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Abstract: We establish the Composition-Diamond lemma for non-associative algebras
over a free commutative algebra. As an application, we prove that every countably gener-
ated non-associative algebra over an arbitrary commutative algebra K can be embedded
into a two-generated non-associative algebra over K.
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1 Introduction

Grobner bases and Grobner-Shirshov bases theories were invented independently by A.I

Shirshov [23] for non-associative algebras and commutative (anti-commutative) non-associative

algebras [21], for Lie algebras (explicitly) and associative algebras (implicitly) [22], for in-
finite series algebras (both formal and convergent) by H. Hironaka [19] and for polynomial
algebras by B. Buchberger (first publication in [13]). Grobner bases and Grébner-Shirshov
bases theories have been proved to be very useful in different branches of mathematics,
including commutative algebra and combinatorial algebra, see, for example, the books
[T, 12, [14), [15] 17, [18], the papers [2], B, 4, [5, [16], and the surveys [6, [9, [10] [11].

It is well known that every countably generated non-associative algebra over a field k
can be embedded into a two-generated non-associative algebra over k. This result follows
from Grobner-Shirshov bases theory for non-associative algebras by A.I. Shirshov [21].

Composition-Diamond lemmas for associative algebras over a polynomial algebra is
established by A.A. Mikhalev and A.A. Zolotykh [20], for associative algebras over an
associative algebra by L.A. Bokut, Yuqun Chen and Yongshan Chen [7], for Lie algebras
over a polynomial algebra by L.A. Bokut, Yuqun Chen and Yongshan Chen [§]. In this
paper, we establish the Composition-Diamond lemma for non-associative algebras over
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a polynomial algebra. As an application, we prove that every countably generated non-
associative algebra over an arbitrary commutative algebra K can be embedded into a
two-generated non-associative algebra over K, in particular, this result holds if K is a
free commutative algebra.

2 Composition-Diamond lemma for non-associative
algebras over a commutative algebra

Let k be a field, K a commutative associative k—algebra with unit, X a set and K(X)
the free non-associative algebra over K generated by X.

Let [Y] denote the free abelian monoid generated by Y, X* the free monoid generated
by X and X** the set of all non-associative words in X. Denote by

N = [Y]X* = {u=u"v"|u" € [Y],u* € X*}.
Let kN be a k- linear space spanned by N. For any v = u*u™, v = v¥o* € N, we

define the multiplication of the words as follows

wo = u v uXvX e N,

It is clear that kN is the free non-associative k[Y]-algebra generated by X. Such an
algebra is denoted by k[Y](X), i.e., kN = k[Y](X). Clearly,

KY](X) = k[Y] ® k(X).

Now, we order the set N = [Y]X**.
Let > be a total ordering on X**. Then > is called monomial if

(Vu,v,w € X™) u>v=wu>wv and uw > vw.

For example, the deg-lex ordering on X** is monomial: uv > uyvy, if deg(uv) > deg(ujvy),
otherwise u > u; or u = uy,v > vy. Similarly, we define the monomial ordering on [Y].

Suppose that both >y and >y are monomial orderings on X** and [Y], respectively.
For any u = u¥u®,v = vYv¥X € N, define

X X X

u>veut >x vt oor (ut =0 and u¥ >y 0Y).

It is obvious that > is a monomial ordering on N in the sense of
Y

(Vu,v,w € [Y]X™) u>v=wu>wv, uw>vw and w’u>wv.

We will use this ordering in this paper.
For any polynomial f € k[Y](X), f has a unique presentation of the form

f=a;f+ Zaiuu

where f,u; € [Y]X™, f > w,apq; € k. fis called the leading term of f. f is monic if
the coefficient of f is 1.



Let x ¢ X. By a xword we mean any expression in [Y](X U {x})* with only one
occurrence of x. Let u be a x-word and s € k[Y](X). Then we call u|s = u|,s an s-word.

It is clear that for s-word u|s, we can express u|, = u¥ (asb) for some a,b € X*.

Since > is monomial on [Y]X™*, we have following lemma.

Lemma 2.1 Let s € k[Y](X) be a non-zero polynomial. Then for any s-word u|s =
uY (asb), uY (asb) = u¥ (asbh).

Now, we give the definition of compositions.

Definition 2.2 Let f and g be monic polynomials of k[Y](X), w = w¥w*X € [Y]X** and
a,b,c € X*, where w¥ = L(f¥,3Y) 2 L and L(f¥,3") is the least common multiple of
¥ and g¥ in k[Y]. Then we have the following compositions.

1. X-inclusion

If wX = fX = (a(g¥)b), then

L L
(fs 9w = - g—y(a(g)b)
15 called the composition of X -inclusion.
2. Y -intersection only

TP +18%] > Y] and w® = (a(F)b(g¥)e). then
f—Ly(a(f)b(gX)C) - gém(fwg)c)

is called the composition of Y -intersection only, where for u € [Y], |u| means the degree
of u.
w is called the ambiguity of the composition (f, g)w.

(fvg)w =

Remark 1.In the case of Y-intersection only in Definition 2.2, fX and g¥ are disjoint.

Remark 2. By Lemma 2.1, we have w > (f, ¢)w-

Remark 3. In Definition 2.2, the compositions of f, g are the same as the ones in k(X),
if Y = (). If this is the case, we have only composition of X-inclusion.

Definition 2.3 Let S be a monic subset of k[Y](X) and f,g € S. A composition (f,g)w
is said to be trivial modulo (S, w), denoted by (f, g)w =0 mod(S,w), if

(fag)w = Zaiui|sm

where each s; € S, ; € k, w;ls, si-word and w > ;5.
Generally, for any p,q € k[Y](X), p = q mod(S,w) if and only if p—q =0 mod(S,w).
S is called a Grobuner-Shirshov basis in k[Y](X) if all compositions of elements in S
are trivial modulo S.



If a subset S of k[Y](X) is not a Grébner-Shirshov basis then one can add to S all
nontrivial compositions of polynomials of S and continue this process repeatedly so that
we obtain a Grobner-Shirshov basis S¢ that contains S. Such process is called the Shirshov
algorithm.

Lemma 2.4 Let S be a Grobner-Shirshov basis in k[Y](X) and s1, 82 € S. Let u|s,, usls,
be s1, so-words respectively. If w = uq|s = uslss, then uyls, = usls, mod(S,w).

Proof: Clearly, w¥ = L(5Y,5") -t =L -t for some t € [Y].

There are three cases to consider.

Case 1. X-inclusion.

We may assume that $1% = (c($5%)d) for some ¢, d € X* and w* = (a(5;Y)b) =
(a(c(557%)d)b) for some a,b € X*. Thus,

Wl —wle = T (alsb) - 2l
— t ol - 2p(e(s)))

where w; = Ls7¥.
Case 2. Y-intersection only.
In this case, wX = (a(51%)b(52%)c), a,b,c € X* and then

urls, — uals, = L_—j(a(sl)b(s‘f)c) - S_2—Y(a(31 )b(s2)c)

where w; = Lw™.
Case 3. Y-disjoint and X-disjoint.
In this case, L = 5;Y &Y and w* = (a(5:%)b(52%)c), a,b,c € X*. We have
t

utls, = ualsy, = - (a(s1)b(527)e) — = (a(51)b(s2)c)

I
~

t
t
= t-
t
0

since w = (a(s1)b(s2)c) > (a(sy — s1)b

This completes the proof. O



Lemma 2.5 Let S C k[Y|(X) with each s € S monic and Irr(S) = {w € [Y]X*™*|w #
uls, uls is an s-word, s € S}. Then for any f € k[Y](X),

F=> awmils,+ > B,

w7 <f v; <f

where o, B; € k, wils, si-word, s; € S and v; € Irr(S).

Proof.Let f = > oyu; € k[Y](X), where 0 # o; € kand uy > ug > ---. Ifuy € Irr(S5),

then let f1 = f —aquy. If uy € Irr(S), then there exists an s-word /s such that f=uls
Let fi = f — aquls. In both cases, we have f > fi. Then the result follows from the
induction on f. O

From the above lemmas, we reach the following theorem:

Theorem 2.6 (Composition-Diamond lemma for k[Y](X)) Let S C k[Y](X) with each
s € S monic, > the ordering on [Y]X** defined as before and 1d(S) the ideal of k[Y](X)
generated by S as k[Y]-algebra. Then the following statements are equivalent:

(i) S is a Grobner-Shirshov basis in k[Y](X).
(ii) If 0# f € 1d(S), then f = uls for some s-word ul,, s € S.

(iii) Irr(S)={w € [Y]X*™|w # uls,u|s is an s-word, s € S} is a k-linear basis for the
factor algebra E[Y|(X|S) = k[Y](X)/1d(S).

Proof: (i) = (ii). Suppose 0 # f € Id(S). Then f = > a;u|s, for some «o; € k, s;-
word u;ls;, $; € S. Let w; = il and wy = wy = -+ = w; > w1 > -+ -. We will prove
the result by using induction on [ and w;.

If [ = 1, then the result is clear. If [ > 1, then wy; = w |5 = uslsz. Now, by (i) and
Lemma 2.4, uy|s, = usls, mod(S,w;). Thus,

aquls, + aousls, = (a1 4 ag)usls, + o(usls, — u1ls)

= (a1 + ag)uls, mod (S, wy).

Therefore, if ay + as # 0 or [ > 2, then the result follows from the induction on [. For
the case a3 + ap = 0 and [ = 2, we use the induction on w;. Now the result follows.

(1) = (i4i). By Lemma 2.5, Irr(S) generates the factor algebra. Moreover, if 0 #
h = > Bju; € 1d(S), uj € Irr(S),u; > ug > --- and B; # 0, then u; = h = uls, a
contradiction. This shows that Irr(S) is a k-linear basis of the factor algebra.

(i1) = (i). For any f, g € S, since k[Y]S C Id(S), we have h = (f, g), € 1d(S). The
result is trivial if (f, ¢),, = 0. Assume that (f, g), # 0. Then, by Lemma 2.5, (iii) and by
noting that w > (f, g)w = h, we have (f, 9), =0 mod(S, w).

This shows (i). O

Remark: Theorem 2.6 is the Composition-Diamond lemma for non-associative algebras
when Y = ().




3 Applications

Let A be an arbitrary K-algebra and A be presented by generators X and defining rela-
tions S
A= K(X|9).

Let K have a presentation by generators Y and defining relations R
K = k[Y|R]

as a quotient algebra of the polynomial algebra k[Y] over k.

Then with a natural way, as k[Y]-algebras, we have an isomorphism
kY |R](X|S) — k[Y](X|S", Rz, 2 € X), Z(fl + Id(R))u; + Id(S) — Z fiu; + Id(S"),

where f; € k[Y], u; € X**, S' = S'U{gz|g € R, x € X}, S' = {3 fiu; € k[Y](X)| S2(fit
Id(R))u; € S}. Then A has an expression

A =Ek[Y|R)(X|S) = k[Y](X|S', gz, g€ R,z € X).

Theorem 3.1 FEach countably generated non-associative algebra over an arbitrary com-
mutative algebra K can be embedded into a two-generated non-associative algebra over

K.

Proof. Let the notation be as before. Let A be the non-associative algebra over K =
E[Y|R] generated by X = {z;|i = 1,2,...}. We may assume that A = k[Y|R](X|S) is
defined as above. Then A can be presented as A = k[Y](X|S!, gz;, g€ R, i =1,2,...).
By Shirshov algorithm, we can assume that, with the deg-lex ordering >y on [Y], R is
a Grobner-Shirshov basis in the free commutative algebra k[Y]. Let >x be the deg-lex
ordering on X**, where x1 > x5 > .... We can also assume, by Shirshov algorithm,
that with the ordering on [Y]X** defined as before, S’ = S'U {gz|g € R, v € X} is a
Grobner-Shirshov basis in k[Y](X).

Let B = k[Y](X,a,b|S;} where S; consists of

=45

fo={gz|lg € R, x € X},
fs={a(t’) —x;li =1,2,...},
fa={galg € R},

fs ={gblg € R}.

Clearly, B is a K-algebra generated by a,b. Thus, to prove the theorem, by using our
Theorem 2.6, it suffices to show that with the ordering on [Y](X U {a,b})** as before,
where a > b > x;, i =1,2,..., S; is a Grobner-Shirshov basis in k[Y](X, a,b).

Denote by (i A j)u,, the composition of the type f; and type f; with respect to the
ambiguity w;;. Since S’ is a Grobner-Shirshov basis in k[Y](X), we need only to check
all compositions related to the following ambiguities w;;:

LA4, wi = L(fY,9)(z1(f%)2az);



1AL, wis = L(fY,9) (21 (f%)2bzs);

2/A4, wey = L(¢',9)(z1020023);

2NAb, wes = L(¢,9)

3A4, wsyy = ga(bl

3AD, wss = ga(b');

AN, wy = L(g, [)(z1az(f%)2s);

AN2, wg = L(g,q")(z1020223);

4N4, wy = L(g1,92)

AND, wys = L(g,9")(z1a22bz23);
(
(
(

(z1729b23);

5A1, ws = L(g, f¥
BAN2, ws =1L
S5NA4, wsy = L(g,9")(z1b22a23);
5A5, wss = L(71,52)b;

where g, ¢, g1,92 € R, f € S', 21, 29, 23 € (XU{a, b})* and (2101 20v223) is some bracketing.
Now, we prove that all the compositions are trivial.
1A4, wiy = L(fY,9)(z1(f)zaz), where f € S', g € R.
We can write fX = (uzv), where u,v € X*. Since S’ = {S!, Rx,x € X} is a Grobner-

Shirshov basis in k[Y](X), we have (f gT)w = Y i, , where w = = L(fY,q9)f%, each
o €k, s; €5, u; € [Y]X™ and w > w;|_. Then

(1,4, = ny<zlf22az?,> - Z(a(¥)zagaz
- fy(ZleQG,Zg) - E(zl(ug:pv)@az?,) + g(zl(ug:pv)zmz;;) — g(zl(fX)Zanz;»,)

L
I
L X X
= (Zl(fagﬂf)wzwz?))+§9((21(f )z2az3) — (21(f")22a23))
= Zai(zlui\sl,zng)
= 0  mod(Si,w).
Similarly, (1,5)u,s =0, (4,1)w, =0, (5,1)w,, = 0.

= (a(

L L .
f— E(UQZUU))@QZB) + 59((2’1(%’5“)22@2’3) — (21(f")20a23))

2A4, wey = L(¢,g)(z1720a23), where g, g’ € R.
If |¢'| + |g| > |L|, then since R is a Grébner-Shirshov basis in k[Y], (¢, 9)w = (%9’ -
%g) =" aush;, where w = L(g/, §), each oy € k,u; € [Y], h; € R and w > u;h;. Thus

L
(2,4) 0y, = Tl(zlg'sz(zzg)—E(zlnggazg)

L L
= (EQI - Eg)(zlxzyzzg)
= Z a;uihi(z1x20a23)
= Z a;ui(z1x220ha23)
0 mod(Sl, w24).

Ul
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SimilarlY7 (27 5)1025 =0, (47 2)w42 =0, (47 5)w45 0, (57 2)1052 =0 and (574)11154 = 0.

3A4, wsy = ga(b'), where g € R.
Let g=g+r € R. Then

(3,4) s, = —gz;—ra(b’)
= —gr; —ra;

0 mod(Sl,w34).

Similarly, (3,5)w.; = 0.

A4N4, wy = L(g1,G2)a, where g1, g2 € R.

If |g1| + |g2| > |L|, then since R is a Grobner-Shirshov basis in k[Y], (g1,92)w =
(g%gl — g%gg) = > u;h;, where w = L(q1,§s), each «; € k,u; € [Y], h; € R and
w > uzh;. Thus

(47 4)11}44 = E(gla) - g(gﬂl)
L L
= (g1 — —p)a
g1 g2

= E aiuihia

= 0  mod(St,wy).

If |g1] + |g2| = |L], then

L L
(47 4)11}44 = E(gla) - é(gﬂl)
(9291 — g192)a

((91 — 91)g2 — (92 — G2)gn)a
= 0  mod(Si,wy).

Similarly, (5,5)w.; = 0.

Now we have proved that S; is a Grébner-Shirshov basis in k[Y](X, a, b).
The proof is complete. [

A special case of Theorem 3.1 is the following corollary.

Corollary 3.2 Fvery countably generated non-associative algebra over a free commuta-
tive algebra can be embedded into a two-generated non-associative algebra over a free
commutative algebra.
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