ([x]q—f—[l—a:]%)n =1.

k=0

Also, we get from (15) that for f(z) = =z,

el = 30 (Dt oty = 3 (7 )yt =

k=0 k=0

The g-Bernstein polynomials are symmetric polynomials in the following sense:
1 n n—k k
Bn—k,n(l_x7§> = n—k [1_1.]% [Qf]q :Bk,n(x:CD'

Thus, we obtain the following theorem.

Theorem 2. Forn,k € Z and (x € [0,1], we have
1
Bn—k,n(l - Z, g) - Bk,n(x7 Q)

Moreover, B, 4(1|z) =1 and B,, ,(z|x) = [z]
From (15), we note that

Q

3
>
3|
VR
> 3
~_
8
e
=
|
B,
u:l)—-3|
e

an|l’ Zf BknxQ):

B (o
)

(16)



By the definition of binomial coefficient, we easily get

() -G 00)

Let k + j = m. Then we have

O-()6)

From (16) and (17), we have

(19 Buatflo) = 3= ()il - ()i

k=0
Therefore, we obtain the following theorem.

Theorem 3. For f € C[0,1] and n € Z, we have

B " /n m " (m ik o/ F

Buafle) = 3 (1 )iy S (1) o tach
m=0 k=0

It is well known that the second kind stirling numbers are defined by

oo

(19) (e;!l i Z( ) Y=ttt Z (n, k) , for k € N, (see [12, 21]).

n=0

Let A be the shift difference operator with Af(z) = f(z 4+ 1) — f(x). By iterative
process, we easily get

n o . n _1\n—k
(20) anpo)= 3 (1)t
k=0
From (19) and (20), we can easily derive the following equation (21).
knn __

By (18) and (20) we obtain the following theorem.
Theorem 4. For f € C[0,1] and n € Z, we have

Bl = 3 () wlia s

k=0

In the special case, f(x) =z (m € Z,), we have the following corollary.
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Corollary 5. For x € [0,1] and m,n € Zy, we have
m m = n m
"B lamlo) =3 ()i ator,
k=0

and

n"B,, o (z™|z) = kz: (Z) (@] *kLs(m, k).

For z,t € C and n € Z with n > k, consider

n/! ([a:]qt)ke(u w0 dt
271 C k' tn—l—l’

(22)

where C' is a circle around the origin and integration is in the positive direction. We
see from the definition of the ¢-Bernstein polynomials and the basic theory of complex
analysis including Laurent series that

([z]gt)F (-alit) dt Bkm:cq dt [ Bpn(z,q)
(23) /C e T Z g = 2mi (— )

We get from (22) and (23) that

b [ ([2lgt)" (el dt

(24) omi K pros phl A CHOR
and
([x]qt)ke([l—m]%t) at @ i [1- a:]% gm—n—1+k 1
C k! tn—i—l N ! 0 m! C
(25) v n—=k
— 9 [g:";[l—a:]% _27Ti n kl n—k
=2 o | T ) el el
By (22) and (25), we see that
n! [ ([z]t)F (1-2]1t) dt Y\ 1k n—k
(26) 2mi Jo =l 0 L1 E Fa

From (24) and (26), we note that

Bt = () ebln - aly ™



By the definition of ¢g-Bernstein polynomials, we easily get

n—k k+1
( n ) Bk,n(x7Q) + (T) Bk+1,n<x7Q)

— ([1 — a:]% + [a:]q> Bk,n—l(w, q) = B n—1(z,q).

Therefore, we can write ¢g-Bernstein polynomials as a linear combination of polyno-
mials of higher order.

Theorem 6. For k,n € Z, and x € [0,1], we have

n+1-—%k k+1
—— | Bin , —— | Bi+1n ,q) = Brn(x,q).
( _— ) e ‘-’>+<n+1) i1 () = Bun(2,0)

We easily get from (14) that for n,k € N,

(=) ([1[?]; ) -1 0)

B
_(n—kt 1 ar k-1 n—k+1
- (2 (1_“) Jials - aly

q

_ (lf'(%k:)') [2lé1 — 2]t~ = Brn(a.q).

Therefore, we obtain the following corollary.

Corollary 7. For k,n € N and x € [0, 1], we have

(14) and binomial theorem, we easily see that

Butea) = (1) S (") oo = = () () vt

=0 l

By

Therefore, we obtain the following theorem.
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Theorem 8. For k,n € Z and x € [0,1], we have

Biten) =3 (/i) (Z) (=)' lely.

=k

It is possible to write [x] ’; as a linear combination of the g-Bernstein polynomials

by using the degree evaluation formulae and mathematical induction. We easily see
from the property of the g-Bernstein polynomials that

> (£) Beatrn = ; (" el -y = el

and that

Continuing this process, we get
" (%) |
Z ﬁBk,n(%@ = [a:]fl, for j € Z,.
k=5 \Jj

Therefore, we obtain the following theorem.

Theorem 9. Forn,j € Zy and x € [0, 1], we have

i()

k=3

SR

Byn(,q) = [37]?1

—
<3
SN—"

In [7], the g-stirling numbers of the second kind are defined by

) &

[&],! 20(—1)3‘(1(%) (I;)q[k—j]fj,

(27) sq(n, k) =

where (?)q = % and [k],! = Hle[i]q. For n € Z., it is known that

(28) aly = 20 () Wtsy (o), (e [7, 21,
k=0 q

By (27), (28) and Theorem 7, we obtain the following corollary.
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Corollary 10. Forn,j € Zy and x € [0,1], we have

§3. On fermionic p-adic integral representations of g-Bernstein polynomials

In this section we assume that ¢ € C, with |1 —¢|, < 1. From (10) we note that
(29)

Boy(=2) = [ I=a+aljduate) = (10" [ ot oliduo). see 1),

P ZP

From (29) we have

[ =alidis@ =0 [ o= tgdus @)

o ZP

= [ A=) s @) = (1) B (1) = Bug(2)

2

By (5) and (10), we easily get
E,.2)=2+E,, ifn>0.

Thus, we obtain the following theorem.

Theorem 11. Forn € N, we have

[ =@ - [ (e ) =2+ [ lalgds o)

o P

By using Theorem 11, we derive our main results in this section. Taking the
fermionic p-adic integral on Z,, for one ¢-Bernstein polynomials in (14), we get

[ Buato i@ = () [ Wiy i te)

P D

30) - ("7 [ e

=0 P

(1)

1=0
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From (14) and Theorem 2, we note that

/

By n(z, q)dp—1(z) :/

Zp

_ (Z) i (;?)(_1)“3‘/2 (1~ a3 (o).

=0 P

1
By _pn(l—z, 5)du_1(x)

(31)

For n > k, by (31) and Theorem 11, we get

[ stearir= ()5 ()i (o ]

[x]g_jdﬂ—1($)>

P j=0 P
(32) =24 B,y if k=0
n\ o~ [k -
= <k> > (j)(—1)’“+JEn_j,q, if k> 0.
j=0

From m,n,k € Z, with m + n > 2k, the fermionic p-adic integral for multiplication
of two g-Bernstein polynomials on Z, can be given by the following relation:

[ BateoBntr. i@ = (1) (7) [ -y o

2

(33) = (Z) (7:) i (2]@) (=1)7 2 /Z (1= 2™ dpa ()

=0 P

) o L)

0 P

From (33), we have

| B, 0B @, a)du-a(2) = 24 Bupngy it k=0
Z

n\ [m 2k 2k .
6]l e—

§=0
For m, k € Z, it is difficult to show that
(34)
n+m—2k
n\ [m n+m — 2k ,
|| Brnles 0B, s (a) = (k) ( k) 3 ( ! )<_1)3Ej+2k,q.
D 7=0

Continuing this process we obtain the following theorem.
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Theorem 12. (I). For ny,--- ,ng, k € Zy (s € N) withny + -+ -+ ns > sk, we have

/ (H Bk,ni(l':@) dp—1(x) =2+ Epyyoogny g, o k=0,
ZP

=1
and
s s N sk 8]{7 .
/ <H Bin, <x,q>) nao) =11 () > [
AL ) 2

(II). Let k,ny,---ns € Z4 (s € N). Then we have

/ (H Bin, <x,q>) A (2)

i=1
g >l mni—sk s
_ n; Yoiqn; — sk ,
- (H (k)) S (B ) e,

By Theorem 12, we obtain the following corollary.

Corollary 13. Forny, -+ ,ng, k € Zy (s € N) withnq + -- -+ ng > sk, we have

> mi—sk

S . n; — sk - .
Z <ZZ—1 ] )(_1)JEj+5k,q =2+ En1+"'+ns,q7 ka = 07
j=0
and -
j=1 ni—sk s
Yoiqn; — sk ‘
A [V
j=0
sk
sk sh—i :
= ( -)(—1> "By etna—jigs if k>0
=0 N7
Let mqy, -+ ,mg,nq,-- ,ng, k € Ly (8 GN) with miny +---+mgng > (m1+...+

ms)k. By the definition of B)"; (w,q), we can also easily see that

/ (H BI, <x,q>) i (2)

=1
s e k5 m, )
n; K k i= my; s e — i S pimi—i
- (k) Z ( Efl )(—1)’“21—1 i J/ [1_1.]?1,1 T (x)
; : j . .
=1 j=0 .
S my Kk 20io M s
Tn; v kZ'—lmi kzs .
- = -1 i=1Mi=J (9 4 B Y
i:1<k) JZ::O ( J )( ) 2+ By, mini—ja)
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