FLUCTUATIONS OF THE EXTREME EIGENVALUES OF FINITE RANK DEFORMATIONS OF RANDOM MATRICES

F. BENAYCH-GEORGES*, A. GUIONNET ${ }^{\dagger}$, M. MAIDA ${ }^{\ddagger}$.

Abstract

Consider a deterministic self-adjoint matrix X_{n} with spectral measure converging to a compactly supported probability measure, the largest and smallest eigenvalues converging to the edges of the limiting measure. We perturb this matrix by adding a random finite rank matrix with delocalized eigenvectors and study the extreme eigenvalues of the deformed model. We show that the eigenvalues converging out of the bulk exhibit Gaussian fluctuations, whereas under additional hypotheses, the eigenvalues sticking to the edges are very close to the eigenvalues of the non-perturbed model and fluctuate in the same scale. We can also generalise these results to the case when X_{n} is random and get similar behaviour when we deform some classical models such as Wigner or Wishart matrices with rather general entries or the so-called matrix models.

Contents

1. Introduction 1
2. Almost sure convergence of the extreme eigenvalues 5
3. Fluctuations of the eigenvalues away from the bulk6
4. The sticking eigenvalues 10
5. Application to classical models of matrices
6. Appendix

References

1. Introduction

Most of the spectrum of a large matrix is not much altered if one adds a finite rank perturbation to the matrix, simply because of Weyl's interlacement properties of the eigenvalues. This is not the case for the extreme eigenvalues which, depending on the strength of the perturbation, should either stick to the extreme eigenvalues of the non-perturbed

[^0]matrix or deviate to some larger values. This phenomenon was made precise in 9], where a sharp phase transition, known as the BBP transition [32, [25, 35, 27], was exhibited for finite rank perturbations of a complex Gaussian Wishart matrix. In this case, it was shown that either the extreme eigenvalues of the perturbed matrix deviate away from the bulk and have then Gaussian fluctuations, or they stick to the bulk and fluctuate according to the Tracy-Widom law. The fluctuations of the extreme eigenvalues which deviate from the bulk were studied as well when the non-perturbed matrix is a Wishart (or a Wigner) matrix but with non-Gaussian entries; they were shown to be Gaussian if the perturbation is chosen randomly with i.i.d entries in [7], or with completely delocalized eigenvectors [18, 19], whereas in [12], a non-Gaussian behaviour was exhibited when the perturbation has localised eigenvectors. The influence of the localisation of the eigenvectors of the perturbation was studied more precisely in [13].
In this paper, we focus also on the behaviour of the extreme eigenvalues of a finite rank perturbation of a large matrix, this time in the framework where the large matrix is deterministic whereas the perturbation has delocalized random eigenvectors. We show that the eigenvalues which deviate away from the bulk have Gaussian fluctuations whereas those which stick to the bulk are extremely close to the extreme eigenvalues of the nonperturbed matrix. In a one-dimensional perturbation situation, we can as well study the fluctuations of the next eigenvalues, for instance showing that if the first eigenvalue deviate from the bulk, the second eigenvalue will stick to the first eigenvalue of the non-perturbed matrix, whereas if the first eigenvalue sticks to the bulk, the second eigenvalue will be very close to the second eigenvalue of the non-perturbed matrix. Hence, for a one dimensional perturbation, the eigenvalues which stick to the bulk will fluctuate as the eigenvalues of the non-perturbed matrix. We can also extend these results beyond the case when the non-perturbed matrix is deterministic. In particular, if the non-perturbed matrix is a Wigner or a Wishart matrix with rather general entries, or a matrix model, we can use the universality of the fluctuations of the extreme eigenvalues of these random matrices, to show that the p th extreme eigenvalue which sticks to the bulk fluctuates according to the p th dimensional Tracy-Widom law. This proves the universality of the BPP transition at the fluctuation level, provided the perturbation is delocalized and random.

We consider a deterministic self-adjoint matrix X_{n} with eigenvalues $\lambda_{1}^{n} \leq \cdots \leq \lambda_{n}^{n}$ satisfying the following hypothesis

Hypothesis 1.1. The spectral measure $\mu_{n}:=n^{-1} \sum_{l=1}^{n} \delta_{\lambda_{l}^{n}}$ of X_{n} converges towards a deterministic probability measure μ_{X} with compact support. Moreover, we shall assume that the smallest and largest eigenvalues of X_{n} converge respectively to a and b, the lower and upper bounds of the support of μ_{X}.

We study the eigenvalues $\widetilde{\lambda}_{1}^{n} \leq \cdots \leq \widetilde{\lambda}_{n}^{n}$ of a perturbation $\widetilde{X_{n}}:=X_{n}+R_{n}$ obtained from X_{n} by adding a finite rank matrix $R_{n}=\sum_{i=1}^{r} \theta_{i} u_{i}^{n} u_{i}^{n^{*}}$. We shall assume r and the θ_{i} 's to be deterministic and independent of n, but the eigenvectors $\left(u_{i}^{n}\right)_{1 \leq i \leq r}$ chosen randomly as follows. Let ν be a probability measure on \mathbb{R} or \mathbb{C} satisfying

Assumption 1.2. The probability measure ν satisfies a log-Sobolev inequality, is centred and has variance one. If ν is a law on the complex plane, we assume moreover that its real part and its imaginary part are independent and identically distributed (i.i.d.).

We consider now a random vector $v^{n}=\frac{1}{\sqrt{n}}\left(x_{1}, \ldots, x_{n}\right)^{T}$ with $\left(x_{i}\right)_{1 \leq i \leq n}$ i.i.d. real or complex random variables with law ν. Then
(1) Either the u_{i}^{n} 's $(i=1, \ldots, r)$ are independent copies of v^{n}
(2) Or $\left(u_{i}^{n}\right)_{1 \leq i \leq r}$ are obtained by the Gram-Schmidt orthonormalization of r independent copies of a vector v^{n}.

We shall refer to the model (1) as the i.i.d. model and to the model (2) as the orthonormalized model.
Let us mention that in the orthonormalized model, if ν is the standard real (resp. complex) Gaussian law, $\left(u_{i}^{n}\right)_{1 \leq i \leq r}$ follows the uniform law on the set of orthogonal random vectors on the unit sphere of \mathbb{R}^{n} (resp. \mathbb{C}^{n}) and by invariance by conjugation, the model coincides with the one studied in [10.
In this case, the orthonormalized model is well defined but note that in general r i.i.d copies of a random vector are not necessarily linearly independent almost surely so that the orthonormal vectors described in (2) are not always almost surely well defined. However, as the dimension goes to infinity, they are well defined with overwhelming probability. This means the following: we shall say that a sequence of events $\left(C_{n}\right)_{n \geq 1}$ occurs with overwhelming probability if there exists two constants $C, \eta>0$ independent of n such that for n large enough,

$$
\mathbb{P}\left(C_{n}\right) \geq 1-C e^{-n^{\eta}}
$$

We shall in the sequel restrict ourselves to the event when the model (2) is well defined without mentioning it explicitly.

In this work, we study the asymptotics of the eigenvalues of $\widetilde{X_{n}}$ outside of the spectrum of X_{n}.

It has already been observed in similar situations, see [9, that these eigenvalues converge to the boundary of the support of X_{n} if the θ_{i} 's are small enough, whereas for sufficiently large values of the θ_{i} 's, they stay away from the bulk of X_{n}. More precisely, if we let $G_{\mu_{X}}$ be the Cauchy-Stieltjes transform of μ_{X}, defined, for z outside the support of μ_{X}, by the formula

$$
G_{\mu_{X}}(z)=\int \frac{1}{z-x} \mathrm{~d} \mu_{X}(x),
$$

then the eigenvalues of $\widetilde{X_{n}}$ outside the bulk converge to the solutions of $G_{\mu_{X}}(z)=\theta_{i}^{-1}$ if they exist.

Indeed, if we let

$$
\bar{\theta}:=\frac{1}{\lim _{z \downarrow b} G_{\mu_{X}}(z)} \geq 0, \quad \underline{\theta}:=\frac{1}{\lim _{z \uparrow a} G_{\mu_{X}}(z)} \leq 0
$$

and

$$
\rho_{\theta}:= \begin{cases}G_{\mu_{X}}^{-1}(1 / \theta) & \text { if } \theta \in(-\infty, \underline{\theta}) \cup(\bar{\theta},+\infty), \\ a & \text { if } \theta \in[\underline{\theta}, 0), \\ b & \text { if } \theta \in(0, \bar{\theta}],\end{cases}
$$

then we have the following theorem.

[^1]Theorem 1.3. Assume that Hypothesis 1.1 and Assumption 1.2 are satisfied. Let $r_{0} \in$ $\{0, \ldots, r\}$ be such that

$$
\theta_{1} \leq \cdots \leq \theta_{r_{0}}<0<\theta_{r_{0}+1} \leq \cdots \leq \theta_{r}
$$

Then for all $i \in\left\{1, \ldots, r_{0}\right\}$ we have

$$
\tilde{\lambda}_{i}^{n} \xrightarrow{\text { a.s. }} \rho_{\theta_{i}}
$$

and for all $i \in\left\{r_{0}+1, \ldots, r\right\}$,

$$
\widetilde{\lambda}_{n-r+i}^{n} \xrightarrow{\text { a.s. }} \rho_{\theta_{i}} .
$$

Moreover, for all $i>r_{0}$ (resp. for all $i \geq r-r_{0}$),

$$
\widetilde{\lambda}_{i}^{n} \xrightarrow{\text { a.s. }} a \quad\left(\text { resp. } \widetilde{\lambda}_{n-i}^{n} \xrightarrow{\text { a.s. }} b\right) .
$$

The uniform case was proved in [10, Theorem 2.1] and we will follow a similar strategy to prove it under our assumptions in Section 2 (see Lemma 2.1).

We study the fluctuations of the extreme eigenvalues of $\widetilde{X_{n}}$. Precise statements will be given in Theorems 3.2, 3.4, 4.3 and 4.4 and Corollary 4.5 but the results roughly state as follows.

Theorem 1.4. Under certain additional hypotheses,
(1) Let $\alpha_{1}<\cdots<\alpha_{q}$ be the different values of the θ_{i} 's such that $\rho_{\theta_{i}} \notin\{a, b\}$ and denote, for each j, by I_{j} the set of indices i so that $\theta_{i}=\alpha_{j}$. Set $k_{j}=\left|I_{j}\right|$ and q_{0} the largest index so that $\alpha_{q_{0}}<0$. Then, the law of the random vector

$$
\left(\sqrt{n}\left(\widetilde{\lambda}_{i}^{n}-\rho_{\theta_{i}}\right), i \in I_{j}\right)_{1 \leq j \leq q_{0}} \cup\left(\sqrt{n}\left(\widetilde{\lambda}_{n-r+i}^{n}-\rho_{\alpha_{j}}\right), i \in I_{j}\right)_{q_{0}+1 \leq j \leq q}
$$

converges to the law of the eigenvalues of $\left(c_{j} M_{k_{j}}\right)_{1 \leq j \leq q}$ of independent matrices $M_{k_{j}}$ following the law of a $k_{j} \times k_{j}$ matrix from the GÜE or the GOE, depending whether ν is supported on the complex plane or the real line. The constant c_{j} is explicitly defined in Equation (4).
(2) With overwhelming probability, the extreme eigenvalues converging to a or b are at distance at most $n^{-1+\epsilon}$ of the extreme eigenvalues of X_{n} for some $\epsilon>0$.
(3) If $r=1$ and $\theta>0$, we have the following more precise picture about the next eigenvalues. If $\rho_{\theta}>b, \sqrt{n}\left(\widetilde{\lambda}_{n}^{n}-\rho_{\theta}\right)$ converges towards a Gaussian variable, whereas $n^{1-\epsilon}\left(\widetilde{\lambda}_{n-i}^{n}-\lambda_{n-i+1}\right)$ vanishes in probability as n goes to infinity for any fixed $i \geq 1$ and some $\epsilon>0$. If $\rho_{\theta}=b, n^{1-\epsilon}\left(\widetilde{\lambda}_{n-i}^{n}-\lambda_{n-i}\right)$ vanishes in probability as n goes to infinity.

The first part of this theorem will be proved in Section 3, whereas Section 4 will be devoted to the study of the eigenvalues sticking to the bulk, that is the proof of the second and third parts of the theorem. Moreover, our results can be easily generalised to non-deterministic self-adjoint matrices X_{n} that satisfy our hypothesis with probability tending to one. This will allow us to study in Section 5 the deformations of various classical models. This will include the study of the Gaussian fluctuations away from the bulk for rather general Wigner and Wishart matrices, hence providing a new proof of the first part of [18, Theorem 1.1] and of [5, Theorem 3.1] but also a new generalisation
to non-white ensembles. The study of the eigenvalues that stick to the bulk requires a finer control on the eigenvalues of X_{n} in the vicinity of the edges of the bulk, which we prove for random matrices such as Wigner and Wishart matrices with entries having a sub-exponential decay. This result complements [18, Theorem 1.1] where the fluctuations of the largest eigenvalue of a non Gaussian Wishart matrix perturbed by a delocalized but deterministic rank one perturbation was studied. One should remark that our result depends very little on the law ν (only through its fourth moment in fact)

Our approach is based upon a determinant computation, see Lemma 6.1 which shows that the eigenvalues of $\widetilde{X_{n}}$ we are interested in are the solutions of the equation

$$
\begin{equation*}
f_{n}(z):=\operatorname{det}\left(\left[G_{i, j}^{n}(z)\right]_{i, j=1}^{r}-\operatorname{diag}\left(\theta_{1}^{-1}, \ldots, \theta_{r}^{-1}\right)\right)=0 \tag{1}
\end{equation*}
$$

with

$$
G_{i, j}^{n}(z):=\left\langle u_{i}^{n},\left(z-X_{n}\right)^{-1} u_{j}^{n}\right\rangle,
$$

where $\langle\cdot, \cdot\rangle$ denotes the usual scalar product in \mathbb{C}^{n}.
By the law of large numbers for i.i.d. vectors, [10, Proposition 5.1] for uniformly distributed vectors or by applying Theorem 6.4 (with $A^{n}=\left(z-X_{n}\right)^{-1}$), it is easy to see that for any z outside the bulk,

$$
\lim _{n \rightarrow \infty} G_{i, j}^{n}(z)=\mathbb{1}_{i=j} G_{\mu_{X}}(z)
$$

and hence it is clear that one should expect the eigenvalues of $\widetilde{X_{n}}$ outside of the bulk to converge to the solutions of $G_{\mu_{X}}(z)=\theta_{i}^{-1}$ if they exist. Studying the fluctuations of these eigenvalues amounts to analyse the behaviour of the solutions of (11) around their limit. Such an approach was already developed in several papers (see e.g [7] or [12]). However, to our knowledge, the model we consider, with a fixed deterministic matrix X_{n}, was not yet studied and the fluctuations of the eigenvalues which stick to the bulk of X_{n} was never achieved in such a generality.

For the sake of clarity, throughout the paper, we will call "hypothesis" any hypothesis we need to make on the deterministic part of the model X_{n} and "assumption" any hypothesis we need to make on the deformation R_{n}.
Moreover, because of concentration considerations that are developed in the Appendix of the paper, the proofs will be quite similar in the i.i.d. and orthonormalized models. Therefore, we will detail each proof in the i.i.d. model, which is simpler and then check that the argument is the same in the orthonormalized model or detail the slight changes to make in the proofs.

2. Almost sure convergence of the extreme eigenvalues

For the sake of completeness, we prove Theorem 1.3 in this section.
Using [10, Lemma 9.4], Theorem 1.3 will be a direct consequence of the following Lemma.

Lemma 2.1. Assume that Hypothesis 1.1 and Assumption 1.2 are satisfied. Let $\delta>0$ and $S_{\delta}=[a-\delta, b+\delta] \cup\left(\cup_{1 \leq i \leq r}\left[\rho_{\theta_{i}}-\delta, \rho_{\theta_{i}}+\delta\right]\right)$. Then, for any $\delta>0$, the eigenvalues of $\widetilde{X_{n}}$ belong to S_{δ} with overwhelming probability.

Proof. To prove the first statement, by (1), it is enough to prove that f_{n} does not vanish on S_{δ}^{c}.
The i.i.d model. Fix some $z \in S_{\delta}^{c}$ and n large enough. By Proposition 6.2 with $A=$ $\left(z-X_{n}\right)^{-1}$, which is a matrix bounded by $2 \delta^{-1}$, we find that for any $\epsilon>0$, there exists $c>0$ such that

$$
\begin{equation*}
\mathbb{P}\left(\left|G_{i, j}^{n}(z)-1_{i=j} \frac{1}{n} \operatorname{Tr}\left(\left(z-X_{n}\right)^{-1}\right)\right| \geq \frac{\delta^{-1}}{n^{1 / 2-\epsilon}}\right) \leq 4 e^{-c n^{2 \epsilon}} \tag{2}
\end{equation*}
$$

By convergence of the spectral measure, $\frac{1}{n} \operatorname{Tr}\left(\left(z-X_{n}\right)^{-1}\right)$ converges towards the Stieltjes transform $G_{\mu_{X}}(z)$ and hence $f_{n}(z)$ is arbitrarily close to $f(z):=\prod_{i=1}^{r}\left(G_{\mu_{X}}(z)-\frac{1}{\theta_{i}}\right)$ with overwhelming probability.

Note now that $z \in S_{\delta}^{c} \mapsto f_{n}(z)$ is Lipschitz with constant of order δ^{-2} and therefore, with $z_{k}=k n^{-1}, k \in[-M n, M n]$ and M large enough, we have

$$
\sup _{z \in[-M, M] \backslash S_{\delta}}\left|f_{n}(z)-f(z)\right| \leq \max _{k \in[-M n, M n], z_{k} \in S_{\delta}^{c}}\left|f_{n}\left(z_{k}\right)-f\left(z_{k}\right)\right|+C \delta^{-2} n^{-1}
$$

which insures with the above control that for $\delta \geq C n^{-\frac{1}{2}+\epsilon}$, for any $\epsilon>0$,

$$
\begin{equation*}
\mathbb{P}\left(\sup _{z \in[-M, M] \backslash S_{\delta}}\left|f_{n}(z)-f(z)\right| \geq \frac{2 \delta^{-1}}{n^{1 / 2-\epsilon}}\right) \leq 8 M n e^{-c n^{2 \epsilon}} . \tag{3}
\end{equation*}
$$

Note also that the eigenvalues are bounded by $1+\max \{|a|,|b|\}+\sum_{i=1}^{r}\left|\theta_{i}\right|$ for n large enough and take M greater than this constant. Since f does not vanish on S_{δ}^{c}, we conclude that f_{n} does not vanish either on S_{δ}^{c} and therefore that the extreme eigenvalues of $\widetilde{X_{n}}$ belong to S_{δ} with overwhelming probability.
The orthonormalized model can be treated similarly, by writing $U_{n}=W^{n} G_{n}$ with $\sqrt{n} W^{n}$ a matrix converging to identity with overwhelming probability by Proposition 6.3,

3. Fluctuations of the eigenvalues away from the bulk

Let p_{+}be the number of i 's such that $\rho_{\theta_{i}}>b$ and p_{-}be the number of i 's such that $\rho_{\theta_{i}}<a$. In this section we study the fluctuations of the eigenvalues of $\widetilde{X_{n}}$ with limit out of the bulk, that is $\left(\widetilde{\lambda}_{1}^{n}, \ldots, \widetilde{\lambda}_{p-}^{n}, \widetilde{\lambda}_{n-p_{+}}^{n}, \ldots, \widetilde{\lambda}_{n}^{n}\right)$. We shall assume throughout this section that the spectral measure of X_{n} converges to μ_{X} faster than $1 / \sqrt{n}$. More precisely,
Hypothesis 3.1. For all $z \in\left\{\rho_{\alpha_{1}}, \ldots, \rho_{\alpha_{q}}\right\}, \sqrt{n}\left(G_{\mu_{n}}(z)-G_{\mu_{X}}(z)\right)$ converges to 0 .
Our theorem concerns the limiting joint distribution of the following random variables

$$
\begin{aligned}
\gamma_{i}^{n} & =\sqrt{n}\left(\widetilde{\lambda}_{i}^{n}-\rho_{\theta_{i}}\right) \quad \text { if } i \leq p_{-} \\
\gamma_{p_{-}+i}^{n} & =\sqrt{n}\left(\widetilde{\lambda}_{n-r+i}^{n}-\rho_{\theta_{i}}\right) \quad \text { if } r-p_{+} \leq i \leq r .
\end{aligned}
$$

Let us recall that for $k \geq 1, \operatorname{GOE}(k)$ (resp. $\operatorname{GUE}(k))$ is the distribution of a $k \times k$ symmetric (resp. Hermitian) random matrix $\left[g_{i, j}\right]_{i, j=1}^{k}$ such that the random variables $\left\{\frac{1}{\sqrt{2}} g_{i, i} ; 1 \leq i \leq k\right\} \cup\left\{g_{i, j} ; 1 \leq i<j \leq k\right\}$ (resp. $\left\{g_{i, i} ; 1 \leq i \leq k\right\} \cup\left\{\sqrt{2} \Re\left(g_{i, j}\right) ; 1 \leq\right.$ $\left.i<j \leq k\} \cup\left\{\sqrt{2} \Im\left(g_{i, j}\right) ; 1 \leq i<j \leq k\right\}\right)$ are independent standard Gaussian random
variables.

The limiting behaviour of the eigenvalues with limit outside the bulk will depend on the law ν through the following quantity. Let us define the fourth cumulant of ν

$$
\kappa_{4}(\nu):= \begin{cases}\int x^{4} \mathrm{~d} \nu(x)-3 & \text { in the real case } \\ \int|z|^{4} \mathrm{~d} \nu(z)-2 & \text { in the complex case. }\end{cases}
$$

Note that if ν is Gaussian standard, then $\kappa_{4}(\nu)=0$.

We recall that the α_{j} 's and the k_{j} 's have been defined in Theorem 1.4
Theorem 3.2. Suppose that Assumption 1.2 holds with $\kappa_{4}(\nu)=0$, as well as Hypotheses 1.1 and 3.1. Then the law of

$$
\left(\gamma_{\sum_{\ell=1}^{i-1} k_{\ell}+i}^{n}, 1 \leq i \leq k_{j}\right)_{1 \leq j \leq q}
$$

converges to the law of the eigenvalues of $\left(c_{j} M_{j}\right)_{1 \leq j \leq q}$ with M_{j} being independent matrices M_{j} following the law of a $k_{j} \times k_{j}$ matrix from the GUE (resp. the GOE) if ν is supported on the complex plane (resp. the real line). The constant c_{j} is given by

$$
c_{j}^{2}= \begin{cases}\frac{1}{\int\left(\rho_{\alpha_{j}}-x\right)^{-2} \mathrm{~d} \mu_{X}(x)} & \text { in the i.i.d. model, } \tag{4}\\ \frac{\int \frac{\mathrm{d} \mu_{X}(x)}{\left(\rho \alpha_{j}-x\right)^{2}}-\frac{1}{\alpha_{j}^{2}}}{\left(\int\left(\rho_{\alpha_{j}}-x\right)^{-2} \mathrm{~d} \mu_{X}(x)\right)^{2}} & \text { in the orthonormalized model. }\end{cases}
$$

When $\kappa_{4}(\nu) \neq 0$, we need a bit more than Hypothesis 3.1. namely
Hypothesis 3.3. For all $z \in \mathbb{R} \backslash[a, b]$, there is a finite number $l(z)$ such that
$\begin{cases}\frac{1}{n} \sum_{i=1}^{n}\left(\left(z-X_{n}\right)^{-1}\right)_{i, i}^{2} \underset{n \rightarrow \infty}{\longrightarrow} l(z) & \text { in the i.i.d. model, } \\ \frac{1}{n} \sum_{i=1}^{n}\left(\left(\left(z-X_{n}\right)^{-1}\right)_{i, i}-\frac{1}{n} \operatorname{Tr}\left(\left(z-X_{n}\right)^{-1}\right)\right)^{2} \underset{n \rightarrow \infty}{\longrightarrow} l(z) & \text { in the orthonormalized model. }\end{cases}$
We then have a similar result.
Theorem 3.4. In the case when Assumption 1.2 holds with $\kappa_{4}(\nu) \neq 0$, under Hypotheses 1.1, 3.1 and 3.3. Theorem 3.2 stays true, replacing the matrices $c_{j} M_{j}$ by matrices $c_{j} M_{j}+$ D_{j} where the D_{j} 's are independent diagonal random matrices, independent of the M_{j} 's, and such that for all j, the diagonal entries of D_{j} are independent centred real Gaussian random variables, with variance $-l\left(\rho_{\alpha_{j}}\right) \kappa_{4}(\nu) / G_{\mu_{X}}^{\prime}\left(\rho_{\alpha_{j}}\right)$.

Let us prove Theorems 3.2 and 3.4. For any real numbers $x_{1}(i)<y_{1}(i)<x_{2}(i)<$ $y_{2}(i)<\cdots<y_{k_{i}}(i), 1 \leq i \leq q$, since, by Theorem 1.3, for all $\varepsilon>0$, for n large enough, f_{n} vanishes exactly at $p_{-}+p_{+}$points in $\mathbb{R} \backslash(a-\varepsilon, b+\varepsilon)$, we have that

$$
\begin{gathered}
{\left[x_{\ell}(i)<\gamma_{\sum_{m=1}^{i-1} k_{m}+\ell}^{n}<y_{\ell}(i), \quad \forall \ell=1, \ldots, k_{i}, \quad \forall i=1, \ldots q\right]} \\
{[\forall i=1, \ldots, q,} \\
\left.f_{n}\left(\rho_{\alpha_{i}}+\frac{y_{1}(i)}{\sqrt{n}}\right) f_{n}\left(\rho_{\alpha_{i}}+\frac{x_{1}(i)}{\sqrt{n}}\right)<0, \ldots, f_{n}\left(\rho_{\alpha_{i}}+\frac{y_{k_{i}}(i)}{\sqrt{n}}\right) f_{n}\left(\rho_{\alpha_{i}}+\frac{x_{k_{i}}(i)}{\sqrt{n}}\right)<0\right] .
\end{gathered}
$$

Therefore, to study the asymptotics of the joint law of the γ_{i}^{n} 's, we have to understand those of the $f_{n}\left(\rho_{\alpha_{i}}+\frac{x}{\sqrt{n}}\right)$'s. They are given by the following

Lemma 3.5. Under the hypotheses of Theorem 3.2. each finite dimensional marginal of the random process

$$
\left(\frac{n^{\frac{k_{i}}{2}}}{G_{\mu_{X}}^{\prime}\left(\rho_{\alpha_{i}}\right)^{k_{i}}} \operatorname{det}\left(\left[G_{s, t}^{n}\left(\rho_{\alpha_{i}}+\frac{x}{\sqrt{n}}\right)\right]_{s, t \in I_{i}}-\frac{1}{\alpha_{i}} I\right) \prod_{\substack{1 \leq s \leq r \\ s \notin I_{i}}}\left(G_{s, s}^{n}\left(\rho_{\alpha_{i}}+\frac{x}{\sqrt{n}}\right)-\frac{1}{\theta_{s}}\right)\right)_{1 \leq i \leq q, x \in \mathbb{R}}
$$

converges weakly to the corresponding marginal of

$$
\left(\operatorname{det}\left[x I-c_{\alpha_{i}} M_{\alpha_{i}}\right] \prod_{\substack{1 \leq s \leq r \\ s \notin \bar{I}_{i}}} \frac{\theta_{s}-\alpha_{i}}{\alpha_{i} \theta_{s}}\right)_{1 \leq i \leq q, x \in \mathbb{R}}
$$

Theorem 3.2 is then a direct consequence of the following lemma, which shows that the first order of f_{n} around some $\rho_{\alpha_{i}}$ is dominated by the convergence stated in Lemma 3.5, so that it changes sign at the eigenvalues of $c_{\alpha_{i}} M_{\alpha_{i}}$. We define in the sequel $\rho_{n}^{i}(x):=\rho_{\alpha_{i}}+\frac{x}{\sqrt{n}}$.
Lemma 3.6. Let us fix $i \in\{1, \ldots, q\}$. The following convergence in probability holds uniformly as x varies in any compact subset of \mathbb{R} :

$$
n^{\frac{k_{i}}{2}}\left(f_{n}\left(\rho_{n}^{i}(x)\right)-\operatorname{det}\left(\left[G_{s, t}^{n}\left(\rho_{n}^{i}(x)\right)\right]_{s, t \in I_{i}}-\frac{1}{\alpha_{i}} I\right) \prod_{\substack{1 \leq s \leq r \\ s \notin I_{i}}}\left(G_{s, s}^{n}\left(\rho_{n}^{i}(x)\right)-\frac{1}{\theta_{s}}\right)\right) \underset{n \rightarrow \infty}{\longrightarrow} 0 .
$$

Proof of Lemma 3.5. By (2), we have the almost sure convergence (for each i and x)

$$
\prod_{\substack{1 \leq s \leq r \\ s \notin I_{i}}}\left(G_{s, s}^{n}\left(\rho_{\alpha_{i}}+\frac{x}{\sqrt{n}}\right)-\frac{1}{\theta_{s}}\right) \underset{n \rightarrow \infty}{\longrightarrow} \prod_{\substack{1 \leq s \leq r \\ s \notin \bar{I}_{i}}} \frac{\theta_{s}-\alpha_{i}}{\alpha_{i} \theta_{s}} .
$$

We shall only treat the i.i.d. model (the orthonormalized one can be treated in the same way). This proof is based on a Central Limit Theorem for quadratic forms that we detail in the Appendix. Indeed, we need to give the joint limit distribution, as n goes to infinity, of

$$
M_{s, t}^{n}(i, x):=\sqrt{n}\left(G_{s, t}^{n}\left(\rho_{n}^{i}(x)\right)-\frac{1}{\alpha_{i}} \mathbb{1}_{s=t}\right)=: M_{s, t}^{n, 1}(i, x)+M_{s, t}^{n, 2}(i, x)+M_{s, t}^{n, 3}(i, x)
$$

where

$$
\begin{aligned}
M_{s, t}^{n, 1}(i, x) & :=\sqrt{n}\left(\left\langle u_{s}^{n},\left(\rho_{n}^{i}(x)-X_{n}\right)^{-1} u_{t}^{n}\right\rangle-\mathbb{1}_{s=t} \frac{1}{n} \operatorname{Tr}\left(\left(\rho_{n}^{i}(x)-X_{n}\right)^{-1}\right)\right), \\
M_{s, t}^{n, 2}(i, x) & :=\mathbb{1}_{s=t} \sqrt{n}\left(G_{\mu_{n}}\left(\rho_{n}^{i}(x)\right)-G_{\mu_{n}}\left(\rho_{\alpha_{i}}\right)\right) \\
M_{s, t}^{n, 3}(i, x) & :=\mathbb{1}_{s=t} \sqrt{n}\left(G_{\mu_{n}}\left(\rho_{\alpha_{i}}\right)-G_{\mu_{X}}\left(\rho_{\alpha_{i}}\right)\right) .
\end{aligned}
$$

By Remark 6.5, $\left(\left(M_{s, t}^{n, 1}(i, x)\right)_{s, t \in I_{i}}\right)_{1 \leq i \leq q, x \in \mathbb{R}}$ converges to a family of Gaussian Wigner matrices $\left(G_{i}(x)\right)_{1 \leq i \leq q, x \in \mathbb{R}}$, where the $G_{i}(0)$'s are independent and for all i, the matrices
$\left(G_{i}(x)\right)_{x \in \mathbb{R}}$ are in fact all equal, with a variance given in Theorem 6.4 which depends on

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \operatorname{Tr}\left(\left(\rho_{n}^{i}(x)-X_{n}\right)^{-2}\right)=-G_{\mu_{X}}^{\prime}\left(\rho_{\alpha_{i}}\right) . \tag{5}
\end{equation*}
$$

Moreover, again because $\rho_{\alpha_{i}}$ is at distance of order one from the support of X_{n}, we can expand x / \sqrt{n} in $M_{s, t}^{n, 2}(i, x)$ to deduce that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} M_{s, t}^{n, 2}(i, x)=x G_{\mu_{X}}^{\prime}\left(\rho_{\alpha_{i}}\right) \mathbb{1}_{s=t} \tag{6}
\end{equation*}
$$

Finally, by hypothesis (H2), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} M_{s, t}^{n, 3}(i, x)=0 \tag{7}
\end{equation*}
$$

(5), (6) and (7) prove the lemma (since $M_{\alpha_{i}}$ has the same law as $-M_{\alpha_{i}}$).

Proof of Lemma 3.6. Note that by the convergence of $M_{s, t}^{n}(i, x)$ obtained in the proof of the previous lemma, we have for all $s, t \in\{1, \ldots, r\}$ such that $s \neq t$ or $s \in I_{i}$, for all $\kappa<1 / 2$,

$$
\begin{equation*}
n^{\kappa}\left(G_{s, t}^{n}\left(\rho_{n}^{i}(x)\right)-\mathbb{1}_{s=t} \frac{1}{\theta_{s}}\right) \underset{n \rightarrow \infty}{\longrightarrow} 0 \quad \text { (convergence in probability). } \tag{8}
\end{equation*}
$$

By the formula

$$
f_{n}\left(\rho_{n}\right)=\sum_{\sigma \in S_{r}} \operatorname{sgn}(\sigma) \prod_{s=1}^{r}\left(G_{s, \sigma(s)}^{n}\left(\rho_{n}^{i}(x)\right)-\mathbb{1}_{s=\sigma(s)} \frac{1}{\theta_{s}}\right)
$$

it suffices to prove that for any $\sigma \in S_{r}$ such that for some $i_{0} \in\{1, \ldots, r\} \backslash I_{i}, \sigma\left(i_{0}\right) \neq i_{0}$,

$$
\begin{equation*}
n^{\frac{k_{i}}{2}} \prod_{s=1}^{r}\left(G_{\mu_{s, \sigma(s)}^{n}}\left(\rho_{n}^{i}(x)\right)-\mathbb{1}_{s=\sigma(s)} \frac{1}{\theta_{s}}\right) \underset{n \rightarrow \infty}{\longrightarrow} 0 \quad \text { (convergence in probability). } \tag{9}
\end{equation*}
$$

It follows immediately from (8) since for any $\kappa<1 / 2$, in the above product, all the terms with index in I_{i} are of order at most $n^{-\kappa}$, giving a contribution $n^{-k_{i} \kappa}$, and i_{0} is not in I_{i} and satisfies $\sigma\left(i_{0}\right) \neq i_{0}$, yielding another term of order at most $n^{-\kappa}$. Hence, the other terms being bounded because ρ_{n} stays bounded away from $[a, b]$, the above product is at most of order $n^{-\kappa\left(k_{i}+1\right)}$ and so taking $\kappa \in\left(\frac{k_{i}}{2\left(k_{i}+1\right)}, \frac{1}{2}\right)$ proves (9).

Remark 3.7 (Gelfand-Telstin pattern). Let us fix $\theta<\underline{\theta}$ and let the rank of the deformation increase in the following way: we define

$$
\begin{aligned}
\gamma_{i}^{n}(1) & :=\sqrt{n}\left(\lambda_{i}\left(X_{n}+\theta u_{1}^{n} u_{1}^{n^{*}}\right)-\rho_{\theta}\right) \quad(1 \leq i \leq n) \\
\gamma_{i}^{n}(2) & :=\sqrt{n}\left(\lambda_{i}\left(X_{n}+\theta u_{1}^{n} u_{1}^{n^{*}}+\theta u_{2}^{n} u_{2}^{n^{*}}\right)-\rho_{\theta}\right) \quad(1 \leq i \leq n) \\
\gamma_{i}^{n}(3) & :=\sqrt{n}\left(\lambda_{i}\left(X_{n}+\theta u_{1}^{n} u_{1}^{n^{*}}+\theta u_{2}^{n} u_{2}^{n^{*}}+\theta u_{3}^{n} u_{3}^{n^{*}}\right)-\rho_{\theta}\right) \quad(1 \leq i \leq n)
\end{aligned}
$$

One can easily adapt our proofs to prove the following: under Hypotheses 1.1 and 3.1, if $\kappa_{4}(\nu)=0$, the finite dimensional marginals of the process

$$
\gamma_{1}^{n}(3) \begin{array}{lll}
& \gamma_{1}^{n}(2) & \gamma_{1}^{n}(1) \\
\gamma_{2}^{n}(3) & \gamma_{2}^{n}(2) & \\
\gamma_{3}^{n}(3)
\end{array}
$$

converge to the ones of the eigenvalues of the principal minors of $c M$, where M is an infinite GUE (resp. GOE) matrix and the constant c is defined by (4).

4. The sticking eigenvalues

To study the fluctuations of the eigenvalues which stick to the bulk, we need a more precise information on the eigenvalues of X_{n} in the vicinity of their extremes. More precisely, we shall need the following additional hypothesis, which depends on a positive integer p and a real number $\alpha \in(0,1)$.
Hypothesis 4.1. $[\mathbf{p}, \alpha]$ There exists a sequence m_{n} of positive integers tending to infinity such that $m_{n}=O\left(n^{\alpha}\right), \eta_{2}>0$ and $\eta_{4}>0$, so that for any $\delta>0$, for n large enough

$$
\begin{align*}
\sum_{i=m_{n}+1}^{n} \frac{1}{\left(\lambda_{p}^{n}-\lambda_{i}^{n}\right)^{2}} & \leq n^{2-\eta_{2}}, \tag{10}\\
& \sum_{i=m_{n}+1}^{n} \frac{1}{\left(\lambda_{p}^{n}-\lambda_{i}^{n}\right)^{4}} \tag{11}
\end{align*} \leq n^{4-\eta_{4}}, ~=\frac{1}{n} \sum_{i=m_{n}+1}^{n} \frac{1}{\lambda_{p}^{n}-\lambda_{i}^{n}} \geq \frac{1}{\underline{\theta}}-\delta .
$$

(respectively we replace $\lambda_{p}^{n}-\lambda_{i}^{n}, m_{n}+1 \leq i \leq n$, by $\lambda_{n-p+1}^{n}-\lambda_{n-i+1}^{n}, m_{n}+1 \leq i \leq n$ and the last inequality becomes

$$
\left.\frac{1}{n} \sum_{i=m_{n}+1}^{n} \frac{1}{\lambda_{n-p+1}^{n}-\lambda_{n-i+1}^{n}} \leq \frac{1}{\bar{\theta}}+\delta\right)
$$

Moreover, we shall not study the critical case where for some $i, \theta_{i} \in\{\underline{\theta}, \bar{\theta}\}$.
Assumption 4.2. For all $i, \theta_{i} \neq \underline{\theta}$ (respectively for all i, $\theta_{i} \neq \bar{\theta}$).
The fact that the eigenvalues of the non-perturbed matrix are sufficiently spread at the edges to insure the above hypothesis allow the eigenvalues of the perturbed matrix to be very close to them.
Theorem 4.3. Let $I_{a}=\left\{i \in[1, r]: \rho_{\theta_{i}}=a\right\}=\left[p_{-}+1, r_{0}\right]$ (resp. $I_{b}=\{i \in[1, r]$: $\left.\rho_{\theta_{i}}=b\right\}=\left[r_{0}+1, r-p_{+}\right]$) be the set of indices corresponding to the eigenvalues $\widetilde{\lambda}_{i}$ (resp. $\widetilde{\lambda}_{n-r+i}$) converging to the lower (resp. upper) bound of the support of μ_{X}. Let us suppose Hypothesis 1.1, Hypothesis [4.1] r, a] and Assumptions 1.2 and 4.2 to hold. Then for any $\alpha^{\prime}>\alpha$, we have, for all $i \in \overline{I_{a}}$ (resp. $i \in I_{b}$),

$$
\begin{gathered}
\min _{1 \leq k \leq i+r-r_{0}}\left|\widetilde{\lambda}_{i}^{n}-\lambda_{k}^{n}\right| \leq n^{-1+\alpha^{\prime}} \\
\text { (resp. } \left.\min _{n-r+i-r_{0} \leq k \leq n}\left|\widetilde{\lambda}_{n-r+i}^{n}-\lambda_{n}^{n}\right| \leq n^{-1+\alpha^{\prime}}\right)
\end{gathered}
$$

with overwhelming probability.
Moreover, in the case where the perturbation has rank one, we can locate exactly in the neighbourhood of which eigenvalues of the non-perturbed matrix the eigenvalues of the perturbed matrix lie.

We state hereafter the result for the smallest eigenvalues, but of course a similar statement holds for the largest.
Theorem 4.4. Let $\left(\widetilde{\lambda}_{i}^{n}\right)_{i \geq 1}$ be the eigenvalues of $X_{n}+\theta u_{1} u_{1}^{*}$. Then, under Assumption 1.2 and Hypothesis 1.1. if Hypothesis 4.1 [p, α] holds for some $\alpha \in(0,1)$ and a positive integer p, then for any $\alpha^{\prime}>\alpha$, we have

- If $\theta<\underline{\theta}, \widetilde{\lambda}_{1}^{n}$ converges to $\rho_{\theta}<a$ whereas $n^{1-\alpha^{\prime}}\left(\widetilde{\lambda}_{i+1}^{n}-\lambda_{i}^{n}\right)_{1 \leq i \leq p-1}$ vanishes in probability as n goes to infinity,
- If $\theta \in(\underline{\theta}, 0), n^{1-\alpha^{\prime}}\left(\widetilde{\lambda}_{i}^{n}-\lambda_{i}^{n}\right)_{1 \leq i \leq p}$ vanishes in probability as n goes to infinity.

Note moreover that in the one dimensional case, we do not need (11) to hold (as it is used to neglect the off diagonal terms $\left.\left(G_{i j}^{n}(z), 1 \leq i<j \leq r\right)\right)$. At least in the i.i.d model, this is enough to precisely localise the eigenvalues which stick to the bulk, and precise Theorem 4.3.

Corollary 4.5. Consider the i.i.d model and let $\left(\widetilde{\lambda}_{i}^{n}\right)_{i \geq 1}$ be the eigenvalues of $X_{n}+$ $\sum_{i=1}^{r} \theta_{i} u_{i} u_{i}^{*}$. We assume Assumptions 1.2 and 4.2, Hypothesis 1.1, that Hypothesis 4.1 $[p, \alpha]$ (at both extremes) holds for some $\alpha \in(0,1)$ and a positive integer p, and that for some $\alpha^{\prime}>\alpha$,

$$
\lim _{n \rightarrow \infty} n^{1-\alpha^{\prime}} \max _{1 \leq i \leq p}\left|\lambda_{i}^{n}-\lambda_{i+1}^{n}\right|=+\infty
$$

Then, with p_{-}(resp. p_{+}) the number of indices i so that $\rho_{\theta_{i}}<a$ (resp. $\rho_{\theta_{i}}>b$), for all finite integer $i \leq p-\left(p_{-}+p_{+}\right)$,

$$
n^{1-\alpha^{\prime}}\left(\widetilde{\lambda}_{p_{-}+i}^{n}-\lambda_{p_{+}+i}^{n}\right) \quad \text { and } \quad n^{1-\alpha^{\prime}}\left(\widetilde{\lambda}_{n-p_{+}-i}^{n}-\lambda_{n-p_{-}-i}^{n}\right)
$$

both vanish in probability as n goes to infinity.
Let us first prove Theorem 4.3. Let us choose $i_{0} \in I_{a}$ and study the behaviour of $\widetilde{\lambda}_{i_{0}}^{n}$ (the case of the largest eigenvalues can be treated similarly). We assume throughout the section that Hypotheses [1.1, 4.1 $[\mathrm{r}, \alpha]$ and Assumptions 1.2 and 4.2 are satisfied.

We know, by Lemma 6.1, that the eigenvalues of $\widetilde{X_{n}}$ which are not eigenvalues of X_{n} are the z 's such that

$$
\begin{equation*}
\text { the matrix } M_{n}(z):=\left[G_{i, j}^{n}(z)\right]_{i, j=1}^{r}-\operatorname{diag}\left(\theta_{1}^{-1}, \ldots, \theta_{r}^{-1}\right) \text { is not invertible, } \tag{13}
\end{equation*}
$$

where for all i, j,

$$
G_{i, j}^{n}(z)=\left\langle u_{i}^{n},\left(z-X_{n}\right)^{-1} u_{j}^{n}\right\rangle .
$$

Recall that by Weyl's interlacing inequalities,

$$
\tilde{\lambda}_{i_{0}}^{n} \leq \lambda_{i_{0}+r-r_{0}}^{n} .
$$

Let ζ be a fixed constant such that $\max _{1 \leq i \leq p_{-}} \rho_{\theta_{i}}<\zeta<a$. By Lemma 2.1, we know that
Lemma 4.6. With overwhelming probability, $\widetilde{\lambda}_{i_{0}}^{n}>\zeta$.
We want to show that (13) is not possible on

$$
\Omega_{n}:=\left\{z \in\left[\zeta, \lambda_{i_{0}+r-r_{0}}^{n}\right] ; \min _{1 \leq k \leq i_{0}+r-r_{0}}\left|z-\lambda_{k}^{n}\right|>n^{-1+\alpha^{\prime}}\right\} .
$$

The following lemma deals with the asymptotic behaviour of the off-diagonal terms of the matrix $M_{n}(z)$ of (13).

Lemma 4.7. For $i \neq j$ and $\kappa>0$ small enough,

$$
\sup _{z \in \Omega_{n}}\left|G_{i, j}^{n}(z)\right| \leq n^{-\kappa}
$$

with overwhelming probability.
The following lemma deals with the asymptotic behaviour of the diagonal terms of the matrix of (13).

Lemma 4.8. For any $\delta>0$,

$$
\inf _{z \in \Omega_{n}} \min _{1 \leq i \leq r} G_{i, i}^{n}(z) \geq \frac{1}{\underline{\theta}}-\delta
$$

with overwhelming probability, and there exists a finite M so that

$$
\begin{equation*}
\sup _{z \in \Omega_{n}}\left|G_{i, i}^{n}(z)\right| \leq M \tag{14}
\end{equation*}
$$

with overwhelming probability.
Let us assume these lemmas proven for a while and complete the proof of Theorem 4.3. By these two lemmas, for $z \in \Omega_{n}$, we find by expanding the determinant that

$$
\operatorname{det}\left(M_{n}(z)\right)=\prod_{i=1}^{r}\left(G_{i, i}^{n}(z)-\frac{1}{\theta_{i}}\right)+O\left(n^{-\kappa}\right) .
$$

But for all $i \in I_{a}$, by Lemma 4.8,

$$
G_{i, i}^{n}(z)-\frac{1}{\theta_{i}} \geq \frac{1}{\underline{\theta}}-\frac{1}{\theta_{i}}-\delta
$$

is bounded from bellow by a positive constant if δ is chosen small enough because we have $\underline{\theta}<\theta_{i}<0$.

Moreover, for $z \in \Omega_{n}, z \geq \zeta$, thus for all $i \notin I_{a}, G_{i, i}^{n}(z)-\frac{1}{\theta_{i}} \leq G_{i, i}^{n}(\zeta)-\frac{1}{\theta_{i}}$, which, with overwhelming probability, is bounded from above by a negative constant, by definition of ζ and by Proposition 6.2.

We conclude that $\operatorname{det}\left(M_{n}(z)\right), z \in \Omega_{n}$, is bounded away from zero, and hence $\widetilde{\lambda}_{i_{0}} \notin \Omega_{n}$, by (13), with overwhelming probability. It completes the proof of the theorem.

We finally prove the two last lemmas.
Proof of Lemma 4.7. We first prove this estimate for a fixed $z \in \Omega_{n}$. Moreover, we treat simultaneously the orthonormalized model and the i.i.d. model (in the i.i.d model, one just takes $W^{n}=I$ and replace $\left\|\left(G^{n}\left(W^{n}\right)^{T}\right)_{i}\right\|_{2}$ by \sqrt{n} in the proof below). Observe that if we write $X_{n}=O^{*} D_{n} O$ with $D_{n}=\left(\lambda_{1}^{n}, \ldots, \lambda_{n}^{n}\right)$ and O a unitary or orthogonal matrix,

$$
\begin{aligned}
G_{i, j}^{n}(z) & =\left\langle u_{i}^{n},\left(z-X_{n}\right)^{-1} u_{j}^{n}\right\rangle \\
& =\sum_{l=1}^{n} \frac{\left(O u_{i}^{n}\right)_{l} \overline{\left(O u_{j}^{n}\right)_{l}}}{z-\lambda_{l}^{n}}
\end{aligned}
$$

The first step is to show that for any $\epsilon>0$, with overwhelming probability,

$$
\begin{equation*}
\max _{l, i \in\{1, \ldots, n\}}\left|\left(O u_{i}^{n}\right)_{l}\right| \leq n^{-\frac{1}{2}+\epsilon} . \tag{15}
\end{equation*}
$$

Indeed, with O_{l} the l th row vector of O and using the notations of Section 6.2,

$$
\left(O u_{i}^{n}\right)_{l}=\left\langle O_{l}, u_{i}^{n}\right\rangle=\frac{1}{\left\|\left(G^{n}\left(W^{n}\right)^{T}\right)_{i}\right\|_{2}} \sum_{j=1}^{r} W_{i, j}^{n}\left\langle O_{l}, g_{j}^{n}\right\rangle .
$$

But $g \rightarrow\left\langle O_{l}, g_{i}^{n}\right\rangle$ is Lipschitz for the Euclidean norm with constant one. Hence, by concentration inequality due to the log-Sobolev hypothesis (see e.g. [1, section 4.4]), there exists $c>0$ such that for all $\delta>0$,

$$
\mathbb{P}\left(\left|\left\langle O_{l}, g_{i}^{n}\right\rangle\right|>\delta\right) \leq 4 e^{-c \delta^{2}}
$$

so that

$$
\mathbb{P}\left(\max _{l, i \in\{1, \ldots, n\}}\left|\left\langle O_{l}, g_{i}^{n}\right\rangle\right| \geq n^{\epsilon}\right) \leq 4 n^{4} e^{-c n^{2 \epsilon}}
$$

From Proposition 6.3, we know that with overwhelming probability, $\left\|\left(G^{n}\left(W^{n}\right)^{T}\right)_{i}\right\|_{2}$ is bounded below by $\sqrt{n} n^{-\epsilon}$ and the entries of W^{n} are of order one. This gives therefore (15).

We now make the following decomposition

$$
G_{i, j}^{n}(z)=\underbrace{\sum_{l=1}^{m_{n}} \frac{\overline{\left(O u_{i}^{n}\right)_{l}}\left(O u_{j}^{n}\right)_{l}}{z-\lambda_{l}^{n}}}_{:=A_{n}(z)}+\underbrace{\sum_{l=m_{n}+1}^{n} \frac{\overline{\left(O u_{i}^{n}\right)_{l}}\left(O u_{j}^{n}\right)_{l}}{z-\lambda_{l}^{n}}}_{:=B_{n}(z)} .
$$

Note that as $\left|\left(O u_{i}^{n}\right)_{l}\right|, 1 \leq l \leq m_{n}$, are smaller than $n^{-\frac{1}{2}+\epsilon^{\prime}}$ by (15), for any $\epsilon^{\prime}>0$, with overwhelming probability, we have, uniformly on $z \in \Omega_{n}$,

$$
\left|A_{n}(z)\right| \leq m_{n} n^{1-\alpha^{\prime}} n^{-1+2 \epsilon^{\prime}}=O\left(n^{\alpha-\alpha^{\prime}+2 \epsilon^{\prime}}\right)
$$

We choose $0<\epsilon^{\prime} \leq\left(\alpha^{\prime}-\alpha\right) / 4$ and now study $B_{n}(z)$ which can be written

$$
B_{n}(z)=\left\langle u_{i}^{n}, P\left(z-X_{n}\right)^{-1} P u_{j}^{n}\right\rangle
$$

with P the orthogonal projection onto the eigenvectors of X_{n} corresponding to the eigenvalues $\left(\lambda_{m_{n}+1}^{n}, \ldots, \lambda_{n}^{n}\right)$. By the second point in Proposition [6.2, with $z \in \Omega_{n}$, for all $s \neq t$,

$$
\begin{aligned}
\mathbb{P}\left(\left|\left\langle g_{s}^{n}, P\left(z-X_{n}\right)^{-1} P g_{t}^{n}\right\rangle\right| \geq \delta \sqrt{\operatorname{Tr}\left(P\left(z-X_{n}\right)^{-2}\right)+\kappa \sqrt{\operatorname{Tr}\left(P\left(z-X_{n}\right)^{-4}\right)}}\right) \\
\leq 4 e^{-c \delta}+4 e^{-c \min \left(\kappa, \kappa^{2}\right)}
\end{aligned}
$$

Moreover, by Hypothesis 4.1, for n large enough, for all $z \in \Omega_{n}$,

$$
\operatorname{Tr}\left(P\left(z-X_{n}\right)^{-2}\right) \leq n^{2-\eta_{2}} \text { and } \operatorname{Tr}\left(P\left(z-X_{n}\right)^{-4}\right) \leq n^{4-\eta_{4}}
$$

We deduce that there is $C, \eta>0$ such that for all $z \in \Omega_{n}$,

$$
\begin{equation*}
\mathbb{P}\left(\left|\frac{1}{n}\left\langle g_{s}^{n}, P\left(z-X_{n}\right)^{-1} P g_{t}^{n}\right\rangle\right|>n^{-\frac{\eta_{2} \wedge \eta_{4}}{8}}\right) \leq C e^{-n^{\eta}} \tag{16}
\end{equation*}
$$

A similar control is verified for $s=t$ since we have, by Proposition 6.2,

$$
\begin{equation*}
\mathbb{P}\left(\left|\frac{1}{n}\left\langle g_{i}, P\left(z-X_{n}\right)^{-1} P g_{i}\right\rangle-\frac{1}{n} \operatorname{Tr}\left(P\left(z-X_{n}\right)^{-1}\right)\right| \geq \delta\right) \leq 4 e^{-c \delta^{2} n^{\eta_{2}}} \tag{17}
\end{equation*}
$$

whereas Hypothesis 4.1 insures that the term $\frac{1}{n} \operatorname{Tr}\left(P\left(z-X_{n}\right)^{-1}\right)$ is bounded uniformly on Ω_{n}. Thus, up to a change of the constants C and η, there is a constant M such that for all $z \in \Omega_{n}$,

$$
\mathbb{P}\left(\left|\frac{1}{n}\left\langle g_{i}, P\left(z-X_{n}\right)^{-1} P g_{i}\right\rangle\right| \geq M\right) \leq C e^{-n^{\eta}}
$$

Therefore, with Proposition 6.3 and developing the vectors u_{i}^{n} 's as the normalised column vectors of $G^{n}\left(W^{n}\right)^{T}$, we conclude that, up to a change of the constants C and η, for all $z \in \Omega_{n}$,

$$
\begin{equation*}
\mathbb{P}\left(\left|B_{n}(z)\right| \geq n^{-\frac{\eta_{2} \wedge n_{4}}{8}}\right) \leq C e^{-n^{\eta}} \tag{18}
\end{equation*}
$$

Hence, we have proved that there exists $\kappa>0, C$ and $\eta>0$ so that for all $z \in \Omega_{n}$,

$$
\mathbb{P}\left(\left|G_{i, j}^{n}(z)\right| \geq n^{-\kappa}\right) \leq C e^{-n^{\eta}}
$$

We finally obtain this control uniformly on $z \in \Omega_{n}$ by noticing that $z \rightarrow G_{i, j}^{n}(z)$ is Lipschitz on Ω_{n}, with constant bounded by $\left(\min \left|z-\lambda_{i}\right|\right)^{-2} \leq n^{-2+2 \alpha^{\prime}}$. Thus, if we take a grid $\left(z_{k}^{n}\right)_{0 \leq k \leq c n^{2}}$ of Ω_{n} with mesh $\leq n^{-2+2 \alpha^{\prime}-\kappa}$ (there are about n^{2} such z_{k}^{n} 's) we have

$$
\sup _{z \in \Omega_{n}}\left|G_{i, j}^{n}(z)\right| \leq \max _{1 \leq k \leq c n^{2}}\left|G_{i, j}^{n}\left(z_{k}^{n}\right)\right|+n^{-\kappa} .
$$

Since there are at most $c n^{2}$ such k and n^{2} possible i, j, we conclude that

$$
\mathbb{P}\left(\sup _{z \in \Omega_{n}}\left|G_{i, j}^{n}(z)\right| \geq 2 n^{-\kappa}\right) \leq c^{2} n^{4} C e^{-n^{\eta}}
$$

which completes the proof.
Proof of Lemma 4.8. Again, we first prove the estimate for a fixed $z \in \Omega_{n}$, the uniform estimate on z being obtained by a grid argument as in the previous proof (a key point being that the constants C and η of the definition of overwhelming probability are independent of the choice of $z \in \Omega_{n}$). We write, with P the orthogonal projection on the vector space generated by the eigenvectors of X_{n} with eigenvalues $\left(\lambda_{m_{n}+1}^{n}, \ldots, \lambda_{n}^{n}\right)$,

$$
\begin{aligned}
G_{i, i}^{n}(z) & =\left\langle u_{i}^{n}, P\left(z-X_{n}\right)^{-1} P u_{i}^{n}\right\rangle+\left\langle u_{i}^{n},(1-P)\left(z-X_{n}\right)^{-1}(1-P) u_{i}^{n}\right\rangle \\
& \geq\left\langle u_{i}^{n}, P\left(\lambda_{i_{0}+r-r_{0}}^{n}-X_{n}\right)^{-1} P u_{i}^{n}\right\rangle-n^{1-\alpha^{\prime}}\left\|(1-P) u_{i}^{n}\right\|_{2}^{2},
\end{aligned}
$$

where we used the inequalities $z \leq \lambda_{i_{0}+r-r_{0}}^{n}, P\left(\lambda_{i_{0}+r-r_{0}}^{n}-X_{n}\right) P \leq 0$ and $\left|z-\lambda_{k}^{n}\right|>n^{-1+\alpha^{\prime}}$ for all $1 \leq k \leq m_{n}$. But as in the previous proof, we have
$\left\langle u_{i}^{n}, P\left(\lambda_{i_{0}+r-r_{0}}^{n}-X_{n}\right)^{-1} P u_{i}^{n}\right\rangle=\frac{n}{\left\|\left(G^{n}\left(W^{n}\right)^{T}\right)_{i}\right\|_{2}^{2}} \sum_{j, k=1}^{i} W_{i, k}^{n} \overline{W_{i, j}^{n}} \frac{1}{n}\left\langle g_{j}^{n}, P\left(\lambda_{i_{0}+r-r_{0}}^{n}-X_{n}\right)^{-1} P g_{k}^{n}\right\rangle$
with, by (16), the off diagonal terms $j \neq k$ of order $n^{-\eta_{2} \wedge \eta_{4} / 8}$ with overwhelming probability, whereas the diagonal terms are close to $\frac{1}{n} \operatorname{Tr}\left(P\left(\lambda_{i_{0}+r-r_{0}}^{n}-X_{n}\right)^{-1}\right)$ with overwhelming probability by (17). Hence, we deduce with Proposition 6.3 that for any $\delta>0$,

$$
\left|\left\langle u_{i}^{n}, P\left(\lambda_{i_{0}+r-r_{0}}^{n}-X_{n}\right)^{-1} P u_{i}^{n}\right\rangle-\frac{1}{n} \operatorname{Tr}\left(P\left(\left(\lambda_{i_{0}+r-r_{0}}^{n}-X_{n}\right)^{-1}\right)\right)\right| \leq \delta
$$

with overwhelming probability. Hence, by Hypothesis 4.1, for any $\delta>0$ and n large enough

$$
\begin{equation*}
\left\langle u_{i}^{n}, P\left(\lambda_{i_{0}+r-r_{0}}^{n}-X_{n}\right)^{-1} P u_{i}^{n}\right\rangle \geq \frac{1}{\underline{\theta}}-\delta \tag{19}
\end{equation*}
$$

with overwhelming probability. On the other hand

$$
\left\|(1-P) u_{i}^{n}\right\|_{2}^{2}=\frac{1}{\left\|\left(G^{n}\left(W^{n}\right)^{T}\right)_{i}\right\|_{2}^{2}} \sum_{j, k=1}^{r} W_{i, j}^{n} \overline{W_{i, k}^{n}}\left\langle(1-P) g_{j}^{n},(1-P) g_{k}^{n}\right\rangle
$$

By Proposition 6.3, the denominator is of order n with overwhelming probability, whereas by Proposition 6.2, the numerator is of order $m_{n}+n^{\epsilon} \sqrt{m_{n}}\left(\right.$ since $\left.\operatorname{Tr}(1-P)=m_{n}\right)$ with overwhelming probability. As W^{n} is bounded by Proposition 6.3 we conclude that

$$
\left\|(1-P) u_{i}^{n}\right\|_{2}^{2} \leq 2 \frac{m_{n}}{n}
$$

with overwhelming probability. Putting everything together we have proved that for any $z \in \Omega_{n}$, any $\delta>0$,

$$
G_{i, i}^{n}(z) \geq \frac{1}{\underline{\theta}}-\delta
$$

with overwhelming probability. Finally, we also have

$$
G_{i, i}^{n}(z) \leq\left\langle u_{i}^{n}, P\left(\zeta-X_{n}\right)^{-1} P u_{i}^{n}\right\rangle+n^{1-\alpha^{\prime}}\left\|(1-P) u_{i}^{n}\right\|_{2}^{2}
$$

and we can bound the above right hand side by the same arguments to obtain (14) for a fixed $z \in \Omega_{n}$. We do not detail the grid argument which is similar to what we did in the proof of the previous lemma.
Proof of Theorem 4.4. In the one dimensional case, the eigenvalues of \widetilde{X}_{n} which do not belong to the spectrum of X_{n} are the zeroes of

$$
\begin{equation*}
f_{n}(z)=\frac{1}{n}\left\langle g,\left(z-X_{n}\right)^{-1} g\right\rangle-\varepsilon_{n}(g) \frac{1}{\theta} \tag{20}
\end{equation*}
$$

with $\varepsilon_{n}(g)=1$ or $\|g\|_{2}^{2} / n$ according to the model we are considering. A straightforward study of the function f_{n} tells us that the eigenvalues of \widetilde{X}_{n} are distinct from those of X_{n} as soon as X_{n} has no multiple eigenvalue and

$$
\text { (matrix of the eigenvectors of } \left.X_{n}\right)^{*} \times g
$$

has no null entry, which we can always assume up to modify X_{n} and g so slightly that the fluctuations of the eigenvalues are not affected. We do not detail these arguments but the reader can refer to Lemmas 8.4, 8.5 and 10.4 of [44] for a full proof in the finite rank case.
Therefore, (20) characterises all the eigenvalues of \widetilde{X}_{n}. Moreover, by Weyl's interlacing properties, for $\theta<0$,

$$
\widetilde{\lambda}_{1}^{n}<\lambda_{1}^{n}<\widetilde{\lambda}_{2}^{n}<\lambda_{2}^{n}<\cdots<\widetilde{\lambda}_{n}^{n}<\lambda_{n}^{n} .
$$

Theorems 1.3 and 4.3 thus already settle the study of $\widetilde{\lambda}_{1}^{n}$. We consider $\alpha^{\prime}>\alpha$ and $i \in\{2, \ldots, p\}$ and define

$$
\left.\Lambda_{n}:=\right] \lambda_{i-1}^{n}+\frac{n^{-1+\alpha^{\prime}}}{2}, \lambda_{i}^{n}-\frac{n^{-1+\alpha^{\prime}}}{2}[
$$

Note first that if Λ_{n} is empty, then the eigenvalue of $\widetilde{X_{n}}$ which lies between λ_{i-1}^{n} and λ_{i}^{n} is within $n^{-1+\alpha^{\prime}}$ to both λ_{i-1}^{n} and λ_{i}^{n}, so we have nothing to prove. Now we want to prove that f_{n} does not vanish on Λ_{n} and that according to the sign of $\frac{1}{\theta}-\frac{1}{\underline{\theta}}$, it vanishes on one side or the other of Λ_{n} in $] \lambda_{i-1}^{n}, \lambda_{i}^{n}[$.

The proof of this fact will follow the same lines as the proof of Lemma 4.8 and we recall that P was defined above as the projection onto the eigenspace of the $\left(\lambda_{m_{n}+1}^{n}, \ldots, \lambda_{n}^{n}\right)$. We also denote by $P^{\prime}=1-P$. Then, exactly as for (19), we can show that for all $\delta>0$ and n large enough,

$$
\sup _{z \in\left[\lambda_{1}^{n}, \lambda_{2}^{n}\right]}\left|\frac{1}{n}\left\langle g, P\left(z-X_{n}\right)^{-1} P g\right\rangle-\frac{1}{\underline{\theta}}\right| \leq \delta
$$

with overwhelming probability. Moreover, for any $z \in \Lambda_{n}$, for any $j \in\left[1, m_{n}\right]$, we have

$$
\left|z-\lambda_{j}^{n}\right| \geq \min \left\{z-\lambda_{i-1}^{n}, \lambda_{i}^{n}-z\right\} \geq \frac{n^{-1+\alpha^{\prime}}}{2}
$$

and for any $\epsilon>0$,

$$
\sup _{z \in \Lambda_{n}}\left|\frac{1}{n}\left\langle g, P^{\prime}\left(z-X_{n}\right)^{-1} P^{\prime} g\right\rangle\right| \leq 2 n^{-\alpha^{\prime}}\left\langle g, P^{\prime} g\right\rangle \leq n^{\epsilon} n^{-\alpha^{\prime}} m_{n}
$$

with overwhelming probability. We choose ϵ in such a way that the latter right hand side goes to zero. Therefore, since $P+P^{\prime}=I$, we know that uniformly on Λ_{n},

$$
f_{n}(z)=\frac{1}{\underline{\theta}}-\frac{1}{\theta}+o(1)
$$

with overwhelming probability. Since for all n, f_{n} is decreasing, going to $+\infty$ (resp. $-\infty)$ as z goes to any λ_{i-1}^{n} on the right (resp. λ_{i}^{n} on the left), it follows that according to the sign of $\frac{1}{\underline{\theta}}-\frac{1}{\theta}$, the zero of f_{n} in $] \lambda_{i-1}^{n}, \lambda_{i}^{n}[$ is either in $] \lambda_{i-1}^{n}, \lambda_{i-1}^{n}+n^{-1+\alpha^{\prime}}$ [or in $] \lambda_{i}^{n}-n^{-1+\alpha^{\prime}}, \lambda_{i}^{n}[$.
Proof of Corollary 4.5. We can finally prove Corollary 4.5 by induction. We first add the small perturbations to X_{n}, that is consider $\tilde{X}_{n}^{1}=X_{n}+\theta u u^{*}$ with $\theta \in(\underline{\theta}, \bar{\theta})$. In this setting, Theorem 4.4 shows that the p th extreme eigenvalues are at distance smaller than $n^{-1+\alpha^{\prime}}$ from the eigenvalues of X_{n}. Moreover, by the interlacing properties, for all $p<i$,

$$
0 \leq \frac{1}{\tilde{\lambda}_{i}^{n}-\tilde{\lambda}_{p}^{n}} \leq \frac{1}{\lambda_{i-1}^{n}-\lambda_{p+1}^{n}}
$$

so that if X_{n} verifies Hypothesis 4.1p,$\left.\alpha\right], \tilde{X}_{n}^{1}$ verifies Hypothesis 4.1 $\left.\mathrm{p}-1, \alpha\right]$. Thus, we can proceed with \tilde{X}_{n}^{1} instead of X_{n} and conclude that when we have added all these small perturbations, the resulting matrix have extreme eigenvalues which are at distance smaller than $n^{-1+\alpha^{\prime}}$ from the eigenvalues of X_{n} and it satisfies Hypothesis $\left.4.1 p-r+p_{-}+p_{+}, \alpha\right]$. We next add the big perturbation with positive coefficients, $\tilde{X}_{n}^{r-p_{-} p_{+}+1}=\tilde{X}_{n}^{r-p_{-}-p_{+}}+\theta_{r} u_{r} u_{r}^{*}$. We can apply Theorem 4.4 and conclude that the largest eigenvalues of $\tilde{X}_{n}^{r-p_{-}-p_{+}+1}$ which stick to the bulk are at distance smaller than $n^{-1+\alpha^{\prime}}$ from the largest eigenvalues of X_{n}. Moreover, the same argument as before shows that the same is true for the smallest eigenvalues except the smallest eigenvalue of $\tilde{X}_{n}^{r-p_{-}-p_{+}+1}$ sticks to the second smallest eigenvalue of X_{n}, etc. Again, we check that Hypothesis $\left.4.1 p-r+p_{-}+p_{+}-1, \alpha\right]$ is satisfied. We then can continue to add the p_{+}th positive perturbation, giving a matrix $\tilde{X}_{n}^{r-p_{-}}$with p_{+}eigenvalues away from the bulk, the i th (resp. $n-i-p_{+}$th) eigenvalue of $\tilde{X}_{n}^{r-p_{-}}$
being at distance of order $n^{-1+\alpha^{\prime}}$ of the $\left(i+p_{+}\right)$th (resp. $n-i$ th) eigenvalue of X_{n}. We next add the perturbation with negative coefficients. Considering the largest eigenvalues, we see that the new matrix keeps eigenvalues in the small $n^{-1+\alpha^{\prime}}$ neighbourhood of the large isolated non-perturbed matrix, whereas inside the bulk, the first p th eigenvalue inside $\left[\lambda_{n-p}^{n}-c n^{-1+\alpha^{\prime}}, \lambda_{n-p+1}^{n}+c n^{-1+\alpha^{\prime}}\right]$ is close to λ_{n-p}^{n}. For the smallest, one eigenvalue deviates from the bulk whereas the second one is close to $\lambda_{p_{+}}^{n}$. We can then continue by induction to finish the proof of Corollary 4.5.

5. Application to classical models of matrices

Our goal in this section is to show that if X_{n} belongs to some classical ensembles of matrices, the extreme eigenvalues of perturbations of such matrices have their asymptotics obeying to Theorems 1.3, 3.2 and 4.3, For that, a crucial step will be the following statement. If $\left(X_{n}\right)$ is a sequence of random matrices, we say that it satisfies an hypothesis in probability if the probability that X_{n} satisfies this hypothesis converges to one as n goes to infinity.

Theorem 5.1. Let $\left(X_{n}\right)$ be a sequence of random matrices independent of the u_{i}^{n} 's. Under Assumption 1.2.
(1) If Hypothesis 1.1 holds in probability, Theorem 1.3 holds.
(2) If $\kappa_{4}(\nu)=0$ and Hypotheses 1.1 and 3.1 hold in probability, Theorem 3.2 holds. If $\kappa_{4}(\nu) \neq 0$ and Hypotheses 1.1 and 3.3 hold in probability, Theorem 3.4 holds.
(3) Under Assumption 4.2, if Hypotheses 1.1 and 4.1 hold in probability, Theorem 4.3 hold "with probability converging to one" instead of "with overwhelming probability"; Theorems 4.4 and Corollary 4.5 hold.

This result follows from the results with deterministic sequences of matrices X_{n}. Indeed, to prove that a sequence converges to a limit l in a metric space, it suffices to prove that any of its subsequences has a subsequence converging to l. If the convergences of the hypotheses hold in probability, then from any subsequence, one can extract a subsequence for which they hold almost surely. Then up to a conditioning by the σ-algebra generated by the X_{n} 's, the hypotheses of the various theorems hold.

The remaining of this section is devoted to showing that such results hold if X_{n}, independent of $\left(u_{n}^{i}\right)_{1 \leq i \leq r}$, is a Wigner or a Wishart matrix or a random matrix which law has density proportional to $e^{-\operatorname{Tr} V}$ for a certain potential V. In each case, we have to check that the hypotheses hold in probability.
5.1. Wigner matrices. Let μ_{1} be a centred distribution on \mathbb{R} (respectively on \mathbb{C}) and μ_{2} be a centred distribution on \mathbb{R}, both having a finite fourth moment (in the case where μ_{1} is not supported on the real line, we assume that the real and imaginary part are independent). We define $\sigma^{2}=\int_{z \in \mathbb{C}}|z|^{2} \mathrm{~d} \mu_{1}(z)$.

Let $\left(x_{i, j}\right)_{i, j \geq 1}$ be an infinite Hermitian random matrix which entries are independent up to the condition $x_{j, i}=\overline{x_{i, j}}$ such that the $x_{i, i}$'s are distributed according to μ_{2} and the $x_{i, j}$'s $(i \neq j)$ are distributed according to μ_{1}. We take $X_{n}=\frac{1}{\sqrt{n}}\left[x_{i, j}\right]_{i, j=1}^{n}$, which is said
to be a Wigner matrix. For certain results, we will also need an additional hypothesis, which we present here:

Hypothesis 5.2. The probability measures μ_{1} and μ_{2} on \mathbb{R} have a sub-exponential decay, that is there exists positive constants C, C^{\prime} such that if X is distributed according to μ_{1} or μ_{2}, for all $t \geq C^{\prime}$,

$$
\mathbb{P}\left(|X| \geq t^{C}\right) \leq e^{-t}
$$

Moreover, μ_{1} and μ_{2} are symmetric.
The following Proposition generalises some results of [33, 18, 12, 13] which study the effect of a finite rank perturbation on a non-Gaussian Wigner matrix. In particular, it includes the study of the eigenvalues which stick to the bulk.

Proposition 5.3. Let X_{n} be a Wigner matrix. Assume that for all $i, \theta_{i} \notin\{-\sigma, \sigma\}$ and Assumption 1.2 holds. The limits of the extreme eigenvalues of \widetilde{X}_{n} are given by Theorem 1.3 and the fluctuations of the ones which limits are out of $[-2 \sigma, 2 \sigma]$ are given by Theorem 3.2. where the parameters $a, b, \rho_{\theta}, c_{\alpha}$ are given by the following formulas : $b=-a=2 \sigma$,

$$
\rho_{\theta}:= \begin{cases}\theta+\frac{\sigma^{2}}{\theta} & \text { if }|\theta|>\sigma \\ 2 \sigma & \text { if } 0<\theta \leq \sigma, \\ -2 \sigma & \text { if }-\sigma \leq \theta<0\end{cases}
$$

and

$$
c_{\alpha}= \begin{cases}\sqrt{\alpha^{2}-\sigma^{2}} & \text { in the i.i.d. model, } \\ \frac{\sigma \sqrt{\alpha^{2}-\sigma^{2}}}{\alpha} & \text { in the orthonormalized model. }\end{cases}
$$

If, moreover, Hypothesis 5.2 holds, the fluctuations of the first extreme eigenvalues of \widetilde{X}_{n} which sticks to the bulk follow the Tracy-Widom law. If the perturbation has rank one, we have the following precise description : either $|\theta|>\sigma$, which implies that the smallest (resp. largest) eigenvalue deviates from the bulk and that for all p, the pth smallest (resp. largest) eigenvalue fluctuates as the $p-1$ th Tracy Widom law, or $|\theta|<\sigma$ which implies that the smallest (resp. largest) eigenvalue sticks to the bulk and that for all p, the pth smallest (resp. largest) eigenvalue fluctuates as the pth Tracy Widom law.

Remark 5.4. All the Tracy-Widom laws involved in the statement of the Theorem above, are the ones corresponding respectively to the $G O E$ if μ_{1} is supported on \mathbb{R} and to the $G U E$ if μ_{1} is supported on \mathbb{C}.

As explained above, it suffices to verify that the hypotheses hold in probability for $\left(X_{n}\right)_{n \geq 1}$. We study separately the eigenvalues which stick to the bulk and those which deviate from the bulk.

- Deviating eigenvalues.

If X_{n} is a Wigner matrix with entries having a finite fourth moment, Hypothesis 1.1 is a well known result (see for example [4, Th. 5.2]) for μ_{X} the semicircle law with support
[$-2 \sigma, 2 \sigma]$. The formulas for ρ_{θ} and c_{α} can be checked with the well known formula [1, Sect. 2.4]:

$$
\forall z \in \mathbb{R} \backslash[-2 \sigma, 2 \sigma], \quad G_{\mu_{X}}(z)=\frac{z-\operatorname{sgn}(z) \sqrt{z^{2}-4 \sigma^{2}}}{2 \sigma^{2}}
$$

Moreover, [5, Th. 1.1] shows that $\operatorname{Tr}\left(f\left(X_{n}\right)\right)-n \int f(x) d \sigma(x)$ converges in law to a Gaussian distribution for any function f which is analytic in a neighbourhood of $[-2 \sigma, 2 \sigma]$. For any fixed $z \notin[-2 \sigma, 2 \sigma]$, applied for $f(t)=\frac{1}{z-t}$, we get that $n\left(G_{\mu_{n}}(z)-G_{\mu_{X}}(z)\right)$ converges in law to a Gaussian distribution, hence $\sqrt{n}\left(G_{\mu_{n}}(z)-G_{\mu_{X}}(z)\right)$ converges in probability to zero, so that Hypothesis 3.1 holds.

- Sticking Eigenvalues.

We now assume moreover that the law of the entries are symmetric and have a uniform sub-exponential decay. Let us first recall that by [38, 36], the extreme eigenvalues of the non-perturbed matrix X_{n}, once re-centred and renormalised by $n^{2 / 3}$, converge to the Tracy-Widom law (which depends on whether the entries are complex or real). Therefore, it is enough to show that the distance of the extreme sticking eigenvalues to the extreme eigenvalues of X_{n} is negligible with respect to $n^{-2 / 3}$. To this end, we need to verify that Hypothesis 4.1 $\mathrm{p}, \alpha]$ for any finite p and an $\alpha<1 / 3$ is fulfilled with probability converging to one. By [38], the spacing between the two smallest eigenvalues of X_{n} is of order greater than $n^{-\gamma}$ for $\gamma>2 / 3$ with probability going to one and therefore, by the inequality

$$
\sum_{i=m_{n}+1}^{n} \frac{1}{\left(\lambda_{p}^{n}-\lambda_{i}^{n}\right)^{k}} \leq\left(\lambda_{p+1}^{n}-\lambda_{p}^{n}\right)^{k-1} \times \sum_{i=m_{n}+1}^{n} \frac{1}{\lambda_{i}^{n}-\lambda_{p}^{n}}, \quad(k=2 \text { or } 4)
$$

it is sufficient to prove the third point of Hypothesis $4.1 \mathrm{p}, \alpha]$. We shall prove it by replacing first the smallest eigenvalue by the edge -2 due to a lemma that Benjamin Schlein [37] kindly communicated to us. We will then prove that the sum of the inverse of the distance of the eigenvalues to the edge indeed converges to the announced limit, thanks to both Soshnikov paper [38] (for sub-Gaussian tails) or [36] (for finite moments), and Tao and Vu article [39].

Lemma 5.5 (B. Schlein). Suppose the entries of X_{n} have a uniform sub-exponential tail. Then for all $\delta>0$, for all integer number p,

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\left|\frac{1}{n} \sum_{j=p+1}^{n} \frac{1}{\lambda_{j}^{n}-\lambda_{p}^{n}}-\frac{1}{n} \sum_{j=p+1}^{n} \frac{1}{\lambda_{j}^{n}+2}\right| \geq \delta\right)=0 .
$$

Proof. We write

$$
\frac{1}{n} \sum_{j=p+1}^{n} \frac{1}{\lambda_{j}^{n}-\lambda_{p}^{n}}-\frac{1}{n} \sum_{j=p+1}^{n} \frac{1}{\lambda_{j}^{n}+2}=\frac{\lambda_{p}^{n}+2}{n} \sum_{j=p+1}^{n} \frac{1}{\left(\lambda_{j}^{n}-\lambda_{p}^{n}\right)\left(\lambda_{j}^{n}+2\right)} .
$$

Hence for any $K_{1}>0$,

$$
\mathbb{P}\left(\left|\frac{1}{n} \sum_{j=p+1}^{n} \frac{1}{\lambda_{j}^{n}-\lambda_{p}^{n}}-\frac{1}{n} \sum_{j=p+1}^{n} \frac{1}{\lambda_{j}^{n}+2}\right| \geq \delta\right)
$$

$$
\begin{align*}
\leq & \mathbb{P}\left(\left|\lambda_{p}^{n}+2\right| \geq K_{1} n^{-2 / 3}\right) \\
& +\mathbb{P}\left(\frac{K_{1}}{n^{5 / 3}} \sum_{j=p+1}^{n} \frac{1}{\left|\left(\lambda_{j}^{n}-\lambda_{p}^{n}\right)\left(\lambda_{j}^{n}+2\right)\right|} \geq \delta \text { and }\left|\lambda_{p}^{n}+2\right|<K_{1} n^{-2 / 3}\right) . \tag{21}
\end{align*}
$$

Now, for any $K_{2}>K_{1}$, on the event $\left\{\left|\lambda_{p}^{n}+2\right|<K_{1} n^{-2 / 3}\right\}$, for any $\kappa>0$, we have

$$
\begin{align*}
\frac{K_{1}}{n^{5 / 3}} \sum_{j=p+1}^{n} \frac{1}{\left|\left(\lambda_{j}^{n}-\lambda_{p}^{n}\right)\left(\lambda_{j}^{n}+2\right)\right|} \leq & \frac{K_{1}}{n^{5 / 3}} \sum_{\ell=0}^{+\infty} \frac{\mathcal{N}_{n}\left[2 K_{2} n^{-2 / 3}+\ell n^{-\kappa}, 2 K_{2} n^{-2 / 3}+(\ell+1) n^{-\kappa}\right]}{\left(K_{2} n^{-2 / 3}+\ell n^{-\kappa}\right)^{2}} \\
& +\frac{K_{1}}{n^{5 / 3}} \sum_{j=p+1}^{n} \frac{\mathbb{1}_{\lambda_{j}+2 \leq 2 K_{2} n^{-2 / 3}}}{\left|\left(\lambda_{j}^{n}-\lambda_{p}^{n}\right)\left(\lambda_{j}^{n}+2\right)\right|} \tag{22}
\end{align*}
$$

where $\mathcal{N}_{n}[a, b]:=\sharp\left\{i ;-2+a \leq \lambda_{i}^{n} \leq-2+b\right\}$. Note that, from the upper bound on the density of eigenvalues in microscopic intervals, due to [15, Theorem 4.6], we know that for any $\kappa<1$, there is a constant M independent of n so that for all $\ell \geq 1$

$$
\begin{equation*}
\mathbb{E}\left(\mathcal{N}_{n}\left[2 K_{2} n^{-2 / 3}+\ell n^{-\kappa}, 2 K_{2} n^{-2 / 3}+(\ell+1) n^{-\kappa}\right]\right) \leq M n^{1-\kappa} . \tag{23}
\end{equation*}
$$

Let us fix $\kappa \in\left(\frac{2}{3}, 1\right)$. It follows that the first term of the r.h.s. of (22) can be estimated by

$$
\begin{align*}
& \mathbb{P}\left(\frac{K_{1}}{n^{5 / 3}} \sum_{\ell=0}^{+\infty} \frac{\mathcal{N}_{n}\left[2 K_{2} n^{-2 / 3}+\ell n^{-\kappa}, 2 K_{2} n^{-2 / 3}+(\ell+1) n^{-\kappa}\right]}{\left(K_{2} n^{-2 / 3}+\ell n^{-\kappa}\right)^{2}} \geq \frac{\delta}{2}\right) \\
& \leq \frac{2 K_{1}}{\delta n^{5 / 3}} \sum_{\ell=0}^{+\infty} \frac{\mathbb{E}\left(\mathcal{N}_{n}\left[2 K_{2} n^{-2 / 3}+\ell n^{-\kappa}, 2 K_{2} n^{-2 / 3}+(\ell+1) n^{-\kappa}\right]\right)}{\left(K_{2} n^{-2 / 3}+\ell n^{-\kappa}\right)^{2}} \\
& \leq \frac{2 M K_{1}}{\delta n^{2 / 3}} \frac{1}{n^{\kappa}} \sum_{\ell=0}^{+\infty} \frac{1}{\left(K_{2} n^{-2 / 3}+\ell n^{-\kappa}\right)^{2}} \\
& \leq \frac{2 M K_{1}}{\delta n^{2 / 3}} \frac{1}{n^{\kappa}\left(K_{2} n^{-2 / 3}\right)^{2}}+\frac{2 M K_{1}}{\delta n^{\frac{2}{3}}} \int_{0}^{+\infty} \frac{\mathrm{d} t}{\left(t+K_{2} n^{-\frac{2}{3}}\right)^{2}} \\
& \leq \frac{2 M K_{1}}{\delta K_{2}^{2} n^{\kappa-2 / 3}}+\frac{2 M K_{1}}{\delta K_{2}} . \tag{24}
\end{align*}
$$

Let us now estimate the second term of the r.h.s. of (22). For any positive integer K_{3}, we have

$$
\begin{align*}
& \mathbb{P}\left(\frac{K_{1}}{n^{5 / 3}} \sum_{j=p+1}^{n} \frac{\mathbb{1}_{\left|\lambda_{j}^{n}+2\right| \leq 2 K_{2} n^{-2 / 3}}}{\left|\left(\lambda_{j}^{n}-\lambda_{p}^{n}\right)\left(\lambda_{j}^{n}+2\right)\right|} \geq \frac{\delta}{2}\right) \\
& \leq \mathbb{P}\left(\mathcal{N}_{n}\left(-\infty, 2 K_{2} n^{-2 / 3}\right] \geq K_{3}\right)+\mathbb{P}\left(\frac{K_{1} K_{3}}{n^{5 / 3}} \frac{1}{\min _{p+1 \leq j \leq K_{3} \mid}\left|\left(\lambda_{j}^{n}-\lambda_{p}^{n}\right)\left(\lambda_{j}^{n}+2\right)\right|} \geq \frac{\delta}{2}\right) \\
& \leq \mathbb{P}\left(\lambda_{K_{3}}^{n} \leq-2+2 K_{2} n^{-2 / 3}\right)+\mathbb{P}\left(\min _{p \leq j \leq K_{3}}\left|\lambda_{j}^{n}+2\right| \leq \frac{\sqrt{2 K_{1} K_{3}} n^{-5 / 6}}{\sqrt{\delta}}\right) \\
& \quad+\mathbb{P}\left(\left|\lambda_{p}^{n}-\lambda_{p+1}^{n}\right| \leq \frac{\sqrt{2 K_{1} K_{3}} n^{-5 / 6}}{\sqrt{\delta}}\right) \tag{25}
\end{align*}
$$

From (21), (22), (24) and (25), we conclude that

$$
\begin{aligned}
& \mathbb{P}\left(\left|\frac{1}{n} \sum_{j=p+1}^{n} \frac{1}{\lambda_{j}^{n}-\lambda_{1}^{n}}-\frac{1}{n} \sum_{j=p+1}^{n} \frac{1}{\lambda_{j}^{n}+2}\right| \geq \delta\right) \\
& \quad \leq \mathbb{P}\left(\left|\lambda_{1}^{n}+2\right| \geq K_{1} n^{-2 / 3}\right)+\frac{2 M K_{1}}{\delta K_{2}}+\mathbb{P}\left(\lambda_{K_{3}} \leq-2+2 K_{2} n^{-2 / 3}\right) \\
& \quad+\mathbb{P}\left(\min _{1 \leq j \leq K_{3}}\left|\lambda_{j}^{n}+2\right| \leq \frac{\sqrt{2 K_{1} K_{3}} n^{-5 / 6}}{\sqrt{\delta}}\right)+\mathbb{P}\left(\left|\lambda_{2}^{n}-\lambda_{1}^{n}\right| \leq \frac{\sqrt{2 K_{1} K_{3}} n^{-5 / 6}}{\sqrt{\delta}}\right)
\end{aligned}
$$

for arbitrary $0<K_{1}<K_{3}$ and $K_{3} \geq 1$. Taking the limit $n \rightarrow \infty$, the last two terms disappear, because by [39, Th. 1.16], the distribution of the smallest K_{3} eigenvalues lives on scales of order $n^{-2 / 3} \gg n^{-5 / 6}$. Therefore,

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \mathbb{P}\left(\left|\frac{1}{n} \sum_{j=2}^{n} \frac{1}{\lambda_{j}^{n}-\lambda_{1}^{n}}-\frac{1}{n} \sum_{j=2}^{n} \frac{1}{\lambda_{j}^{n}+2}\right| \geq \delta\right) \\
\leq \lim _{n \rightarrow \infty} \mathbb{P}\left(\left|\lambda_{1}^{n}+2\right| \geq K_{1} n^{-2 / 3}\right)+\frac{2 M K_{1}}{\delta K_{2}}+\lim _{n \rightarrow \infty} \mathbb{P}\left(\lambda_{K_{3}} \leq-2+2 K_{2} n^{-2 / 3}\right)
\end{gathered}
$$

still for any $0<K_{1}<K_{3}$ and $K_{3} \geq 1$. Now, note that for K_{1} large enough, the first term can be made as small as we want. Then, keeping K_{1} fixed, K_{2} can be chosen in such a way to make the second term as small as we want too. At last, keeping K_{2} fixed, one can choose K_{3} large enough to make the third term as small as we want (as can be computed since the limit is given by the K_{3} correlation function of the Airy kernel).

To complete the proof of Hypothesis 4.1, we therefore need to show that
Lemma 5.6. Assume that the entries of X_{n} have a symmetric law with sub-exponential decay. Then, for any $\delta>0$, any finite integer number p,

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\left|\frac{1}{n} \sum_{j=p+1}^{n} \frac{1}{\lambda_{j}^{n}+2}-2\right|>\delta\right)=0
$$

Proof. Notice that by [38, 36] we know that the p smallest eigenvalues of X_{n} converge in law towards the Tracy-Widom law, so that

$$
\lim _{\epsilon \downarrow 0} \lim _{n \rightarrow \infty} \mathbb{P}\left(\min _{1 \leq j \leq p}\left|\lambda_{j}^{n}+2\right|<\epsilon n^{-2 / 3}\right)=0
$$

Thus, for any finite p, with large probability,

$$
\frac{1}{n} \sum_{j=2}^{p} \frac{1}{\left|\lambda_{j}^{n}+2\right|} \leq p \epsilon^{-1} n^{-\frac{1}{3}}
$$

and therefore it is enough to prove the lemma for any particular p. As in the previous proof, we choose p large enough so that $\lambda_{p}^{n} \geq-2+n^{-\frac{2}{3}}$ with probability greater than $1-\delta(p)$ with $\delta(p)$ going to zero as p goes to infinity. We shall prove that with high probability

$$
\begin{equation*}
\lim _{\gamma \downarrow 0} \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=p}^{[\gamma n]} \frac{1}{\lambda_{j}^{n}+2} \leq 0 . \tag{26}
\end{equation*}
$$

This is enough to prove the statement as for any $\gamma>0,2+\lambda_{[n \gamma]}^{n}$ converges to $\delta(\gamma)>0$ so that $\mu_{s c}([\delta(\gamma), 2])=1-\gamma$, see [40, Theorem 1.3],

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=[n \gamma]}^{n} \frac{1}{\lambda_{i}^{n}+2}=\int_{\delta(\gamma)}^{2} \frac{1}{2+x} d \mu_{s c}(x)
$$

which converges as γ goes to zero to $\int(2+x)^{-1} d \mu_{s c}(x)=2$. To prove (26), we choose $\rho \in(2 / 3, \sqrt{2 / 3})$ and write, on the event $\lambda_{j}^{n}+2 \geq \lambda_{p}^{n}+2 \geq n^{-\frac{2}{3}} \geq n^{-\rho}$ for $j \geq p$,

$$
\frac{1}{n} \sum_{j=p}^{[\gamma n]} \frac{1}{\lambda_{j}^{n}+2} \leq \sum_{1 \leq k \leq K} n^{\rho^{k}-1} \mathcal{N}_{n}\left[n^{-\rho^{k}}, n^{-\rho^{k+1}}\right]+\sum_{j=2}^{[\gamma n]} \frac{1_{\lambda_{j}^{n} \geq-2+n^{-\rho^{K+1}}}}{n\left(\lambda_{j}^{n}+2\right)}=: A_{n}+B_{n}
$$

For the first term, we use Sinai-Soshnikov bound, which under the weakest hypothesis are given in [36, Theorem 2.1] which implies that with probability going to one with M going to infinity, for $s_{n}=o\left(n^{2 / 3}\right)$ going to infinity,

$$
\sum_{i=1}^{n}\left(\frac{\lambda_{i}^{n}}{2}\right)^{s_{n}} \leq M \frac{n}{s_{n}^{\frac{3}{2}}}
$$

This implies, by Tchebychev's inequality and taking $s_{n}=n^{+\rho^{k+1}}$ that
$\mathcal{N}_{n}\left[n^{-\rho^{k}}, n^{-\rho^{k+1}}\right] \leq \sharp\left\{i:\left|\frac{\lambda_{i}}{2}\right| \geq 1-n^{-\rho^{k+1}}\right\} \leq\left(1-n^{-\rho^{k+1}}\right)^{-s_{n}} \sum_{i=1}^{n}\left|\frac{\lambda_{i}^{n}}{2}\right|^{s_{n}} \leq e M n^{1-\frac{3}{2} \rho^{k+1}}$.
Consequently we deduce that

$$
A_{n} \leq e M \sum_{1 \leq k \leq K} n^{\rho^{k}} n^{-\frac{3}{2} \rho^{k+1}} \leq C n^{-\rho^{K}\left(\frac{3}{2} \rho-1\right)}
$$

which goes to zero as $\rho>2 / 3$. For the second term B_{n}, note that by [39, Theorem 1.10], for any $\epsilon>0$ small enough,

$$
\left|\mathcal{N}_{n}\left[n^{-\epsilon} \ell, n^{-\epsilon}(\ell+1)\right]-n \mu_{s c}\left(\left[-2+n^{-\epsilon} \ell,-2+n^{-\epsilon}(\ell+1)\right]\right)\right| \leq n^{1-\delta(\epsilon)}
$$

with $\delta(\epsilon)=\frac{2 \epsilon-1}{10}$. Hence, since $\mu_{s c}\left(\left[-2+n^{-\epsilon} \ell,-2+n^{-\epsilon}(\ell+1)\right]\right) \sim n^{-\frac{3 \epsilon}{2}} \sqrt{\ell}$, we deduce for ϵ small enough that for all $\ell \geq 1$,

$$
\mathcal{N}_{n}\left[n^{-\epsilon} \ell, n^{-\epsilon}(\ell+1)\right] \leq 2 n^{1-\frac{3 \epsilon}{2}} \sqrt{\ell}
$$

This allows to bound B_{n} by

$$
B_{n} \leq 2 \sum_{\ell=1}^{\left[\gamma n^{\epsilon}\right]} \frac{n^{\epsilon}}{\ell} n^{-\frac{3 \epsilon}{2}} \sqrt{\ell} \leq 2 \int_{0}^{\gamma} \frac{1}{\sqrt{x}} d x=2 \sqrt{\gamma}
$$

which goes to zero as n goes to infinity and then γ goes to zero.
5.2. Coulomb Gases. We can also consider random matrices X_{n} with law which is invariant under the action of the unitary or the orthogonal group and with eigenvalues with law given by

$$
d P_{n}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\frac{1}{Z_{n}}|\Delta(\lambda)|^{\beta} e^{-n \beta \sum_{i=1}^{n} V\left(\lambda_{i}\right)} \prod_{i=1}^{n} d \lambda_{i}
$$

with a strictly convex polynomial function V of even degree and positive leading coefficient and $\beta=1,2$ or 4 . This includes the classical Gaussian ensembles.

Proposition 5.7. The spectral measure of X_{n} converges towards a probability measure μ_{X} with compact connected support $\left[a_{V}, b_{V}\right]$. The extreme eigenvalues of X_{n} converge to the boundary of the support. The extreme eigenvalues of $\widetilde{X_{n}}$ are given by Theorem 1.3. They fluctuate following a Gaussian law if they deviate away from the bulk, whereas otherwise they fluctuate according to the Tracy-Widom law.
If the perturbation is one dimensional and is strong (resp. weak) enough so that the largest eigenvalues deviates (resp. sticks) from the bulk, the rescaled k th largest eigenvalues $n^{\frac{2}{3}}\left(\widetilde{\lambda}_{n-i}^{n}-b_{V}\right)_{1 \leq i \leq k}\left(\right.$ resp. $\left.n^{\frac{2}{3}}\left(\widetilde{\lambda}_{n-i}^{n}-b_{V}\right)_{0 \leq i \leq k-1}\right)$ converge weakly towards the Tracy Widom law of the corresponding β ensemble.

Proof. As explained above, it suffices to verify that the hypotheses hold in probability for $\left(X_{n}\right)_{n \geq 1}$.

Note that the convergence of the spectral measure, of the edges and the fluctuations of the extreme eigenvalues were obtained in [14]. The fact that $\sqrt{n}\left(G_{\mu_{n}}(z)-G_{\mathrm{sc}}(z)\right)$ converges in probability to zero is a consequence of [26] so that Hypothesis 3.1 holds.

We next check hypothesis $4.1 \mathrm{p}, \alpha]$ for the matrix model P_{n} which includes the GOE and the GUE (with $V(x)=x^{2} / 4$ and $\beta=1,2$). We shall prove it for any $\alpha>1 / 3$ and any integer p. We first show that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathbb{E}\left[\frac{1}{n} \sum_{i \neq p} \frac{1}{\lambda_{i}^{n}-\lambda_{p}^{n}}\right]=-V^{\prime}\left(a_{V}\right) . \tag{27}
\end{equation*}
$$

Indeed, the joint distribution of $\left(\lambda_{1}^{n}, \ldots, \lambda_{n}^{n}\right)$ is

$$
\frac{1}{Z_{n}^{\beta}} e^{-n \sum_{i=1} V\left(\lambda_{i}\right)} \prod_{1 \leq i<j \leq n}^{n}\left(\lambda_{i}-\lambda_{j}\right)^{\beta} \mathbb{1}_{\Delta_{n}} \mathrm{~d} \lambda_{1} \cdots \mathrm{~d} \lambda_{n}
$$

with $\beta=1,2$ or $4, Z_{n}^{\beta}$ is the normalising constant and $\Delta_{n}=\left\{\lambda_{1}<\cdots<\lambda_{n}\right\}$. Therefore,

$$
\begin{aligned}
\mathbb{E}\left[\beta \sum_{i \neq p} \frac{1}{\lambda_{i}^{n}-\lambda_{p}^{n}}\right] & =-\frac{1}{Z_{n}^{\beta}} \int_{\Delta_{n}} e^{-n \beta \sum_{i=1}^{n} V\left(\lambda_{i}\right)} \frac{\partial}{\partial \lambda_{p}} \prod_{1 \leq i<j \leq n}^{n}\left(\lambda_{i}-\lambda_{j}\right)^{\beta} \mathrm{d} \lambda_{1} \cdots \mathrm{~d} \lambda_{n} \\
& =\frac{1}{Z_{n}^{\beta}} \int_{\Delta_{n}} \frac{\partial}{\partial \lambda_{p}}\left(e^{-n \beta \sum_{i=1}^{n} V\left(\lambda_{i}\right)}\right) \prod_{1 \leq i<j \leq n}^{n}\left(\lambda_{i}-\lambda_{j}\right)^{\beta} \mathrm{d} \lambda_{1} \cdots \mathrm{~d} \lambda_{n} \\
& =-n \beta \mathbb{E}\left[V^{\prime}\left(\lambda_{p}^{n}\right)\right]
\end{aligned}
$$

by integration by parts. Equation (27) follows, since λ_{p}^{n} converges almost surely to a_{V} (and concentration inequalities insures $V^{\prime}\left(\lambda_{p}^{n}\right)$ is uniformly integrable). But, for any $\epsilon>0$,

$$
\frac{1}{n} \sum_{i \neq p} \frac{1}{\lambda_{i}^{n}-\lambda_{p}^{n}} \geq \frac{1}{n} \sum_{i \neq p} \frac{1}{\epsilon+\lambda_{i}^{n}-\lambda_{p}^{n}}
$$

with, by convergence of the spectral measure and of λ_{p}^{n}, the right hand side converging to $-G_{\mu_{X}}\left(-a_{V}-\epsilon\right)$ which converges as ϵ decreases to zero to $-G_{\mu_{X}}\left(-a_{V}\right)=-V^{\prime}\left(a_{V}\right)$. Hence, $\frac{1}{n} \sum_{i \neq p} \frac{1}{\lambda_{i}^{n}-\lambda_{p}^{n}}$ is bounded below by $-V^{\prime}\left(a_{V}\right)$ with large probability for large n, and converges in expectation to $-V^{\prime}\left(a_{V}\right)$, and therefore converges in probability to $-V^{\prime}\left(a_{V}\right)$.

Moreover, by [14] (see 42 in the Gaussian case), the joint law of

$$
\left(n^{2 / 3}\left(\lambda_{1}^{n}-a_{V}\right), n^{2 / 3}\left(\lambda_{2}^{n}-a_{V}\right), \ldots, n^{2 / 3}\left(\lambda_{p}^{n}-a_{V}\right)\right)
$$

converges weakly towards a probability measure which is absolutely continuous with respect to Lebesgue measure. As a consequence, we also deduce from the first point that $n^{-1} \sum_{i<m_{n}}\left(\lambda_{p}^{n}-\lambda_{i}^{n}\right)^{-1}$ vanishes as n goes to infinity in probability for $m_{n} \ll n^{1 / 3}$ and therefore (27) proves the last point of Hypothesis 4.1 .

For the two other points, observe that [14] implies that for any $\epsilon>0, \mathbb{P}\left(\left|\lambda_{2}^{n}-\lambda_{1}^{n}\right| \leq\right.$ $\left.n^{-\frac{2}{3}-\epsilon}\right) \underset{n \rightarrow \infty}{\longrightarrow} 0$. On the event $\left\{\left|\lambda_{2}^{n}-\lambda_{1}^{n}\right|>n^{-\frac{2}{3}-\epsilon}\right\}$, we have $\left|\lambda_{i}^{n}-\lambda_{1}^{n}\right|>n^{-\frac{2}{3}-\epsilon}$ for all $i \in[2, n-1]$, so that

$$
\begin{aligned}
& \frac{1}{n^{2}} \sum_{i=2}^{n} \frac{1}{\left(\lambda_{i}^{n}-\lambda_{1}^{n}\right)^{2}} \leq n^{-\frac{1}{3}+\epsilon} \frac{1}{n} \sum_{i=2}^{n} \frac{1}{\lambda_{i}^{n}-\lambda_{1}^{n}} \\
& \frac{1}{n^{4}} \sum_{i=2}^{n} \frac{1}{\left(\lambda_{i}^{n}-\lambda_{1}^{n}\right)^{4}} \leq n^{-1+3 \epsilon} \frac{1}{n} \sum_{i=2}^{n} \frac{1}{\lambda_{i}^{n}-\lambda_{1}^{n}}
\end{aligned}
$$

so that by (27) and Markov's inequality, Hypothesis 4.1 holds in probability for any $\eta<1 / 3, \eta_{4}<1$ and $\alpha>1 / 3$.
5.3. Wishart matrices. Let G_{n} be an $n \times m$ real (or complex) matrix with i.i.d. centred entries with law μ such that $\int z \mathrm{~d} \mu(z)=0, \int|z|^{2} \mathrm{~d} \mu(z)=1$ and $\int|z|^{4} \mathrm{~d} \mu(z)<\infty$. Let $X_{n}=G_{n} G_{n}^{*} / m$. The following Proposition generalises some results first appeared in [9, 19].

Proposition 5.8. Let n, m tend to infinity in such a way that $n / m \rightarrow c \in(0,1)$. The limits of the extreme eigenvalues of \widetilde{X}_{n} are given by Theorem 1.3 and the fluctuations of those which limits are out of $[a, b]$ are given by Theorem 3.2, where the parameters $a, b, \rho_{\theta}, c_{\alpha}$ are given by the following formulas: $a=(1-\sqrt{c})^{2}, b=(1+\sqrt{c})^{2}$

$$
\rho_{\theta}:= \begin{cases}\theta+\frac{\theta}{\theta-c} & \text { if }|\theta-c|>\sqrt{c} \\ b & \text { if }|\theta-c| \leq \sqrt{c} \text { and } \theta>0 \\ a & \text { if }|\theta-c| \leq \sqrt{c} \text { and } \theta<0\end{cases}
$$

and

$$
c_{\alpha}^{2}= \begin{cases}\alpha^{2}\left(1-\frac{c}{(\alpha-c)^{2}}\right) & \text { in the i.i.d. model, } \\ \frac{\alpha^{2} c}{(\alpha-c)^{2}}\left(1-\frac{c}{(\alpha-c)^{2}}\right) & \text { in the orthonormalized model. }\end{cases}
$$

Moreover, if the law of the entries satisfy Hypothesis 5. 2, the fluctuations of the extreme eigenvalues of $\widetilde{X_{n}}$ which stick to the bulk follow the Tracy-Widom law of the corresponding ensemble. Moreover, if the perturbation is one dimensional, the pth extreme eigenvalues which stick to the bulk follow the Tracy-Widom law.

Proof. Again, it suffices to verify that the hypotheses hold in probability for $\left(X_{n}\right)_{n \geq 1}$.

It is known, [30], that the spectral measure of X_{n} converges to the so-called MarčenkoPastur distribution

$$
\mathrm{d} \mu_{X}(x):=\frac{1}{2 \pi c x} \sqrt{(b-x)(x-a)} \mathbb{1}_{[a, b]}(x) \mathrm{d} x
$$

where $a=(1-\sqrt{c})^{2}$ and $b=(1+\sqrt{c})^{2}$. It is known, [4, Th. 5.11], that the extreme eigenvalues converge to the bounds of this support. The formula

$$
G_{\mu_{X}}(z)=\frac{z+c-1-\operatorname{sgn}(z-a) \sqrt{(z-c-1)^{2}-4 c}}{2 c z} \quad(z \in \mathbb{R} \backslash[a, b])
$$

allows to compute ρ_{θ} and c_{α}. Moreover, by [3, Th. 1.1] or [4, Th. 9.10], we also know that a central limit theorem holds for the linear statistics of Wishart matrices, giving Hypothesis 3.1 as in the Wigner case.

For Hypothesis 4.1, the proof is similar to the Wigner case. The convergence to the Tracy-Widom law of the non-perturbed matrix is due to S. Péché 34] (see [31] and 20] for the Gaussian case). The approximation of the eigenvalues by the quantiles of the limiting law can be found in [17, Theorem 9.1] whereas the absolute continuity property needed to prove Lemma [5.5 is derived in [17, Lemma 8.1]. This allows to prove Hypothesis 4.1 in this setting as in the Wigner case, we omit the details.
5.4. Non-white ensembles. In the case of non-white matrices, we can only study the fluctuations away from the bulk (since we do not have the appropriate information about the top eigenvalues to prove Hypothesis 4.1). We illustrate this generalisation in a few cases, but it is rather clear that Theorem 3.2 applies in a much wider generality.
5.4.1. Non-white Wishart matrices. The first statement of Proposition 5.8 can be generalised to matrices X_{n} of the type $X_{n}=\frac{1}{m} T_{n}^{1 / 2} G_{n} G_{n}^{*} T_{n}^{1 / 2}$ or $\frac{1}{m} G_{n} T_{n} G_{n}^{*}$, where G_{n} satisfies the hypotheses of section 5.3 and T_{n} is a positive non random Hermitian $n \times n$ matrix with bounded operator norm, with a converging empirical spectral law and with no eigenvalues outside the support of the limiting measure for sufficiently large n. Indeed, in this case, everything, in the proof, stays true (use [2, Th.1.1] instead of [30] and [4, Th. 5.11]). However, when the limiting empirical distribution of T_{n} is not a Dirac mass, the computation of the ρ_{θ} 's and the c_{α} 's is not easy.
5.4.2. Non-white Wigner matrices. There are less results in the literature about the central limit theorem for band matrices (with centring with respect to the limit) and the convergence of the spectrum. We therefore concentrate on a special case, namely a Hermitian matrix X_{N} with independent Gaussian centred entries so that $E\left[\left|X_{i j}\right|^{2}\right]=n^{-1} \sigma(i / n, j / n)$ with a stepwise constant function

$$
\sigma(x, y)=\sum_{i, j=1}^{k} 1_{\substack{\frac{i-1}{k} \leq x<\frac{i}{k} \\ \frac{i k}{k} \leq y<\frac{k}{k}}} \sigma_{i, j} .
$$

In [29], matrices of the form $S_{n}=\sum_{j=1}^{k(k+1)} a_{j} \otimes X_{j}^{(n)}$ with some independent matrices $X_{j}^{(n)}$ from the GUE and self-adjoint matrices a_{j} were studied. Taking $a_{j}=\left(\epsilon_{p, \ell}+\epsilon_{\ell, p}\right) \sigma_{p, \ell}$ or $i\left(\epsilon_{p, \ell}-\epsilon_{\ell, p}\right) \sigma_{p, \ell}$ with $\epsilon_{p, \ell}$ the matrix with null entries except at (p, ℓ) and $1 \leq p \leq \ell \leq k$, we find that $X_{n}=S_{n}$. Then it was proved [29, (3.8)] that there exists $\alpha, \epsilon, \gamma>0$ so that for z complex greater than $n^{-\gamma}$ for some $\gamma>0$,

$$
\begin{equation*}
\left|E\left[\frac{1}{n} \operatorname{Tr}\left(z-X_{n}\right)^{-1}\right]-G(z)\right| \leq(\Im z)^{-\alpha} n^{-1-\epsilon} \tag{28}
\end{equation*}
$$

which entails the convergence of the spectrum of X_{n} towards the support of the limiting measure [29, Proposition 11] with exponential speed by [29, Proof of Lemma 14]. Thus X_{n} satisfies (H1). (H2) can be checked by modifying slightly the proof of (28) which is based on an integration by parts to be able to take z on the real line but away from the limiting support. Indeed, as in [23, Section 3.3], we can add a smooth cut-off function in the expectation which vanishes outside of the event A_{n} that X_{n} has all its eigenvalues within a small neighbourhood of the limiting support. This additional cut-off will only give a small error in the integration by parts due to the previous point. Then, (28), but with an expectation restricted to this event, is proved exactly in the same way, except that $\Im z$ can be replaced by the distance of z to the neighbourhood of the limiting support where the eigenvalues of X_{n} lives. Finally, concentration inequalities, in the local version [22, Lemma 5.9 and Part II], insure that on A_{n},

$$
\frac{1}{n} \operatorname{Tr}\left(z-X_{n}\right)^{-1}-E\left[1_{A_{n}} \frac{1}{n} \operatorname{Tr}\left(z-X_{n}\right)^{-1}\right]
$$

is at most of order $n^{-1+\epsilon}$ with overwhelming probability. This completes the proof of Hypothesis 3.1.

6. Appendix

6.1. Determinant formula. We here prove formula (1), which can also be deduced from the well known formula $\operatorname{det}\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)=\operatorname{det}(D) \operatorname{det}\left(A-B D^{-1} C\right)$.
Lemma 6.1. Let $z \in \mathbb{C} \backslash\left\{\lambda_{1}^{n}, \ldots, \lambda_{n}^{n}\right\}$ and $\theta_{1}, \ldots, \theta_{r} \neq 0$. Set $D=\operatorname{diag}\left(\theta_{1}, \ldots, \theta_{r}\right)$ and let V be any $n \times r$ matrix. Then

$$
\operatorname{det}\left(z-X_{n}-V D V^{*}\right)=\operatorname{det}\left(z-X_{n}\right)^{-1} \operatorname{det}(D) \operatorname{det}\left(D^{-1}-V^{*}\left(z-X_{n}\right)^{-1} V\right)
$$

Proof. Let us denote, for any square matrix $M, \chi_{M}(z)=\operatorname{det}(z-M)$. First note that for any matrices A, B with respective sizes $n \times r$ and $r \times n, \chi_{A B}(z)=z^{n-r} \chi_{B A}(z)$: it is well known when $n=r$, and can be extended to the general case $r \leq n$ by extending A and B to $n \times n$ matrices by adding zeros. It follows that for z such that $\operatorname{det}\left(z-X_{n}\right) \neq 0$,

$$
\begin{aligned}
\operatorname{det}\left(z-X_{n}-V D V^{*}\right) & =\operatorname{det}\left(z-X_{n}\right) \operatorname{det}\left(I_{n}-\left(z-X_{n}\right)^{-1} V D V^{*}\right) \\
& =\operatorname{det}\left(z-X_{n}\right) \chi_{\left(z-X_{n}\right)^{-1} V D V^{*}}(1) \\
& =\operatorname{det}\left(z-X_{n}\right) \chi_{D V^{*}\left(z-X_{n}\right)^{-1} V}(1) \\
& =\operatorname{det}\left(z-X_{n}\right)^{-1} \operatorname{det}(D) \operatorname{det}\left(D^{-1}-V^{*}\left(z-X_{n}\right)^{-1} V\right)
\end{aligned}
$$

6.2. Concentration estimates.

Proposition 6.2. Under Assumption 1.2, there exists a constant $c>0$ so that for any matrix $A:=\left(a_{j k}\right)_{1 \leq j, k \leq n}$ with complex entries, for any $\delta>0$, for any $g=\left(g_{1}, \ldots, g_{n}\right)^{T}$ with i.i.d. entries $\left(g_{i}\right)_{1 \leq i \leq n}$ with law ν,

$$
\mathbb{P}(|\langle g, A g\rangle-\mathbb{E}[\langle g, A g\rangle]|>\delta) \leq 4 e^{-c \min \left\{\frac{\delta}{C}, \frac{\delta^{2}}{C^{2}}\right\}}
$$

if $C^{2}=\operatorname{Tr}\left(A A^{*}\right)$ and if \tilde{g} is an independent copy of g, for any $\delta, \kappa>0$,

$$
\mathbb{P}\left(|\langle g, A \tilde{g}\rangle|>\delta \sqrt{\operatorname{Tr}\left(A A^{*}\right)+\kappa \sqrt{\operatorname{Tr}\left(\left(A A^{*}\right)^{2}\right)}}\right) \leq 4 e^{-c \delta^{2}}+4 e^{-c \min \left\{\kappa, \kappa^{2}\right\}}
$$

Proof. The first point is due to Hanson-Wright Theorem [24], see also [15, Proposition 4.5]. For the second, we use concentration inequalities, see e.g. [1, Lemma 2.3.3], based on the remark that for any fixed $\tilde{g}, g \rightarrow\langle g, A \tilde{g}\rangle$ is Lipschitz with constant $\sqrt{\left\langle\tilde{g}, A A^{*} \tilde{g}\right\rangle}$ and therefore, conditionally to \tilde{g}, for any $\delta>0$,

$$
\mathbb{P}\left(|\langle g, A \tilde{g}\rangle|>\delta \sqrt{\left\langle\tilde{g}, A A^{*} \tilde{g}\right\rangle}\right) \leq 4 e^{-c \delta^{2}}
$$

On the other hand, the previous estimate shows that

$$
\mathbb{P}\left(\left|\left\langle\tilde{g}, A A^{*} \tilde{g}\right\rangle-\operatorname{Tr}\left(A A^{*}\right)\right|>\kappa \sqrt{\operatorname{Tr}\left(A A^{*}\right)^{2}}\right) \leq 4 e^{-c \min \left\{\kappa, \kappa^{2}\right\}}
$$

As a consequence, we deduce the second point of the proposition.
Let $G^{n}=\left[g_{1}^{n} \cdots g_{r}^{n}\right]$ be an $n \times r$ matrix which columns $g_{1}^{n}, \ldots, g_{r}^{n}$, are independent copies of an $n \times 1$ matrix with i.i.d. entries with law ν and define

$$
V_{i, j}^{n}=\frac{1}{n}\left\langle g_{i}^{n}, g_{j}^{n}\right\rangle, \quad 1 \leq i, j \leq r,
$$

and, for $j \leq i-1$, if $\operatorname{det}\left[V_{k, l}^{n}\right]_{k, l=1}^{i-1} \neq 0$,

$$
W_{i, j}^{n}=\frac{\operatorname{det}\left[\gamma_{k, i}^{n, j}\right]_{k, l=1}^{i-1}}{\operatorname{det}\left[V_{k, l}^{n}\right]-1, l=l=1}, \text { with } \gamma_{k, l}^{n, j}= \begin{cases}V_{k, l}^{n,}, & \text { if } l \neq j, \\ -V_{k, i}^{n}, & \text { if } l=j\end{cases}
$$

On $\operatorname{det}\left[V_{k, l}^{n}\right]_{k, l=1}^{i-1}=0$, we give to $W_{i, j}^{n}$ an arbitrary value, say one. Putting $W_{i i}^{n}=1$ and $W_{i j}^{n}=0$ for $j \geq i+1$, it is a standard linear algebra exercise to check that the column vectors

$$
v_{i}^{n}=\sum_{j=1}^{r} W_{i, j}^{n} g_{j}^{n}=i \text { th column of } G^{n}\left(W^{n}\right)^{T}
$$

are orthogonal in \mathbb{C}^{n}. Let us introduce, for M an $r \times r$ matrix, $\|M\|_{\infty}=\sup _{1 \leq i, j \leq r}\left|M_{i, j}\right|$. We next prove

Proposition 6.3. For any $\gamma>0$, there exists finite positive constants c, C (depending on r) so that for $Z^{n}=V^{n}$ or W^{n},

$$
\mathbb{P}\left(\left\|Z^{n}-I\right\|_{\infty} \geq n^{-\frac{1}{2}} \gamma\right) \leq C\left[e^{-4^{-1} c \gamma^{2}}+e^{-c \sqrt{n}}\right]
$$

Moreover, with $\|v\|_{2}^{2}=\sum_{i=1}^{n}\left|v_{i}\right|^{2}$, for any $\gamma \in\left(0, \sqrt{n}\left(2^{-r}-\epsilon\right)\right.$ for some $\epsilon>0$,

$$
\mathbb{P}\left(\max _{1 \leq i \leq r}\left|\frac{1}{n}\left\|\sum_{j=1}^{r} Z_{i j}^{n} g_{j}^{n}\right\|_{2}^{2}-1\right| \geq n^{-\frac{1}{2}} \gamma\right) \leq C\left[e^{-4^{-1} c 2^{-r} \gamma^{2}}+4 e^{-c \sqrt{n}}\right]
$$

Proof. We first consider the case $Z^{n}=V^{n}$. The maximum of $\left|V_{i j}^{n}-\delta_{i j}\right|$ is controlled by the previous proposition with $A=n^{-1} I$, and the result follows from $\operatorname{Tr} A A^{*}=n^{-1}$ and $\operatorname{Tr}\left(\left(A A^{*}\right)^{2}\right)=n^{-3}$, and choosing $\delta=\gamma / \sqrt{2}, \kappa=\sqrt{n}$. The result for W^{n} follows as on $\left\|V^{n}-I\right\|_{\infty} \leq \gamma n^{-\frac{1}{2}} \leq 1$

$$
\left|\operatorname{det}\left[V_{k, l}\right]_{k, l=1}^{i-1}-1\right| \leq 2^{r} \gamma n^{-\frac{1}{2}}
$$

whereas

$$
\left|\operatorname{det}\left[\gamma_{k, l}^{n, j}\right]_{k, l=1}^{i-1}\right| \leq 2^{r} \gamma n^{-\frac{1}{2}} .
$$

For the last point, we just notice that since $\frac{1}{n}\left\|\sum_{j=1}^{r} Z_{i, j}^{n} g_{j}^{n}\right\|_{2}^{2}=\left(Z V Z^{*}\right)_{i, i}$, we have

$$
\max _{1 \leq i \leq r}\left|\frac{1}{n}\left\|\sum_{j=1}^{r} Z_{i j}^{n} g_{j}^{n}\right\|_{2}^{2}-1\right| \leq C(r) \max _{Z^{n}=V^{n} \text { or } W^{n}}\left\|Z^{n}\right\|_{\infty}^{2} \max _{Z^{n}=V^{n} \text { or } W^{n}}\left\|Z^{n}-I\right\|_{\infty}
$$

for a finite constant $C(r)$ which only depends on r. Thus the result follows from the previous point.

6.3. Central Limit Theorem for quadratic forms.

Theorem 6.4. Let us fix $r \geq 1$ and let, for each n, $A^{n}(s, t)(1 \leq s, t \leq r)$ be a family of $n \times n$ real (resp. complex) matrices such that for all $s, t, A^{n}(t, s)=A^{n}(s, t)^{*}$ and such that for all $s, t=1, \ldots, r$,

- in the i.i.d. model,

$$
\begin{equation*}
\frac{1}{n} \operatorname{Tr}\left[A^{n}(s, t) A^{n}(s, t)^{*}\right] \underset{n \rightarrow \infty}{\longrightarrow} \sigma_{s, t}^{2}, \quad \frac{1}{n} \sum_{i=1}^{n}\left|A^{n}(s, s)_{i, i}\right|^{2} \underset{n \rightarrow \infty}{\longrightarrow} \omega_{s}, \tag{29}
\end{equation*}
$$

- in the orthonormalized model,

$$
\begin{equation*}
\frac{1}{n} \operatorname{Tr}\left[\left|A^{n}(s, t)-\frac{1}{n} \operatorname{Tr} A^{n}(s, t)\right|^{2}\right] \underset{n \rightarrow \infty}{\longrightarrow} \sigma_{s, t}^{2}, \quad \frac{1}{n} \sum_{i=1}^{n}\left|A^{n}(s, s)_{i, i}-\frac{1}{n} \operatorname{Tr} A^{n}(s, t)\right|^{2} \underset{n \rightarrow \infty}{\longrightarrow} \omega_{s} \tag{30}
\end{equation*}
$$

for some finite numbers $\sigma_{s, t}, \omega_{s}$ (in the case where $\kappa_{4}(\nu)=0$, the part of the hypothesis related to ω_{s} can be removed). For each n, let us define the $r \times r$ random matrix

$$
G_{n}:=\left[\sqrt{n}\left(\left\langle u_{s}^{n}, A^{n}(s, t) u_{t}^{n}\right\rangle-\mathbb{1}_{s=t} \frac{1}{n} \operatorname{Tr}\left(A^{n}(s, s)\right)\right)\right]_{s, t=1}^{r} .
$$

Then the distribution of G_{n} converges weakly to the distribution of a real symmetric (resp. Hermitian) random matrix $G=\left[g_{s, t}\right]_{s, t=1}^{r}$ such that the random variables

$$
\begin{gathered}
\left\{g_{s, t} ; 1 \leq s \leq t \leq r\right\} \\
\left(\text { resp. }\left\{g_{s, s} ; 1 \leq s \leq r\right\} \cup\left\{\Re\left(g_{s, t}\right) ; 1 \leq s<t \leq r\right\} \cup\left\{\Im\left(g_{s, t}\right) ; 1 \leq s<t \leq r\right\}\right)
\end{gathered}
$$

are independent and for all s, $g_{s, s} \sim \mathcal{N}\left(0,2 \sigma_{s, s}^{2}+\kappa_{4}(\nu) \omega_{s}\right)$ (resp. $g_{s, s} \sim \mathcal{N}\left(0, \sigma_{s, s}^{2}+\right.$ $\left.\kappa_{4}(\nu) \omega_{s}\right)$) and for all $s \neq t$, $g_{s, t} \sim \mathcal{N}\left(0, \sigma_{s, t}^{2}\right)$ (resp. $\Re\left(g_{s, t}\right), \Im\left(g_{s, t}\right) \sim \mathcal{N}\left(0, \sigma_{s, t}^{2} / 2\right)$).
Remark 6.5. Note that if the matrices $A^{n}(s, t)$ depend on a real parameter x in such a way that for all s, t, for all $x, x^{\prime} \in \mathbb{R}$,

$$
\frac{1}{n} \operatorname{Tr}\left(A^{n}(s, t)(x)-A^{n}(s, t)\left(x^{\prime}\right)\right)^{2} \underset{n \rightarrow \infty}{\longrightarrow} 0,
$$

then it follows directly from Theorem 6.4 and from a second moment computation that each finite dimensional marginal of the process

$$
\left[\sqrt{n}\left(\left\langle u_{s}^{n}, A^{n}(s, t)\left(x_{s, t}\right) u_{t}^{n}\right\rangle-\mathbb{1}_{s=t} \frac{1}{n} \operatorname{Tr}\left(A^{n}(s, s)\left(x_{s, s}\right)\right)\right)\right]_{1 \leq s, t \leq r, x_{s, t} \in \mathbb{R}, x_{s, t}=x_{t, s}}
$$

converges weakly to the law of $\left[g_{s, t}\right]_{1 \leq s, t \leq r, x_{s, t} \in \mathbb{R}, x_{s, t}=x_{t, s}}$.

Proof. - Let us first consider the model where the $\left(\sqrt{n} u_{s}^{n}\right)_{1 \leq s \leq r}$ are i.i.d vectors with i.i.d entries with law ν satisfying Assumption 1.2. Note that for all $s, t=1, \ldots, r$, by (29), the sequence $\frac{1}{n} \sum_{i, j=1}^{n} A^{n}(s, t)_{i, j}^{2}$ is bounded. Hence up to the extraction of a subsequence, one can suppose that it converges to a limit $\tau_{s, t} \in \mathbb{C}$. Since the conclusion of the theorem does not depend on the numbers $\tau_{s, t}$ and the weak convergence is metrizable, one can ignore the fact that these convergences are only along a subsequence. In the case where $\kappa_{4}(\nu)=0$, we can in the same way add the part of the hypothesis related to ω_{s}.

We have to prove that for any real symmetric (resp. Hermitian) matrix $B:=\left[b_{s, t}\right]_{s, t=1}^{r}$, the distribution of $\operatorname{Tr}\left(B G_{n}\right)$ converges weakly to the distribution of $\operatorname{Tr}(B G)$. Note that

$$
\operatorname{Tr}\left(B G_{n}\right)=\frac{1}{\sqrt{n}}\left(U_{n}^{*} C^{n} U_{n}-\operatorname{Tr} C^{n}\right)
$$

where C^{n} is the $r n \times r n$ matrix and U_{n} is the $r n \times 1$ random vector defined by

$$
C^{n}=\left[\begin{array}{ccc}
b_{1,1} A^{n}(1,1) & \cdots & b_{1, r} A^{n}(1, r) \\
\vdots & & \vdots \\
b_{r, 1} A^{n}(r, 1) & \cdots & b_{r, r} A^{n}(r, r)
\end{array}\right], \quad U_{n}=\sqrt{n}\left[\begin{array}{c}
u_{1}^{n} \\
\vdots \\
u_{r}^{n}
\end{array}\right] .
$$

In the real (resp. complex) case, let us now apply Theorem 7.1 of [7] in the case $K=1$. It follows that the distribution of

$$
\operatorname{Tr}\left(B G_{n}\right)=\sum_{s=1}^{r} b_{s, s} G_{n, s, s}+\sum_{1 \leq s<t \leq r} 2 \Re\left(b_{s, t}\right) \Re\left(G_{n, s, t}\right)+2 \Im\left(b_{s, t}\right) \Im\left(G_{n, s, t}\right)
$$

converges weakly to a centred real Gaussian law with variance

$$
\begin{cases}\sum_{s=1}^{r} b_{s, s}^{2}\left(2 \sigma_{s, s}^{2}+\kappa_{4}(\nu) \omega_{s}\right)+\sum_{1 \leq s<t \leq r}\left(2 b_{s, t}\right)^{2} \sigma_{s, t}^{2} & \text { in the real case, } \\ \sum_{s=1}^{r} b_{s, s}^{2}\left(\sigma_{s, s}^{2}+\kappa_{4}(\nu) \omega_{s}\right)+\sum_{1 \leq s<t \leq r}\left(2 \Re\left(b_{s, t}\right)\right)^{2} \frac{\sigma_{s, t}^{2}}{2}+\left(2 \Im\left(b_{s, t}\right)\right)^{2} \frac{\sigma_{s, t}^{2}}{2} & \text { in the complex case. }\end{cases}
$$

It completes the proof in the i.i.d. model.

- In the orthonormalized model, we can write $u_{s}^{n}=\frac{1}{\left\|\sum_{i=1}^{s} W_{s i s}^{n} g_{i}\right\|_{2}} \sum_{j=1}^{s} W_{s j}^{n} g_{j}$, where the matrix W^{n} is the one introduced in this section. It follows that, with

$$
B^{n}(s, t)=A^{n}(s, t)-\frac{1}{n} \operatorname{Tr}\left(A^{n}(s, t)\right)
$$

by orthonormalization of the u_{s}^{n},s

$$
\begin{aligned}
& \sqrt{n}\left(\left\langle u_{s}^{n}, A^{n}(s, t) u_{t}^{n}\right\rangle-\frac{\mathbb{1}_{s=t}}{n} \operatorname{Tr}\left(A^{n}(s, t)\right)\right) \\
= & \sqrt{n}\left\langle u_{s}^{n}, B^{n}(s, t) u_{t}^{n}\right\rangle \\
= & \frac{n}{\left\|\sum_{i=1}^{s} W_{s i}^{n} g_{i}\right\|_{2}\left\|\sum_{i=1}^{t} W_{t i}^{n} g_{i}\right\|_{2}} \sum_{j, i=1}^{r} W_{s i}^{n} \bar{W}_{t j}^{n} \frac{1}{\sqrt{n}}\left\langle g_{i}, B^{n}(s, t) g_{j}\right\rangle .
\end{aligned}
$$

But, by the previous result, if $i \neq j$,

$$
\frac{1}{\sqrt{n}}\left\langle g_{i}, B(s, t) g_{j}\right\rangle
$$

converges in distribution to a Gaussian law, whereas if $i=j$,

$$
\frac{1}{\sqrt{n}}\left\langle g_{i}, B(s, t) g_{i}\right\rangle
$$

$$
=\frac{1}{\sqrt{n}}\left(\left\langle g_{i}, A(s, t) g_{i}\right\rangle-\mathbb{E}\left[\left\langle g_{i}, A(s, t) g_{i}\right\rangle\right]\right)+\frac{\operatorname{Tr}(A(s, t))}{\sqrt{n}}\left(\left\langle g_{i}, g_{i}\right\rangle-\mathbb{E}\left[\left\langle g_{i}, g_{i}\right\rangle\right]\right)
$$

where both terms converge to a Gaussian. Thus this term is also bounded as n goes to infinity.

Hence, by Proposition 6.3, we may and shall replace W^{n} by the identity (since the error term would be of order at most $n^{-\frac{1}{2}+\epsilon}$), which yields

$$
\sqrt{n}\left\langle u_{s}^{n}, B^{n}(s, t) u_{t}^{n}\right\rangle \approx \sqrt{n}^{-1}\left\langle g_{s}, B(s, t) g_{t}\right\rangle
$$

so that we are back to the previous setting with B instead of A.
Acknowledgments We are very grateful to B. Schlein for communicating us Lemma 5.5. We also thank G. Ben Arous for fruitful discussions.

References

[1] G. Anderson, A. Guionnet, O. Zeitouni An Introduction to Random Matrices. Cambridge studies in advanced mathematics, 118 (2009).
[2] Z. D. Bai, J. W. Silverstein No eigenvalues outside the suppport of the limiting spectral distribution of large dimensional random matrices Annals of Probability 26(1) (1998), pp. 316-345.
[3] Z. D. Bai, J. W. Silverstein CLT of linear spectral statistics of large dimensional sample covariance matrices Annals of Probability Vol. 32(1A) (2004), 553-605.
[4] Z. D. Bai, J. W. Silverstein Spectral analysis of large dimensional random matrices, Second Edition, Springer, New York, 2009.
[5] Z. D. Bai, J. F. Yao On the convergence of the spectral empirical process of Wigner matrices, Bernoulli, Vol. 11, No. 6 (2005), 1059-1092.
[6] Z. D. Bai, Y. Q. Yin Necessary and sufficient conditions for almost sure convergence of the largest eigenvalue of a Wigner matrix, Ann. Probab. 16 (1988) 1729-1741.
[7] Z. D. Bai, J.-F. Yao Central limit theorems for eigenvalues in a spiked population model, Ann. I.H.P.-Prob. et Stat., 2008, Vol. 44 No. 3, 447-474.
[8] Z. D. Bai, X. Wang and W. Zhou CLT for linear spectral statistics of Wigner matrices, Electron. J. Probab. 14 (2009) 2391-2417.
[9] J. Baik, G. Ben Arous and S. Péché Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices, Ann. Prob. 33 (2005) 1643-1697.
[10] F. Benaych-Georges, R. N. Rao. The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices, preprint.
[11] F. Benaych-Georges, A. Guionnet and M. Maida Large deviations of extreme eigenvalues of finite rank deformations of deterministic matrices preprint (2010)
[12] M. Capitaine, C. Donati-Martin, D. Féral The largest eigenvalues of finite rank deformation of large Wigner matrices: convergence and nonuniversality of the fluctuations Ann. Probab. 37(2009)1-47.
[13] M. Capitaine, C. Donati-Martin, D. Féral Central limit theorems for eigenvalues of deformations of Wigner matrices. Preprint.
[14] P. Deift and D. Gioev Universality at the edge of the spectrum for unitary, orthogonal, and symplectic ensembles of random matrices, Comm. Pure Appl. Math. 60 (2007)867-910
[15] L. Erdös, B. Schlein, H.T. Yau Wegner estimate and level repulsion for Wigner random matrices, Int. Math. Res. Not., 436-479 (2010).
[16] L. Erdös, H.T. Yau and J. Yin Bulk universality for generalized Wigner matrices [arxiv 1001.3453]
[17] L. Erdös, B. Schlein, H.T. Yau and J. Yin The local relaxation flow approach to universality of the local statistics for random matrices arXiv:0911.3687
[18] D. Féral and S. Péché The largest eigenvalue of rank one deformation of large Wigner matrices Comm. Math. Phys. 272 (2007)185-228.
[19] D. Féral and S. Péché The largest eigenvalues of sample covariance matrices for a spiked population: diagonal case. J. Math. Phys. 50 (2009), no. 7.
[20] P. Forrester. The spectrum edge of random matrix ensembles, Nuclear Phys. B 402 (1993)709-728
[21] A. Guionnet Large deviations upper bounds and central limit theorems for band matrices and noncommutative functionals of Gaussian large randommatrices, Ann. Inst. H. Poincaré Probab. Statist., 38(2002) 341-384.
[22] A. Guionnet Large random matrices: lectures on macroscopic asymptotics, Springer-Verlag (2009)
[23] A. Guionnet and E. Maurel-Segala Combinatorial aspects of matrix models ALEA Lat. Am. J. Probab. Math. Stat.1,(2006)241-279
[24] D.L Hanson and F.T. Wright A bound on tail probabilities for quadratic forms in independent random variables, Ann. Math. Statist., 42, (1971) 1079-1083.
[25] A. Intarapanich1, P. Shaw, A. Assawamakin, P. Wangkumhang, C. Ngamphiw, K. Chaichoompu, J. Piriyapongsa and S.Tongsima Iterative pruning PCA improves resolution of highly structured populations http://www.biomedcentral.com/1471-2105/10/382
[26] K. Johansson On fluctuations of eigenvalues of random Hermitian matrices Duke Math. J. 91 (1998) 151-204.
[27] S. Kritchman and B. Nadler, Non-parametric detection of the number of signals: hypothesis testing and random matrix theory IEEE Transactions on Signal Processing 57(2009)3930-3941
[28] A. Lytova, L. A. Pastur. Central limit theorem for linear eigenvalue statistics of random matrices with independent entries. Ann. Probab. 37(2009) 1778-1840.
[29] C. Male.Norm of polynomials in large random and deterministic matrices arXiv::1004.4155 (2010)
[30] V. A. Marčenko, L. A. Pastur. Distribution of eigenvalues in certain sets of random matrices. Mat. Sb. (N.S.), 72 (114):507-536, 1967.
[31] T. Nagao, Taro and M. Wadati. Correlation functions of random matrix ensembles related to classical orthogonal polynomials. III, J. Phys. Soc. Japan, 61 (1992) 1910-1918.
[32] N. Patterson, A. Price and D. Reich Population Structure and Eigenanalysis http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen. 0020190
[33] S. Péché. The largest eigenvalue of small rank perturbations of Hermitian random matrices. Probab. Theory Related Fields, 134 127-173, 2006.
[34] S. Péché. Universality results for the largest eigenvalues of some sample covariance matrix ensembles Probab. Theory Related Fields 143 481-516, 2009.
[35] F. Perra, R. Garello and M. Spirito Probability of Missed Detection in Eigenvalue Ratio Spectrum Sensing http://www.computer.org/portal/web/csdl/doi/10.1109/WiMob.2009.29
[36] A. Ruzmaikina Universality of the edge distribution of eigenvalues of Wigner random matrices with polynomially decaying distributions of entries Comm. Math. Phys. 261277-296, (2006)
[37] B. Schlein, private communication (2010)
[38] A. Soshnikov Universality at the edge of the spectrum in Wigner random matrices Comm. Math. Phys. 697-733 207 (1999)
[39] T. Tao and V. Vu Random Matrices: Universality of local eigenvalue statistics up to the edge. arxiv 0906.
[40] T. Tao and V. Vu Random Matrices: Localization of the eigenvalues and the necessity of four moments arxiv: 1005.2901
[41] C. Tracy, H. Widom, Level spacing distribution and Airy kernel, Commun. Math. Phys. 159 (1994) 151-174.
[42] C. Tracy and H. Widom, On orthogonal and symplectic matrix ensembles, Commun. Math. Phys. 177(1996), 727-754.
[43] D. Wang The largest sample eigenvalue distribution in the rank 1 quaternionic spiked model of Wishart ensemble, Ann. Probab. 37(2009) 1273-1328.
[44] F. Benaych-Georges, A. Guionnet and M.Maida Large deviations of extreme eigenvalues of finite rank random deformations of deterministic matrices Preprint

[^0]: Date: September 2, 2010.

 * UPMC Univ Paris 6, LPMA, Case courier 188, 4, Place Jussieu, 75252 Paris Cedex 05, France, florent.benaych@upmc.fr,
 \dagger UMPA, ENS Lyon, 46 allée d'Italie, 69364 Lyon Cedex 07, France, aguionne@umpa.ens-lyon.fr, \ddagger Université Paris-Sud, Laboratoire de Mathématiques, Bâtiment 425, Faculté des Sciences, 91405 Orsay Cedex, France, mylene.maida@math.u-psud.fr.
 This work was supported by the Agence Nationale de la Recherche grant ANR-08-BLAN-0311-03.

[^1]: ${ }^{1}$ Note that this is a bit different from what is called overwhelming probability by Tao and Vu but will be sufficient for our purpose.

