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Abstract

We extend to Lipschitz continuous functionals either of the true paths or of the
Euler scheme with decreasing step of a wide class of Brownian ergodic diffusions, the
Central Limit Theorems formally established for their marginal empirical measure of
these processes (which is classical for the diffusions and more recent as concerns their
discretization schemes). We illustrate our results by simulations in connection with
barrier option pricing.
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1 Introduction

In a recent paper ([22]), we investigated weighted empirical measures based on some Euler
schemes with decreasing step in order to approximate recursively the distribution Pν of a
stationary Feller Markov processX := (Xt)t≥0 with invariant distribution ν. To be precise,
let (X̄t) be such an Euler scheme, let (Γk)k≥1 denote its sequence of discretization times and
let (ηk)k≥1 be a sequence of weights. On the one hand we showed under some Lyapunov-
type mean-reverting assumptions on the coefficients of the SDE and some conditions on
the steps and on the weights that

ν̄(n)(ω,F ) =
1

η1 + . . .+ ηn

n∑

k=1

ηkF (X̄Γk+.)
n→+∞−−−−−→ Pν(F ) =

∫

E[F (Xx)]ν(dx) a.s.,

(1.1)
for a broad class of functionals F including bounded continuous functionals for the Sko-
rokhod topology. On the other hand, in the marginal case, i.e. when F (α) = f(α(0)), then
the procedure converges to ν(f). When the Poisson equation related to the infinitesimal
generator has a solution, this convergence is ruled by a Central Limit Theorem (CLT ):
this has been extensively investigated in the literature (for continuous Markov processes,
see [4], for the Euler scheme with decreasing step of Brownian diffusions, see [18, 21]). As
concerns Lévy driven SDEs, see [24].
Our aim in this paper is to extend some of these rate results to functionals of the path
process and its associated Euler scheme with decreasing step, i.e. to study the rate of
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convergence to Pν(F ) of (1t
∫ t
0 F (Xs+.)ds)t≥1 and (ν̄(n)(ω,F ))n≥1 respectively. Here, we

choose to assume that (Xt) is an R
d-valued process solution to

dXt = b(Xt)dt+ σ(Xt)dWt, (1.2)

where (Wt)t≥0 is a q-dimensional Brownian motion and b and σ are Lipschitz continuous
functions with values in R

d and Md,q respectively, where Md,q denotes the set of d × q-
matrices. Under these assumptions, strong existence and uniqueness hold and (Xt) is
a Markov process whose semi-group is denoted by (Pt). We also assume that (Xt) has
a unique invariant distribution ν and we denote by Pν , the distribution of (Xt) when
stationary.

Let us now focus on the discretization of (Xt). We are going to introduce some
continuous-time Euler schemes with decreasing step: denoting by (Γn)n≥1 the increasing
sequence of discretization times starting from Γ0 = 0, we assume that the step sequence
defined by γn := Γn − Γn−1, n ≥ 1, is nonincreasing and satisfies

lim
n→+∞

γn = 0, Γn =

n∑

k=1

γk
n→+∞−−−−−→ +∞, (1.3)

First, we introduce the discrete time constant Euler scheme (X̄Γn)n≥0 recursively defined
at the discretization times Γn by X̄0 = x0 and

X̄Γn+1 = X̄Γn + γn+1b(X̄Γn) + σ(X̄Γn+1)(WΓn+1 −WΓn). (1.4)

There are several ways to extend this definition into a continuous time process. The
simplest one is the stepwise constant Euler scheme (X̄t)t≥0 defined by

∀n∈ N, ∀ t ∈ [Γn,Γn+1), X̄t = X̄Γn .

The stepwise constant Euler scheme is a right continuous left limited process (referred
as càdlàg throughout the paper, following the French acronym). This scheme is easy to
simulate provided one is able to compute the functions b and σ at a reasonable cost. One
could also introduce the linearly interpolated process built on (X̄Γn)n≥0 but except the
fact that it is a continuous process, it has no specific virtue in term of simulability or
convergence rate.

The second possibility to extend the discrete time Euler scheme is what we will call
the genuine Euler scheme, denoted from now on by (ξt)t≥0. It is defined by interpolating
the two part of the discrete time scheme in its own scale (time, Brownian motion). It is
defined by

∀n∈ N, ∀ t ∈ [Γn,Γn+1), ξt = X̄Γn + (t− Γn)b(X̄Γn) + σ(X̄Γn)(Wt −WΓn+1) (1.5)

Such an approximation looks more accurate than the former one, especially in a func-
tional setting, as it has been emphasized – in a constant step framework – in the literature
on several problems related to the Monte Carlo estimation of (a.s. continuous) function-
als of a diffusion (with a finite horizon) (see e.g. [7], Chapter 5). This follows from the
classical fact that the Lp-convergence rate of this scheme for the sup norm is

√
γ instead

of −√
γ log γ for its stepwise constant counterpart (where γ stand for the step). On the

other hand, the simulation of a functional of (ξt)t∈[τ,τ+T ] is deeply connected with the
simulation of the Brownian bridge so that it is only possible for specific functionals (like
running maxima, etc).
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A convenient and synthetic form for the genuine Euler scheme is to write it as an Itô
process satisfying the following pseudo-diffusion equation

ξt = x0 +

∫ t

0
b(ξs)ds +

∫ t

0
σ(ξs)dWs (1.6)

where
t = ΓN(t) with N(t) = min{n ≥ 0,Γn+1 > t}. (1.7)

Taking advantage of this notation for the stepwise constant Euler scheme, one can also
note that

∀ t ∈ R+, X̄t = X̄t.

When necessary, we will adopt the more precise notation X̄x,(hn) for a stepwise constant
continuous-time Euler scheme to specify starting at x ∈ R

d at time 0 with a nonincreasing
step sequence (hn)n≥1 satisfying (1.3).

Since we will deal with possibly càdlàg approximations of continuous processes we will
introduce the spaces Duc(I,R

d) of Rd-valued càdlàg functions on I = R+ or [0, T ], T > 0,
endowed with the topology of the uniform convergence on compact sets, rather than the
classical Skorokhod topology (see [6]). In fact, one must keep in mind that if α : I → R

d

is a continuous function and (αn) is a sequence of càdlàg functions, αn
Sk→ α iff α

uc→ α
(with obvious notations). Furthermore, usual Skorokhod distance dSk (so-called J1 and
J2 topologies) on D([0, T ],Rd) all satisfy

dSk(α, β) ≤ ‖α − β‖
T
:= sup

t∈[0,T ]
|α(t) − β(t)|

so that any functional F : D([0, T ],Rd) → R which is Lipschitz with respect to such a
distance dSk will be Lipschitz continuous with respect to ‖ . ‖

T
(hence measurable with

respect to the Borel σ-field induced by the Skorokhod topology).
At this stage, we need to introduce further notations related to the long run behaviour of
processes (or simply functions). Let δα(dβ) denotes the Dirac mass at α∈ D(R+,R

d) and
α(u) := (αu+t)t≥0 denotes the u-shift of α.

We will see below that our aim is to elucidate the asymptotic P(dω)-a.s. weak behaviour

of the empirical measures
1

t

∫ t

0
δY (s)(ω)(dβ)ds as t goes to infinity, where Y will be the

diffusion X itself or one of its (simulatable) Euler time discretizations. This suggests to
introduce a time dicretization at times Γn of the above time integral like we did to define
the Euler scheme. This leads us to introduce, for any α∈ D(R+,R

d), the following abstract
“Euler” empirical means

ν̄(n)(α, dβ) =
1

Γn

n∑

k=1

γk δα(Γk−1)(dβ) =
1

Γn

∫ Γn

0
δα(s)(dβ)ds.

Then, for a functional F defined on D(R+,R
d) and α ∈ D(R+,R

d),

ν̄(n)(α,F ) =

∫

D(R+,Rd)
F (β)ν̄(n)(α, dβ) =

1

Γn

n∑

k=1

γkF (α
(Γk−1)) =

1

Γn

∫ Γn

0
F (α(s))ds.

In the following, we will use this sequence of empirical measures for both stepwise con-
stant and genuine Euler schemes. Compared to [22], this means that we assume that the
sequence of weights (ηn) satisfies ηn = γn for every n ≥ 1.
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Additional notations. � 〈x, y〉 =∑i xiyi will denote the canonical inner product and
|x| =

√

〈x, x〉 will denote Euclidean norm of a vector x∈ R
d.

� Let A = [aij ]∈ Md,q be an R-valued matrix with d rows and q columns. A∗ will denote

the transpose of A, Tr(A) =
∑

i aii its trace and ‖A‖ :=
√

Tr(AA∗) = (
∑

ij a
2
ij)

1
2 . If

d = q, one writes Ax⊗2 for x∗Ax.

2 Main results

2.1 Assumptions and background

We denote by (Ft)t≥0 the usual augmentation of σ(Ws, 0≤s≤ t) by P-negligible sets. Since
b and σ are Lipschitz continuous functions, Equation (1.2) admits a unique (Ft)-adapted
solution (Xx

t )t≥0 starting from x ∈ R
d. More generally, for every u ≥ 0 and every finite

Fu-measurable random variable Ξ, we can consider (X
(u),Ξ
t )t≥0, unique strong solution to

the SDE:
dYt = b(Yt)dt+ σ(Yt)dW

(u)
t , Y0 = Ξ, (2.8)

where W
(u)
t = Wu+t −Wu, t≥ 0, is the u-shifted Brownian motion (independent of Fu).

Note that Xx
t = X

(0),x
t and that X

(u),Ξ
t can be also defined through the flow of (1.2) by

setting

X
(u),Ξ
t =

(
X

(u),x
t

)

|x=Ξ
.

Throughout this paper, we consider a measurable functional F : Duc([0, T ],R
d) → R. We

will denote by F
T
the stopped functional defined on Duc(R+,R

d) by

∀α ∈ Duc(R+,R
d), F

T
(α) = F (αT ) with αT (t) = α(t ∧ T ), t ≥ 0. (2.9)

Let us introduce the assumptions on F .

(C1
F): F : Duc([0, T ],R

d) → R is a bounded and Lipschitz continuous functional.

We set
f
F
(x) = E[F

T
(Xx)] = E[F (Xx

t , 0 ≤ t ≤ T )].

It is classical background (see e.g. [15]) that, under the Lipschitz assumption on b and σ,
E[supt∈[0,T ] |Xx

t −Xy
t |] ≤ Cb,σ,T |x − y| so that f

F
is in turn clearly Lipschitz continuous.

Additional regularity properties (like differentiability) can be transfered from fF provided
F , b and σ are themselves differentiable enough (see e.g. [15]). Furthermore, it follows
from its very definition and the Markov property that

ν(f
F
) = Pν(FT

) =

∫

E[F
T
(Xx)]ν(dx).

(C2
F): There exists a bounded C2-function g

F
: Rd → R with bounded Lipschitz continuous

derivatives such that
∀x ∈ R

d, f
F
(x)− ν(f

F
) = Ag

F

where A denotes the infinitesimal generator of the diffusion (1.2) defined for every C2-
function f on R

d by

Af(x) = 〈∇f, b〉(x) + 1

2
Tr(σ∗D2fσ(x)).
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REMARK 2.1. In fact, we need in the sequel that fF satisfies a CLT for the marginal
occupation measures which follows (see [18, 24]) from Assumption (C2

F) combined with a
Lyapunov stability assumption (such as (Sa,p) introduced below). Namely, we have for a
class of regular functions f satisfying f = Ag + C

√
t

(
1

t

∫ t

0
f(Xx

s )ds − ν(f)

)

L−−−−→
t→+∞

N
(
0, σ2f

)
(2.10)

and as soon as
n∑

k=1

γ2k√
Γk

n→+∞−−−−−→ 0,

√

Γn

(

1

Γn

n∑

k=1

γkf(X̄Γk−1
)− ν(f)

)

L−−−−−→
n→+∞

N
(
0, σ2f

)
, (2.11)

where

σ2f =

∫

Rd

|σ∗∇g(x)|2ν(dx) = −2

∫

g(x)Ag(x)ν(dx)

and L denotes the weak convergence of (real valued) random variables. For details on
results in these directions, see [4] for the continuous case and [19, 21, 24] for the decreasing
step Euler scheme.

Checking when Assumption (C2
F) is fulfilled is equivalent to solve the Poisson equation

Au = f on R
d. When f has compact support, well-known results about the same equation

in a bounded domain lead to Assumption (C2
F) when the diffusion is uniformly elliptic (see

e.g. [16], Theorems III.1.1 and III.1.2). Such an assumption on f
F
is clearly unrealistic.

In the general case, in [26], [27] and [28], the problem is solved under some ellipticity
conditions in some Sobolev spaces and controls of the growth are given for u and its first
derivatives. Finally, when the diffusion is an Ornstein-Uhlenbeck process, one can refer to
[18] where the problem is solved in C2(Rd).

Let us now introduce the Lyapunov-type stability assumptions on SDE (1.2). Let EQ(Rd)
denote the set of Essentially Quadratic functions, that is C2-functions V : Rd → (0,∞)
such that

lim
|x|→+∞

V (x) = +∞, |∇V | ≤ C
√
V and D2V is bounded.

Note that since V is continuous, V attains its positive minimum v > 0 so that, for any
A, r > 0, there exists a real constant C

A,r
such that A+ V r ≤ C

A,r
V r.

Let us come to the mean-reverting assumption itself. First, for any symmetric d×d matrix
S, set λ+S := max(0, λ1, . . . , λd) where λ1, . . . , λd denote the eigenvalues of S. Let a ∈ (0, 1]
and p∈ [1, +∞). We introduce the following mean-reverting assumption with intensity a:

(Sa,p) : There exists a function V ∈ EQ(Rd) such that:

(i) ∃Ca > 0 such that |b|2 +Tr(σσ∗) ≤ CaV
a.

(ii) There exist β ∈ R and ρ > 0 such that 〈∇V, b〉 + λpTr(σσ
∗) ≤ β − ρV a,

where λp :=
1

2
sup
x∈Rd

λ+
D2V (x)+(p−1)∇V ⊗∇V

V

. The function V is then called a Lyapunov func-

tion for the diffusion (Xt)t≥0.

In Theorem 3 of [19], it is shown that this assumption leads to an a.s. marginal weak
convergence result to the set of invariant distributions of the diffusion. When p ≥ 2 and
the invariant distribution is unique, this result reads as follows.
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PROPOSITION 2.1. Let a ∈ (0, 1] and p ≥ 2 such that (Sa,p) holds. Then,

sup
n≥1

1

Γn

n∑

k=1

γkV
p
2
+a−1(X̄Γk−1

) < +∞ a.s. (2.12)

Let ν denote the unique invariant distribution of (1.2). Then, a.s.,

1

Γn

n∑

k=1

γkf(X̄Γk−1
)

n→+∞−−−−−→ ν(f)

for every continuous function f satisfying f(x) = o(V
p
2
+a−1(x)) as |x| → +∞.

REMARK 2.2. In the case V (x) = 1 + |x|2, one checks for instance that for a given
a ∈ (0, 1], Assumption (Sa,p) is fulfilled for every p ≥ 1 if Tr(σσ∗)(x) = o(1 + |x|2a) as
|x| → +∞ and

b(x) = −ρ(x) x|x| + T (x) where C1|x|2a−1 ≤ ρ(x) ≤ C2|x|2a−1,

and T satisfies for every x ∈ R
d 〈T (x), x〉 = 0 and |T (x)| ≤ C(1 + |x|a).

As concerns the uniqueness of the invariant distribution ν, we need an additional assump-
tion related to the transition P

T
. Namely, we assume that:

(Sν
T): ν is an invariant distribution for (Pt)t≥0 and the unique one for P

T
.

Then, ν is in particular the unique invariant distribution for (Pt)t≥0. In fact, checking
uniqueness of the invariant distribution for P

T
at a given time T > 0 is a standard way

to establish uniqueness for the whole semi-group (Pt)t≥0. To this end, one may use the
following two typical criterions:

• Irreducibility based on ellipticity: for every x ∈ R
d, P

T
(x, dy) has a density (p

T
(x, y))y∈Rd

w.r.t. the Lebesgue measure λd and λd(dy)− a.s., p
T
(x, y) > 0 for every x ∈ R

d.

• Asymptotic confluence: for every bounded Lipschitz continuous function f , for every
compact subset K of Rd,

sup
(x1,x2)∈K

|PkT f(x1)− PkT f(x2)| k→+∞−−−−→ 0 (see e.g. [3, 21]).

2.2 Main results

We are now in position to state our main results.

THEOREM 2.1. Let T > 0. Assume b and σ are Lipschitz continuous functions satisfying
(Sa,p) with an essentially quadratic Lyapunov function V : Rd → (0,+∞) and parameters
a ∈ (0, 1] and p > 2. Assume furthermore that V satisfies the growth assumption:

lim inf
|x|→+∞

V p+a−1(x)

|x| > 0. (2.13)

Assume that the uniqueness assumption (Sν
T) holds. Finally, assume that the step sequence

(γn)n≥1 satisfies (1.3) and
∑

k≥1

γ
3/2
k√
Γk

< +∞. (2.14)

Let F : Duc([0, T ],R
d) → R be a functional satisfying (C1

F) and (C2
F).
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(a) Genuine Euler scheme: Then

√

Γn

(

ν̄(n)(ξ(ω), F
T
)− Pν(FT

)
) L−−−−−→

n→+∞
N
(
0, σ2

F

)
, (2.15)

where

σ2
F
=

1

T

(∫

E

[(

E

(

Ax
2T

| F
2T

)

− E

(

Ax
T
| F

T

)

−
∫ 2T

T
σ∗∇gF (Xx

u )dWu

)2
]

ν(dx)

)

(2.16)

and Ax
t :=

∫ t
0

(
F

T
(Xx

u+.)− f
F
(Xx

u)
)
du, t ≥ 0, (is Ft+T -adapted).

(b) Stepwise constant Euler scheme: furthermore, if there exists δ > 0 such that

∑

k≥1

γ
3
2
−δ

k√
Γk

< +∞, (2.17)

then,
√

Γn

(

ν̄(n)(X̄(ω), F
T
)− Pν(FT

)
)

L−−−−−→
n→+∞

N
(
0, σ2

F

)
. (2.18)

REMARK 2.3. By a series of computations, we can obtain other expressions for σ2
F
. In

particular, we check in the Appendix A that σ2
F
reads

σ2
F
= 2

∫ T

0
(1− v

T
)CF (v)dv − 2Eν

(

F
T
(X)

∫ T

0
σ∗∇g

F
(Xu)dWu

)

+

∫

Rd

|σ∗∇g
F
(x)|2ν(dx),

(2.19)
where Eν denotes the expectation under the stationary regime and C

F
is the covariance

function defined by

C
F
(u) = Eν

(
F

T
(Xu+.)− f

F
(Xu))(FT

(X)− f
F
(X0))

)
. (2.20)

This expression is not clearly positive but has the advantage to separate the “marginal
part” that is represented by the last term from the “functional part” which corresponds
to the first two ones.

For instance, when F (α) = φ(α(0)), φ being bounded and such that φ− ν(φ) = Ah where
h is a bounded C2-function with bounded derivatives, then f

F
= φ and one observes that

the first two terms of (2.19) are equal to 0 so that σ2F =

∫

Rd

|σ∗∇g
F
(x)|2ν(dx). This means

that we retrieve the marginal CLT given by (2.11) (under a slightly more condition on the
step sequence which is adapted to the more general functionals we are dealing with, thus,
more constraining than that of the original paper; see below for more detailed comments
on the steps conditions).

If we now consider FT defined F
T
(α) = φ(α(T )), φ satisfying the same assumptions as

before, one can straightforwardly deduce from a simple change of variable that the limiting
variance is still

∫

Rd |σ∗∇h(x)|2ν(dx). In the appendix (Part B), we show that retrieving
this limiting variance using (2.16) is possible but requires some non trivial computations.
In particular, this calculus emphasizes the intricate nature of the structure of the functional
variance.

Given the form of ν̄(n), it seems natural to introduce the (non-simulatable) sequence

1

Γn

∫ Γn

0
F

T
(ξ(u))du

which in fact appears naturally as a tool in the proof of the above theorem.
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THEOREM 2.2. Assume the assumptions of Theorem 2.1(a). Then,

√
t

(
1

t

∫ t

0
F

T
(ξ(s))ds − Pν(FT

)

)

L−−−−−→
n→+∞

N
(
0, σ2

F

)
. (2.21)

Finally, we also state the Central Limit Theorem for the stochastic process (Xt)t≥0

itself. This result can be viewed as a (partial) extension to functionals of Bhattacharya’s
CLT established in [4] for a class of ergodic Markov processes.

THEOREM 2.3. Let T > 0. Assume b and σ are Lipschitz continuous functions satisfying
(Sa,p) with an essentially quadratic Lyapunov function V and parameters a ∈ (0, 1] and
p > 2. Assume (Sν

T) holds. Let F : Duc([0, T ],R
d) → R be a functional satisfying (C1

F)
and (C2

F). Then, for every x ∈ R
d,

√
t

(
1

t

∫ t

0
F (X(s),x

u , 0 ≤ u ≤ T ) ds− Pν(FT
)

)

L−−−−−→
n→+∞

N
(
0, σ2

F

)
. (2.22)

This means that our approach (averaging decreasing step schemes) induces no loss of
weak rate of convergence with respect to that of the empirical mean of the process itself
towards its steady regime. If we look at the problem from an algorithmic point of view,
the situation becomes quite different. First, we will no longer discuss the recursive aspects
as well as the possible storing problems induced by the use of decreasing steps: it has
already been done in [22] and we showed that they can easily be encompassed in practice,
especially for additive functionals or functions of running extrema (see e.g. simulations in
Section 7).

Our aim here is to discuss the rate of convergence in terms of complexity. It is clear
from its design that the complexity of the algorithm grows linearly with the number of
iterations. Thus, if γn ∝ n−ρ, 0 < ρ < 1, then Γn ∼ n1−ρ

1−ρ so that the effective rate of

convergence as a function of the complexity is essentially proportional to n
1−ρ
2 . However,

the choice of ρ is constrained by conditions (2.14) or (2.17) that are required for the control
of the discretization error. These conditions imply that ρ must be taken greater than 1/2

and lead to an “optimal” rate proportional to n
1
4
−ε for every ε > 0. This means that we

are not able to recover the optimal rate of the marginal case that is proportional to n−1/3

and obtained for ρ = 1/3 (see [19] for details). Indeed, in this functional framework, the
weak discretization error is generally smaller and thus, is negligible compared to the long
time error under a more constraining step condition (2.14) instead of

∑
γ2k/

√
Γn < +∞

in the marginal case).

The paper is organized as follows. In Sections 3, 4 and 5, we will focus on the proof
of Theorem 2.1(a) and Theorem 2.3 about the rate of convergence of the two considered
occupation measures of the genuine Euler scheme. Then, in Section 6, we will summarize
the results of the previous sections and will give the main arguments of the proof of
Theorems 2.1(a) and 2.3. Finally, Section 7 is devoted to numerical tests in a financial
framework: the pricing of a barrier option when the underlying asset price dynamics is a
stationary stochastic volatility model.

3 Preliminaries

As for the marginal rate of convergence (see [18]), the first idea is to find a good decom-
position of the error (see Lemma 3.1). In particular, we have to exhibit a main martingale
component. Here, since F depends on the trajectory of the process between 0 and T , the
idea is that the “good” filtration for the main martingale component is (FkT )k≥0. That

8



is why, in the main part of the proof of these theorems, we will introduce and study the
sequence of random probabilities (P(n,T )(ω, dα))n≥1 defined by:

P(n,T )(ω, dβ) =
1

nT

∫ nT

0
δ
ξ
(u
∼

)(dβ)du =
1

nT

n∑

k=1

∫ kT

(k−1)T
δ
ξ
(u
∼

)(dβ)du

where u
∼
is a deterministic real number lying in [u, u].

To alleviate the notations, we will denote from now on, Gk = FkT and Ek[ . ] = E[. | Gk],
k ≥ 0.

At this stage, the reader can observe on the one hand that for a bounded functional
F , P(n,T )(ω,F

T
) is Gn+1 = F(n+1)T -adapted for every n ≥ 0 and on the other hand that

P(n,T )(ω,F
T
) is very close to the random measures ν̄(n)(ξ(ω), dβ) of Theorem 2.1(b) by

taking u
∼
= u ∨ [u] and exactly equal to its continuous time counterpart in Theorem 2.2 if

one sets u
∼
= u. (This fact will be made more precise in Section 6).

Hence, the main step of the proof of the above theorems will be to study the rate
of convergence of the sequence (P(n,T )(ω,F

T
))n≥0 to Pν(FT

) for which the main result is
given in Section 6 (see Proposition 6.3). In this way, we state in this section a series of
preliminary lemmas. In Lemma 3.1, we decompose the error between this new sequence
(P(n,T )(ω,F

T
))n≥1 and the target Pν(FT

). In Lemma 3.2, we recall a series of results
on the stability of diffusion processes and their genuine Euler scheme in finite horizon.
Finally, in Lemma 3.3, we recall and extend results of [19] about the long-time behavior
of the marginal Euler scheme.

For every k ∈ N, we define the Gk-measurable random variable φ
F
(k) by

φ
F
(1) = 0, φ

F
(k) =

∫

Ik−1

F
T
(ξ

(u
∼

)
)du if k ≥ 2. (3.23)

where Ik = [(k − 1)T, kT ). Please note that φ
F
(k) is FkT -measurable.

LEMMA 3.1. For every F satisfying (C1
F) and (C2

F), we have

P(n,T )(ω,F
T
)− Pν(FT

) =
Mn

nT
+

Θn,1 +Θn,2 +Θn+1,3

nT

where

(Mn)n≥1 is a (Gn)-martingale decomposed as follows : Mn =
4∑

i=1

Mn,i with

∆Mk,1 = φ
F
(k)− Ek−1[φF

(k)], ∆Mk,2 = Ek[φF
(k + 1)] − Ek−1[φF

(k + 1)],

∆Mk,3 =

∫

Ik

Ek−1[FT
(X

(u
∼

),ξu
∼ )]− f

F
(ξu

∼

)du, ∆Mk,4 = −
∫

Ik

〈∇g
F
(ξu

∼

), σ(ξu
∼

)dWu〉

and (Θn,1), (Θn,2) and (Θn,3) are (Gn)-adapted sequences defined for every n ≥ 1, by:

Θn,1 =
n∑

k=1

∫

Ik

Ek−1

[

F
T
(ξ

(u
∼

)
)− F

T
(X

(u
∼

),ξu
∼ )

]

du,

Θn,2 =
n∑

k=1

(∫

Ik

Ag
F
(ξu

∼

)du−∆Mk,4

)

,

Θn,3 = (φn(F )− En(φn(F ))) .

9



Proof. With our newly defined notations, we have, for every n ≥ 1,

P(n,T )(ω,F
T
) =

1

nT

n∑

k=1

φ
F
(k + 1).

Now, for every k ≥ 1, going twice backward through martingale increments, one checks
that

φ
F
(k + 1) = ∆M1

k+1 +∆M2
k + Ek−1(φF

(k + 1)).

Then, noting that Ek−1(φF
(k + 1)) =

∫

Ik

Ek−1(FT
(ξ

(u
∼

)
))du, we introduce the approxima-

tion term ∆Θn,1 between the genuine Euler scheme ξ and the true diffusion X so that

φ
F
(k + 1) = ∆M1

k+1 +∆M2
k +∆Θk,1 +

∫

Ik

Ek−1(FT
(X

(u
∼

),ξu
∼ ))du.

At this stage the Markov property applied to the original diffusion process yields

Ek(FT
(X

(u
∼

,ξu
∼

)
)) = Ek

(
Eu

∼

F
T
(X

(u
∼

),ξu
∼ )
)
= EkfF (ξu

∼

) = f
F
(ξu

∼

)

since u
∼
≤ u ≤ kT . As a consequence, ∆M3

k is a true Gk-martingale increment and

φ
F
(k + 1) = ∆M1

k+1 +∆M2
k +∆Θk,1 +∆M3

k +

∫

Ik

f
F
(ξu

∼

)du

On the other hand f
F
= Ag

F
+ Pν(F ), so that

∫

Ik

f
F
(ξu

∼

)du− Pν(F ) =

∫

Ik

Ag
F
(ξu

∼

)du = ∆Θn,2 +∆M4
k .

Finally, summing up all these terms yields

P(n,T )(ω,F
T
)− Pν(F ) =

1

nT

(

M1
n+1 +

4∑

i=2

M i
n +

2∑

i=1

Θn,i

)

=
1

nT

(
4∑

i=1

M i
n +

3∑

i=1

Θn,i

)

since Θn+1,3 =M1
n+1 −M1

n.

REMARK 3.4. The term Θn,1 sums up the error resulting from the approximation of

X
(u
∼

),ξu
∼ by its Euler scheme (with decreasing step) ξu

∼

+.. The term Θn,2 is a residual

approximation term as well: indeed, if we replace mutatis mutandis ξu
∼

by Xu, Itô’s formula

implies that

g
F
(X(k+1)T )− g

F
(XkT ) =

∫

Ik

Ag
F
(Xu)du+

∫

Ik

〈∇g
F
(Xu), σ(Xu)dWu〉,

so that the resulting term would be, instead of Θn,2,
g
F
(X(n+1)T )−g

F
(XnT )

nT = O(1/n).
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LEMMA 3.2. Let p > 0 and T > 0. Assume that b and σ are Lipschitz continuous
functions and that there exists φ∈ EQ(Rd) such that |b|2 + ‖σ‖2 ≤ Cb,σφ for a positive real
constant Cb,σ. Then,

(i) There exists a real constant Cp,T,b,σ > 0, such that for every u ≥ 0 and every finite
Fu-measurable random vector Ξ

E[ sup
t∈[0,T ]

φp(X
(u),Ξ
t ) | Fu] ≤ Cp,T,b,σφ

p(Ξ) and E[ sup
t∈[0,T ]

φp(ξu+t) | Fu] ≤ Cp,T,b,σφ
p(ξu).

(ii) There exists a real constant Cp,T > 0 such that, for every u ≥ 0,

E[ sup
t∈[0,T ]

|ξu+t −X
(u),ξu
t |p | Fu] ≤ Cp,T (1 + |ξu|p)γ

p
2

N(u)+1.

(iii) There exists a real constant Cp > 0 such that, for every n ≥ 0,

E[ sup
u∈[Γn,Γn+1)

|ξu − ξ
Γn
|p|FΓn ] ≤ Cpφ

p
2 (ξ

Γn
)γ

p
2
n+1.

(iv) Let p > 2. Then, there exists Cp,T,δ > 0 such that, for every u ≥ 0,

E[ sup
t∈[0,T ]

|ξu+t − ξu+t|p | Fu] ≤ Cp,Tφ
p
2 (ξu)γ

p
2
−1

N(u)+1.

Proof. The proofs follow the lines of their classical counterpart for the constant step Euler
scheme of a diffusion (see e.g. [7], Theorem B.1.4 p.276 and the remark that follows). In
particular, as concerns (ii), the only thing to be checked is that (ξu+t)t≥0 is the Euler
scheme with decreasing step γ(u) of X(u),ξu where the step sequence γ(u) is defined by

γ
(u)
1 = ΓN(u)+1 − u, γ

(u)
k = γN(u)+k, k ≥ 2. (3.24)

LEMMA 3.3. Let p > 2 and a ∈ (0, 1] such that (Sa,p) holds and assume that b and σ are
Lipschitz continuous functions.

(i) Let g : R+ → R+ be a nonincreasing function such that
∫∞
0 g(u)du < +∞. Let (δk) be

a nonincreasing sequence of positive numbers such that
∑

k≥1 δk < +∞. Then, a.s.,

∫ +∞

0
E[V p+a−1(ξu)]g(u)du < +∞ and

∑

k≥1

δkE[V
p+a−1(ξ(k−1)T )] < +∞. (3.25)

(ii) We have:

sup
t≥Γ1

1

t

∫ t

0
V

p
2
+a−1(ξs)ds < +∞ a.s. (3.26)

and

sup
n≥1

1

n

n∑

k=1

V
p
2
+a−1(ξ(k−1)T ) < +∞ a.s. (3.27)

In particular, the families of empirical measures
(
1
t

∫ t
0 δξsds

)

t≥1
and

(
1
n

∑n
k=1 δξ(k−1)T

)

n≥1
are a.s. tight.

(iii) Assume (Sν
T). Then, a.s., for every continuous function f such that f(x) = o(V

p
2
+a−1(x))

as |x| → +∞,

1

t

∫ t

0
f(ξs)ds

t→+∞−−−−→ ν(f) and
1

n

n∑

k=1

f(ξ(k−1)T )
t→+∞−−−−→ ν(f).

11



Proof. (i) First, note that

∫ ∞

0
V p+a−1(ξu)g(u)du =

∑

n≥1

θnγnV
p+a−1(ξΓn−1),

where θn = γ−1
n

∫ Γn

Γn−1
g(u)du. Consequently, the first statement is simply a rewriting

with continuous time notations of Lemma 4 of [19]. As concerns the second one, using
Lemma 3.2(i) with φ = V and the exponent p+a−1 yields for every k ≥ 1 and every u ∈ Ik:

E[V p+a−1(ξkT )] ≤ Cp,a,TE[V
p+a−1(ξu)].

As a consequence, considering the integrable, nonincreasing, nonnegative function g =
∑

k≥1 1Ik−1
δk leads to

∑

k≥2

δkE[V
p+a−1(ξ(k−1)T )] ≤ Cp,a,T

∑

k≥2

∫

Ik−1

E[V p+a−1(ξu)]g(u)du < +∞

owing to the previous statement.

(ii) Set r = p
2 + a − 1 > 0 since p > 2 and a > 0. First, for every n ≥ 1 and every

t ∈ [Γn,Γn+1),

1

t

∫ t

0
V r(ξs)ds ≤

Γn+1

Γn

1

Γn+1

n+1∑

k=1

γkV
r(ξ

Γk−1
) ≤ 2

Γn+1

n+1∑

k=1

γkV
r(ξ

Γk−1
),

since γn is nonincreasing. Now, owing to Proposition 2.1,

sup
n≥1

1

Γn

n∑

k=1

γkV
r(ξ

Γk−1
) < +∞ a.s.

and (3.26) follows.
Let us deal now with (3.27). Given (3.26), it is clear that (3.27) is equivalent to showing
that for an increasing sequence (tk) such that t0 = 0, supk≥1(tk − tk−1) < +∞ and
tk → +∞,

sup
n≥1

1

n

n∑

k=1

(

(tk − tk−1)V
r(ξkT )−

∫ tk

tk−1

V r(ξu)du

)

< +∞ a.s. (3.28)

Setting tk = ΓN(kT )+1 for every k ≥ 1, this suggests to introduce the martingale defined
by N0 = 0 and for every n ≥ 1,

Nn =

n∑

k=1

1

k

(
∫ tk

tk−1

V r(ξkT )− V r(ξu)du− Etk−1

[
∫ tk

tk−1

V r(ξkT )− V r(ξu)du

])

,

where Etk [ . ] := E[ . |Ftk ]. Set ε =
p
2r so that (1 + ε)r = p+ a− 1. Using that supk≥1(tk −

tk−1) < +∞ and the elementary inequality |u+ v|1+ε ≤ 2ε(u1+ε + v1+ε) for u, v ≥ 0,

∑

k≥1

1

k1+ε
E

∣
∣
∣

∫ tk

tk−1

V r(ξkT )− V r(ξu)du
∣
∣
∣

1+ε

≤ C
∑

k≥1

δkE[V
r(1+ε)(ξkT )] + C

∫ +∞

0
E[V r(1+ε)(ξu)]g(u)du,
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where δk = k−(1+ε) and g is the nonincreasing function defined by g(u) = k−(1+ε) on
[tk−1, tk). Thus, we deduce from (3.25) that,

∑

k≥1

1

k1+ε
E

∣
∣
∣

∫ tk

tk−1

V r(ξkT )− V r(ξu)du
∣
∣
∣

1+ε
< +∞.

It follows from the Chow Theorem (see e.g. [10]) that (Nn) a.s. converges toward a finite
random variable N∞ which in turn implies by the Kronecker Lemma that

1

n

n∑

k=1

(
∫ tk

tk−1

V r(ξkT )− V r(ξu)du− Etk−1

[
∫ tk

tk−1

V r(ξkT )− V r(ξu)du

])

n→+∞−−−−−→ 0 a.s.

Then, (3.28) will follow from

sup
n≥1

1

n

n∑

k=1

∫ tk

tk−1

Etk−1

[
V r(ξkT )− V r(ξu)

]
du < +∞ a.s. (3.29)

In order to prove (3.29), we need to inspect two cases for r:

Case r ≥ 1. We decompose the increment V r(ξkT )− V r(ξu) into elementary increments,
namely

V r(ξkT )− V r(ξu) = V r(ξkT )− V r(ξkT ) +

N(kT )
∑

ℓ=N(u)+1

V r(ξ
Γℓ
)− V r(ξ

Γℓ−1
).

Owing to the second order Taylor formula, we have for every ℓ∈ {N(u) + 1, . . . , N(kT )}:

V r(ξ
Γℓ
)− V r(ξ

Γℓ−1
) = γl〈∇V r, b〉(ξ

Γℓ−1
) + 〈∇V r(ξ

Γℓ−1
), σ(ξ

Γℓ−1
)(WΓℓ

−WΓℓ−1
)〉

+
1

2
D2V r(θl)(ξΓℓ

− ξ
Γℓ−1

)⊗2 where θl ∈ (ξ
Γℓ−1

, ξ
Γℓ
).

Note that a similar development holds for V r(ξkT ) − V r(ξkT ). Now, one checks that

the fact that V ∈ EQ(Rd) implies that ‖D2V r‖ ≤ C
V
V r−1 and that

√
V is a Lipschitz

continuous function with Lipschitz constant [
√
V ]1. Consequently

|D2V (θℓ)(ξΓℓ
− ξΓℓ−1

)⊗2| ≤ C
V

(√

V (ξΓℓ−1
) + [

√
V ]1|ξΓℓ

− ξΓℓ−1
|
)2(r−1)|ξΓℓ

− ξΓℓ−1
|2

≤ C
r,V
V r−1(ξ

Γℓ−1
)|ξ

Γℓ
− ξ

Γℓ−1
|2 + C|ξ

Γℓ
− ξ

Γℓ−1
|2r,

where we used in the second inequality the standard control |u + v|s ≤ 2s−1(|u|s + |v|s).
Then, summing over ℓ and using that 〈∇V, b〉 ≤ β owing to (Sa,p)(ii), we deduce that

V r(ξkT )− V r(ξu) ≤ β(kT − u) +

∫ kT

u
〈∇V r(ξv), σ(ξv)dWv〉

+C
V

∫ kT

u
V r−1(ξv)|ξv̄∧kT − ξv|2 + |ξv̄∧kT − ξv|2r

dv

γN(v)+1

where v̄ = ΓN(v)+1. By (Sa,p)(i), we can use Lemma 3.2(iii) with φ = V a and p = s to
obtain for every s > 0,

Ev[|ξv̄∧kT − ξv|s] ≤ CsV
as
2 (ξv)γ

s/2
N(v)+1

. (3.30)
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Applying successively the above inequality with s = 2 and s = 2r ≥ 2 and using the chain
rule for conditional expectations show that,

Etk−1
[V r(ξkT )− V r(ξu)] ≤ β(T + ‖γ‖∞) + Etk−1

[∫ kT

u
V r+a−1(ξv)dv

]

≤ CT,β,‖γ‖∞

(

1 + Etk−1

[
∫ tk

tk−1

V r+a−1(ξu)du

])

for some real constant CT,β‖γ‖∞ . As a consequence,

sup
n≥1

1

n

n∑

k=1

∫ tk

tk−1

Etk−1

[
V r(ξkT )− V r(ξu)

]
du ≤ C

(

1 + sup
n≥1

1

n

n∑

k=1

Etk−1

[
∫ tk

tk−1

V r+a−1(ξu)du

])

.

Let ε∈ (0, p+a−1
r+a−1 ) (note that p+a−1

r+a−1 =
p
2
−(a−1)

p
2
+2(a−1)

> 0 since p > 2 and 0 < a ≤ 1). Hence

(1 + ε)(r + a− 1) ≤ p+ a− 1 and by Lemma 3.2(i) and (3.25), one checks that

+∞∑

k=1

1

k1+ε
Etk−1

∣
∣
∣Etk−1

[ ∫ tk

tk−1

V r+a−1(ξu)du
]

−
∫ tk

tk−1

V r+a−1(ξu)du
∣
∣
∣

1+ε

≤ C

+∞∑

k=1

1

k1+ε

∫ tk

tk−1

Etk−1

[
V p+a−1(ξu)

]
du < +∞ a.s.

by the first part of the lemma. Then, one derives using a martingale argument based
on (3.26), the Chow Theorem and the Kronecker Lemma that

sup
n≥1

1

n

n∑

k=1

Etk−1

[
∫ tk

tk−1

V r+a−1(ξu)du

]

< +∞.

Case 0 < r ≤ 1. In that case, we just use that D2V r is bounded so that we just have to
use (3.30) with s = 2 (since a < p+ a− 1). This concludes the proof of (ii).

(iii) The fact that a.s.,
1

t

∫ t

0
f(ξs)ds

t→+∞−−−−→ ν(f) is but the statement of Proposition 2.1

with continuous time notations. Now, let us show that a.s., for every continuous function
f such that f = o(V

p
2
+a−1),

1

n

n∑

k=1

f(ξ(k−1)T )
n→+∞−−−−−→ ν(f). (3.31)

First, taking advantage of (3.27), standard weak convergence arguments based on uniform
integrability show that it is enough to prove that, a.s., (3.31) holds for every bounded
continuous function f . Then, using that weak convergence on R

d can be characterized
along a countable subset S of Lipschitz bounded continuous functions f , the problem
amounts to showing that for every Lipschitz bounded continuous function f : Rd → R

1

n

n∑

k=1

f(ξ(k−1)T )
n→+∞−−−−−→ ν(f) a.s. (3.32)

Owing to (Sν
T), our strategy here will be to show that almost any limiting distribution of

the empirical measures is invariant since it leaves the transition operator P
T
invariant. As

a first step, we first derive from a standard martingale argument that

1

n

n∑

k=2

f(ξ(k−1)T )− Ek−2[f(ξ(k−1)T )]
n→+∞−−−−−→ 0 a.s. (3.33)
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Now, we remark that

Ek−2[f(ξ(k−1)T )] = P
T
f(ξ(k−2)T ) +Rk−2(ξ(k−2)T ) (3.34)

with Rk(x) = E[f(ξx,γ
(kT )

T )− f(Xx
T )], (3.35)

where ξx,γ
(kT )

denotes the genuine Euler scheme starting from x with step sequence γ(kT )

defined by (3.24). Since f is bounded Lipschitz,

Rk(x) ≤ CE[|ξx,γ(kT )

T −Xx
T |]1{|x|≤M} + 2‖f‖∞1{|x|>M} ≤ CM

√
γN(k) + 2‖f‖∞1{|x|>M},

where in the second inequality, we used Lemma 3.2(ii) with p = 1. Thus, since γN(k)
k→+∞−−−−→

0, it follows from (3.34) that, for every M > 0,

lim sup
n→+∞

1

n

n∑

k=2

(
Ek−2[f(ξ(k−1)T )]− P

T
[f(ξ(k−2)T )]

)
≤ C lim sup

n→+∞

1

n

n∑

k=2

1B(0,M)c(ξ(k−1)T ) a.s.

Then, it follows from (3.33) and from the a.s. tightness of
( 1

n

n∑

k=1

δξ(k−1)T

)

n≥1
that, a.s.,

1

n

n∑

k=1

(
f(ξ(k−1)T )− P

T
f(ξ(k−1)T )

)
=

1

n

n∑

k=2

(
f(ξ(k−1)T )− P

T
f(ξ(k−2)T )

)
+O(

1

n
)

n→+∞−−−−−→ 0.

Now, since f and P
T
f are bounded continuous, it follows that, a.s., for every weak limit

ν∞(ω, dx) of the tight sequence (n−1
∑n

k=1 δξ(k−1)T
)n≥1, ν∞(ω, f) = ν∞(ω,P

T
f) for every

f ∈ S. This implies that ν∞(ω, dx) is an invariant distribution for P
T
and one concludes

the proof by (Sν
T).

4 Rate of convergence for the martingale component

This section is devoted to the study of the rate of convergence of the martingale (Mn)
defined in Lemma 3.1. The main result of this section is Proposition 4.2 where we obtain
a CLT for this martingale. On the way to this result, the main difficulty is to study the
asymptotic behavior of the previsible bracket of this sum of four dependent martingales.
First, we decompose the martingale increment ∆Mn as follows:

∆Mn = En[Ān+1 + B̄n]− En−1[Ān+1 + B̄n],

where (Ān) is a (Gn)-adapted sequence defined for every n ≥ 1 by:

Ān = φn−1 + φn −
∫

In−1

f
F
(ξu

∼

)du =

∫ (n−1)T

(n−3)T
F

T
(ξ

(u
∼

)
)du−

∫

In−1

f
F
(ξu

∼

)du,

and B̄n = ∆Mn,4. Keep in mind that En−1[B̄n] = 0. In the following lemma, we set

Zk := X(kT ),ξkT ∀k ≥ 1,

where, following the notation introduced in (2.8), X(kT ),ξkT denotes the unique solution
to dYt = b(Yt)dt+ σ(Yt)dW

(kT ) starting from ξkT .
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LEMMA 4.4. Assume b and σ are Lipschitz continuous functions satisfying (Sa,p) with
an essentially quadratic Lyapunov function V and parameters a ∈ (0, 1] and p > 2. Let
F : Duc([0, T ],R

d) → R denote a functional satisfying (C1
F) and (C2

F). Then,

1

n

n∑

k=2

Ek−1[(∆Mk)
2]− Ek−2[(∆Mk)

2]
n→+∞−−−−−→ 0 a.s. (4.36)

and

1

n

n∑

k=2

(
Ek−2[(∆Mk)

2]−
(
Ek−2[(EkCk+1)

2]− Ek−2[(Ek−1Ck+1)
2]
)) n→+∞−−−−−→ 0 a.s. (4.37)

where Ck+1 = Ak+1 +Bk with

Ak+1 =

∫ 2T

0
F

T
(Zk−2

u+. )du−
∫ 2T

T
f
F
(Zk−2

u )du

and Bk = −
∫ T

0
〈∇g

F
(Zk−2

u ), σ(Zk−2
u )dW (k−2)T

u 〉.

Proof. We consider the (Gn−1)-martingale (Nn) defined by:

Nn :=

n∑

k=2

1

k

(
Ek−1[(∆Mk)

2]− Ek−2[(∆Mk)
2]
)
.

Let ε > 0. Using Jensen’s inequality, we have

∑

k≥2

Ek−2 |∆Nk|1+ε ≤ C
∑

k≥2

1

k1+ε
Ek−2 |∆Mk|2(1+ε) ≤ C

∑

k≥2

1

k1+ε
Ek−2

∣
∣Āk+1 + B̄k

∣
∣2(1+ε)

.

Using successively conditional Burkhölder-Davis-Gundy and Jensen inequalities and (C1
F),

we have

Ek−2

∣
∣Āk+1 + B̄k

∣
∣2(1+ε) ≤ 31+2ε

(

(2‖F‖∞T )2(1+ε) + (‖F‖∞T )2(1+ε)

+T ε

∫

Ik

Ek−2

[

|∇g
F
(ξu

∼

)|2(1+ε)‖σ(ξu
∼

)‖2(1+ε)

]

du

)

.(4.38)

Now, since ∇g
F
is bounded and ‖σ‖2 ≤ CV a,

Ek−2

[

|∇g
F
(ξu

∼

)|2(1+ε)‖σ(ξu
∼

)‖2(1+ε)

]

≤ CEk−2[V
a(1+ε)(ξu

∼

)]

≤ C(1 + Ḡk−2,a(1+ε)(ξ(k−2)T )) (4.39)

where Ḡk,p(x) = E[ sup
t∈[0,T ]

V p(ξx,γ
(k)

t )]. By Lemma 3.2(i) applied with φ = V and p =

a(1 + ε) with ε∈ (0, p−1
a ). it follows that for every k ≥ 2,

Ek−2 |∆Mk|2(1+ε) ≤ CF,ε,TV
a(1+ε)(ξ(k−2)T ). (4.40)

Then, we deduce from Lemma 3.3 applied with δk = k−(1+ε) that

∑

k≥2

Ek−2 |∆Nk|1+ε ≤
∑

k≥2

1

k1+ε
V a(1+ε)(ξ(k−2)T ) < +∞ a.s.
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since a(1+ ε) < p+ a− 1. Finally, using the Chow theorem, it follows that (Nn) is an a.s.
convergent martingale and the result follows from the Kronecker lemma.

(ii) Set C̄k = Āk + B̄k−1. We have ∆Mk = Ek[C̄k+1]− Ek−1[C̄k+1] so that

Ek−2[(∆Mk)
2] = Ek−2[(EkC̄k+1)

2]− Ek−2[(Ek−1C̄k+1)
2].

Thus, it is enough to show that

1

n

n∑

k=2

Ek−2[(EkC̄k+1)
2]− Ek−2[(EkCk+1)

2]
n→+∞−−−−−→ 0 a.s. (4.41)

and
1

n

n∑

k=2

Ek−2[(Ek−1C̄k+1)
2]− Ek−2[(Ek−1Ck+1)

2]
n→+∞−−−−−→ 0 a.s. (4.42)

Let us focus on (4.41). Set q = p
p−1 . Using conditional Hölder and Jensen inequalities, we

obtain:

|Ek−2[(EkC̄k+1)
2]−Ek−2[(EkCk+1)

2]| = |Ek−2

[
Ek(C̄k+1 − Ck+1)Ek(C̄k+1 + Ck+1)

]
|

≤ Ek−2

[

(Ek|Āk+1 −Ak+1|p)
1
p (Ek|C̄k+1 + Ck+1|q)

1
q

]

+ Ek−2

[

(Ek(B̄k+1 −Bk+1)
2)

1
2 (Ek(C̄k+1 + Ck+1)

2)
1
2

]

≤
(
Ek−2|Āk+1 −Ak+1|p

) 1
p
(
Ek−2|C̄k+1 + Ck+1|q

) 1
q (4.43)

+
(
Ek−2|B̄k −Bk|2

) 1
2
(
Ek−2(C̄k+1 + Ck+1)

2
) 1

2 . (4.44)

Let us inspect successively the three terms involved in (4.44).
Now set Gp(x) = E[ sup

t∈[0,T ]
V p(Xx

t )]. Still using Lemma 3.2(i), we show (like previously

for (4.40)) that, for every k ≥ 2 and r ≥ 2,

Ek−2|C̄k+1 + Ck+1|r ≤ C
(

1 + Ḡk−2, r
2
(ξ(k−2)T ) +G r

2
(ξ(k−2)T )

)

≤ CV
r
2 (ξ(k−2)T ). (4.45)

On the other hand since F and f
F
are bounded Lipschitz continuous functions,

Ek−2[|Āk+1 −Ak+1|p] ≤ C

(

1 ∧ Ek−2

[

sup
v∈[(k−2)T,(k+1)T ]

|ξv
∼

− Zk−2
v |p

])

≤ C

(

Ek−2

[

sup
v∈[(k−2)T,(k+1)T ]

|ξv
∼

− ξv|p
]

+ Ek−2

[

sup
v∈[(k−2)T,(k+1)T ]

|ξv − Zk−2
v |p

])

∧ 1.

Then, owing to the Markov property,

Ek−2[|Āk+1 −Ak+1|p] ≤ C
[(
Hk−2,3T,p(ξ(k−2)T ) +Kk−2,3T,p(ξ(k−2)T )

)
∧ 1
]

with,

Hk,T,p(x) = E[ sup
v∈[0,T ]

|ξx,γ(kT )

v
∼

− ξx,γ
(kT )

v |p] and Kk,T,p(x) = E[ sup
v∈[0,T ]

|ξx,γ(kT )

v −Xx
v |p],

where (ξx,γ
(kT )

v )v≥0 denotes the Euler scheme of Xx with step sequence γ(kT ) as defined
by (3.24). Now, using that for every v ∈ [0, T ],

|ξx,γ(kT )

v
∼

− ξx,γ
(kT )

v |p ≤ 2p−1

(

|ξx,γ(kT )

v − ξx,γ
(kT )

v |p + |ξx,γ(kT )

v
∼

− ξx,γ
(kT )

v |p
)

≤ 2p sup
v∈[0,T ]

|ξx,γ(kT )

v − ξx,γ
(kT )

v |p,
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it follows from Lemma 3.2(iv) that

Hk,T,p(x) ≤ Cγ
p
2
−1

N(kT )V
ap
2 (x), (4.46)

and by Lemma 3.2(ii),

Kk,T,p(x) ≤ C(1 + |x|p)γ
p
2

N(kT ), (4.47)

so that, for every M > 0,

Ek−2[|Āk+1 −Ak+1|p] ≤ Cγ
p
2
−1

N((k−2)T )(1 + V
ap
2 (ξ(k−2)T ) + |ξ(k−2)T |p)1{|ξ(k−2)T |≤M}

+ C1{|ξ(k−2)T |>M}. (4.48)

Finally, we have

Ek−2[|B̄k −Bk|2] = Ek−2

[∫

Ik

|σ∗∇g
F
(ξu

∼

)− σ∗∇g
F
(Zk−2

u )|2du
]

,

On the one hand ∇g
F
and σ being both Lipschitz continuous and ∇g

F
being bounded,

we have for every x, y ∈ R
d,

|σ∗∇g
F
(x)− σ∗∇g

F
(y)|2 ≤ C(1 + ‖σ(y)‖2)|x− y|2. (4.49)

As a consequence, using Schwarz inequality and Assumption (Sa,p)(i), it follows that

Ek−2[|B̄k −Bk|2]

≤ C

(

Ek−2

[

1 + sup
u∈[(k−1)T,kT ]

V 2a(Zk−2
u )

]) 1
2
(

Ek−2 sup
u∈[(k−1)T,kT ]

|ξu
∼

− Zk−2
u |4

) 1
2

.

Owing to Lemma 3.2(i), it follows that

Ek−2[|B̄k −Bk|2] ≤ C V a(ξ(k−2)T )(Hk−2,2T,4(ξ(k−2)T ) +Kk−2,2T,4(ξ(k−2)T ))
1
2 .

and by (4.46) and (4.47) that,

Ek−2[|B̄k −Bk|2] ≤ C V a(ξ(k−2)T )
(
√
γN((k−2)T )V

a(ξ(k−2)T ) + γN((k−2)T )(1 + |ξ(k−2)T |2)
)

≤ C ′√γN((k−2)T )(1 + V 2a(ξ(k−2)T ) + |ξ(k−2)T |2(1+a)), (4.50)

where we used in the last inequality that V (x) ≤ C(1 + |x|2). On the other hand since

|σ∗∇g
F
(x)− σ∗∇g

F
(y)|2 ≤ C(‖σ(x)‖2 + ‖σ(y)‖2),

we deduce likewise from (Sa,p)(i) and Lemma 3.2(i) that

Ek−2|B̄k −Bk|2 ≤ CV a(ξ(k−2)T ). (4.51)

Thus, plugging the inequalities obtained in (4.45), (4.48), (4.50) and (4.51) into (4.44)
and (4.43) yields for every M > 0,

|Ek−2[(EkC̄k)
2]−Ek−2[(EkCk)

2]| ≤ CMγ
1
4
∧( 1

2
− 1

p
)

N((k−2)T )
1{|ξ(k−2)T |≤M}+CV

a(ξ(k−2)T )1{|ξ(k−2)T |>M}.

Since γN(kT ) → 0 as k → ∞ and p > 2, it follows that a.s., for every M > 0,

lim sup
n→+∞

1

n

n∑

k=2

∣
∣Ek−2[(EkC̄k)

2]− Ek−2[(EkCk)
2]
∣
∣ ≤ C lim sup

n→+∞

1

n

n∑

k=2

V a(ξ(k−2)T )1{|ξ(k−2)T |>M}.
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Since p > 2, there exists ε > 0 such that a(1+ε) < p
2 +a−1. Hence, it follows from (3.27),

that

sup
n≥1

1

n

n∑

k=2

V a(1+ε)(ξ(k−2)T ) < +∞ a.s.

Then, we deduce by a standard uniform integrability argument that

lim sup
M→+∞

lim sup
n→+∞

1

n

n∑

k=2

V a(ξ(k−2)T )1{|ξ(k−2)T |>M} = 0 a.s.

This completes the proof of (4.41). The proof of (4.42) is similar and the details are left
to the reader.

LEMMA 4.5. Assume that b and σ are Lipschitz continuous functions.
(i) For every k ≥ 1,

Ek−2[(EkCk+1)
2]− Ek−2[(Ek−1Ck+1)

2] = Ψ(ξ(k−2)T ) where, (4.52)

Ψ(x) = E

[(

E

(

Ax
2T

| F
2T

)

− E

(

Ax
T
| F

T

)

−
∫ 2T

T
σ∗∇gF (Xx

u )dWu

)2
]

,

with Ax
t :=

∫ t
0

(
F

T
(Xx

u+.)− f
F
(Xx

u )
)
du, t ≥ 0.

(ii) If (C1
F) holds, Ψ is a continuous function on R

d. As a consequence, if moreover (C2
F),

(Sν
T) and (Sa,p) hold for a ∈ (0, 1] and p > 2,

1

n

n∑

k=2

Ek−2[(∆Mk)
2]

n→+∞−−−−−→ σ2
F
=

∫

Ψ(x)ν(dx) a.s. (4.53)

Proof. (i) Let Λ be a bounded (or nonnegative) Borel functional defined on C(R+,R
d).

Since pathwise uniqueness holds for SDE (1.2) (b and σ being Lipschitz continuous),
there exists a measurable function h : Rd × C(R+,R

ℓ) → C(R+,R
d) such that a.s., for

every k ≥ 2, Zk−2 = X((k−2)T ),ξ(k−2)T = h(ξ(k−2)T ,W
((k−2)T )) (see e.g. [13], Corollary

3.23). Then, using that ξ(k−2)T is Gk−2 = F(k−2)T -measurable, that the Brownian motion

W ((k−2)T ) is independent of F(k−2)T and that, FkT = F(k−2)T ∨ FW ((k−2)T )

2T , one derives
that

Ek

(

Λ(X((k−2)T ),ξ(k−2)T )
)

= E

(

Λ(X((k−2)T ),ξ(k−2)T ) | FW ((k−2)T )

2T

)

= E

(

Λ(X((k−2)T ),x) | FW ((k−2)T )

2T

)

|x=ξ(k−2)T

.

Using again the representation with function h (or the fact that strong uniqueness implies

weak uniqueness), one observes that the spatial process
(

E

(

Λ(X((k−2)T ),x) | FW ((k−2)T )

2T

))

x∈Rd

has the same distribution as
(

E

(

Λ(Xx) | FW
2T

))

x∈Rd
where (Xx

t )t≥0,x∈Rd is the flow of

SDE (1.2) at tme 0. Consequently,

Ek−2

(

Ek

(

Λ(X((k−2)T ),ξ(k−2)T )
)2
)

=

[

Ex

(

E

(

Λ(Xx) | FW
2T

))2
]

x=ξ(k−2)T

.

Similar arguments show that

Ek−2

(

Ek−1

(

Λ(X((k−2)T ),ξ(k−2)T )
)2
)

=

[

Ex

(

E

(

Λ(Xx) | FW
T

))2
]

x=ξ(k−2)T

.
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Thus, it follows from the definition of Ak+1 and Bk+1 that

Ek−2[(EkCk+1)
2]− Ek−2[(Ek−1Ck+1)

2] =
[

Ex

(

E
(
Λ1(X

x) | FW
2T

)2 − E
(
Λ1(X

x) | FW
T

)2
)]

x=ξ(k−2)T

,

where

Λ1(X
x) :=

∫ 2T

0
F

T
(Xx

u+.)du−
∫ 2T

T
f
F
(Xx

u)du−
∫ T

0
〈σ∗∇g

F
(Xx

u ), dWu〉

=

∫ 2T

0
F

T
(Xx

u+.)du−
∫ 2T

T
f
F
(Xx

u )du−
(

g
F
(Xx

T
)− g

F
(Xx

0 )−
∫ T

0
Ag

F
(Xx

u)du

)

.

Note that the second expression clearly defines a functional on the canonical space. Now,

Ex

(

E
(
Λ1(X

x) | FW
2T

)2 − E
(
Λ1(X

x) | FW
T

)
2
)

= Ex

[(
E
(
Λ1(X

x) | FW
2T

)
− E

(
Λ1(X

x) | FW
T

))2
]

= Ex

[(

E

(

Λ̃1(X
x) | FW

2T

)

− E

(

Λ̃1(X
x) | FW

T

))2
]

where Λ̃1(X
x) = Λ1(X

x) −
∫ T
0 f

F
(Xx

u )du. The result follows using that FW
s = Fs, that

(
∫ t
0 〈σ∗∇gF (Xx

u), dWu)t≥0 is a (Ft)-martingale and that E[A
2T

−A
T
| FT ] = 0.

(ii) Let x ∈ R
d and set

ψ(x, .) = E

(

Ax
2T

| F
2T

)

− E

(

Ax
T
| F

T

)

−
∫ 2T

T
σ∗∇gF (Xx

u )dWu.

Let (xn) be a convergent sequence of Rd to x. Owing to the standard identity a2 − b2 =
(a− b)(a+ b) and Schwarz’s inequality,

|Ψ(x)−Ψ(xn)| ≤ E[|ψ(x, .) − ψ(xn, .)|2]
1
2E[|ψ(x, .) + ψ(xn, .)|2]

1
2

Let S = {x} ∪ {xn, n ≥ 1}. Since F and f
F
are bounded,

E[|ψ(x, .) + ψ(xn, .)|2] ≤ C

(

1 + sup
v∈S

E

[(∫ 2T

T
σ∗∇gF (Xv

u)dWu

)2
])

= C(1 + sup
v∈S

∫ 2T

T
E[|σ∗∇g

F
(Xv

u)|2]du

≤ C(1 + sup
v∈S

sup
u∈[T,2T ]

E[V a(Xv
u)] ≤ C(1 + sup

n≥1
V a(xn)),

owing to Lemma 3.2(i). Thus,

|Ψ(x)−Ψ(xn)| ≤ CE[|ψ(x, .)− ψ(xn, .)|2]
1
2

and it follows easily that Ψ will be continuous if both x 7→ Ex

(

E

(

Ax
iT

| F
iT

))2
(i = 1, 2)

and x 7→ Ex

(∫ 2T
T σ∗∇gF (Xx

u )dWu

)2
, are continuous. On the one hand F and f

F
being

Lipschitz continuous, elementary computations show that for i = 1, 2,

E

∣
∣
∣
∣

∫ iT

0
E[Ax

iT
| FiT ]du−

∫ iT

0
E[Axn

iT
| FiT ]du

∣
∣
∣
∣

2

≤
∥
∥
∥
∥
∥

sup
t∈[0,3T ]

|Xx
t −Xxn

t |
∥
∥
∥
∥
∥

2

2

.

20



Now, since b and σ are Lipschitz continuous functions, for every p > 0, there exists a real
constant Cb,σ,p,T > 0 such that (see e.g. [15] or [29]),

∥
∥
∥
∥
∥

sup
t∈[0,3T ]

|Xx
t −Xxn

t |
∥
∥
∥
∥
∥

p

p

≤ Cb,σ,p,T |x− xn|p.

The continuity of x 7→Ex

(

E

(

Ax
iT

| F
iT

))2
, i=1, 2, follows. On the other hand using (4.49),

E

∣
∣
∣

∫ 2T

T
〈∇g

F
(Xx

u), σ(X
x
u )dWu〉

∫ 2T

T
〈∇g

F
(Xxn

u ), σ(Xxn
u )dWu〉

∣
∣
∣

2

=

∫ 2T

T
E|σ∗∇g

F
σ(Xx

u )− σ∗∇g
F
(Xxn

u )|22du

≤ C

(

E[1 + sup
u∈[T,2T ]

|Xx
u |4]

1
2E[ sup

u∈[T,2T ]
|Xx

u −Xxn
u |4] 12

)

≤ C(1 + |x|2)|x− xn|2.

This concludes the proof.

PROPOSITION 4.2. Suppose that assumptions of Theorem 2.1(a) hold. Then,

Mn√
n

L−→ N (0, σ2
F
) as n→ +∞. (4.54)

Proof. By Lemma 4.5,

1

n

n∑

k=2

Ek−2(∆Mk)
2 n→+∞−−−−−→ σ2

F
a.s.

Then, we only need to prove a Lindeberg type condition (see [10], Corollary 3.1). To be
precise, we will show that for every ε > 0

1

n

n∑

k=1

Ek−1[|∆Mk|21{|∆Mk|≥ε
√
n}]

P−−−−−→
n→+∞

0.

First, a martingale argument similar to that of the beginning of the proof of Lemma 3.1,
yields that

1

n

n∑

k=2

(

Ek−1[|∆Mk|21{|∆Mk|≥ε
√
n}]− Ek−2[|∆Mk|21{|∆Mk|≥ε

√
n}]
)

P−−−−−→
n→+∞

0.

Second, using conditional Hölder and Chebyschev inequalities, we have for every ε, δ > 0

Ek−2[|∆Mk|21{|∆Mk|≥ε
√
n}] ≤

1

(εn)2δ
Ek−2[|∆Mk|2(1+δ)],

and thanks to (4.38) and (4.39), we deduce that

Ek−2|∆Mk|2(1+δ)
1{|∆Mk|≥ε

√
n} ≤ CḠk−2,a(1+δ)(ξ(k−2)T ) ≤

Cε

n2δ
V a(1+δ)(ξ(k−2)T ).

Thus, taking δ∈ (0,
p
2
−1

a ) so that a(1 + δ) ≤ p/2 + a− 1, we have for every δ > 0, a.s.,

lim sup
n→+∞

1

n

n∑

k=1

Ek−1[|∆Mk|21{|∆Mk|≥ε
√
n] ≤ Cε lim sup

n→+∞

1

n1+2δ

n∑

k=1

V a(1+δ)(ξ(k−2)T ) = 0,

by applying Lemma 3.3(ii).
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5 Study of (Θn,1), (Θn,2) and (Θn,3)

In this section, we focus on the remainder terms of the decomposition of the error (see
Lemma 3.1). Owing to Proposition 4.2, it is now enough to prove that

Θn,i√
n

P−→ 0 as n→ +∞ for i = 1, 2, 3.

where
P−→ denotes the convergence in probability. For i = 1, 2, these properties are stated

in Lemma 5.6 and 5.7. For i = 3, the result is obvious.

LEMMA 5.6. Assume b and σ are Lipschitz continuous functions such that (Sa,p) with
parameters a ∈ (0, 1], p > 2, and an essentially quadratic Lyapunov function V satisfying
lim inf |x|→+∞ V p+a−1(x)/|x| > 0. Let F : Duc(R+,R

d) → R be Lipschitz continuous. If
the step condition (2.14) holds then

Θn,1√
n

P−→ 0 as n→ +∞.

Proof. Since F is Lipschitz continuous, it follows from Lemma 3.2(ii) (applied with p = 1)
that, for every u∈ Ik,

Ek−1

∣
∣
∣
∣
F

T
(ξ

(u
∼

)
)− F

T

(
X

(u
∼

),ξu
∼

)
∣
∣
∣
∣

≤ [F ]LipEk−1

[

sup
t∈[0,T ]

|ξ
(u
∼

)

t −X
(u
∼

),ξu
∼

t |
]

≤ Cb,σ,T,F

√
γN(u

∼

)(1 + Ek−1|ξu
∼

|).

Consequently,

|Θn,1| ≤ Cb,σ,T,F

n∑

k=1

∫

Ik

√
γN(u

∼

)+1du (1 + Ek−1 sup
v∈Ik

|ξv|)

≤ Cb,σ,T,F

n∑

k=1

∫

Ik

√
γN(u

∼

)+1du (1 + |ξ(k−1)T |)

where in the second inequality, we used Lemma 3.2(i). Since lim inf |x|→+∞ V p+a−1(x)/|x| >
0 and N(u

∼
) = N(u), we deduce that

|Θn,1|√
n

≤ C√
n

n∑

k=1

∫

Ik

√
γN(u)+1du (1 + V p+a−1(ξ(k−1)T )). (5.55)

Thus, owing to the Kronecker Lemma,

Θn,1√
n

n→+∞−−−−−→ 0 a.s. if
n∑

k=1

δk (1 + V p+a−1(ξ(k−1)T )) < +∞ a.s.,

with

δk =
1√
k

(∫

Ik

√
γN(u)+1du

)

.

Now, as (δk) is nonincreasing, it follows from Lemma 3.3(i) that it is now enough to show
that

∑

k≥1 δk < +∞. We have

∑

k≥1

δk ≤ C

(

1 +

∫ +∞

γ1

√
γN(u)+1

u
du

)

22



and ∫ +∞

γ1

√
γN(u)+1

u
du ≤

∑

ℓ≥1

√
γℓ+1

∫ Γℓ+1

Γℓ

1√
u
du ≤

∑

ℓ≥1

√
γℓ+1

γℓ+1√
Γℓ
.

Using that the step sequence (γn) is nonincreasing, we deduce from Condition (2.14) that

∫ +∞

γ1

√
γN(u)+1

u
du ≤

∑

ℓ≥1

γ
3
2
ℓ√
Γℓ

< +∞. 2 (5.56)

LEMMA 5.7. Assume b and σ are Lipschitz continuous functions satisfying (Sa,p) with an
essentially quadratic Lyapunov function V and parameters a ∈ (0, 1] and p > 2. Let F :
Duc([0, T ],R

d) → R be a functional satisfying (C1
F) and (C2

F). If the step condition (2.14)
holds, then

Θn,2√
n

P−→ 0 as n→ +∞.

Proof. Owing to the Itô formula, we have:

g
F
(ξkT )− g

F
(ξ(k−1)T ) =

∫

Ik

Āg
F
(ξu, ξu)du+

∫

Ik

〈∇g
F
(ξu), σ(ξu)dWu〉 where,

Āg
F
(x, y) = 〈∇g

F
(x), b(y)〉 + 1

2
Tr
(
σ∗(y)D2g

F
(x)σ(y)

)
.

Then, it follows from the definition of Θn,2 that

Θn,2 =

n∑

k=1

g
F
(ξkT )− g

F
(ξ(k−1)T ) +

∫ nT

0

(

Ag
F
(ξu

∼

)− Āg
F
(ξu, ξu)

)

du

+

∫ nT

0
〈σ∗(ξu)∇gF (ξu)− σ∗(ξu

∼

)∇g
F
(ξu

∼

), dWu〉.

Since g
F
is bounded,

1√
n

n∑

k=1

g
F
(ξkT )− g

F
(ξ(k−1)T ) =

g
F
(ξnT )− g

F
(ξ0)√

n

a.s.−−→ 0 as n→ +∞.

Then, it is now enough to show that

1√
n

∫ nT

0

(

Ag
F
(ξu

∼

)− Āg
F
(ξu, ξu)

)

du
L1

−→ 0 as n→ +∞ (5.57)

and that,

1√
n

∫ nT

0
〈σ∗(ξu)∇gF (ξu)− σ∗(ξu

∼

)∇g
F
(ξu

∼

), dWu〉 a.s.−−→ 0 as n→ +∞. (5.58)

First, using that g
F
is a bounded C2-function with bounded Lipschitz continuous deriva-

tives, that b and σ are Lipschitz continuous functions, one checks that
∣
∣
∣AgF (x∼)− Āg

F
(x, x)

∣
∣
∣ ≤ C

(

|x
∼
− x|.|b(x)|+ |x

∼
− x|+ |x

∼
− x|2 + ‖σ(x)‖2.|x

∼
− x|

)

.

Then, using that

max

(

|ξu
∼

− ξu|, |ξu − ξu
∼

|
)

≤ 2 sup
v∈[ΓN(u),ΓN(u)+1)

|ξv − ξu|,
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it follows from Lemma 3.2(iii) applied with φ = V a, p = 1 and p = 2, that,

E

[∣
∣Ag

F
(ξu

∼

)− Āg
F
(ξu, ξu)

∣
∣|Fu

]

≤ C
(
√
γN(u)+1 V

a
2 (ξu)(1 + |b(ξu)|+ ‖σ(ξu)‖2) + γN(u)+1V

a(ξu)
)

.

By Asssumption (Sa,p), we deduce that

1√
n
E

[∫ nT

0

∣
∣
∣
∣
Ag

F
(ξu

∼

)− Āg
F
(ξu, ξu)

∣
∣
∣
∣
du

]

≤ C√
n

∫ nT

0
E[V

3
2
a(ξu)]

√
γN(u)+1du.

Now, since p ≥ 2, 3
2a ≤ p+ a− 1, and by (5.56), we have

∫ ∞

1

√
γN(u)+1

u
du ≤ C

∑

k≥1

γ
3
2
k√
Γk

< +∞.

Then (5.57) follows from Lemma 3.3(i) and the Kronecker Lemma like in the proof of
Lemma 5.6.
Second, we focus on (5.58). Set Z0 = 0 and

Zn =
n∑

k=1

1√
k

∫

Ik

〈σ∗(ξu)∇gF (ξu)− σ∗(ξu
∼

)∇g
F
(ξu

∼

), dWu〉, n ≥ 1.

The sequence (Zn) being a (Gn)-adapted martingale, it follows from Doob’s convergence
Theorem for L2-bounded martingales that (5.58) holds if

sup
n≥1

E[(Zn)
2] < +∞. (5.59)

Let us show (5.59). First,

E[(Zn)
2] =

∑

k≥1

1

k

∫

Ik

E

[∣
∣
∣
∣
σ∗(ξu)∇gF (ξu)− σ∗∇g

F
(ξu

∼

)

∣
∣
∣
∣

2
]

du.

By similar arguments as for (4.49),
∣
∣
∣σ∗(x)∇gF (x)− σ∗∇g

F
(x
∼
)
∣
∣
∣

2
≤ C

(
1 + ‖σ∗(x)‖2

) (

|x− x
∼
|2 + |x− x

∼
|2
)

.

Then, owing to the fact that u
∼
∈ [u, u], it follows from (Sa,p) and Lemma 3.2(iii) that

E

[∣
∣
∣
∣
σ∗(ξu)∇gF (ξu)− σ∗∇g

F
(ξu

∼

)

∣
∣
∣
∣

2
]

≤ CγN(u)+1E[V
2a(ξu)].

Thus, since u ≤ kT for every u ∈ Ik,

∑

k≥1

E[|∆Zk|2] ≤ E[|Z1|2] + C
∑

k≥2

∫

Ik

E[V 2a(ξu)]
γN(u)+1

u
du

≤ C

(

1 +

∫ +∞

1
E[V 2a(ξu)]

γN(u)+1

u
du

)

.

Finally, by a similar argument to (5.56), we have
∫ +∞

1

γN(u)+1

u
du ≤ C

∑

k≥1

γ2k
Γk

< +∞

and (5.59) follows from Lemma 3.3(i) and from the fact that 2a ≤ p+a−1 when p ≥ 2.
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6 Proof of the main theorems

The first step for the proof of these theorems is now to state our main result about the
sequence (P(n,T )(ω,F

T
))n≥1 studied in the two previous sections:

PROPOSITION 6.3. Let T > 0, a ∈ (0, 1] and p > 2. Assume b and σ are Lipschitz
continuous functions satisfying (Sa,p) with an essentially quadratic Lyapunov function
V such that lim inf |x|→+∞ V p+a−1(x)/|x| > 0. Assume (Sν

T). Let F : Duc([0, T ],R
d) be

a functional satisfying (C1
F) and (C2

F). Finally, assume that the step sequence (γn)n≥1

satisfies (1.3) and (2.14). Then,

√
nT
(

P(n,T )(ω,F
T
)− Pν(FT

)
) L−−−−−→

n→+∞
N
(
0, σ2

F

)
. (6.60)

Proof. Owing respectively to Lemma 5.6, Lemma 5.7 and the fact that F is bounded,
Θn,1, Θn,2 and Θn+1,3 defined in Lemma 3.1 satisfy:

Θn,1 +Θn,2 +Θn+1,3√
nT

P−→ 0 as n→ +∞.

Then, the proposition follows from Proposition 4.2 and from the decomposition of P(n,T )−
Pν(FT

) stated in Lemma 3.1.

We are now able to prove Theorems 2.1 and 2.2.

Proof of Theorems 2.1(a) and 2.2. First, let (tk)k≥1 denote a sequence of positive real

numbers such that tk → +∞. Set nk = ⌊tk
T
⌋. Since F

T
is a bounded functional, we have:

∣
∣
∣
√
tk

( 1

tk

∫ tk

0
F

T
(ξ

(u
∼

)
)du− Pν(FT

)
)

−
√

nkT
(

P(n,T )(ω,F
T
)− Pν(FT

)
) ∣
∣
∣

≤ 2‖F
T
‖∞(

√
tk −

√
nkT ) + ‖F

T
‖∞

tk − nkT√
nkT

k→+∞−−−−→ 0 a.s.

Thus, Theorem 2.2 follows taking u
∼
= u. For Theorem 2.1(a), setting u

∼
= u ∨ (⌊u/T ⌋T ),

and tn = Γn, we obtain that

√

Γn

(
1

Γn

∫ Γn

0
F

T
(ξ(u∨(⌊

u
T
⌋T )))du− Pν(FT

)

)

L−→ N
(
0, σ2

F

)
0 as n→ +∞.

Now,

√

Γn

∣
∣
∣
∣
ν̄(n)(ξ(ω), F

T
)− 1

Γn

∫ Γn

0
F

T
(ξ(u∨(⌊

u
T
⌋T )))du

∣
∣
∣
∣
≤ ‖F

T
‖∞√
Γn

⌊Γn⌋∑

k=1

γN(k)+1,

and the fact that γN(k)+1 ≤ C

N(k)
∑

i=N(k−1)+1

γ2i implies that,

1√
Γn

⌊Γn⌋∑

k=1

γN(k)+1 ≤
1√
Γn

n∑

i=1

γ2i .

By (2.14) and the Kronecker Lemma,

1√
Γn

n∑

i=1

γsi
n→+∞−−−−−→ 0 ∀s ≥ 3/2.
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Applying this identity with s = 2 yields the result. 2

Proof of Theorem 2.1(b). Owing to Theorem 2.1(a), it is now enough to show that

√

Γn

(

ν̄(n)(X̄(ω), F
T
)− ν̄(n)(ξ(ω), F

T
)
)

n→+∞−−−−−→
P

0.

Since F
T
is a Lipschitz bounded functional, it follows from the definition of the previous

occupation measures that

√

ΓnE

[∣
∣
∣ν̄(n)(X̄(ω), F

T
)− ν̄(n)(ξ(ω), F

T
)
∣
∣
∣

]

≤ [F
T
]Lip√
Γn

∫ Γn

0
E[ sup

s∈[0,T ]
|ξu+s − ξu+s|]du.

By Lemma 3.2(iv) and Jensen’s inequality, for every q > 1,

E[ sup
s∈[0,T ]

|ξu+s − ξu+s||Fu] ≤ E[ sup
s∈[0,T ]

|ξu+s − ξu+s|q|Fu]
1
q

≤ C
(

V
aq
2 (ξu)γ

q
2
−1

N(u)+1

) 1
q ≤ CV

a
2 (ξu)γ

1
2
− 1

q

N(u)+1.

Thus, we deduce that

∫ Γn

0
E[ sup

s∈[0,T ]
|ξu+s − ξu+s|]du ≤ C

n−1∑

k=1

γ
3
2
− 1

q

k E[V
a
2 (ξΓk−1

)].

Let δ be a positive number such that (2.17) holds. Taking q such that 1/q ≤ δ, we deduce
from (2.17) and Lemma 3.3(i) that

∑

k≥1

γ
3
2
− 1

q

k√
Γk

E[V
a
2 (ξ

Γk−1
)] =

∫ +∞

0
E[V

a
2 (ξu)]

γ
3
2
− 1

q

N(u)+1
√

ΓN(u)+1

du < +∞.

We again deduce the result from Kronecker’s Lemma. 2

Proof of Theorem 2.3. We only give the main ideas of the proof of this result about
the “perfect Euler scheme” (Xt), that is naturally simpler than that of the discretized
processes. First, the reader can check that setting

P̃(n,T )(ω,F
T
) =

1

nT

∫ nT

0
F

T
(X(u))du,

one obtains a similar decomposition as that of Lemma 3.1 replacing u
∼
by u and φ

F
by φ̃F

defined by

φ̃
F
(1) = 0 and

∫

Ik−1

F
T
(X(u))du if k ≥ 2.

The main difference in this decomposition is that the term corresponding to Θn,1 is null.
Then, since the assumption lim inf |x|→+∞ V p+a−1(x)/|x| > 0 is only needed in the proof
of the result about Θn,1 (see Lemma 5.6), we deduce that it is not necessary here. Then,
the sequel of the proof works since the statements of Lemma 3.3 still hold if one replaces
ξ by X. To be precise, the first statements of (i) and (ii) can be directly derived from [25]
(Chapter 1) and the second ones from an adaptation of the proof of this lemma. 2
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7 Numerical Test on Barrier Options in the Heston model

As shown in [22], our algorithm can be successfully implemented for pricing path-dependent
options in stochastic volatility models when the volatility process evolves in its stationary
regime. Furthermore, such stationary versions of stochastic volatility models are more per-
forming to take into account the behaviour of implicit volatility for short maturities. Then,
even if the assumptions of our main theorems are usually not satisfied for the functionals
involved in this context, we choose in this section to illustrate them by such an example.
To be precise, we test numerically the asymptotic normality obtained in the main results
on the computation of several Barrier options in a Heston stationary stochastic volatility
model. The dynamics of the traded asset price process (St)t≥0 is given by:

dSt = St(rdt+
√

(1− ρ2)vtdW
1
t + ρ

√
vtdW

2
t ), S0 = s0 > 0,

dvt = k(θ − vt)dt+ ς
√
vtdW

2
t , v0 > 0,

where r denotes the interest rate, (W 1,W 2) is a standard two-dimensional Brownian mo-
tion, ρ ∈ [−1, 1] and k, θ and ς are some nonnegative numbers. This model was introduced
by Heston ([11]). The equation for (vt) has a unique (strong) pathwise continuous solution
living in R+. If moreover, 2kθ > ς2 then, (vt) is a positive process (see [17]). In this case,
the volatility process (vt) has a unique invariant probability ν0 with gamma distribution,
namely ν0 = γ(a, b) with a = (2k)/ς2 and b = (2kθ)/ς2. Thus, we assume that (vt) evolves
in its stationary regime, i.e. that

L(v0) = ν0.

Under this assumption, we showed in [22] that any option premium can be expressed as
the expectation of a functional of a two-dimensional stationary stochastic process. Let us
recall the idea: we will write (St) as a functional of a stationary process. Elementary Itô
calculus yields

St = s0 exp
(

rt− 1

2

∫ t

0
vsds+ ρ

∫ t

0

√
vsdW

2
s +

√

1− ρ2
∫ t

0

√
vsdW

1
s

)

. (7.61)

Introducing the 2-dimensional SDE,

{

dyt = −ytdt+
√
vtdW

1
t ,

dvt = k(θ − vt)dt+ ς
√
vtdW

2
t ,

(7.62)

and using the fact that

∫ t

0

√
vsdW

1
s = yt − y0 +

∫ t

0
ysds and

∫ t

0

√
vsdW

2
s =

vt − v0 − kθt+ k
∫ t
0 vsds

ς
,

we deduce that we can construct a (continuous) map Φ from C(R+,R
2) to C(R+,R) such

that (St)t≥0 = Φ((yt, vt)t≥0). Now, we have built (yt) so that (yt, vt)t≥0 has a stationary
regime. Denoting by µ the invariant distribution of (yt, vt), we obtain that

E[F (St, 0 ≤ t ≤ T )] = Eµ[F ◦Φ((yt, vt), 0 ≤ t ≤ T )].

For further details we refer to [22]. Here, we are interested with an Up-and-Out barrier
option whose discounted payoff is given by:

F (St, 0 ≤ t ≤ T ) = e−rT (ST −K)+ 1{sup0≤t≤T St≤L}
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where L > K > 0. We now specify the discretization. First, the genuine Euler scheme of
the so-called Heston volatility process (also known as the Cox-Ingersoll-Ross process) (vt)
cannot be implemented since it does note preserve the positivity. Thus, we must replace it
by a specific discretization scheme: we denote by (v̄t) the stepwise constant Euler scheme
built as follows:

v̄
Γn+1

=
∣
∣v̄

Γn
+ kγn+1(θ − v̄

Γn
) + ς

√
v̄
Γn
(W 2

Γn+1
−W 2

Γn
)
∣
∣ and v̄0 = x > 0.

Note that convergence properties of this scheme have been studied in a constant step
framework in [5] (see also [8], [1], and [2] for other specific discretization schemes).

Second, we denote by (ξt) the continuous discretization scheme of (log(St

s0
))t≥0 defined by

ξ0 = 0 and

ξt = ξ
Γn
+(r−1

2
v̄
Γn
)t+ρ

√
v̄
Γn
(W 2

t −W 2
Γn
)+
√

(1− ρ2)v̄
Γn
(W 1

t −W 1
Γn
), t∈ [Γn,Γn+1], n ≥ 0.

(7.63)
Note that we do not need to introduce the Euler of (yt) since its use is nothing but
a theoretical way to justify why an algorithm for the approximation of the stationary
regime can be adapted to this context. Finally, in order to compute the supremum of (ξt),
let us recall the principle of the so-called Brownian Bridge method (transposed to this
framework). Set

W
(Γn)
t = ρ(W 1

Γn+t
−W 1

Γn
) +

√

1− ρ2(W 2
Γn+t

−W 2
Γn
)

and let (Y W,γ
t ) denote the Brownian Bridge on [0, γ] defined by Y W,γ

t =Wt− t
γWγ , t∈ [0, γ].

For every t ∈ [Γn,Γn+1], we have

ξt = ξ
Γn

+
ξ
Γn+1

− ξ
Γn

Γn+1 − Γn
(t− Γn) +

√
v̄
Γn
Y

W (Γn),γn+1
t .

Using the independence and the Gaussian properties of the Brownian motion, one deduces
that, for every n ≥ 1, the processes (ξt)t∈[Γl,Γl+1], l ∈ {0, . . . , n − 1} are conditionally
independent given the σ-field σ((ξγ

l
, v̄

Γl
, 0 ≤ l ≤ n) and that

L
(

(ξt)t∈[Γl,Γl+1]|(ξΓl
, ξΓl+1

,v̄Γl
) = (xl, xl+1, vl)

)

= L
(

xl +
xl+1 − xl
Γl+1 − Γl

t+
√
vlY

W,γ
l+1

t , t ∈ [0, γ
l+1

]

)

where W denotes a standard Brownian motion. Then, using the symmetry principle, one
can show that, for every x, y ∈ R, for every z ≥ max(x, y) and positive λ and γ,

P( sup
t∈[0,γ]

x+ (y − x)
t

γ
+ λY W,γ

t ≤ z) = 1− exp(− 2

γλ2
(z − x)(z − y)).

It follows that given (ξ
Γl
, ξ

Γl+1
, v̄

Γl
), supt∈[Γl,Γl+1]

ξt can be simulated by the method of
inversion of the distribution function.

Let us now detail the algorithm.

Step 1 : From n = 0 to n = N(T ). At each step between n = 0 and n = N(T )−1, simulate
recursively, v̄Γn+1

and ξΓn+1
. Then, use the Brownian Bridge method to simulate Vn =

supt∈[Γn,Γn+1] ξt given (ξ
Γn
, ξ

Γn+1
, v̄

Γn
). Compute recursively Mn := max(V1, . . . , Vn) =

max(Mn−1, Vn). At time N(T ), compute

ν̄(1)(ξ(ω), F ) = e−rT (s0 exp(ξT )−K)+1{s0 supt∈[0,T ] exp(ξt)≤L}.
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...
...

Step i : From n = N(T + Γi−1) + 1 to n = N(T + Γi). If MN(T+Γi−1+1) = Vi−1, re-
place MN(T+Γi−1+1) by max(Vi, . . . , VN(T+Γi−1+1)). Store (ξ

Γi−1
, . . . , ξ

ΓN(T+Γi−1)+1
) and

(Vi, . . . , VN(T+Γi−1+1)). As in Step 1, from n = N(T + Γi−1) + 1 to n = N(T + Γi),
compute recursively v̄

Γn+1
, ξ

Γn+1
, Vn and the maximum of Vi, Vi+1, . . . , Vn. Then, at time

N(T + Γi),

ν̄(i)(ξ(ω), F ) = ν̄(i−1)(ξ(ω), F )

+
γi+1

Γi



e−rT (s0 exp(ξT − ξ
Γi−1

)−K)+1{ sup
t∈[Γi−1,ΓN(T+Γi−1)+1]

s0 exp(ξt−ξ
Γi−1

)≤L} − ν̄(i−1)(ξ(ω), F )



 .

For the following choices of parameters,

s0 = 50, r = 0.05, T = 1, ρ = 0.5, θ = 0.01, ς = 0.1, k = 2, K = 50, L = 55,
(7.64)

we want now to obtain an approximation of the distribution of the (asymptotically normal)
normalized error

EN :=
√

ΓN

(

ν̄N (ξ(ω), F ) − e−rT
E[(ST −K)+ 1{sup0≤t≤T St≤L}]

)

First, we need to have an accurate approximation of the (risk-neutral) price. In this way,
we choose to combine a very long simulation with a variance reduction method taking the
corresponding Barrier option in the Black-Scholes model as a control variable. Indeed,
on the one hand, it is well-known that the price of such Barrier option has a closed form
in the Black-Scholes model (based on the Black-Scholes formula for European options)
and on the other hand, this price can be approximated using the algorithm described
above by simply replacing the stochastic volatility (v̄t) by a constant volatility denoted by
σ. Note that the natural choice for σ is the long term volatility θ which is the mean of
the stationary volatility process (v̄t) as well. Then, denoting by (ξBS

t ) the genuine Euler
discretization scheme of the Black-Scholes model (especially with the same trajectory for
W 1) with constant volatility θ, we approximate the price of the option by

ν̄(N)(ξ(ω), F ) − ν̄(N)(ξBS(ω), F ) + CBS
bar (r,

√
θ, T,K,L)

where CBS
bar denotes the (explicit) price of the up-and-out barrier option in the Black-

Scholes model. Doing so with a simulation size N = 2.108, we get the following accurate
approximation of the premium:

e−rT
E[(ST −K)+ 1{sup0≤t≤T St≤L}] ≈ 1, 689.

Then, setting N = 5.105, we proceedM = 104 independent Monte Carlo simulations of EN .
We denote by σ̄2

F
the empirical variance of the sample (E1

N , . . . , EM
N ) (which corresponds to

an estimation of σ2
F
). In Figure 1 are depicted the density of a centered Gaussian random

variable with variance σ̄2
F
and the empirical density f̂h (smoothed by a convolution with

a Gaussian kernel) defined by:

f̂h(x) =
1

Mh

M∑

ℓ=1

1√
2π

exp

(

−(x− E(ℓ)
N )2

2h2

)

.

As a conclusion, this numerical experiment first illustrates that the CLT occurs at a
reasonable range (for numerical purpose) and also suggests that a local version holds true
as well (“convergence of the density”). Another extension of our result could be, in the
spirit of Bhattacharia’s result in [4] to establish an invariance principle of Donsker type.
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Figure 1: Comparaison of the approximate density f̂h of EN (dotted line) with the density

of N (0, σ̄2F ), N = 5.105, M = 5.103, h =M− 1
5 .

Appendix

A. Proof of identity (2.19).

We have to deduce (2.19) from (2.16). First, we have (dropping x in Ax
t ):

Eν

[(

E[A
2T
|F

2T
]−
∫ 2T

T
σ∗∇g

F
(Xx

u )dWu

)

E[A
T
|F

T
]

]

= Eν [E[A2T
|F

2T
]E[A

T
|F

T
]]

= Eν [(E[AT
|F

T
])2]

since one easily checks that E[A2T −A
T
|F

T
] = 0. It follows that

Tσ2
F
= Eν

[(

E[A
2T
|F

2T
]−
∫ 2T

T
σ∗∇gF (Xu)dWu

)2
]

− Eν [(E[AT
|F

T
])2].

Second, using the Markov property (or the fact that X(u),x = ϕ(Xx
u ,W

(u))) and the
stationarity of the process, one observes that E[A

2T
− A

T
|F

2T
] and E[A

T
|F

T
] have the

same distribution under Pν . In particular,

Eν

[

(E[A
2T

−A
T
|F

2T
])2
]

= Eν

[

(E[A
T
|F

T
])2
]

.

Since E[A
2T
|F

2T
] = A

T
+ E[A

2T
− A

T
|F

2T
] and Eν[AT

E[A
2T

− A
T
|F

2T
]] = 0, we obtain

that

Tσ2
F
= Eν [A

2
T
]−2Eν

[

E[A
2T
|F

2T
]

∫ 2T

T
σ∗∇g

F
(Xu)dWu

]

+Eν

[(∫ 2T

T
σ∗∇g

F
(Xu)dWu

)2
]

.

All we have to do now is to check that the three above terms correspond respectively to
the three parts of (2.19). First, by Fubini’s Theorem,

Eν [A
2
T
] =

∫ T

u=0

∫ T

v=0
Eν [(F (X

(u) − f
F
(Xu))(F (X

(v) − f
F
(Xv)))]dv.

Owing to the stationarity of the process under Pν , we have

Eν [(F (X
(u) − f

F
(Xu))(F (X

(v) − f
F
(Xv)))] = C

F
(|u− v|),
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where C
F
is defined by (2.20). This yields

Eν [A
2
T
] = 2

∫ T

0

∫ u

0
C

F
(u− v)dvdu = 2

∫ T

0
(T − u)C

F
(u)du.

Second, setting

Mf
T =

∫ t

0
σ∗∇f(Xu)dWu, (7.65)

we have

Eν

[

E[A
2T
|F

2T
]

∫ 2T

T
σ∗∇g

F
(Xu)dWu

]

=

∫ 2T

0
Eν [(FT

(X(u))− f
F
(Xu))(M

g
F

2T −M
g
F

T )]du

=

∫ T

0
Eν [(FT

(X(u))− f
F
(Xu))(M

g
F

T+u −M
g
F

T )]du

+

∫ 2T

T
Eν [(FT

(X(u))− f
F
(Xu))(M

g
F

2T −Mg
F

u
)]du.

Now, the fact that M
g
F

T+u −M
g
F

T = g
F
(XT+u) − g

F
(XT ) −

∫ T+u
T AgF (Xv)dv implies that

we can make use of the stationarity property to obtain for every u ∈ [0, T ],

Eν [(FT
(X(u))− f

F
(Xu))(M

g
F

T+u −M
g
F

T )]

= Eν

[

(F
T
(X) − f

F
(X0))

(

g
F
(XT )− g

F
(X0)−

∫ T

0
AgF (Xv)dv

)]

= Eν [(FT
(X)− f

F
(X0))(M

g
F

T −M
g
F

T−u)].

With similar arguments, one checks that for every u ∈ [T, 2T ],

Eν [(FT
(X(u))− f

F
(Xu))(M

g
F

2T −Mg
F

u
)] = Eν [(FT

(X)− f
F
(X0))M

g
F

2T−u ].

It follows that

Eν

[

E[A
2T
|F

2T
]

∫ 2T

T
σ∗∇g

F
(Xu)dWu

]

= Eν

[

(F
T
(X)− f

F
(X0))

(

TM
g
F

T −
∫ T

0
M

g
F

T−udu+

∫ 2T

T
M

g
F

2T−udu

)]

= TEν[FT
(X)M

g
F

T ].

Finally, Eν

[(∫ 2T

T
σ∗∇g

F
(Xu)dWu

)2
]

=

∫ 2T

T
Eν

[

|σ∗∇gF (Xu)|2
]

du

= T

∫

|σ∗∇gF (x)|2ν(dx)

owing to the stationarity of the process. This concludes the proof. 2

B. Computation of σ2
F
when F (α) = φ(α

T
).

As mentioned in (2.3), when φ = Ah+C, the CLT for marginal functions combined with
a change of variable yields σ2

F
=
∫

Rd |σ∗∇h(x)|2ν(dx). Let us check this formula starting
from (2.16). Following the notation introduced in (7.65), we have

E[A
2T
|F

2T
]− E[A

T
|F

T
]−
∫ 2T

T
σ∗∇g

F
(Xx

u )dWu = ϕ1(x, .)− ϕ2(x, .) where,

ϕ1(x, .) =

∫ T

0
φ(Xx

u+T )du+

∫ 2T

T
E
[
φ(Xx

u+T )F2T

]
du−

∫ 2T

T
f
F
(Xx

u )du− (M
g
F

2T −M
g
F

T ) and

ϕ2(x, .) =

∫ T

0
E
[
φ(Xx

u+T ) | FT

]
du.
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In this case, f
F
= P

T
φ and using that A and P

T
commute, one checks that f

F
− ν(f

F
) =

AP
T
h. This implies that g

F
= P

T
φ. For the sake of simplicity we may assume w.l.g.

ν(f
F
) = ν(φ) = 0. Then, on the one hand

ϕ1(x, .) =

∫ 2T

T
Ah(Xu)du+

∫ 2T

T
Pu−Tφ(X2T )du−

[

g
F
(X2T )− g

F
(X

T
)
]

= h(X2T )− h(XT )− (Mh
2T −Mh

T ) +

∫ T

0
APuh(X2T )du−

[

g
F
(X2T )− g

F
(X

T
)
]

= h(X2T )− h(XT )− (Mh
2T −Mh

T ) + P
T
h(X2T )

︸ ︷︷ ︸

=g
F
(X2T )

−h(X2T )−
[

g
F
(X2T )− g

F
(X

T
)
]

= g
F
(XT )− h(XT )− (Mh

2T −Mh
T ).

On the other hand

ϕ2(x, .) =

∫ T

0
Puφ(XT )du =

∫ T

0
APuh(XT )du = P

T
h(XT )− h(XT ) = g

F
(XT )− h(XT ).

so that

σ2
F
=

1

T
Eν [(M

h
2T −Mh

T )
2] =

1

T

∫ 2T

T
Eν[|σ∗∇h(Xu)|2]du =

∫

|σ∗∇h(x)|2ν(dx). 2
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Université Paris VI.

[26] Pardoux E., Veretennikov A. (2001). On Poisson equation and diffusion approximation I, Ann.
Probab., 29(3):1061–1085. 1872736

[27] Pardoux E., Veretennikov A. (2003). On Poisson equation and diffusion appoximation II, Ann.
Probab, 31(3):1166–1192. 1988467

[28] Pardoux E., Veretennikov A. (2006). On the Poisson equation and diffusion approximation
III, Ann. Probab, 33(3):1111–1133. 2135314

[29] Protter P. (2005) Stochastic integration and differential equations. Second edition. Version 2.1.
Corrected third printing. Stochastic Modelling and Applied Probability, 21. Springer-Verlag,
Berlin:419 pp. 3-540-00313-4

[30] Talay D. (1990). Second order discretization schemes of stochastic differential systems for the
computation of the invariant law. Stoch. Stoch. Rep., 29(1):13-36.

33


	1 Introduction
	2 Main results
	2.1 Assumptions and background
	2.2 Main results

	3 Preliminaries
	4 Rate of convergence for the martingale component
	5 Study of (n,1), (n,2) and (n,3)
	6 Proof of the main theorems
	7 Numerical Test on Barrier Options in the Heston model

