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In this paper we found an Exact solution for massless scalar field with cosmolog-

ical constant.This exact solution generalized the Levi-Civita vacuum solution[8] to

a massless scalar field,with a cosmological constant term.This solution in the ab-

sence of the Cosmological constant recovers the spacetime of a massless scalar field

with cylindrical symmetry(Buchdahl metric[2]).Also if the scalar field disappears,

the spacetime is a representation of de-Sitter space.We prove that the form of the

metric’s function which was purposed in [1] is valid even if we assume a general

form.Too we show that in which conditions this solution satisfies energy conditions.

Finally the validity of focusing theorem is proved.

PACS numbers: 04.30.-w, 96.10.+i, 11.25.-w

INTRODUCTION

In the [1] the authors acclaimed that they were succeed in solving the problem of find-
ing an exact solution of Einstein field equations for a massless scalar field with cylindrical
symmetry in the presence of a cosmological constant[1].They obtained a new two parameter
exact solution (LB meric)1 which recovers at least one member of Buchdahl family [2] in
the absence of Cosmological constant and also LCΛ family[3].Theire work in [1] completed
previous works as [3,6,8,11].In that work the authors solved the field equations in a special
case and no thing was stated about the general exact solution. Now we applied a method
for solving field equations and show that we can construct a general two parameters ex-
act solution which in the absence of the cosmological constant recover Buchdahl solution.
We show that this system of differential equations posses only those solutions that the au-
thors stated in [1].Later a class of solutions of Einstein field equations is investigated for
a cylindrically symmetric spacetime when the source of gravitation is a perfect fluid [4].As
a historical note we added here that, our solution with Cosmological constant and scalar
field is a generalization of Levi-Civita family[7,8].Previously the exact solution of Einstein
field equations with a cosmological constant term were found by Linet [10]and in a more
efficient form by Tian [11].The singularity problem in a family of cylindrically symmetric
spacetimes which is described by the collapsing of scalar fields was discussed by Wang and
Frankel [9].Senovilla presented an explicit exact solution of Einstein’s equations for an inho-
mogeneous dust universe with cylindrical symmetry[5].In this work first we prove that the
general solution for field equations only is one, which was stated in [1].Then we investigated

1 This is an abbreviation to the memories of H. A. Buchdahl and the presence of the cosmological constant

term
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the validity of Energy conditions and focusing theorem for our solution.Also a short section
is present which discusses the stability of exact solution under small perturbations via via
Lyapunov exponents method[27,28,29].

I:FIELD EQUATIONS

We begin with a general cylindrically symmetric metric in Weyl coordinates (t, r, ϕ, z),

ds2 = −eu(r)dt2 + dr2 + ev(r)dϕ2 + ew(r)dz2 (1)

Field equation for a massless minimally coupled scalar field in the presence of a cosmological
constant term Λ is reading as 2:

Rµν − Λgµν = φ;µφ;ν (2)

We labeled metric functions as ui = {u(r), v(r), w(r)}, φ ≡ φ(r) , h́ = dh
dr
. In terms of these

functions we can rewrite field equation (2) in the following succinct forms:

2u′′
i + u′

i

3
∑

j=1

u′
j − 4Λ = 0, i = {1, 2, 3} (3)

2
3

∑

j=1

u′′
j +

3
∑

j=1

u′2
j − 4Λ = 4φ′2 (4)

Now we write equation (3) in the following simple form:

d

dr
(u′

ie
f ) = 2Λef , i = {1, 2, 3} (5)

Where in it f =
∑

3

j=1
uj

2
. If we do summation on i = 1, 2, 3 in (5) we can write a differential

equation for new function f = f(r),

d

dr
(f ′ef ) = 3Λef (6)

In terms of this new function the equation (4) converted to the following equation:

3f ′′ + f ′2 − 7Λ = φ′2 (7)

Substituting f ′′ from (6) in (7) we obtain the following integral for φ:

φ = ±
√
2

∫

dr
√

Λ− f ′2 (8)

Thus if we solve the equation (6) we can obtain both metric functions ui and φ.

2 I will mostly use natural units ~ = c = 1 and 8πG = 1.
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About the stability of the field equations

Now we investigate the stability of the field equations (3,4) under small pertubations.First
we note that instead of working with the system (3,4) we can treat the (6,8) as the field
equations.in linear approximation (6) becomes

f ′′ ≈ 3Λ

The general solution for this simple ODE is

f(r) =
3Λ

2
r2 + c1

If we take the de-Sitter radius as a =
√

3
Λ

this function is nothing but the usual metric

function of the Asymptotic de-Sitter.If we want to check the eigenvalues of the linearized
matrix for system of field equations we must change the system (3,4) to a higher rank first
order system.For this, we introduce the following set of new variables,

úi = xii = {1, 2, 3}, φ́ = y

Then we have

2x′
i + xi

3
∑

j=1

xj − 4Λ = 0, i = {1, 2, 3}

2

3
∑

j=1

x′
j +

3
∑

j=1

x2
j − 4Λ = 4y′2

For a stationary point in the phase space we must set all first order derivatives equal to zero,

xi

3
∑

j=1

xj − 4Λ = 0, i = {1, 2, 3}

3
∑

j=1

x2
j − 4Λ = 0, y = 0

In the first equation if we summing on the indices and comparing both of them we obtain

xi = 2/a, i = {1, 2, 3}, y = 0

We perturb the field equations as

xi = 2/a+ δxii = {1, 2, 3}, y = δy

Expanding the field equation in these perturbations up to first order and taking to the mind
to having an asymptotic stability the real part of the eigenvalues must be negative.In the
case of our field equations the matrix posses negative purely real eigenvalues,thus according
to the Lyapunov theorem this system is stable.
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II:EXACT SOLUTIONS

In this section we investigate all possible solutions for (6),(8).
The exact solution for ordinary differential equation (6) is3:

f(r) = −
√
3Λr +

1

2
log(

1

12Λ
(c1e

2
√
3Λr − c2)

2) (9)

We keep the relation (9) as a constraint for all solutions of (6).Substituing this function in
(5) we can write the following general form of metric functions:

ui = −αi

3

√

3

Λ

1√
c1c2

tanh−1(

√

c1
c2
e
√
3Λr) +

2

3
log(

c1e
2
√
3Λr − c2

e
√
3Λr

) + βi, i = 1, 2, 3 (10)

We note here that if the solutions (10) satisfy in (9) , then we have
∑3

j=1 αj = 0.Thus the
final form of metric functions in :

ui =
2

3
log(

c1e
2
√
3Λr − c2

e
√
3Λr

) + βi, i = 1, 2, 3 (11)

Later we will determine the coefficients c1, c2. The condition
∑3

j=1 βj = −1
2
log(12Λ) may

be satisfied by adding a constant βj to each metric function which can be absorb in the
non radial coordinates.In the languages of potential theory we can choose a new gauge
for potential functions ui(r) .The reason is that in cylindrical spacetimes we know that
the solving of the Einstein field equations can be reduced to solving a system of potential
equations[7]. A better option is the comparison of (11) with the previous metric function in
[1]:

ui = u(r) = ±
√

Λ

3
r +

2

3
log(1 + ξ2e2

√
3Λr), i = 1, 2, 3 (12)

As it was attend that in [1]by the authors , only the minus sign in metric function is consistent

with scalar field equation of motion �φ = 0 .In terms of a new parameter ξ = −i
√

c1
c2

∈ R-

which was defined in [1]- we must choose the constant βj as the following:

βj = −2

3
log(−c2), i = 1, 2, 3 (13)

Obviously if c1 ∈ R, then c2 ∈ C (purely imaginary) and consequently βj is real.

III:VALIDITY OF ENERGY CONDITION IN LB METRIC

The origin of the null energy condition (NEC) and of the strong energy conditions (SEC)
is the Raychaudhuri equation together with the requirement that the gravity is attractive
for a spacetime manifold endowed with a metric gµ̂ν̂

4[24].

3 log(x) =
∫ x

1
dζ
ζ

4 This is a Tetrad’s representation of the metric
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The classical energy conditions of general relativity, to the extent that one believes that
they are a useful guide [12, 13], allow one to deduce physical constraints on the behavior
of matter fields in strong gravitational fields or cosmological geometries. These conditions
can most easily be stated in terms of the components of the stress energy tensor T µ̂ν̂ in an
orthonormal frame. Ultimately, however, constraints on the stress-energy are converted,
via the Einstein equations, to constraints on the spacetime geometry. 5For a perfect fluid
cosmology, and in terms of pressure and density, the so-called Null, Weak, Strong and
Dominant energy conditions reduce to [14]:

NEC:pi + ρ ≥ 0
WEC:This specializes to the NEC plus ρ ≥ 0
SEC: This specializes to the NEC plus

∑

pi + ρ ≥ 0
DEC: ρ > |pi|.

Note particularly that in FRW models of Universe, the condition SEC is indepen-
dent of the space extrinsic curvature k. Now, DEC implies WEC implies NEC, and
SEC implies NEC, but otherwise the NEC, WEC, SEC, and DEC are mathematically
independent assumptions. In particular, the SEC does not imply the WEC. Violating the
NEC implies violating the DEC, SEC, and WEC as well [14]. Note that ideal relativistic
fluids satisfy the DEC, and certainly all the known forms of normal matter encountered
in our solar system satisfy the DEC. With sufficiently strong self-intereactions relativistic
fluids can be made to violate the SEC (and DEC ); but classical relativistic fluids always
seem to satisfy the NEC. Most classical fields (apart from non-minimally coupled scalars)
satisfy the NEC. Violating the NEC seems to require either quantum physics (which is ‘
unlikely to be a major contributor to the overall cosmological evolution of the universe) or
non-minimally coupled scalar fields (implying that one is effectively adopting some form of
scalar-tensor gravity). Using this dynamical formulation of the energy conditions, Santos
et al. [15] derive some bounds, for the special case k = 0(flat cosmology), on the luminosity
distance dL of supernovae, and then contrast this with the legacy [16, 17] and gold [18]
datasets. In reference [19] bounds on the distance modulus are presented for general values
of k while in reference [20] they concentrate on the lookback time.
Due to the lack of satisfactory dark energy models, many model-independent methods were
proposed to study the properties of dark energy and the geometry of the universe[21,22,23].
Another very interesting and model-independent approach is to consider the energy
conditions [24,25]. Recently Energy Conditions and Stability in f(R) theories of gravity
with non-minimal coupling to matter is discussed and determined the bounds from the
energy conditions on a general f(R) functional form in the framework of metric variational
approach.[26].

IV: CHECKING THE FOCUSING THEOREM

In this section first we state the focusing theorem in the manner of congruences both
in time like and null cases. Then we checked that our metric which is constructed from

5 In particular in a FRW spacetime one is ultimately imposing conditions on the scale factor and its time

derivatives
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a messless cylindrically symmetric scalar field in the presence of a cosmological constant
satisfies this theorem or not?.

a:Focusing theorem in General Relativity

Let a congruence of time like geodesics be hypersurface orthogonal, means there is exist
a vector field uα (time like, space like or null and not necessarily geodesic).We called it a
hypersurface orthogonal if ωαβ ≡ u[α;β] = 0.It means that there exist a scalar field Φ such
that uα ∝ Φ,α and let the (SEC) hold. So that from Einstein field equations

Rαβu
αuβ > 0.

From Raychaudhuri equation [8] implies:

dθ

dτ
= −1

3
θ2 − σαβσαβ − Rαβu

αuβ 6 0 (14)

Where in it, θ = uα
;α = Bα

α is the expansion scalar , σαβ = B(αβ) − 1
3
θhαβ the shear tensor,

hαβ the transverse part of gαβ [9] (which is purely ’spatial’). The expansion must therefor
decrease during the congruence’s evaluation. Focusing theorem stated that an initially di-
verging (θ > 0) congruence will diverge less rapidly in the future, while an initially converging
(θ < 0) congruence will converge more rapidly in the future. The physical interpretation is
that gravitation is an attractive force when the (SEC) holds and the geodesics get focused
as a result of this attraction.
For a congruence of null geodesics be hypersurface orthogonal and (NEC) hold, too we have
dθ
dτ

6 0 where θ = kα
;α and kα is the tangent vector field. It is important to realize that

the Raychaudhuri equation is purely geometric and independent of the gravity theory under
consideration. The connection with the gravity theory comes from the fact that, in order to
relate the expansion variation with the energy-momentum tensor, one needs the field equa-
tions to obtain the Ricci tensor. Thus, through the combination of the field equations and
the Raychaudhuri equation, one can set physical conditions for the energy-momentum ten-
sor. The requirement that gravity is attractive imposes constraints on the energy-momentum
tensors and establishes which ones are compatible. Of course, this requirement may not hold
at all instances. Indeed, a repulsive interaction is what is needed to avoid singularities as
well as to achieve inflationary conditions, and to account the observed accelerated expansion
of the universe.

b : Straightforward calculations

Now, we consider a congruence of radial, marginally bound, time like geodesics of the LB
metric [1]:

ds2 = dr2 + w(r)(−dt2 + dϕ2 + dz2) (15)

Where,

w(r) = e−2
√

Λ

3
r(ξ2e2

√
3Λr + 1)2/3
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For radial geodesics,the components of 4-vector field uα, uϕ = uz = 0, and the geodesics are
marginally bound if −uαξ

α
(t) = −ut = Ẽ. This means that the conserved energy is precisely

equal to the rest-mass energy, and this gives us the equation ut = Ẽ
w(r)

.6 From LB metric [1]

we know that w(r) > 1.Indeed since the radial like component of 4-vector velocity must be
a real function one can deduced that

|Ẽ| ≥ 1

From the normalization condition

gαβu
αuβ = −1

we have:

ur = ±

√

Ẽ2

w(r)
− 1

The upper sign applies to outgoing geodesics, and the lower sign applies to ingoing
geodesics.The 4-velocity is given by:

uα = (
Ẽ

w(r)
,±

√

Ẽ2

w(r)
− 1, 0, 0) (16)

And , using (16) we can write:

uα∂α =
1

w(r)
∂t ± (

Ẽ2

w(r)
− 1)1/2∂r

uαdx
α = −Ẽdt± (

Ẽ2

w(r)
− 1)1/2dr

It follows that uα is equal to a gradient of a scalar function Φ where:

uα = −Φ,α

and:

Φ = −t±
∫

(
Ẽ2

w(r)
− 1)1/2dr (17)

The integral could be written in terms of hypergeometric functions which we don’t write it
here .This expression means that the congruence is everywhere orthogonal to the spacelike
hypersurfaces Φ = constant. The expansion is calculated as:

θ = uα
;α = ±w(r)−3/2 d

dr
(w(r)

√

Ẽ2 − w(r)) (18)

6 Notice that only in Schwarzschild spacetime (which has the property gttgrr = −1 )the choose of Ẽ = 1 is

a good coordinate’s representation and in general ,specially in the form of a cylindrically symmetric LB

metric, we must keep Ẽ 6= 1 to avoiding of occurrence an unphysical radial velocity
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Not surprisingly, the congruence is diverging (θ > 0) if the geodesics are outgoing, and
converging (θ < 0) if the geodesics are ingoing.The rate of change of the expansion is
calculated as:

dθ

dτ
= (

dθ

dr
).
dr

dτ
= θ́ur

and the result is:

dθ

dτ
= (

Ẽ2

w(r)
− 1)

1

2

d

dr
[w(r)−3/2 d

dr
(w(r)

√

Ẽ2 − w(r))] (19)

Substituting w(r) and performing differentiation , in terms of a new variables

x ≡ w(r)

Ẽ2
∈ (

3
√
4b2, 1), |b| < 1

2

b ≡ | ξ
Ẽ
|

y ≡
√
x6 − 4b2x3

a =

√

3

Λ

We have:

dθ

dτ
=

Λ

2

Φb(x, y)

x(1− x)
(20)

Where,

Φb(x, y) =
(27x2 − 45x+ 20)y − 36b2x2 − 46x4 + 27x5 + 64b2x+ 20x3 − 32b2

3(x3 + y)
(21)

This polynomial has at most two real roots, as can be seen from the fact that its second
derivative is always positive and it vanishes whenever there is a double root.As mentioned
before, in order to ensure reality, the root point must be at the right of the outer region
w(r) < 1.For |b| < 1/2, 0 < x < 1 this function always poss negative values.For dθ

dτ
= 0 this

entails to look for an stationary point of the equation Φb(x, y) = 0. This equation can not
be solved.But for suitable values of b this polynomial in x has a second derivative that is
everywhere positive regardless of the value of b, implying that it may have at most two real
roots that can be identified with two event horizons.If one take b = 0, when the minus sign
is chosen,the metric (15) corresponding to the LCΛ case already analyzed in the previous
work[1].These choose will coincide when the roots become w(r) = 0.377, 1.178 and a single
double root w(r) = 0(which is not accessible), by w(r) = 1.178 we have

r = 0.0273a

For a congruence of null geodesics which must be hypersurface orthogonal (in the manner
that is discussed in part(a) ) and (NEC) hold, we must have dθ

dλ
≤ 0 where θ = kα

;α where kα
is the tangent vector field.
For dϕ = dz = 0 the (LB) line element reduces to:
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ds2 = −w(r)(dt− dr
√

w(r)
)(dt+

dr
√

w(r)
)

The displacements will be null if ds2 = 0. We define two null coordinates ,

u = t− r∗

v = t + r∗

which as usual we introduced a tortoise coordinate7

r∗ =

∫

dr
√

w(r)
= ae

r
aF (

1

6
,
1

3
,
7

6
,−ξ2e

6r
a )

Easily we find that on out-going null geodesics u = constant and similarly v = constant
on in-going ones.The following vectors are null,

kout

α = −∂αu

kin

α = −∂αv

They both satisfies the geodesic equation with +r as an affine parameter for kout

α and −r
for kin

α . The congruences are clearly hypersurface orthogonal.Expansion(s) are calculated:

dθ

dλ
=

1

w(r)

√

Ẽ2 − w(r)[w′′(r)− 3

2

w′(r)2

w(r)
] (22)

This function never vanishes and remains always negative.We can construct a similar func-
tion as(15) for it and determining the sign of it.Another simple method is drawing a graph
for dθ

dλ
.Appling any of this two methods prove that this function is negative every where.

SUMMARY

In this short report we found the unique exact solution for field equations containing a
massless scalar field and a cosmological constant term . We checked the stability ,also we
showed that there is some restriction on the energy conditions.This exact solution satisfy
energy conditions and the validity of focusing theorem proved directly.
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7 F (a, b, c; z) =
∑

∞

k=0
(a)k(b)k

(c)kΓ(k+1)z
k, (a)k = Γ(a+k)

Γ(a) ,Γ(s) =
∫

∞

0
e−tts−1dt
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