Composition-Diamond Lemma for Non-associative Algebras over a Commutative Algebra*

Yuqun Chen, Jing Li and Mingjun Zeng
School of Mathematical Sciences, South China Normal University
Guangzhou 510631, P. R. China
yqchen@scnu.edu.cn
yulin_jj@yahoo.com.cn
dearmj@126.com

Abstract

We establish the Composition-Diamond lemma for non-associative algebras over a free commutative algebra. As an application, we prove that every countably generated non-associative algebra over an arbitrary commutative algebra K can be embedded into a two-generated non-associative algebra over K.

Key words: Gröbner-Shirshov basis; non-associative algebra; commutative algebra.
AMS Mathematics Subject Classification(2000): 16S15, 13P10, 17Dxx, 13Axx

1 Introduction

Gröbner bases and Gröbner-Shirshov bases theories were invented independently by A.I. Shirshov [23] for non-associative algebras and commutative (anti-commutative) non-associative algebras [21], for Lie algebras (explicitly) and associative algebras (implicitly) [22], for infinite series algebras (both formal and convergent) by H. Hironaka [19] and for polynomial algebras by B. Buchberger (first publication in [13]). Gröbner bases and Gröbner-Shirshov bases theories have been proved to be very useful in different branches of mathematics, including commutative algebra and combinatorial algebra, see, for example, the books [1, 12, 14, 15, 17, 18], the papers [2, 3, 4, 5, 16], and the surveys [6, 9, 10, 11].

It is well known that every countably generated non-associative algebra over a field k can be embedded into a two-generated non-associative algebra over k. This result follows from Gröbner-Shirshov bases theory for non-associative algebras by A.I. Shirshov [21].

Composition-Diamond lemmas for associative algebras over a polynomial algebra is established by A.A. Mikhalev and A.A. Zolotykh [20], for associative algebras over an associative algebra by L.A. Bokut, Yuqun Chen and Yongshan Chen [7], for Lie algebras over a polynomial algebra by L.A. Bokut, Yuqun Chen and Yongshan Chen [8]. In this paper, we establish the Composition-Diamond lemma for non-associative algebras over

[^0]a polynomial algebra. As an application, we prove that every countably generated nonassociative algebra over an arbitrary commutative algebra K can be embedded into a two-generated non-associative algebra over K, in particular, this result holds if K is a free commutative algebra.

2 Composition-Diamond lemma for non-associative algebras over a commutative algebra

Let k be a field, K a commutative associative k-algebra with unit, X a set and $K(X)$ the free non-associative algebra over K generated by X.

Let $[Y]$ denote the free abelian monoid generated by Y, X^{*} the free monoid generated by X and $X^{* *}$ the set of all non-associative words in X. Denote by

$$
N=[Y] X^{* *}=\left\{u=u^{Y} u^{X} \mid u^{Y} \in[Y], u^{X} \in X^{* *}\right\}
$$

Let $k N$ be a k - linear space spanned by N. For any $u=u^{Y} u^{X}, v=v^{Y} v^{X} \in N$, we define the multiplication of the words as follows

$$
u v=u^{Y} v^{Y} u^{X} v^{X} \in N
$$

It is clear that $k N$ is the free non-associative $k[Y]$-algebra generated by X. Such an algebra is denoted by $k[Y](X)$, i.e., $k N=k[Y](X)$. Clearly,

$$
k[Y](X)=k[Y] \otimes k(X)
$$

Now, we order the set $N=[Y] X^{* *}$.
Let $>$ be a total ordering on $X^{* *}$. Then $>$ is called monomial if

$$
\left(\forall u, v, w \in X^{* *}\right) \quad u>v \Rightarrow w u>w v \text { and } u w>v w .
$$

For example, the deg-lex ordering on $X^{* *}$ is monomial: $u v>u_{1} v_{1}$, if $\operatorname{deg}(u v)>\operatorname{deg}\left(u_{1} v_{1}\right)$, otherwise $u>u_{1}$ or $u=u_{1}, v>v_{1}$. Similarly, we define the monomial ordering on $[Y]$.

Suppose that both $>_{X}$ and $>_{Y}$ are monomial orderings on $X^{* *}$ and $[Y]$, respectively. For any $u=u^{Y} u^{X}, v=v^{Y} v^{X} \in N$, define

$$
u>v \Leftrightarrow u^{X}>_{X} v^{X} \text { or }\left(u^{X}=v^{X} \text { and } u^{Y}>_{Y} v^{Y}\right) .
$$

It is obvious that $>$ is a monomial ordering on N in the sense of

$$
\left(\forall u, v, w \in[Y] X^{* *}\right) \quad u>v \Rightarrow w u>w v, u w>v w \text { and } w^{Y} u>w^{Y} v
$$

We will use this ordering in this paper.
For any polynomial $f \in k[Y](X), f$ has a unique presentation of the form

$$
f=\alpha_{\bar{f}} \bar{f}+\sum \alpha_{i} u_{i}
$$

where $\bar{f}, u_{i} \in[Y] X^{* *}, \bar{f}>u_{i}, \alpha_{\bar{f}}, \alpha_{i} \in k . \bar{f}$ is called the leading term of $f . f$ is monic if the coefficient of \bar{f} is 1 .

Let $\star \notin X$. By a \star-word we mean any expression in $[Y](X \cup\{\star\})^{* *}$ with only one occurrence of \star. Let u be a \star-word and $s \in k[Y](X)$. Then we call $\left.u\right|_{s}=\left.u\right|_{\star \mapsto s}$ an s-word.
It is clear that for s-word $\left.u\right|_{s}$, we can express $\left.u\right|_{s}=u^{Y}(a s b)$ for some $a, b \in X^{*}$.
Since $>$ is monomial on $[Y] X^{* *}$, we have following lemma.
Lemma 2.1 Let $s \in k[Y](X)$ be a non-zero polynomial. Then for any s-word $\left.u\right|_{s}=$ $u^{Y}(a s b), \overline{u^{Y}(a s b)}=u^{Y}(a \bar{s} b)$.

Now, we give the definition of compositions.
Definition 2.2 Let f and g be monic polynomials of $k[Y](X), w=w^{Y} w^{X} \in[Y] X^{* *}$ and $a, b, c \in X^{*}$, where $w^{Y}=L\left(\bar{f}^{Y}, \bar{g}^{Y}\right) \triangleq L$ and $L\left(\bar{f}^{Y}, \bar{g}^{Y}\right)$ is the least common multiple of \bar{f}^{Y} and \bar{g}^{Y} in $k[Y]$. Then we have the following compositions.

1. X-inclusion

If $w^{X}=\bar{f}^{X}=\left(a\left(\bar{g}^{X}\right) b\right)$, then

$$
(f, g)_{w}=\frac{L}{\bar{f}^{Y}} f-\frac{L}{\bar{g}^{Y}}(a(g) b)
$$

is called the composition of X-inclusion.
2. Y-intersection only

If $\left|\bar{f}^{Y}\right|+\left|\bar{g}^{Y}\right|>\left|w^{Y}\right|$ and $w^{X}=\left(a\left(\bar{f}^{X}\right) b\left(\bar{g}^{X}\right) c\right)$, then

$$
(f, g)_{w}=\frac{L}{\bar{f}^{Y}}\left(a(f) b\left(\bar{g}^{X}\right) c\right)-\frac{L}{\bar{g}^{Y}}\left(a\left(\bar{f}^{X}\right) b(g) c\right)
$$

is called the composition of Y-intersection only, where for $u \in[Y],|u|$ means the degree of u.
w is called the ambiguity of the composition $(f, g)_{w}$.
Remark 1.In the case of Y-intersection only in Definition $2.2, \bar{f}^{X}$ and \bar{g}^{X} are disjoint.
Remark 2. By Lemma 2.1, we have $w>\overline{(f, g)_{w}}$.
Remark 3. In Definition 2.2, the compositions of f, g are the same as the ones in $k(X)$, if $Y=\emptyset$. If this is the case, we have only composition of X-inclusion.

Definition 2.3 Let S be a monic subset of $k[Y](X)$ and $f, g \in S$. A composition $(f, g)_{w}$ is said to be trivial modulo (S, w), denoted by $(f, g)_{w} \equiv 0 \bmod (S, w)$, if

$$
(f, g)_{w}=\left.\sum_{i} \alpha_{i} u_{i}\right|_{s_{i}}
$$

where each $s_{i} \in S, \alpha_{i} \in k,\left.u_{i}\right|_{s_{i}} s_{i}$-word and $w>\left.u_{i}\right|_{\bar{s}_{i}}$.
Generally, for any $p, q \in k[Y](X), p \equiv q \bmod (S, w)$ if and only if $p-q \equiv 0 \bmod (S, w)$.
S is called a Gröbner-Shirshov basis in $k[Y](X)$ if all compositions of elements in S are trivial modulo S.

If a subset S of $k[Y](X)$ is not a Gröbner-Shirshov basis then one can add to S all nontrivial compositions of polynomials of S and continue this process repeatedly so that we obtain a Gröbner-Shirshov basis S^{c} that contains S. Such process is called the Shirshov algorithm.

Lemma 2.4 Let S be a Gröbner-Shirshov basis in $k[Y](X)$ and $s_{1}, s_{2} \in S$. Let $\left.u_{1}\right|_{s_{1}},\left.u_{2}\right|_{s_{2}}$ be s_{1}, s_{2}-words respectively. If $w=\left.u_{1}\right|_{\overline{s_{1}}}=\left.u_{2}\right|_{\overline{s_{2}}}$, then $\left.\left.u_{1}\right|_{s_{1}} \equiv u_{2}\right|_{s_{2}} \bmod (S, w)$.

Proof: Clearly, $w^{Y}=L\left({\overline{s_{1}}}^{Y},{\overline{s_{2}}}^{Y}\right) \cdot t=L \cdot t$ for some $t \in[Y]$.
There are three cases to consider.
Case 1. X-inclusion.
We may assume that ${\overline{s_{1}}}^{X}=\left(c\left({\overline{s_{2}}}^{X}\right) d\right.$) for some $c, d \in X^{*}$ and $w^{X}=\left(a\left({\overline{s_{1}}}^{X}\right) b\right)=$ $\left(a\left(c\left({\overline{s_{2}}}^{X}\right) d\right) b\right.$) for some $a, b \in X^{*}$. Thus,

$$
\begin{aligned}
\left.u_{1}\right|_{s_{1}}-\left.u_{2}\right|_{s_{2}} & =\frac{L \cdot t}{\overline{s_{1} Y}}\left(a\left(s_{1}\right) b\right)-\frac{L \cdot t}{\overline{s_{2} Y}}\left(a\left(c\left(s_{2}\right) d\right) b\right) \\
& =t \cdot\left(a\left(\frac{L}{\overline{s_{1} Y}} s_{1}-\frac{L}{\overline{s_{2} Y}}\left(c\left(s_{2}\right) d\right)\right) b\right) \\
& =t \cdot\left(a\left(s_{1}, s_{2}\right)_{w_{1}} b\right) \\
& \equiv 0 \quad \bmod (S, w)
\end{aligned}
$$

where $w_{1}=L \bar{s}_{1} X$.
Case 2. Y-intersection only.
In this case, $w^{X}=\left(a\left({\overline{s_{1}}}^{X}\right) b\left({\overline{s_{2}}}^{X}\right) c\right), a, b, c \in X^{*}$ and then

$$
\begin{aligned}
\left.u_{1}\right|_{s_{1}}-\left.u_{2}\right|_{s_{2}} & =\frac{L \cdot t}{\bar{s}_{1}^{Y}}\left(a\left(s_{1}\right) b\left({\overline{s_{2}}}^{X}\right) c\right)-\frac{L \cdot t}{{\overline{s_{2}}}^{Y}}\left(a\left({\overline{s_{1}}}^{X}\right) b\left(s_{2}\right) c\right) \\
& =t \cdot\left(s_{1}, s_{2}\right)_{w_{1}} \\
& \equiv 0 \quad \bmod (S, w)
\end{aligned}
$$

where $w_{1}=L w^{X}$.
Case 3. Y-disjoint and X-disjoint.
In this case, $L={\overline{s_{1}}}^{Y}{\overline{s_{2}}}^{Y}$ and $w^{X}=\left(a\left({\overline{s_{1}}}^{X}\right) b\left({\overline{s_{2}}}^{X}\right) c\right), a, b, c \in X^{*}$. We have

$$
\begin{aligned}
\left.u_{1}\right|_{s_{1}}-\left.u_{2}\right|_{s_{2}} & =\frac{L \cdot t}{\overline{s_{1}} Y}\left(a\left(s_{1}\right) b\left({\overline{s_{2}}}^{X}\right) c\right)-\frac{L \cdot t}{{\overline{s_{2}}}^{Y}}\left(a\left({\overline{s_{1}}}^{X}\right) b\left(s_{2}\right) c\right) \\
& =t \cdot\left(\frac{L}{{\overline{s_{1}}}^{Y}}\left(a\left(s_{1}\right) b\left({\overline{s_{2}}}^{X}\right) c\right)-\frac{L}{{\overline{s_{2}}}^{Y}}\left(a\left({\overline{s_{1}}}^{X}\right) b\left(s_{2}\right) c\right)\right) \\
& =t \cdot\left({\overline{s_{2}}}^{Y}\left(a\left(s_{1}\right) b\left({\overline{s_{2}}}^{X}\right) c\right)-{\overline{s_{1}}}^{Y}\left(a\left({\overline{s_{1}}}^{X}\right) b\left(s_{2}\right) c\right)\right) \\
& =t \cdot\left(\left(a\left(s_{1}\right) b\left(\overline{s_{2}}\right) c\right)-\left(a\left(\overline{s_{1}}\right) b\left(s_{2}\right) c\right)\right) \\
& =t \cdot\left(\left(a\left(s_{1}\right) b\left(\overline{s_{2}}\right) c\right)-\left(a\left(s_{1}\right) b\left(s_{2}\right) c\right)+\left(a\left(s_{1}\right) b\left(s_{2}\right) c\right)-\left(a\left(\overline{s_{1}}\right) b\left(s_{2}\right) c\right)\right) \\
& =t \cdot\left(\left(a\left(s_{1}-\overline{s_{1}}\right) b\left(s_{2}\right) c\right)-\left(a\left(s_{1}\right) b\left(s_{2}-\overline{s_{2}}\right) c\right)\right) \\
& \equiv 0 \quad \bmod (S, w)
\end{aligned}
$$

since $w=\left(a\left(\overline{s_{1}}\right) b\left(\overline{s_{2}}\right) c\right)>\overline{\left(a\left(s_{1}-\overline{s_{1}}\right) b\left(s_{2}\right) c\right)}$ and $w=\left(a\left(\overline{s_{1}}\right) b\left(\overline{s_{2}}\right) c\right)>\overline{\left(a\left(s_{1}\right) b\left(s_{2}-\overline{s_{2}}\right) c\right)}$.
This completes the proof.

Lemma 2.5 Let $S \subseteq k[Y](X)$ with each $s \in S$ monic and $\operatorname{Irr}(S)=\left\{w \in[Y] X^{* *} \mid w \neq\right.$ $\left.u\right|_{\bar{s}},\left.u\right|_{s}$ is an s-word, $\left.s \in S\right\}$. Then for any $f \in k[Y](X)$,

$$
f=\left.\sum_{u_{i} \mid \overline{s i}_{i} \leq \bar{f}} \alpha_{i} u_{i}\right|_{s_{i}}+\sum_{v_{j} \leq \bar{f}} \beta_{j} v_{j},
$$

where $\alpha_{i}, \beta_{j} \in k,\left.u_{i}\right|_{s_{i}} s_{i}$-word, $s_{i} \in S$ and $v_{j} \in \operatorname{Irr}(S)$.
Proof.Let $f=\sum_{i} \alpha_{i} u_{i} \in k[Y](X)$, where $0 \neq \alpha_{i} \in k$ and $u_{1}>u_{2}>\cdots$. If $u_{1} \in \operatorname{Irr}(S)$, then let $f_{1}=f-\alpha_{1} u_{1}$. If $u_{1} \notin \operatorname{Irr}(S)$, then there exists an s-word $\left.u\right|_{s}$ such that $\bar{f}=\left.u\right|_{\bar{s}}$. Let $f_{1}=f-\left.\alpha_{1} u\right|_{s}$. In both cases, we have $\bar{f}>\bar{f}_{1}$. Then the result follows from the induction on \bar{f}.

From the above lemmas, we reach the following theorem:

Theorem 2.6 (Composition-Diamond lemma for $k[Y](X)$ Let $S \subseteq k[Y](X)$ with each $s \in S$ monic, > the ordering on $[Y] X^{* *}$ defined as before and $\operatorname{Id}(S)$ the ideal of $k[Y](X)$ generated by S as $k[Y]$-algebra. Then the following statements are equivalent:
(i) S is a Gröbner-Shirshov basis in $k[Y](X)$.
(ii) If $0 \neq f \in \operatorname{Id}(S)$, then $\bar{f}=\left.u\right|_{s}$ for some s-word $\left.u\right|_{s}, s \in S$.
(iii) $\operatorname{Irr}(S)=\left\{w \in[Y] X^{* *}|w \neq u|_{s},\left.u\right|_{s}\right.$ is an s-word, $\left.s \in S\right\}$ is a k-linear basis for the factor algebra $k[Y](X \mid S)=k[Y](X) / I d(S)$.

Proof: $\quad(i) \Rightarrow(i i)$. Suppose $0 \neq f \in I d(S)$. Then $f=\left.\sum \alpha_{i} u_{i}\right|_{s_{i}}$ for some $\alpha_{i} \in k, s_{i^{-}}$ word $\left.u_{i}\right|_{s_{i}}, s_{i} \in S$. Let $w_{i}=\left.u_{i}\right|_{\overline{s_{i}}}$ and $w_{1}=w_{2}=\cdots=w_{l}>w_{l+1} \geq \cdots$. We will prove the result by using induction on l and w_{1}.

If $l=1$, then the result is clear. If $l>1$, then $w_{1}=\left.u_{1}\right|_{\overline{s_{1}}}=\left.u_{2}\right|_{\overline{s_{2}}}$. Now, by (i) and Lemma 2.4, $\left.\left.u_{1}\right|_{s_{1}} \equiv u_{2}\right|_{s_{2}} \bmod \left(S, w_{1}\right)$. Thus,

$$
\begin{aligned}
\left.\alpha_{1} u_{1}\right|_{s_{1}}+\left.\alpha_{2} u_{2}\right|_{s_{2}} & =\left.\left(\alpha_{1}+\alpha_{2}\right) u_{1}\right|_{s_{1}}+\alpha_{2}\left(\left.u_{2}\right|_{s_{2}}-\left.u_{1}\right|_{s_{1}}\right) \\
& \left.\equiv\left(\alpha_{1}+\alpha_{2}\right) u_{1}\right|_{s_{1}} \quad \bmod \left(S, w_{1}\right) .
\end{aligned}
$$

Therefore, if $\alpha_{1}+\alpha_{2} \neq 0$ or $l>2$, then the result follows from the induction on l. For the case $\alpha_{1}+\alpha_{2}=0$ and $l=2$, we use the induction on w_{1}. Now the result follows.
$(i i) \Rightarrow(i i i)$. By Lemma 2.5, $\operatorname{Irr}(S)$ generates the factor algebra. Moreover, if $0 \neq$ $h=\sum \beta_{j} u_{j} \in \operatorname{Id}(S), u_{j} \in \operatorname{Irr}(S), u_{1}>u_{2}>\cdots$ and $\beta_{1} \neq 0$, then $u_{1}=\bar{h}=\left.u\right|_{\bar{s}}$, a contradiction. This shows that $\operatorname{Irr}(S)$ is a k-linear basis of the factor algebra.
$(i i i) \Rightarrow(i)$. For any $f, g \in S$, since $k[Y] S \subseteq I d(S)$, we have $h=(f, g)_{w} \in I d(S)$. The result is trivial if $(f, g)_{w}=0$. Assume that $(f, g)_{w} \neq 0$. Then, by Lemma 2.5, (iii) and by noting that $w>\overline{(f, g)_{w}}=\bar{h}$, we have $(f, g)_{w} \equiv 0 \bmod (S, w)$.

This shows (i).
Remark: Theorem 2.6 is the Composition-Diamond lemma for non-associative algebras when $Y=\emptyset$.

3 Applications

Let A be an arbitrary K-algebra and A be presented by generators X and defining relations S

$$
A=K(X \mid S)
$$

Let K have a presentation by generators Y and defining relations R

$$
K=k[Y \mid R]
$$

as a quotient algebra of the polynomial algebra $k[Y]$ over k.
Then with a natural way, as $k[Y]$-algebras, we have an isomorphism

$$
k[Y \mid R](X \mid S) \rightarrow k[Y]\left(X \mid S^{l}, R x, x \in X\right), \sum\left(f_{i}+I d(R)\right) u_{i}+I d(S) \mapsto \sum f_{i} u_{i}+\operatorname{Id}\left(S^{\prime}\right)
$$

where $f_{i} \in k[Y], u_{i} \in X^{* *}, S^{\prime}=S^{l} \cup\{g x \mid g \in R, x \in X\}, S^{l}=\left\{\sum f_{i} u_{i} \in k[Y](X) \mid \sum\left(f_{i}+\right.\right.$ $\left.I d(R)) u_{i} \in S\right\}$. Then A has an expression

$$
A=k[Y \mid R](X \mid S)=k[Y]\left(X \mid S^{l}, g x, g \in R, x \in X\right)
$$

Theorem 3.1 Each countably generated non-associative algebra over an arbitrary commutative algebra K can be embedded into a two-generated non-associative algebra over K.

Proof. Let the notation be as before. Let A be the non-associative algebra over $K=$ $k[Y \mid R]$ generated by $X=\left\{x_{i} \mid i=1,2, \ldots\right\}$. We may assume that $A=k[Y \mid R](X \mid S)$ is defined as above. Then A can be presented as $A=k[Y]\left(X \mid S^{l}, g x_{i}, g \in R, i=1,2, \ldots\right)$. By Shirshov algorithm, we can assume that, with the deg-lex ordering $>_{Y}$ on $[Y], R$ is a Gröbner-Shirshov basis in the free commutative algebra $k[Y]$. Let $>_{X}$ be the deg-lex ordering on $X^{* *}$, where $x_{1}>x_{2}>\ldots$. We can also assume, by Shirshov algorithm, that with the ordering on $[Y] X^{* *}$ defined as before, $S^{\prime}=S^{l} \cup\{g x \mid g \in R, x \in X\}$ is a Gröbner-Shirshov basis in $k[Y](X)$.

Let $B=k[Y]\left(X, a, b \mid S_{1}\right\}$ where S_{1} consists of

$$
\begin{aligned}
& f_{1}=S^{l}, \\
& f_{2}=\{g x \mid g \in R, x \in X\}, \\
& f_{3}=\left\{a\left(b^{i}\right)-x_{i} \mid i=1,2, \ldots\right\}, \\
& f_{4}=\{g a \mid g \in R\}, \\
& f_{5}=\{g b \mid g \in R\} .
\end{aligned}
$$

Clearly, B is a K-algebra generated by a, b. Thus, to prove the theorem, by using our Theorem 2.6, it suffices to show that with the ordering on $[Y](X \cup\{a, b\})^{* *}$ as before, where $a>b>x_{i}, i=1,2, \ldots, S_{1}$ is a Gröbner-Shirshov basis in $k[Y](X, a, b)$.

Denote by $(i \wedge j)_{w_{i j}}$ the composition of the type f_{i} and type f_{j} with respect to the ambiguity $w_{i j}$. Since S^{\prime} is a Gröbner-Shirshov basis in $k[Y](X)$, we need only to check all compositions related to the following ambiguities $w_{i j}$:

$$
1 \wedge 4, \quad w_{14}=L\left(\bar{f}^{Y}, \bar{g}\right)\left(z_{1}\left(\bar{f}^{X}\right) z_{2} a z_{3}\right) ;
$$

$1 \wedge 5, \quad w_{15}=L\left(\bar{f}^{Y}, \bar{g}\right)\left(z_{1}\left(\bar{f}^{X}\right) z_{2} b z_{3}\right) ;$
$2 \wedge 4, \quad w_{24}=L\left(\bar{g}^{\prime}, \bar{g}\right)\left(z_{1} x z_{2} a z_{3}\right)$;
$2 \wedge 5, \quad w_{25}=L\left(\overline{g^{\prime}}, \bar{g}\right)\left(z_{1} x z_{2} b z_{3}\right) ;$
$3 \wedge 4, \quad w_{34}=\bar{g} a\left(b^{i}\right)$;
$3 \wedge 5, \quad w_{35}=\bar{g} a\left(b^{i}\right) ;$
$4 \wedge 1, \quad w_{41}=L\left(\bar{g}, \bar{f}^{Y}\right)\left(z_{1} a z_{2}\left(\bar{f}^{X}\right) z_{3}\right) ;$
$4 \wedge 2, \quad w_{42}=L\left(\bar{g}, \bar{g}^{\prime}\right)\left(z_{1} a z_{2} x z_{3}\right) ;$
$4 \wedge 4, \quad w_{44}=L\left(\overline{g_{1}}, \overline{g_{2}}\right) a ;$
$4 \wedge 5, \quad w_{45}=L\left(\bar{g}, \bar{g}^{\prime}\right)\left(z_{1} a z_{2} b z_{3}\right) ;$
$5 \wedge 1, \quad w_{51}=L\left(\bar{g}, \bar{f}^{Y}\right)\left(z_{1} b z_{2}\left(\bar{f}^{X}\right) z_{3}\right) ;$
$5 \wedge 2, \quad w_{52}=L\left(\bar{g}, \bar{g}^{\prime}\right)\left(z_{1} b z_{2} x z_{3}\right) ;$
$5 \wedge 4, \quad w_{54}=L\left(\bar{g}, \bar{g}^{\prime}\right)\left(z_{1} b z_{2} a z_{3}\right) ;$
$5 \wedge 5, \quad w_{55}=L\left(\overline{g_{1}}, \overline{g_{2}}\right) b ;$
where $g, g^{\prime}, g_{1}, g_{2} \in R, f \in S^{l}, z_{1}, z_{2}, z_{3} \in(X \cup\{a, b\})^{*}$ and $\left(z_{1} v_{1} z_{2} v_{2} z_{3}\right)$ is some bracketing.
Now, we prove that all the compositions are trivial.
$1 \wedge 4, \quad w_{14}=L\left(\bar{f}^{Y}, \bar{g}\right)\left(z_{1}\left(\bar{f}^{X}\right) z_{2} a z_{3}\right)$, where $f \in S^{l}, g \in R$.
We can write $\bar{f}^{X}=(u x v)$, where $u, v \in X^{*}$. Since $S^{\prime}=\left\{S^{l}, R x, x \in X\right\}$ is a GröbnerShirshov basis in $k[Y](X)$, we have $(f, g x)_{w}=\left.\sum \alpha_{i} u_{i}\right|_{s_{i}}$, where $w=L\left(\bar{f}^{Y}, \bar{g}\right) \bar{f}^{X}$, each $\alpha_{i} \in k, s_{i} \in S^{\prime}, u_{i} \in[Y] X^{* *}$ and $w>\left.u_{i}\right|_{\overline{s_{i}}}$. Then

$$
\begin{aligned}
(1,4)_{w_{14}} & =\frac{L}{\bar{f}^{Y}}\left(z_{1} f z_{2} a z_{3}\right)-\frac{L}{\bar{g}}\left(z_{1}\left(\bar{f}^{X}\right) z_{2} g a z_{3}\right) \\
& =\frac{L}{\bar{f}^{Y}}\left(z_{1} f z_{2} a z_{3}\right)-\frac{L}{\bar{g}}\left(z_{1}(u g x v) z_{2} a z_{3}\right)+\frac{L}{\bar{g}}\left(z_{1}(u g x v) z_{2} a z_{3}\right)-\frac{L}{\bar{g}}\left(z_{1}\left(\bar{f}^{X}\right) z_{2} g a z_{3}\right) \\
& =\left(z_{1}\left(\frac{L}{\bar{f}^{Y}} f-\frac{L}{\bar{g}}(u g x v)\right) z_{2} a z_{3}\right)+\frac{L}{\bar{g}} g\left(\left(z_{1}(u x v) z_{2} a z_{3}\right)-\left(z_{1}\left(\bar{f}^{X}\right) z_{2} a z_{3}\right)\right) \\
& =\left(z_{1}(f, g x)_{w} z_{2} a z_{3}\right)+\frac{L}{\bar{g}} g\left(\left(z_{1}\left(\bar{f}^{X}\right) z_{2} a z_{3}\right)-\left(z_{1}\left(\bar{f}^{X}\right) z_{2} a z_{3}\right)\right) \\
& =\sum \alpha_{i}\left(\left.z_{1} u_{i}\right|_{s_{i}} z_{2} a z_{3}\right) \\
& \equiv 0 \quad \bmod \left(S_{1}, w_{14}\right) .
\end{aligned}
$$

Similarly, $(1,5)_{w_{15}} \equiv 0,(4,1)_{w_{41}} \equiv 0,(5,1)_{w_{51}} \equiv 0$.
$2 \wedge 4, \quad w_{24}=L\left(\overline{g^{\prime}}, \bar{g}\right)\left(z_{1} x z_{2} a z_{3}\right)$, where $g, g^{\prime} \in R$.
If $\left|\bar{g}^{\prime}\right|+|\bar{g}|>|L|$, then since R is a Gröbner-Shirshov basis in $k[Y],\left(g^{\prime}, g\right)_{w}=\left(\frac{L}{g^{\prime}} g^{\prime}-\right.$ $\left.\frac{L}{\bar{g}} g\right)=\sum \alpha_{i} u_{i} h_{i}$, where $w=L\left(\bar{g}^{\prime}, \bar{g}\right)$, each $\alpha_{i} \in k, u_{i} \in[Y], h_{i} \in R$ and $w>u_{i} \overline{h_{i}}$. Thus

$$
\begin{aligned}
(2,4)_{w_{24}} & =\frac{L}{\bar{g}^{\prime}}\left(z_{1} g^{\prime} x z_{2} a z_{3}\right)-\frac{L}{\bar{g}}\left(z_{1} x z_{2} g a z_{3}\right) \\
& =\left(\frac{L}{\bar{g}^{\prime}} g^{\prime}-\frac{L}{\bar{g}} g\right)\left(z_{1} x z_{2} a z_{3}\right) \\
& =\sum \alpha_{i} u_{i} h_{i}\left(z_{1} x z_{2} a z_{3}\right) \\
& =\sum \alpha_{i} u_{i}\left(z_{1} x z_{2} h_{i} a z_{3}\right) \\
& \equiv 0 \quad \bmod \left(S_{1}, w_{24}\right) .
\end{aligned}
$$

Similarly, $(2,5)_{w_{25}} \equiv 0,(4,2)_{w_{42}} \equiv 0,(4,5)_{w_{45}} \equiv 0,(5,2)_{w_{52}} \equiv 0$ and $(5,4)_{w_{54}} \equiv 0$.
$3 \wedge 4, \quad w_{34}=\bar{g} a\left(b^{i}\right)$, where $g \in R$.
Let $g=\bar{g}+r \in R$. Then

$$
\begin{aligned}
(3,4)_{w_{34}} & =-\bar{g} x_{i}-r a\left(b^{i}\right) \\
& \equiv-\bar{g} x_{i}-r x_{i} \\
& \equiv g x_{i} \\
& \equiv 0 \quad \bmod \left(S_{1}, w_{34}\right)
\end{aligned}
$$

Similarly, $(3,5)_{w_{35}} \equiv 0$.
$4 \wedge 4, \quad w_{44}=L\left(\overline{g_{1}}, \overline{g_{2}}\right) a$, where $g_{1}, g_{2} \in R$.
If $\left|\overline{g_{1}}\right|+\left|\overline{g_{2}}\right|>|L|$, then since R is a Gröbner-Shirshov basis in $k[Y],\left(g_{1}, g_{2}\right)_{w}=$ $\left(\frac{L}{\overline{g_{1}}} g_{1}-\frac{L}{\overline{g_{2}}} g_{2}\right)=\sum \alpha_{i} u_{i} h_{i}$, where $w=L\left(\overline{g_{1}}, \overline{g_{2}}\right)$, each $\alpha_{i} \in k, u_{i} \in[Y], h_{i} \in R$ and $w>u_{i} \overline{h_{i}}$. Thus

$$
\begin{aligned}
(4,4)_{w_{44}} & =\frac{L}{\overline{g_{1}}}\left(g_{1} a\right)-\frac{L}{\overline{g_{2}}}\left(g_{2} a\right) \\
& =\left(\frac{L}{\overline{g_{1}}} g_{1}-\frac{L}{\overline{g_{2}}} g_{2}\right) a \\
& =\sum \alpha_{i} u_{i} h_{i} a \\
& \equiv 0 \quad \bmod \left(S_{1}, w_{44}\right) .
\end{aligned}
$$

If $\left|\bar{g}_{1}\right|+\left|\bar{g}_{2}\right|=|L|$, then

$$
\begin{aligned}
(4,4)_{w_{44}} & =\frac{L}{\overline{g_{1}}}\left(g_{1} a\right)-\frac{L}{\overline{g_{2}}}\left(g_{2} a\right) \\
& =\left(\overline{g_{2}} g_{1}-\overline{g_{1}} g_{2}\right) a \\
& \equiv\left(\left(g_{1}-\overline{g_{1}}\right) g_{2}-\left(g_{2}-\overline{g_{2}}\right) g_{1}\right) a \\
& \equiv 0 \quad \bmod \left(S_{1}, w_{44}\right) .
\end{aligned}
$$

Similarly, $(5,5)_{w_{55}} \equiv 0$.
Now we have proved that S_{1} is a Gröbner-Shirshov basis in $k[Y](X, a, b)$.
The proof is complete.
A special case of Theorem 3.1 is the following corollary.
Corollary 3.2 Every countably generated non-associative algebra over a free commutative algebra can be embedded into a two-generated non-associative algebra over a free commutative algebra.

Acknowledgement. The authors would like to express their deepest gratitude to Professor L.A. Bokut for his kind guidance, useful discussions and enthusiastic encouragement.

References

[1] William W. Adams and Philippe Loustaunau, An introduction to Gröbner bases, Graduate Studies in Mathematics, Vol. 3, American Mathematical Society (AMS), 1994.
[2] G.M. Bergman, The diamond lemma for ring theory, Adv. Math., 29(1978), 178-218.
[3] L.A. Bokut, Insolvability of the word problem for Lie algebras, and subalgebras of finitely presented Lie algebras, Izvestija AN USSR (mathem.), 36(6)(1972), 11731219.
[4] L.A. Bokut, Imbeddings into simple associative algebras, Algebra i Logika, 15(1976), 117-142.
[5] L.A. Bokut and Yuqun Chen, Gröbner-Shirshov basis for free Lie algebras: after A.I. Shirshov, Southeast Asian Bull. Math., 31(2007), 1057-1076.
[6] L.A. Bokut and Yuqun Chen, Gröbner-Shirshov bases: Some new results, Proceedings of the Second International Congress in Algebra and Combinatorics, World Scientific, 2008, 35-56.
[7] L.A. Bokut, Yuqun Chen and Yongshan Chen, Composition-Diamond lemma for tensor product of free algebras, Journal of Algebra, 323(2010), 2520-2537.
[8] L.A. Bokut, Yuqun Chen and Yongshan Chen, Gröbner-Shirshov bases for Lie algebras over a commutative algebra, arXiv:1005.7682
[9] L.A. Bokut, Y. Fong, W.-F. Ke and P.S. Kolesnikov, Gröbner and Gröbner-Shirshov bases in algebra and conformal algebras, Fundamental and Applied Mathematics, 6(3)(2000), 669-706.
[10] L.A. Bokut and P.S. Kolesnikov, Gröbner-Shirshov bases: from their incipiency to the present, Journal of Mathematical Sciences, 116(1)(2003), 2894-2916.
[11] L.A. Bokut and P.S. Kolesnikov, Gröbner-Shirshov bases, conformal algebras and pseudo-algebras, Journal of Mathematical Sciences, 131(5)(2005), 5962-6003.
[12] L.A. Bokut and G. Kukin, Algorithmic and Combinatorial algebra, Kluwer Academic Publ., Dordrecht, 1994.
[13] B. Buchberger, An algorithmical criteria for the solvability of algebraic systems of equations [in German], Aequationes Math., 4, 374-383(1970).
[14] B. Buchberger, G.E. Collins, R. Loos and R. Albrecht, Computer algebra, symbolic and algebraic computation, Computing Supplementum, Vol.4, New York: SpringerVerlag, 1982.
[15] Bruno Buchberger and Franz Winkler, Gröbner bases and applications, London Mathematical Society Lecture Note Series, Vol.251, Cambridge: Cambridge University Press, 1998.
[16] Yuqun Chen and Qiuhui Mo, Artin-Markov normal form for Braid group, Southeast Asian Bull. Math., 33(2009), 403-419.
[17] David A. Cox, John Little and Donal O'Shea, Ideals, varieties and algorithms: An introduction to computational algebraic geometry and commutative algebra, Undergraduate Texts in Mathematics, New York: Spring-Verlag, 1992.
[18] David Eisenbud, Commutative algebra with a view toward algebraic geometry, Graduate Texts in Math., Vol.150, Berlin and New York: Springer-Verlag, 1995.
[19] H. Hironaka, Resolution of singulatities of an algebraic variety over a field if characteristic zero, I, II, Ann. Math., 79(1964), 109-203, 205-326.
[20] A. A. Mikhalev and A. A. Zolotykh, Standard Gröbner-Shirshov bases of free algebras over rings, I. Free associative algebras, International Journal of Algebra and Computation, 8(6)(1998), 689-726.
[21] A.I. Shirshov, Some algorithmic problem for ε-algebras, Sibirsk. Mat. Z., 3(1962), 132-137. (in Russian)
[22] A.I. Shirshov, Some algorithmic problem for Lie algebras, Sibirsk. Mat. Z., 3(2)(1962), 292-296 (in Russian); English translation in SIGSAM Bull., 33(2)(1999), 3-6.
[23] Selected works of A.I. Shirshov, Eds Leonid A. Bokut, V. Latyshev, I. Shestakov, E. Zelmanov, Trs M. Bremner, M. Kochetov, Birkhäuser, Basel, Boston, Berlin, 2009.

[^0]: *Supported by the NNSF of China (No.10771077, 10911120389) and the NSF of Guangdong Province (No. 06025062).

