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TIME-DEPENDENT MECHANICS AND LAGRANGIAN SUBMANIFOLDS OF

PRESYMPLECTIC AND POISSON MANIFOLDS

E. GUZMÁN, J.C. MARRERO

Abstract. A description of time-dependent Mechanics in terms of Lagrangian submanifolds of
presymplectic and Poisson manifolds is presented. Two new Tulczyjew triples are discussed. The
first one is adapted to the restricted Hamiltonian formalism and the second one is adapted to
the extended Hamiltonian formalism.
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1. Introduction

It is well-known that the phase space of velocities of a mechanical system may be identified with
the tangent bundle TQ of the configuration space Q. Under this identification, the Lagrangian
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function is a real C∞-function L on TQ and the Euler-Lagrange equations are

d

dt

( ∂L
∂q̇i

)
−
∂L

∂qi
= 0, i = 1, ..., n = dimQ

where (qi, q̇i) are local fibred coordinates on TQ, which represent the positions and the velocities
of the system, respectively.
If the Lagrangian function is hyperregular one may define the Hamiltonian function H : T ∗Q −→ R

on the phase space of momenta T ∗Q and the Euler-Lagrange equations are equivalent to the
Hamilton equations for H

dqi

dt
=
∂H

∂pi
,

dpi
dt

= −
∂H

∂qi
, i = 1, ..., n.

Here, (qi, pi) are local fibred coordinates on T ∗Q which represent the positions and the momenta
of the system, respectively.
Solutions of the previous Hamilton equations are just the integral curves of the Hamiltonian vector
field XH on T ∗Q which is characterized by the condition

ιXH
ΩQ = dH,

ΩQ being the canonical symplectic structure of T ∗Q (for more details see, for instance, [1, 13]).
Lagrangian (Hamiltonian) Mechanics may be also formulated in terms of Lagrangian submanifolds
of symplectic manifolds (see [16, 17]).
In fact, the complete lift ΩcQ of ΩQ to T (T ∗Q) defines a symplectic structure on T (T ∗Q) and, if

on T ∗(TQ) we consider the canonical symplectic structure ΩTQ, the canonical Tulczyjew diffeo-

morphism AQ : T (T ∗Q) −→ T ∗(TQ) is a symplectic isomorphism. Moreover, SL = A−1
Q (dL) is a

Lagrangian submanifold of the symplectic manifold (T (T ∗Q),ΩcQ) and the local equations defining

SL as a submanifold of T (T ∗Q) are just the Euler- Lagrange equations for L.
On the other hand, if H : T ∗Q −→ R is a Hamiltonian function and bΩQ

: T (T ∗Q) −→ T ∗(T ∗Q) is
the vector bundle isomorphism induced by ΩQ then bΩQ

is an anti-symplectic isomorphism (when

on T ∗(T ∗Q) we consider the canonical symplectic structure ΩT∗Q). In addition, SH = b−1
ΩQ

(dH)

is a Lagrangian submanifold of T (T ∗Q) and the local equations defining SH as a submanifold of
T (T ∗Q) are just the Hamilton equations for H. Figure 1 illustrates the situation

SL

$$HH
HHHHH

HH SH

zzuuuuuuuuu

T ∗(TQ)
πTQ

$$HH
HH

HH
HH

H
T (T ∗Q)

bΩQ //AQoo

TπQ

zzvvv
vv

vv
vv τT∗Q

$$IIIIIIIII
T ∗(T ∗Q)

πT∗Q

zzttttttttt

TQ
dL

ddHHHHHHHHH legL // T ∗Q
dH

::ttttttttt

Figure 1. Tulczyjew triple for time-independent Mechanics

If the Lagrangian function L is hyperregular then the Legendre transformation legL : TQ −→ T ∗Q
is a global diffeomorphism and SL = SH .
We remark that in the previous construction the following properties hold:
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(1) The three spaces T ∗(TQ), T (T ∗Q) and T ∗(T ∗Q) involved in the Tulczyjew triple are of
the same type, namely, symplectic manifolds.

(2) The two maps AQ and bΩQ
involved in the construction are a symplectic isomorphism and

an anti-symplectic isomorphism, respectively.
(3) The Lagrangian and the Hamiltonian functions are not involved in the definition of the

triple. In this sense, the triple is canonical.
(4) The dynamical equations (Euler-Lagrange and Hamilton equations) are the local equations

defining the Lagrangian submanifolds SL and SH of T (T ∗Q).
(5) The construction may be applied to an arbitrary Lagrangian function (not necessarily

regular).

On the other hand, for time-dependent mechanical systems the role of TQ and T ∗Q is played by the
space of 1-jets J1π of local sections of a fibration π :M −→ R (in the Lagrangian formalism) and
for the dual bundle V ∗π to the vertical bundle V π to π (in the restricted Hamiltonian formalism)
or for the cotangent bundle T ∗M to M (in the extended Hamiltonian formalism). For more details
on these topics, see [10, 15].
Note that V ∗π is not a symplectic manifold, but a Poisson manifold.
Several attempts to extend the Tulczyjew triple for time-dependent mechanical systems have been
done. However, although acurrate and interesting, they all exhibit some defect if we compare
with the original Tulczyjew triple for autonomous mechanical systems. In fact, in [9] the authors
described a Tulczyjew triple for the particular case when the fibration π :M −→ R is trivial, that
is, M = R×Q and π is the projection on the first factor. They used the extended formalism and
the spaces involved in the construction were too big.
Later, in [11], M. de León et al discussed a Tulczyjew triple for the same fibration pr1 : R×Q −→ Q.
In this case, the Lagrangian and Hamiltonian functions are involved in the definition of the triple.
In this construction, they used the notion of the complete lift of a cosymplectic structure.
On the other hand, in [8] the authors proposed a restricted Tulczyjew triple for a general fibration
π : M −→ R. However, the Hamiltonian section is involved in the construction of the triple.
In this paper, we solve the previous problems and deficiences. In fact, we will propose two new Tul-
czyjew triples for time-dependent mechanical systems. The first one is adapted to the restricted
Hamiltonian formalism and the second one is adapted to the extended Hamiltonian formalism.
In this approach, the role of symplectic structures in the original Tulczyjew triple is played by
presymplectic and Poisson structures. Then, symplectic (anti-symplectic) isomorphisms are re-
placed by presymplectic and Poisson (anti-presymplectic and anti-Poisson) isomorphisms. In ad-
dition, Lagrangian submanifolds of symplectic manifolds are replaced by Lagrangian submanifolds
of presymplectic and Poisson manifolds.
The new Tulczyjew triples follow the same philosophy as the original one (see sections 4, 5 and
compare with properties (1), (2), (3), (4) and (5) of the original Tulczyjew triple).
We also remark that our second Tulczyjew’s triple has some similarities with the Tulczyjew’s triple
proposed in [6] although the spaces involved in the definition of the triple in [6] are different and
the structural applications between them are not isomorphisms.
The paper is structured as follows. In section 2, we recall some definitions and results on presym-
plectic and Poisson structures which we will be used in the rest of the paper. The Lagrangian
and Hamiltonian formalisms in jet manifolds are discussed in section 3. Sections 4 and 5 contain
the results of the paper. In fact, the restricted and extended Tulczyjew triples for time-dependent
Lagrangian and Hamiltonian systems are presented in sections 4 and 5, respectively. The paper
ends with our conclusions and a description of future research directions.
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2. Presymplectic and Poisson manifolds

2.1. Presymplectic manifolds.

In this subsection, we will recall some well-known facts on presymplectic manifolds.

Definition 2.1. A presymplectic structure on a manifold M is a closed 2-form ω on M.
If ω is a presymplectic structure on M, the couple (M,ω) is said to be a presymplectic manifold.

Moreover, for each x ∈ M , we will denote by Ker(ω(x)) the subspace of the tangent space TxM
to M at x given by

Ker(ω(x)) = {v ∈ TxM/ιvω(x) = 0}.

In other words,Ker(ω(x)) = Ker[♭ω |TxM ], where ♭ω : TM −→ T ∗M is the vector bundle morphism
induced by ω.
Note that

dim[Ker(ω(x))] = dimM − rank(ω(x)),

rank(ω(x)) being the rank of the 2-form ω(x) which is an even number.
In the pariticular case when

rank(ω(x)) = dimM, for all x ∈M

then the dimension of M is even and the couple (M,ω) is a symplectic manifold (see, for instance,
[1]).

Definition 2.2. A submanifold C of dimension r of a presymplectic manifold (M,ω) is said to be
Lagrangian if i∗ω = 0 and

r =
rank(ω(x))

2
+ dim(TxC ∩Ker(ω(x))), for all x ∈ C.

Here, i : C −→M is the canonical inclusion.

We remark that if (M,ω) is a symplectic manifold, then one recovers the classical notion of a
Lagrangian submanifold of a symplectic manifold (see, for instance, [1]).
The notion of a presymplectic map may be introduced in a natural way.

Definition 2.3. A smooth map ϕ :M −→ N between two presymplectic manifolds (M,ωM ) and
(N,ωN ) is said to be a presymplectic map if ϕ∗ωN = ωM .

Note that if ♭ωM
: TM −→ T ∗M and ♭ωN

: TN −→ T ∗N are the bundle maps induced by ωM and
ωN , respectively, then ϕ is a presymplectic map if and only if

(♭ωM
)|TxM

= (Txϕ)
∗ ◦ (♭ωN

)|Tϕ(x)N
◦ Txϕ,

for every x ∈M .

Remark 2.4. A presymplectic structure ω on a manifold M is a particular example of a Dirac
structure (see [3]) in such a way that a Lagrangian submanifold of (M,ω) is also a Lagrangian
submanifold for the Dirac structure on M which is induced by the presymplectic form ω (see [18]).
In addition, a presymplectic map is a backward Dirac map in the sense of Bursztyn et al (see [2]).
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2.2. Poisson manifolds.

In this subsection, we will recall some well-known facts on Poisson manifolds (see, for instance,
[7, 14]).

Definition 2.5. A Poisson structure on a manifold M is a 2-vector Λ on M such that [Λ,Λ] = 0,
where [., .] is the Schouten-Nijenhuis bracket.
If Λ is a Poisson structure on M, the couple (M,Λ) is said to be a Poisson manifold.

A Poisson structure induces a vector bundle morphism Λ♯ : T ∗M −→ TM which is given by

Λ♯(α) = Λ(α, −), for α ∈ T ∗M.

Note that Λ♯ is a skew-symmetric map and, thus, the dimension of the subspace Λ♯(T ∗
xM) is even,

for every x ∈ M . Moreover, if Λ♯ is a vector bundle isomorphism then the inverse morphism
(Λ♯)−1 : TM −→ T ∗M is just the vector bundle isomorphism induced by a symplectic structure
on M.

Definition 2.6. A submanifold C of a Poisson manifold (M,Λ) is said to be Lagrangian if

Λ(α, β) = 0, for all (α, β) ∈ (Λ♯)−1(TC)

and

dim(TxC ∩ Λ♯(T ∗
xM)) =

dim(Λ♯(T ∗
xM))

2
, for all x ∈ C.

We remark that in the particular case when the map Λ♯ : T ∗M −→ TM is a vector bundle
isomorphism, that is, the Poisson structure is induced by a symplectic structure on M, then one
recovers the classical notion of a Lagrangian submanifold of a symplectic manifold.

Definition 2.7. A smooth map ϕ : M −→ N between two Poisson manifolds (M,ΛM ) and
(N,ΛN ) is said to be a Poisson map if

[Λ2(Txϕ)](ΛM (x)) = ΛN (ϕ(x)), for each x ∈M.

Note that ϕ is a Poisson map if and only if

(Λ♯N )|Tϕ(x)N
= Txϕ ◦ (Λ♯M )|TxM

◦ (Txϕ)
∗,

for each x ∈M .

Remark 2.8. A Poisson structure Λ on a manifold M is a particular example of a Dirac structure
(see [3]) in such a way that a Lagrangian submanifold of (M,Λ) is also a Lagrangian submanifold
for the Dirac structure on M which is induced by the Poisson 2-vector Λ (see [18]). In addition, a
Poisson map is a forward Dirac map in the sense of Bursztyn et al (see [2]).

3. Lagrangian and Hamiltonian formalisms in jet manifolds

In this section, we will recall some definitions and results about the Lagrangian and Hamiltonian
formalisms of Classical Mechanics in jet manifolds (for more details, see for instance [5, 8, 10, 15]).
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3.1. The Lagrangian formalism.

Let π :M −→ R be a fibration, where M is a manifold of dimension n+1.
Denote by J1π the (2n+1)-dimensional manifold of 1-jets of local sections of π. J1π is an affine
bundle modelled over the vertical bundle V π of π. It can be shown that exits a canonical identifi-
cation between J1π and the subset of TM given by {v ∈ TM/η(v) = 1}, where η = π∗(dt). Thus,
J1π is an embedded submanifold of TM. In the same way, V π is the vector subbundle of TM given
by {v ∈ TM/η(v) = 0}.
If (t, qi) are local coordinates on M which are adapted to the fibration π, then we can consider the
corresponding local coordinates (t, qi, q̇i) on J1π and V π.
We will denote by π1,0 : J1π −→ M and π1 : J1π −→ R the canonical projections and by η1 the
1-form on J1π given by η1 = (π1)

∗(dt).
Given the fibration π, a Lagrangian function is a function L ∈ C∞(J1π), that is, L : J1π −→ R.
Given two points x, y ∈M we define the manifold of infinite piecewise differentiable local sections
which connect x and y as

C∞(x, y) = {c : [0, 1] −→ M/c is a local section of π, c(0) = x and c(1) = y}.

We define the functional J : C∞(x, y) −→ R by

c J (c) =

∫ 1

0

L(j1c(t))dt.

Here, j1c : [0, 1] −→ J1π is the jet prolongation of the curve c.
The Hamilton principle states that a curve c ∈ C∞(x, y) is a motion of the Lagrangian system
defined by L if and only if c is a critical point on J , i.e., dJ (c)(X) = 0 for all X ∈ TcC

∞(x, y)
which is equivalent to the condition

(3.1)
d

dt
(
∂L

∂q̇i
)−

∂L

∂qi
= 0, ∀i.

In other words, c satisfies the Euler-Lagrange equations.

3.2. The Hamiltonian formalism.

Denote by V ∗π the dual bundle to the vertical bundle to π and by µ : T ∗M −→ V ∗π the canonical
projection. We have that T ∗M is an affine bundle over V ∗π of rank 1 modelled over the trivial
vector bundle pr1 : V ∗π × R −→ V ∗π (an AV-bundle in the terminology of [5]).
In this setting, a Hamiltonian section is a section h : V ∗π −→ T ∗M of µ : T ∗M −→ V ∗π.
If (t, qi, p, pi) (respectively, (t, qi, pi)) are local coordinates on T ∗M (respectively, V ∗π) we have
that

µ(t, qi, p, pi) = (t, qi, pi), h(t, qi, pi) = (t, qi,−H(t, qi, pi), pi).

Denote by ΩM the canonical symplectic structure of T ∗M . Then, we can obtain a cosymplectic
structure (Ωh, η

∗
1) on V

∗π, where

Ωh = h∗ΩM ∈ Ω2(V ∗π), η∗1 = (π∗
1)

∗(dt) ∈ Ω1(V ∗π).

Here, π∗
1 : V ∗π −→ R is the canonical projection. Note that

Ωh = dqi ∧ dpi + dH ∧ dt, η∗1 = dt.

Thus, we can construct the Reeb vector field of (Ωh, η
∗
1), which is characterized by the following

conditions

ιRh
Ωh = 0, ιRh

η∗1 = 1.
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The local expression of Rh is

(3.2) Rh =
∂

∂t
+
∂H

∂pi

∂

∂qi
−
∂H

∂qi
∂

∂pi

and, therefore, the integral curves of Rh are the solutions of the Hamilton equations :

(3.3)
dqi

dt
=
∂H

∂pi
,

dpi
dt

= −
∂H

∂qi
, ∀i.

This is the restricted formalism for time-dependent Hamiltonian Mechanics.

Next, we will present the extended formalism.
The AV-bundle µ : T ∗M −→ V ∗π is a principal R-bundle. We will denote by Vµ ∈ X(T ∗M) the
infinitesimal generator of the action of R on T ∗M . Then, there exists a one-to-one correspondence
between the space Γ(µ) of sections of µ and the set {Fh ∈ C∞(T ∗M)/Vµ(Fh) = 1}. Thus,
the Hamiltonian section h : V ∗π −→ T ∗M induces a real function Fh ∈ C∞(T ∗M) such that
Vµ(Fh) = 1. The local expression of Fh is

(3.4) Fh(t, q
i, p, pi) = p+H(t, qi, pi).

Note that Vµ =
∂

∂p
.

Remark 3.1. We remark that dFh is invariant under the action of R on T ∗M and, thus, it defines
a connection 1-form on the principal R-bundle µ : T ∗M → V ∗π. 3

Now, we can consider the Hamiltonian vector field HΩM

Fh
of Fh with respect to the canonical

symplectic structure ΩM . The local expression of HΩM

Fh
is

(3.5) HΩM

Fh
=

∂

∂t
−
∂H

∂t

∂

∂p
+
∂H

∂pi

∂

∂qi
−
∂H

∂qi
∂

∂pi
.

So, it is clear that HΩM

Fh
is µ-projectable over Rh.

In addition, the integral curves of HΩM

Fh
satisfy the following equations

(3.6)
dqi

dt
=
∂H

∂pi
,

dpi
dt

= −
∂H

∂qi
, i ∈ {1, · · · ,m}

and, moreover,

(3.7)
dp

dt
= −

∂H

∂t

(3.6) are the Hamilton equations and using (3.7) we deduce that in time-dependent Mechanics the
Hamiltonian energy is not, in general, a constant of the motion (for more details, see the following
subsection 3.3).

3.3. The equivalence between the Lagrangian and Hamiltonian formalisms.

We are going to introduce the Legendre transformations for the restricted and extendend for-
malisms.
The extended Legendre transformation LegL : J1π −→ T ∗M is given by (LegL)(v)(X) = L(v)η(X)+
d
dt |t=0

L(v + t(X − η(X)v)), for v ∈ J1π and X ∈ TxM , with x = π1,0(v).

The restricted Legendre transformation legL : J1π −→ V ∗π is defined by legL = µ ◦ LegL.
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The local expression of these transformations is

(3.8) LegL(t, q
i, q̇i) = (t, qi, L− q̇i

∂L

∂q̇i
,
∂L

∂q̇i
), legL(t, q

i, q̇i) = (t, qi,
∂L

∂q̇i
).

The Lagrangian function L is said to be regular if and only if for each canonical coordinate system

(t, qi, q̇i) in J1π, the Hessian matrix Wij = ( ∂2L
∂q̇i∂q̇j

) is non-singular.

From (3.8), we deduce that the following statements are equivalent:

• L is regular.
• legL : J1π −→ V ∗π is a local diffeomorphism.
• LegL : J1π −→ T ∗M is an immersion.

The Lagrangian function L is said to be hyperregular if the restricted Legendre transformation is
a global diffeomorphism. Then, we obtain a Hamiltonian section h = LegL ◦ leg−1

L . Moreover, if
we consider the vector field RL on J1π given by

RL(v) = (TlegL(v)leg
−1
L )(Rh(legL(v))), for v ∈ J1π,

then RL is a second order differential equation on J1π and the trajectories of RL are just the
solutions of the Euler-Lagrange equations for L. RL is called the Euler-Lagrange vector field for L
and its local expression is

(3.9) RL =
∂

∂t
+ q̇i

∂

∂qi
+W ij(

∂L

∂qi
− q̇k

∂2L

∂q̇i∂qk
−

∂2L

∂t∂q̇i
)
∂

∂q̇j
,

where (W ij) is the inverse matrix of (Wij) = ( ∂2L
∂q̇i∂q̇j

).

Using the above facts, we deduce that if σ : R −→M is a solution of the Euler-Lagrange equations
for L then legL ◦ j1σ : R −→ V ∗π is a solution of the Hamilton equations for h and, conversely,
if τ : R −→ V ∗π is a solution of the Hamilton equations for h then leg−1

L ◦ τ : R −→ J1π is a
prolongation of a solution σ of the Euler-Lagrange equations for L.

4. Restricted Tulczyjew’s triple

4.1. The Lagrangian formalism.

Let N be a smooth manifold. We will denote by AN : T (T ∗N) −→ T ∗(TN) the canonical Tulczyjew
diffeomorphism associated with the manifold N which is given locally by (see [17])

AN (qi, pi; q̇
i, ṗi) = (qi, q̇i; ṗi, pi).

Here (qi) are local coordinates on N and (qi, pi) (respectively, (q
i, pi; q̇

i, ṗi)) are the corresponding
local coordinates on T ∗N (respectively, T (T ∗N).
Now, suppose that π :M −→ R is a fibration. Then, we may define a smooth map

ψ : T ∗(J1π) −→ T (V ∗π)

as follows. Let αv be a 1-form at the point v ∈ J1π ⊆ TM . Then,

ψ(αv) = Tµ(A−1
M (α̃v)),

with α̃v ∈ T ∗
v (TM) such that α̃v|Tv(J1π) = αv and µ : T ∗M −→ V ∗π being the canonical projection.

ψ is well-defined. In fact, the local expression of ψ is

(4.1) ψ(t, qi, q̇i; pt, pqi , pq̇i) = (t, qi, pq̇i ; 1, q̇
i, pqi).

In particular, ψ take values in the submanifold J1π∗
1 of T (V ∗π). Thus, we may consider the map

ψ : T ∗(J1π) −→ J1π∗
1 .
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It is clear that ψ is not a diffeomorphism (see (4.1)). In order to obtain a diffeomorphism,
we consider the vector subbundle 〈η1〉 over J1π of T ∗(J1π) with rank 1 which is generated by
the 1-form η1 and the quotient vector bundle T ∗(J1π)/〈η1〉 over J1π. Local coordinates on
T ∗(J1π)/〈η1〉 are (t, q

i, q̇i; pqi , pq̇i). In addition, it is easy to prove that there exits a diffeomorphism

ψ̃ : T ∗(J1π)/〈η1〉 −→ J1π∗
1 such that the following diagram is commutative

T ∗(J1π)

πT∗(J1π)

��

ψ // J1π∗
1

T ∗(J1π)/〈η1〉

ψ̃

55lllllllllllllll

where πT∗(J1π) is the canonical projection. In fact, the local expression of ψ̃ is

ψ̃(t, qi, q̇i; pqi , pq̇i) = (t, qi, pq̇i ; q̇
i, pqi).

We will denote by Aπ : J1π∗
1 −→ T ∗(J1π)/〈η1〉 the inverse of ψ̃. Aπ will be called the canonical

Tulczyjew diffeomorphsim associated with the fibration π. The local expression of Aπ is

(4.2) Aπ(t, q
i, pi; q̇

i, ṗi) = (t, qi, q̇i; ṗi, pi).

Let ΩJ1π be the canonical symplectic structure of T ∗(J1π) and ΛJ1π be the corresponding Poisson
structure.
In local coordinates (t, qi, q̇i; pt, pqi , pq̇i) on T

∗(J1π), we have that

ΩJ1π = dt ∧ dpt + dqi ∧ dpqi + dq̇i ∧ dpq̇i ,

ΛJ1π =
∂

∂t
∧

∂

∂pt
+

∂

∂qi
∧

∂

∂pqi
+

∂

∂q̇i
∧

∂

∂pq̇i
.

On the other hand, the vertical bundle of the canonical projection πT∗(J1π) : T ∗(J1π) −→

T ∗(J1π)/〈η1〉 is generated by the vertical lift ηv1 of the 1-form η1 on J1π. Note that

ηv1 =
∂

∂pt
.

Thus, it is clear that

Lηv1ΛJ1π = 0

and, therefore, ΛJ1π is πT∗(J1π)-projectable over a Poisson structure Λ̃J1π on T ∗(J1π)/〈η1〉. In
fact,

(4.3) Λ̃J1π =
∂

∂qi
∧

∂

∂pqi
+

∂

∂q̇i
∧

∂

∂pq̇i
.

The corank of the Poisson structure Λ̃J1π is 1.
Now, consider the canonical Poisson structure ΛV ∗π on V ∗π. ΛV ∗π is characterized by the following
conditions

ΛV ∗π(dX̂, dŶ ) = −[̂X,Y ], ΛV ∗π(d(f ◦π
∗
1,0), dŶ ) = Y (f)◦π∗

1,0, ΛV ∗π(d(f ◦π
∗
1,0), d(g◦π

∗
1,0)) = 0

for X,Y π-vertical vector fields on M and f, g ∈ C∞(M), where π∗
1,0 : V ∗π −→M is the canonical

projection. Here, Ẑ is the linear function on V ∗π which is induced by a π-vertical vector field Z
on M, that is,

Ẑ(α) = α(Z(π∗
1,0(α))), ∀α ∈ V ∗π.
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If (t, qi, pi) are local coordinates on V ∗π then

ΛV ∗π =
∂

∂qi
∧

∂

∂pi
.

Next, let ΛcV ∗π be the complete lift of ΛV ∗π to T (V ∗π). ΛcV ∗π is a Poisson structure on T (V ∗π).
Note that the local expression of ΛcV ∗π is

ΛcV ∗π =
∂

∂qi
∧

∂

∂ṗi
+

∂

∂q̇i
∧

∂

∂pi
.

On the other hand, J1π∗
1 is a embedded submanifold of T (V ∗π). In fact, if (t, qi, pi; ṫ, q̇

i, ṗi) are
local coordinates on T (V ∗π) then the local equation definning J1π∗

1 as a submanifold of T (V ∗π)
is ṫ = 1.
Thus, the restriction ΛJ1π∗

1
to J1π∗

1 of ΛcV ∗π is tangent to J1π∗
1 and, furthemore, ΛJ1π∗

1
defines a

Poisson structure on J1π∗
1 .

If (t, qi, pi, q̇
i, ṗi) are local coordinates on J1π∗

1 , we have that

(4.4) ΛJ1π∗

1
=

∂

∂qi
∧

∂

∂ṗi
+

∂

∂q̇i
∧

∂

∂pi
.

Therefore, ΛJ1π∗

1
is a Poisson structure of corank 1.

In addition, from (4.2), (4.3) and (4.4), we deduce

Theorem 4.1. Aπ is a Poisson isomorphism between the Poisson manifolds (J1π∗
1 ,ΛJ1π∗

1
) and

(T ∗(J1π)/〈η1〉, Λ̃J1π).

The space T∗(J1π)
〈η1〉

is a vector bundle over J1π with vector bundle projection π̃J1π : T
∗(J1π)
〈η1〉

−→

J1π. Moreover, we can consider the jet prolongation j1π∗
1,0 : J1π∗

1 −→ J1π of the bundle map
π∗
1,0 : V ∗π −→M . We have that

π̃J1π(t, q
i, q̇i; pqi , pq̇i) = (t, qi, q̇i).

Therefore, it is clear that π̃J1π ◦Aπ = j1π∗
1,0.

On the other hand, as we know, J1π∗
1 is an affine bundle over V ∗π which is modelled over the

vertical bundle to π∗
1 : V ∗π −→ R. We will denote by (π∗

1)1,0 : J1π∗
1 −→ V ∗π the affine bundle

projection. It follows that (π∗
1)1,0(t, q

i, pi; q̇
i, ṗi) = (t, qi, pi).

The following commutative diagram illustrates the above situation

T ∗(J1π)/〈η1〉

π̃J1π &&LLLLLLLLLL
J1π∗

1

Aπoo

(π∗

1 )1,0

""FFFFFFFF

j1(π∗

1,0)||yy
yy

yy
yy

J1π V ∗π

Now, suppose that L : J1π −→ R is a Lagrangian function. Then, the differential of L induces a
section of the vector bundle π̃J1π : T ∗(J1π)/〈η1〉 −→ J1π which we will denote by

d̃L : J1π −→ T ∗(J1π)/〈η1〉.

We have that

(4.5) d̃L(t, qi, q̇i) = (t, qi, q̇i;
∂L

∂qi
,
∂L

∂q̇i
).
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Furthemore, it is easy to prove that d̃L(J1π) is a Lagrangian submanifold of the Poisson manifold

(T ∗(J1π)/〈η1〉, Λ̃J1π). In fact,

(Λ̃♯
J1π

)−1(T (d̃L(J1π))) =
〈{
dpqj −

∂2L

∂qi∂qj
dqi −

∂2L

∂q̇i∂qj
dq̇i, dpq̇k −

∂2L

∂q̇k∂ql
dql −

∂2L

∂q̇k∂q̇l
dq̇l

}〉

and

T (d̃L(J1π)) ∩ Λ̃♯
J1π

(
T ∗

(T ∗(J1π)

〈η1〉

))
=

〈{ ∂

∂qi
+

∂2L

∂qi∂q̇j
∂

∂pqi
+

∂2L

∂q̇i∂qj
∂

∂pq̇i
,

∂

∂q̇k
+

∂2L

∂q̇k∂ql
∂

∂pql
+

∂2L

∂q̇k∂q̇l
∂

∂pq̇l

}〉

which implies that

Λ̃J1π(α, β) = 0, ∀α, β ∈ (Λ̃♯
J1π

)−1(T (d̃L(J1π))),

dim
(
T
d̃L(z)

(d̃L(J1π)) ∩ Λ̃♯
J1π

(
T ∗
d̃L(z)

(T ∗(J1π)

〈η1〉

)))
=
dim

(
Λ̃♯
J1π

(
T ∗
d̃L(z)

(
T∗(J1π)

〈η1〉

)))

2
= 2n,

∀z ∈ J1π.
Thus, since Aπ is a Poisson isomorphism, we deduce that SL = A−1

π (d̃L(J1π)) is a Lagrangian

submanifold of the Poisson manifold (J1π∗
1 ,ΛJ1π∗

1
).

On the other hand, we will denote by legL : J1π −→ V ∗π the restricted Legendre transformation
associated with L. Then, we have the following result.

Theorem 4.2. (1) Let σ : R −→ M be a local section of π. σ is a solution of the Euler-

Lagrange equations for L if and only if

A−1
π ◦ d̃L ◦ j1σ = j1(legL ◦ j1σ).

(2) The local equations which define to SL as a Lagrangian submanifold of the Poisson manifold

(J1π∗
1 ,ΛJ1π∗

1
) are just the Euler-Lagrange equations for L.

Proof: A local computation, using (3.1), (3.8) and (4.2) proves the result. �

Figure 2 illustrates the above situation

4.2. The Hamiltonian formalism.

Let µ : T ∗M −→ V ∗π be the AV-bundle associated with the fibration π : M −→ R. µ defines a
principal R-bundle.
We will denote by Vµ the infinitesimal generator of the action of R on T ∗M and by

bΩT∗M
: T (T ∗M) −→ T ∗(T ∗M)

the vector bundle isomorphism (over the identity of T ∗M) induced by the canonical symplectic
structure ΩT∗M of T ∗M .
If (t, qi, p, pi; ṫ, q̇

i, ṗ, ṗi) (respectively, (t, qi, p, pi; pt, pqi , pp, ppi) are local coordinates on T (T ∗M)
(respectively, T ∗(T ∗M)), we have that

bΩT∗M
(t, qi, p, pi; ṫ, q̇

i, ṗ, ṗi) = (t, qi, p, pi,−ṗ,−ṗi, ṫ, q̇
i).

Now, if V̂µ : T ∗(T ∗M) −→ R is the linear function on T ∗(T ∗M) induced by the vector field Vµ, we

can consider the affine subbundle V̂µ
−1

(1) of T ∗(T ∗M), that is,

V̂µ
−1

(1) = {γ ∈ T ∗(T ∗M)/γ(Vµ(πT∗M (γ))) = 1}
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SL

""EE
EE

EE
EE

T ∗(J1π)/〈η1〉
π̃J1π

&&LLLLLLLLLL
J1π∗

1

Aπoo

j1(π∗

1,0)

||yy
yy

yy
yy (π∗

1 )1,0

""FFFFFFFF
oo

J1π
d̃L

ffLLLLLLLLLL legL //

π1,0

##GGGGGGGG

��4
44

44
44

44
44

44
44

V ∗π
π∗

1,0

{{ww
ww

ww
ww

w

��		
		

		
		

		
		

		
	

M

π

��
R

σ

OO
j1σ

QQ

legL◦j1σ

LL
j1(legL◦j1σ)

Figure 2. The Lagrangian formalism in the restricted Tulczyjew’s triple

and the map ϕ : V̂µ
−1

(1) −→ T (V ∗π) defined by ϕ = Tµ ◦ b−1
ΩT∗M

.

Since Vµ =
∂

∂p
it follows that (t, qi, p, pi; pt, pqi , ppi) are local coordinates on V̂µ

−1
(1) and, moreover,

ϕ(t, qi, p, pi; pt, pqi , ppi) = (t, qi, pi; 1, ppi,−pqi).

Thus, ϕ takes values in J1π∗
1 and we can consider the map

ϕ : V̂µ
−1

(1) −→ J1π∗
1 .

The local expression of this map is

ϕ(t, qi, p, pi; pt, pqi , ppi) = (t, qi, pi; ppi ,−pqi).

Therefore, it is clear that ϕ is not a diffeomorphism. In order to obtain a diffeomorphism, we will
proceed as follows.
First Step: The cotangent lift of the action of R on T ∗M defines an action of R on T ∗(T ∗M). In
fact, we have that

p′ · (t, qi, p, pi; pt, pqi , pp, ppi) = (t, qi, p+ p′, pi; pt, pqi , pp, ppi)

for p′ ∈ R and (t, qi, p, pi; pt, pqi , pp, ppi) ∈ T ∗(T ∗M).

It is obvious that the affine bundle V̂µ
−1

(1) is invariant under this action. Consequently, the space

of orbits of this action
V̂µ

−1
(1)

R
is an affine bundle over V ∗π which is modelled over the vector

bundle
V̂µ

−1
(0)

R
.

Remark 4.3. The affine bundle
V̂µ

−1
(1)

R
over V ∗π is identified with the phase bundle Pµ associated

with the AV-bundle µ : T ∗M −→ V ∗π. The phase bundle associated with an AV-bundle was
introduced in [5]. 3

Note that V̂µ
−1

(0) is just the annihilator of the vertical bundle to µ : T ∗M −→ V ∗π and that the

quotient vector bundle
V̂µ

−1
(0)

R
is isomorphic to T ∗(V ∗π). So, the affine bundle Pµ =

V̂µ
−1

(1)
R

is
modelled over the vector bundle T ∗(V ∗π).
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Local coordinates on Pµ =
V̂µ

−1
(1)

R
are (t, qi, pi; pt, pqi , ppi).

Moreover, there exists a smooth map ϕ : Pµ −→ J1π∗
1 such that the following diagram

V̂µ
−1

(1)
ϕ //

π
V̂µ

−1
(1)

��

J1π∗
1

Pµ

ϕ

77nnnnnnnnnnnnnnn

is commutative, where π
V̂µ

−1
(1)

: V̂µ
−1

(1) −→ Pµ is the canonical projection. The local expression

of ϕ is

ϕ(t, qi, pi; pt, pqi , ppi) = (t, qi, pi; ppi ,−pqi).

Therefore, ϕ is a surjective submersion.
Second Step: Let π∗

1 : V ∗π −→ R be the canonical projection. Then, the differential of π∗
1 is a

section of the vector bundle πV ∗π : T ∗(V ∗π) −→ V ∗π. Therefore, since Pµ is an affine bundle
modelled over T ∗(V ∗π), we may consider the quotient affine bundle Pµ/〈dπ∗

1〉 over V
∗π. Pµ/〈dπ∗

1〉
is modelled over the quotient vector bundle T ∗(V ∗π)/〈dπ∗

1〉 .
Local coordinates on Pµ/〈dπ∗

1〉 are (t, qi, pi; , pqi , ppi).
Furthemore, there exits a smooth map ϕ̃ : Pµ/〈dπ∗

1〉 −→ J1π∗
1 such that the following diagram

Pµ
ϕ //

πPµ

��

J1π∗
1

Pµ/〈dπ∗
1〉

ϕ̃

66mmmmmmmmmmmmmm

is commutative, where πPµ : Pµ −→ Pµ/〈dπ∗
1〉 is the canonical projection. The local expression

of ϕ̃ is

ϕ̃(t, qi, pi; pqi , ppi) = (t, qi, pi; ppi ,−pqi).

Consequently, ϕ̃ is a diffeomorphism.
We will denote by bπ : J1π∗

1 −→ Pµ/〈dπ∗
1〉 the inverse map of ϕ̃, that is, bπ = ϕ̃−1. Then, we have

that

(4.6) bπ(t, q
i, pi, q̇

i, ṗi) = (t, qi, pi,−ṗi, q̇
i).

Note that bπ is an affine bundle isomorphism over the identity of V ∗π.
The following diagram illustrates the situation

J1π∗
1

bπ //

(π∗

1)1,0 ##FFFFFFFF
Pµ/〈dπ∗

1〉

π̃Pµyysssssssss

V ∗π

Here π̃Pµ is the affine bundle projection.
Pµ admits a canonical symplectic form ΩPµ (see [5]). In fact, the local expression of ΩPµ is

ΩPµ = dt ∧ dpt + dqi ∧ dpqi + dpi ∧ dppi .

Let ΛPµ be the Poisson structure on Pµ associated with ΩPµ. Then,

ΛPµ =
∂

∂t
∧

∂

∂pt
+

∂

∂qi
∧

∂

∂pqi
+

∂

∂pi
∧

∂

∂ppi
.
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On the other hand, the vertical lift (dπ∗
1)
v to Pµ of the 1-form dπ∗

1 on V ∗π generates the vertical
bundle to the canonical projection from Pµ on Pµ/〈dπ∗

1〉. Note that,

(dπ∗
1)
v =

∂

∂pt
.

Thus, L(dπ∗

1 )
vΛPµ = 0 and, therefore, ΛPµ is projectable to a Poisson structure Λ̃Pµ on Pµ/〈dπ∗

1〉.

The local expression of Λ̃Pµ is

(4.7) Λ̃Pµ =
∂

∂qi
∧

∂

∂pqi
+

∂

∂pi
∧

∂

∂ppi
.

Consequently, using (4.4), (4.6) and (4.7), we prove the following result

Theorem 4.4. bπ is anti-Poisson isomorphism between the Poisson manifolds (J1π∗
1 ,ΛJ1π∗

1
) and

(Pµ/〈dπ∗
1〉, Λ̃Pµ).

Now, let h : V ∗π −→ T ∗M be a Hamiltonian section and Fh be the corresponding real function on

T ∗M such that Vµ(Fh) = 1. Then, one may define a section of the affine bundle V̂µ
−1

(1) −→ T ∗M
as follows

α ∈ T ∗M −→ dFh(α) ∈ V̂µ
−1

(1).

This section is R-equivariant. So, it induces a section dh : V ∗π −→ Pµ of the phase bundle

Pµ. We will denote by d̃h : V ∗π −→ Pµ/〈dπ∗
1〉 the corresponding section of the affine bundle

Pµ/〈dπ∗
1〉 −→ V ∗π. If the local expression of h is

h(t, qi, pi) = (t, qi,−H(t, q, p), pi),

we have that

(4.8) d̃h(t, qi, pi) = (t, qi, pi;
∂H

∂qi
,
∂H

∂pi
).

Thus,

(Λ̃♯Pµ)
−1(T (d̃h(V ∗π))) =

〈{
dt, dpqj −

∂2H

∂qi∂qj
dqi−

∂2H

∂pi∂qj
dpi, dppj −

∂2H

∂qi∂pj
dqi−

∂2H

∂pi∂pj
dpi

}〉
,

(Λ̃♯Pµ)
(
T ∗

d̃h(α)

( Pµ

〈dπ∗
1〉

))
∩ T

d̃h(α)
(d̃h(V ∗π)) =

〈{( ∂

∂qj
+

∂2H

∂qi∂qj
∂

∂pqi
+

∂2H

∂qj∂pi

∂

∂ppi

)
|d̃h(α)

,

( ∂

∂pj
+

∂2H

∂qi∂pj

∂

∂pqi
+

∂2H

∂pi∂pj

∂

∂ppi

)
|d̃h(α)

}〉
,

∀α ∈ V ∗π.
Therefore,

Λ̃Pµ(α, β) = 0, ∀α, β ∈ (Λ̃♯Pµ)
−1(T (d̃h(V ∗π))),

dim
(
T
d̃h(α)

(d̃h(V ∗π)) ∩ (Λ̃♯Pµ)
(
T
d̃h(α)

( Pµ

〈dπ∗
1〉

)))
=
dim

(
Λ̃♯Pµ

(
T ∗
d̃h(α)

(
Pµ

〈dπ∗

1〉

)))

2
= 2n,

∀α ∈ V ∗π.

This implies that d̃h(V ∗π) is a Lagrangian submanifold of the Poisson manifold
( Pµ

〈dπ∗
1〉
, Λ̃Pµ

)
.

So, from Theorem 4.4, it follows that Sh = b−1
π (d̃h(V ∗π)) is also a Lagrangian submanifold of the

Poisson manifold (J1π∗
1 ,ΛJ1π∗

1
).
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On the other hand, if Rh is the Reeb vector field of the cosymplectic structure (Ωh, η
∗
1) on V ∗π

(see subsection 3.2) then, using (3.2), (4.6) and (4.8), we deduce that

Sh = Rh(V
∗π).

Consequently, since the integral curves of Rh are the solutions of the Hamilton equations for the
Hamiltonian section h, we obtain the following result.

Theorem 4.5. (1) Let τ : R −→ V ∗π be a local section of the fibration π∗
1 : V ∗π −→ R.

Then, τ is a solution of the Hamilton equations for h if and only if

b−1
π ◦ d̃h ◦ τ = j1τ.

(2) The local equations which define to Sh as a Lagrangian submanifold of the Poisson manifold

(J1π∗
1 ,ΛJ1π∗

1
) are just the Hamilton equations for h.

Figure 3 illustrates the situation

Sh

||xxxxxxxx

J1π∗
1

bπ //

(π∗

1 )1,0

##FFFFFFFF
Pµ/〈dπ∗

1〉
π̃Pµ

yysssssssss

V ∗π
d̃h

99sssssssss

π∗

1,0

��
M

π
{{wwwwwwwww

R

j1τ

OO

τ

DD															

Figure 3. The Hamiltonian formalism in the restricted Tulczyjew’s triple

4.3. The equivalence between the Lagrangian and Hamiltonian formalism.

Let L : J1π −→ R be an hyperregular Lagrangian function. Then, the restricted Legendre
transformation legL : J1π −→ V ∗π is a global diffeomorphism and we may consider the Euler-
Lagrange vector field RL on J1π. Note that, since leg∗L(η

∗
1) = η1 and η1(RL) = 1, it follows that

T legL(RL(J
1π)) ⊆ J1π∗

1 .
Moreover, using (3.8), (3.9), (4.2) and (4.5), we deduce

Lemma 4.6. The following relation holds

Aπ ◦ T legL ◦RL = d̃L.

Now, denote by h : V ∗π −→ T ∗M the Hamiltonian section associated with the hyperregular
Lagrangian function L, that is,

h = LegL ◦ leg−1
L ,

LegL : J1π −→ T ∗M being the extended Legendre transformation. Then, using Lemma 4.6 and
since T legL ◦RL = Rh ◦ legL, we prove the following result.
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Theorem 4.7. The Lagrangian submanifolds SL = A−1
π (d̃L(J1π)) and Sh = Rh(V

∗π) of the

Poisson manifold (J1π∗
1 ,ΛJ1π∗

1
) are equal.

The previous result may be considered as the expression of the equivalence between the Lagrangian
formalism and the restricted Hamiltonian formalism in the Lagrangian submanifold setting. Figure
4 illustrates the situation

SL

""EE
EE

EE
EE

= Sh

||xxxxxxxx

T ∗(J1π)/〈η1〉
π̃J1π

&&LLLLLLLLLL
J1π∗

1

Aπoo bπ //

j1(π∗

1,0)

||yy
yyy

yy
y (π∗

1 )1,0

""FFFFFFFF
Pµ/〈dπ∗

1〉
π̃Pµ

yyttt
ttt

tt
tt

J1π
d̃L

ffLLLLLLLLLL legL // V ∗π
d̃h

99tttttttttt

Figure 4. The restricted Tulczyjew’s triple for time-dependent Mechanics

5. Extended Tulczyjew’s triple

5.1. The Lagrangian formalism.

Let π̃M : T ∗M −→ R be the fibration from T ∗M on R. We consider the space J1π̃M of 1-jets of
local sections of π̃M : T ∗M −→ R. As we know, there exists a natural embedding from J1π̃M in
T (T ∗M), which we will denote by j : J1π̃M −→ T (T ∗M).
On the other hand, we can consider the 1-jet prolongation j1πM : J1π̃M −→ J1π of the bundle
map πM : T ∗M −→M .
Then, we may define a smooth map

Ãπ : J1π̃M −→ T ∗(J1π)

as follows:
Let z̃ be a point of J1π̃M and AM : T (T ∗M) −→ T ∗(TM) be the canonical Tulczyjew diffeomor-
phism. Then, AM (j(z̃)) ∈ T ∗

v (TM), with v ∈ J1π. Indeed, if (t, qi, p, pi) are local coordinates on
T ∗M , we have that (t, qi, p, pi; q̇

i, ṗ, ṗi) are local coordinates on J1π̃M and

AM (j(z̃)) = (t, qi, 1, q̇i; ṗ, ṗi, p, pi).

Thus, AM (j(z̃)) ∈ T ∗
v (TM), with v ∈ J1π. In fact, v = (j1πM )(z̃).

Now, we define

Ãπ(z̃) = AM (j(z̃))|Tj1πM (z̃)(J
1π) ∈ T ∗

(j1πM(z̃)(J
1π).

Therefore, it follows that

(5.1) Ãπ(t, q
i, p, pi; q̇

i, ṗ, ṗi) = (t, qi, q̇i; ṗ, ṗi, pi).

Consequently, Ãπ is a surjective submersion. Ãπ is called the canonical Tulczyjew fibration asso-

ciated with π.
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Remark 5.1. Ãπ is the bundle projection of a principal R-bundle. In fact, if we consider the
tangent lift of the principal action of R on T ∗M , we have an action of R on T (T ∗M). The local
expression of this action is

p′ · (t, qi, p, pi; ṫ, q̇
i, ṗ, ṗi) = (t, qi, p+ p′, pi; ṫ, q̇

i, ṗ, ṗi)

for p′ ∈ R and (t, qi, p, pi; ṫ, q̇
i, ṗ, ṗi) ∈ T (T ∗M).

Thus, it is clear that the submanifold J1π̃M of T (T ∗M) is invariant under the previous action and,

from (5.1), it follows that the fibers of Ãπ are just the orbits of the action of R on J1π̃M . 3

Next, we will denote by ΩM the canonical symplectic structure of T ∗M and by ΩcM the complete
lift of ΩM to T (T ∗M). ΩcM defines a symplectic structure on T (T ∗M) and j∗(ΩcM ) = ΩJ1π̃M

is a
presymplectic form on J1π̃M .
In fact, the local expressions of these forms are

ΩcM = dt ∧ dṗ+ dṫ ∧ dp+ dqi ∧ dṗi + dq̇i ∧ dpi,

and

(5.2) ΩJ1π̃M
= dt ∧ dṗ+ dqi ∧ dṗi + dq̇i ∧ dpi.

Thus, ΩJ1π̃M
is a presymplectic form of corank 1 and the kernel of ΩJ1π̃M

is generated by the
restriction to J1π̃M of the complete lift (Vµ)

c
of Vµ to T (T ∗M). Note that,

(5.3) (Vµ)
c
=

∂

∂p
and ker(T Ãπ) = 〈{(Vµ)

c
}〉.

On the other hand, let ΩJ1π be the canonical symplectic structure of T ∗(J1π) . Then, if (t, qi, q̇i; pt,
pqi , pq̇i) are local coordinates on T ∗(J1π), we have that

(5.4) ΩJ1π = dt ∧ dpt + dqi ∧ dpqi + dq̇i ∧ dpq̇i .

Therefore, using (5.1), (5.2) and (5.4), we deduce the following result.

Theorem 5.2. The canonical Tulczyjew fibration associated with π is a presymplectic map between

the presymplectic manifolds (J1π̃M ,ΩJ1π̃M
) and (T ∗(J1π),ΩJ1π), that is,

Ãπ
∗
(ΩJ1π) = ΩJ1π̃M

.

Now, let L : J1π −→ R be a Lagrangian function. Then, it is well-known that dL(J1π) is a
Lagrangian submanifold of the symplectic manifold (T ∗(J1π),ΩJ1π). Consequently, using (5.3)

and Theorem 5.2, we obtain that S̃L = Ãπ
−1

(dL(J1π)) also is a Lagrangian submanifold of the
presymplectic manifold (J1π̃M ,ΩJ1π̃M

).
Moreover, if σ is a local section of π :M −→ R then, from (3.8) and (5.1), we deduce that

Ãπ ◦ j1(LegL ◦ (j1σ)(t)) =
(
t, qi(t), EL(j

1σ(t)),
∂L

∂q̇i
((j1σ)(t));

dqi

dt
,
d(EL ◦ j1σ)

dt
,
d

dt

( ∂L
∂q̇i

◦ j1σ
))

where EL = L − q̇i ∂L
∂q̇i

and LegL : J1π −→ T ∗M is the extended Legendre transformation (see

(3.8)).
We remark that for a solution σ of the Euler-Lagrange equations for L, we have that

d(EL ◦ j1σ)

dt
=
∂L

∂t
◦ j1σ.

Using the above facts, one may prove the following result.
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Theorem 5.3. (1) A section σ : R −→ M is a solution of the Euler-Lagrange equations for

L if and only if

dL ◦ j1σ = Ãπ ◦ j1(LegL ◦ j1σ).

(2) The local equations which define to S̃L as a Lagrangian submanifold of the presymplectic

manifold (J1π̃M ,ΩJ1π̃M
) are just the Euler-Lagrange equations for L.

Figure 5 illustrates the situation

S̃L

""EE
EE

EE
EE

E

T ∗(J1π)
πJ1π

$$II
III

III
I

J1π̃M
Ãπoo

j1πM

{{xxx
xx

xx
xx (π̃M )1,0

##HH
HHH

HH
HH
oo

J1π
dL

ddIIIIIIIII LegL //

π1,0

##HH
HH

HH
HH

H T ∗M
πM

zzuuuuuuuuu

M

π

��
R

σ

OO
j1σ

RR

LegL◦j1σ

LL
j1(LegL◦j1σ)

Figure 5. The Lagrangian formalism in the extended Tulczyjew’s triple

5.2. The Hamiltonian formalism.

Let π̃M : T ∗M −→ R be the fibration from T ∗M on R. Recall that J1π̃M is the space of 1-jets of
local sections of π̃M : T ∗M −→ R and that j is the natural embedding from J1π̃M in T (T ∗M).
Then, we may define a map

b̃π : J1π̃M −→ T ∗(T ∗M)

as follows:
Let z̃ be a point of J1π̃M and bM : T (T ∗M) −→ T ∗(T ∗M) the vector bundle isomorphism
(over the identity of T ∗M) induced by the canonical symplectic structure ΩM of T ∗M . Then,

b̃π(z̃) = bM (j(z̃)) ∈ T ∗
α(T

∗M), with α ∈ T ∗M . In fact, if (t, qi, p, pi) are local coordinates on
T ∗M , we have that (t, qi, p, pi; q̇

i, ṗ, ṗi) are local coordinates on J1π̃M and

b̃π(t, q
i, p, pi; q̇

i, ṗ, ṗi) = (t, qi, p, pi;−ṗ,−ṗi, 1, q̇
i).

From the last equation, we observe that the map b̃π takes values on the affine subbundle V̂µ
−1

(1)
of T ∗(T ∗M). For this reason, we can consider the map

b̃π : J1π̃M −→ V̂µ
−1

(1)

which in local coordinates is given by

(5.5) b̃π(t, q
i, p, pi; q̇

i, ṗ, ṗi) = (t, qi, p, pi;−ṗ,−ṗi, q̇
i).

Consequently, b̃π is a diffeomorphism.
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Remark 5.4. If we consider the cotangent lift of the principal action of R on T ∗M , we have an
action of R on T ∗(T ∗M). The local expression of this action is

p′ · (t, qi, p, pi; pt, pqi , pp, ppi) = (t, qi, p+ p′, pi; pt, pqi , pp, ppi)

for p′ ∈ R and (t, qi, p, pi; pt, pqi , pp, ppi) ∈ T ∗(T ∗M).

Thus, it is clear that the affine subbundle V̂µ
−1

(1) of T ∗(T ∗M) is invariant under this action.
Moreover, if we consider the natural action of R on J1π̃M (see Remark 5.1) then, from (5.5), it

follows that the diffeomorphism b̃π is equivariant. 3

Next, we will denote by ΩT∗M the canonical symplectic structure on T ∗(T ∗M) and by Φ
V̂µ

−1
(1)

the 2-form on V̂µ
−1

(1) defined by

Φ
V̂µ

−1
(1)

= i∗
V̂µ

−1
(1)

(ΩT∗M ),

where i
V̂µ

−1
(1)

: V̂µ
−1

(1) −→ T ∗(T ∗M) is the canonical inclusion.

The local expressions of these forms are

ΩT∗M = dt ∧ dpt + dqi ∧ dpqi + dp ∧ dpp + dpi ∧ dppi ,

and

(5.6) Φ
V̂µ

−1
(1)

= dt ∧ dpt + dqi ∧ dpqi + dpi ∧ dppi .

Thus, Φ
V̂µ

−1
(1)

is a presymplectic form of corank 1 and the kernel of Φ
V̂µ

−1
(1)

is generated by

the restriction to V̂µ
−1

(1) of the complete lift (Vµ)
∗c of Vµ to T ∗(T ∗M). Note that (Vµ)

∗c is the

Hamiltonian vector field of the linear function V̂µ : T ∗(T ∗M) → R and, therefore,

(5.7) (Vµ)
∗c =

∂

∂p
.

Consequently, using (5.2), (5.5) and (5.6), we deduce the following result.

Theorem 5.5. b̃π : J1π̃M −→ V̂µ
−1

(1) is an anti-presymplectic isomorphism between the presym-

plectic manifolds (J1π̃M ,ΩJ1π̃M
) and (V̂µ

−1
(1),Φ

V̂µ
−1

(1)
), that is,

b̃π
∗
(Φ

V̂µ
−1

(1)
) = −ΩJ1π̃M

.

Now, let h : V ∗π −→ T ∗M be a Hamiltonian section and Fh : T ∗M −→ R be the correspon-
ding real C∞-function on T ∗M satisfying Vµ(Fh) = 1 (see section 3.2). Then, it is clear that

dFh(T
∗M) ⊆ V̂µ

−1
(1) ⊆ T ∗(T ∗M).

Denote by idFh(T∗M) : dFh(T
∗M) −→ V̂µ

−1
(1) the canonical inclusion.

Since dFh(T
∗M) is a Lagrangian submanifold of T ∗(T ∗M) and Φ

V̂µ
−1

(1)
= i∗

V̂µ
−1

(1)
(ΩT∗M ), we

deduce that

(5.8) i∗dFh(T∗M)(ΦV̂µ
−1

(1)
) = 0.

On the other hand, using (5.7), it is easy to prove that the restriction of (Vµ)
∗c to dFh(T

∗M) is
tangent to dFh(T

∗M). Thus,

(5.9) Ker
(
Φ
V̂µ

−1
(1)

(dFh(α))
)
⊆ TdFh(α)(dFh(T

∗M)), ∀α ∈ T ∗M.
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Therefore, from (5.8) and (5.9), we obtain that dFh(T
∗M) is a Lagrangian submanifold of the

presymplectic manifold (V̂µ
−1

(1),Φ
V̂µ

−1
(1)

) (see Definition 2.2).

Consequently, using Theorem 5.5, it follows that S̃h = b̃π
−1

(dFh(T
∗M)) is also a Lagrangian

submanifold of the presymplectic manifold (J1π̃M ,ΩJ1π̃M
).

Next, suppose that τ : R −→ V ∗π is a section of π∗
1 : V ∗π −→ R. Then, we have that

(dFh ◦ h ◦ τ)(R) ⊆ V̂µ
−1

(1)

(see (3.4)). Moreover, if τ is a solution of the Hamilton equations then, from (3.3), we deduce that

d(H ◦ τ)

dt
=
∂H

∂t
◦ τ.

Using these facts and (5.5), we may prove the following result.

Theorem 5.6. (1) A section τ : R −→ V ∗π is a solution of Hamilton equations for h if and

only if

b̃π ◦ j1(h ◦ τ) = dFh ◦ h ◦ τ.

(2) The local equations which define to S̃h as a Lagrangian submanifold of J1π̃M are just the

Hamilton equations for h.

Figure 6 illustrates the situation

S̃h

||yy
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yy
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yy

J1π̃M

(π̃M )1,0 ##GGGGGGGGG

b̃π // V̂µ
−1

(1)
π
V̂µ

−1(1)

zzuuu
uu

uu
uu

T ∗M

π̃M

����
��
��
��
��
��
��
��
��
��
��

µ

��

dFh

::uuuuuuuuu

πM

��8
88

88
88

88
88

88
88

8

V ∗π

h

OO

π∗

1,0 %%KKKKKKKKKK

M

π

ttiiiiiiiiiiiiiiiiiiiii

R

τ

CC���������������

j1(h◦τ)

OO

Figure 6. The Hamiltonian formalism in the extended Tulczyjew’s triple

5.3. The equivalence between the Lagrangian and Hamiltonian formalism.

Let L : J1π −→ R be an hyperregular Lagrangian function. Then, the restricted Legendre trans-
formation legL : J1π −→ V ∗π is a global diffeomorphism and we may consider the Euler-Lagrange
vector field RL on J1π.
Moreover, using (3.8), (3.9) and (5.1), we deduce
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Lemma 5.7. The following relation holds

Ãπ ◦ TLegL ◦RL = dL,

where LegL : J1π → T ∗M is the extended Legendre transformation.

Now, denote by h : V ∗π −→ T ∗M the Hamiltonian section associated with the hyperregular
Lagrangian function L, that is,

h = LegL ◦ leg−1
L .

Theorem 5.8. The Lagrangian submanifolds S̃L = Ãπ
−1

(dL(J1π)) and S̃h = b̃π
−1

(dFh(T
∗M))

of the presymplectic manifold (J1π̃M ,ΩJ1π̃M
) are equal.

Proof: Let z̃ be a point of S̃L. Then, since πJ1π ◦ Ãπ = j1πM , it follows that

Ãπ(z̃) = dL((j1πM )(z̃)).

Thus, using Lemma 5.7 and the fact that RL and HΩM

Fh
are LegL-related, we deduce that

Ãπ(z̃) = Ãπ(H
ΩM

Fh
(LegL(j

1πM )(z̃))) = Ãπ(b̃π
−1

(dFh(LegL(j
1πM )(z̃)))).

Therefore, from Remark 5.1, we obtain that there exists a unique p ∈ R such that

b̃π(p · z̃) = dFh(LegL((j
1πM )(z̃))).

Here, · denotes the action of R on J1π̃M .
Consequently, using Remarks 3.1 and 5.4, it follows that

b̃π(z̃) = dFh((−p) · LegL((j
1πM )(z̃))) ∈ dFh(T

∗M).

So, z̃ ∈ b̃π
−1

(dFh(T
∗M)) = S̃h. This implies that S̃L ⊆ S̃h.

Proceeding in a similar way, one may prove that S̃h ⊆ S̃L. �

The previous result may be considered as the expression of the equivalence between the Lagrangian
and extended Hamiltonian formalism in the Lagrangian submanifold setting.
Figure 7 illustrates the situation
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::vvvvvvvvv

Figure 7. The extended Tulczyjew’s triple for time-dependent Mechanics

Finally, Figure 8 describes both triples. The extended Tulczyjew triple is on the top of the diagram
and the restricted Tulczyjew triple is on the bottom.
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Figure 8. The restricted and extended Tulczyjew’s triples for time-dependent Mechanics

6. Conclusions and future work

Using the geometry of presymplectic and Poisson manifolds a new Tulczyjew triple for time-
dependent Mechanics is discussed. More precisely, we present two Tulczyjew triples. The first
one is adapted to the restricted Hamiltonian formalism for time-dependent mechanical systems
and the second one is adapted to the extended Hamiltonian formalism. Our construction solves
some problems and deficiences of previous approaches.
It would be interesting to extend the ideas and results contained in this paper for classical field
theories of first order. For this purpose, a suitable higher order generalization of a presymplectic
(Poisson) structure must be used. This will be the subject of a forthcoming paper.
Other Tulczyjew triples for classical field theories of first order have been proposed by several
authors (see [4, 12]).
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[5] K Grabowska, J Grabowski and P Urbański, AV-differential Geometry: Poisson and Jacobi structures,

Journal of Geometry and Physics 52 (2004), 398–446.
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