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Abstract: We establish the Composition-Diamond lemma for non-associative algebras
over a free commutative algebra. As an application, we prove that every countably gener-
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1 Introduction

Gröbner bases and Gröbner-Shirshov bases theories were invented independently by A.I.
Shirshov [23] for non-associative algebras and commutative (anti-commutative) non-associative
algebras [21], for Lie algebras (explicitly) and associative algebras (implicitly) [22], for in-
finite series algebras (both formal and convergent) by H. Hironaka [19] and for polynomial
algebras by B. Buchberger (first publication in [13]). Gröbner bases and Gröbner-Shirshov
bases theories have been proved to be very useful in different branches of mathematics,
including commutative algebra and combinatorial algebra, see, for example, the books
[1, 12, 14, 15, 17, 18], the papers [2, 3, 4, 5, 16], and the surveys [6, 9, 10, 11].

It is well known that every countably generated non-associative algebra over a field k
can be embedded into a two-generated non-associative algebra over k. This result follows
from Gröbner-Shirshov bases theory for non-associative algebras by A.I. Shirshov [21].

Composition-Diamond lemmas for associative algebras over a polynomial algebra is
established by A.A. Mikhalev and A.A. Zolotykh [20], for associative algebras over an
associative algebra by L.A. Bokut, Yuqun Chen and Yongshan Chen [7], for Lie algebras
over a polynomial algebra by L.A. Bokut, Yuqun Chen and Yongshan Chen [8]. In this
paper, we establish the Composition-Diamond lemma for non-associative algebras over
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a polynomial algebra. As an application, we prove that every countably generated non-
associative algebra over an arbitrary commutative algebra K can be embedded into a
two-generated non-associative algebra over K, in particular, this result holds if K is a
free commutative algebra.

2 Composition-Diamond lemma for non-associative

algebras over a commutative algebra

Let k be a field, K a commutative associative k−algebra with unit, X a set and K(X)
the free non-associative algebra over K generated by X .

Let [Y ] denote the free abelian monoid generated by Y , X∗ the free monoid generated
by X and X∗∗ the set of all non-associative words in X . Denote by

N = [Y ]X∗∗ = {u = uY uX |uY ∈ [Y ], uX ∈ X∗∗}.

Let kN be a k- linear space spanned by N . For any u = uY uX , v = vY vX ∈ N , we
define the multiplication of the words as follows

uv = uY vY uXvX ∈ N.

It is clear that kN is the free non-associative k[Y ]-algebra generated by X . Such an
algebra is denoted by k[Y ](X), i.e., kN = k[Y ](X). Clearly,

k[Y ](X) = k[Y ]⊗ k(X).

Now, we order the set N = [Y ]X∗∗.

Let > be a total ordering on X∗∗. Then > is called monomial if

(∀u, v, w ∈ X∗∗) u > v ⇒ wu > wv and uw > vw.

For example, the deg-lex ordering on X∗∗ is monomial: uv > u1v1, if deg(uv) > deg(u1v1),
otherwise u > u1 or u = u1, v > v1. Similarly, we define the monomial ordering on [Y ].

Suppose that both >X and >Y are monomial orderings on X∗∗ and [Y ], respectively.
For any u = uY uX , v = vY vX ∈ N , define

u > v ⇔ uX >X vX or (uX = vX and uY >Y vY ).

It is obvious that > is a monomial ordering on N in the sense of

(∀u, v, w ∈ [Y ]X∗∗) u > v ⇒ wu > wv, uw > vw and wY u > wY v.

We will use this ordering in this paper.

For any polynomial f ∈ k[Y ](X), f has a unique presentation of the form

f = αf̄ f̄ +
∑

αiui,

where f̄ , ui ∈ [Y ]X∗∗, f̄ > ui, αf̄ , αi ∈ k. f̄ is called the leading term of f . f is monic if
the coefficient of f̄ is 1.
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Let ⋆ 6∈ X . By a ⋆-word we mean any expression in [Y ](X ∪ {⋆})∗∗ with only one
occurrence of ⋆. Let u be a ⋆-word and s ∈ k[Y ](X). Then we call u|s = u|⋆7→s an s-word.

It is clear that for s-word u|s, we can express u|s = uY (asb) for some a, b ∈ X∗.

Since > is monomial on [Y ]X∗∗, we have following lemma.

Lemma 2.1 Let s ∈ k[Y ](X) be a non-zero polynomial. Then for any s-word u|s =
uY (asb), uY (asb) = uY (as̄b).

Now, we give the definition of compositions.

Definition 2.2 Let f and g be monic polynomials of k[Y ](X), w = wYwX ∈ [Y ]X∗∗ and
a, b, c ∈ X∗, where wY = L(f̄Y , ḡY ) , L and L(f̄Y , ḡY ) is the least common multiple of
f̄Y and ḡY in k[Y ]. Then we have the following compositions.

1. X-inclusion

If wX = f̄X = (a(ḡX)b), then

(f, g)w =
L

f̄Y
f −

L

ḡY
(a(g)b)

is called the composition of X-inclusion.

2. Y -intersection only

If |f̄Y |+ |ḡY | > |wY | and wX = (a(f̄X)b(ḡX)c), then

(f, g)w =
L

f̄Y
(a(f)b(ḡX)c)−

L

ḡY
(a(f̄X)b(g)c)

is called the composition of Y -intersection only, where for u ∈ [Y ], |u| means the degree
of u.

w is called the ambiguity of the composition (f, g)w.

Remark 1.In the case of Y -intersection only in Definition 2.2, f̄X and ḡX are disjoint.

Remark 2. By Lemma 2.1, we have w > (f, g)w.

Remark 3. In Definition 2.2, the compositions of f, g are the same as the ones in k(X),
if Y = ∅. If this is the case, we have only composition of X-inclusion.

Definition 2.3 Let S be a monic subset of k[Y ](X) and f, g ∈ S. A composition (f, g)w
is said to be trivial modulo (S, w), denoted by (f, g)w ≡ 0 mod(S, w), if

(f, g)w =
∑

i

αiui|si,

where each si ∈ S, αi ∈ k, ui|si si-word and w > ui|s̄i.

Generally, for any p, q ∈ k[Y ](X), p ≡ q mod(S, w) if and only if p−q ≡ 0 mod(S, w).

S is called a Gröbner-Shirshov basis in k[Y ](X) if all compositions of elements in S
are trivial modulo S.
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If a subset S of k[Y ](X) is not a Gröbner-Shirshov basis then one can add to S all
nontrivial compositions of polynomials of S and continue this process repeatedly so that
we obtain a Gröbner-Shirshov basis Sc that contains S. Such process is called the Shirshov
algorithm.

Lemma 2.4 Let S be a Gröbner-Shirshov basis in k[Y ](X) and s1, s2 ∈ S. Let u1|s1, u2|s2
be s1, s2-words respectively. If w = u1|s1 = u2|s2, then u1|s1 ≡ u2|s2 mod(S, w).

Proof: Clearly, wY = L(s̄1
Y , s̄2

Y ) · t = L · t for some t ∈ [Y ].

There are three cases to consider.

Case 1. X-inclusion.

We may assume that s̄1
X = (c(s̄2

X)d) for some c, d ∈ X∗ and wX = (a(s̄1
X)b) =

(a(c(s̄2
X)d)b) for some a, b ∈ X∗. Thus,

u1|s1 − u2|s2 =
L · t

s̄1Y
(a(s1)b)−

L · t

s̄2Y
(a(c(s2)d)b)

= t · (a(
L

s̄1Y
s1 −

L

s̄2Y
(c(s2)d))b)

= t · (a(s1, s2)w1
b)

≡ 0 mod(S, w)

where w1 = Ls1
X .

Case 2. Y -intersection only.

In this case, wX = (a(s̄1
X)b(s̄2

X)c), a, b, c ∈ X∗ and then

u1|s1 − u2|s2 =
L · t

s̄1Y
(a(s1)b(s̄2

X)c)−
L · t

s̄2Y
(a(s̄1

X)b(s2)c)

= t · (s1, s2)w1

≡ 0 mod(S, w)

where w1 = LwX .

Case 3. Y -disjoint and X-disjoint.

In this case, L = s̄1
Y s̄2

Y and wX = (a(s̄1
X)b(s̄2

X)c), a, b, c ∈ X∗. We have

u1|s1 − u2|s2 =
L · t

s̄1Y
(a(s1)b(s̄2

X)c)−
L · t

s̄2Y
(a(s̄1

X)b(s2)c)

= t · (
L

s̄1Y
(a(s1)b(s̄2

X)c)−
L

s̄2Y
(a(s̄1

X)b(s2)c))

= t · (s̄2
Y (a(s1)b(s̄2

X)c)− s̄1
Y (a(s̄1

X)b(s2)c))

= t · ((a(s1)b(s̄2)c)− (a(s̄1)b(s2)c))

= t · ((a(s1)b(s̄2)c)− (a(s1)b(s2)c) + (a(s1)b(s2)c)− (a(s̄1)b(s2)c))

= t · ((a(s1 − s̄1)b(s2)c)− (a(s1)b(s2 − s̄2)c))

≡ 0 mod(S, w)

since w = (a(s̄1)b(s̄2)c) > (a(s1 − s̄1)b(s2)c) and w = (a(s̄1)b(s̄2)c) > (a(s1)b(s2 − s̄2)c).

This completes the proof. �
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Lemma 2.5 Let S ⊆ k[Y ](X) with each s ∈ S monic and Irr(S) = {w ∈ [Y ]X∗∗|w 6=
u|s̄, u|s is an s-word, s ∈ S}. Then for any f ∈ k[Y ](X),

f =
∑

ui|si≤f̄

αiui|si +
∑

vj≤f̄

βjvj,

where αi, βj ∈ k, ui|si si-word, si ∈ S and vj ∈ Irr(S).

Proof.Let f =
∑
i

αiui ∈ k[Y ](X), where 0 6= αi ∈ k and u1 > u2 > · · · . If u1 ∈ Irr(S),

then let f1 = f −α1u1. If u1 6∈ Irr(S), then there exists an s-word u|s such that f̄ = u|s̄.
Let f1 = f − α1u|s. In both cases, we have f̄ > f̄1. Then the result follows from the
induction on f̄ . �

From the above lemmas, we reach the following theorem:

Theorem 2.6 (Composition-Diamond lemma for k[Y ](X)) Let S ⊆ k[Y ](X) with each
s ∈ S monic, > the ordering on [Y ]X∗∗ defined as before and Id(S) the ideal of k[Y ](X)
generated by S as k[Y ]-algebra. Then the following statements are equivalent:

(i) S is a Gröbner-Shirshov basis in k[Y ](X).

(ii) If 0 6= f ∈ Id(S), then f = u|s for some s-word u|s, s ∈ S.

(iii) Irr(S) = {w ∈ [Y ]X∗∗|w 6= u|s̄, u|s is an s-word, s ∈ S} is a k-linear basis for the
factor algebra k[Y ](X|S) = k[Y ](X)/Id(S).

Proof: (i) ⇒ (ii). Suppose 0 6= f ∈ Id(S). Then f =
∑

αiui|si for some αi ∈ k, si-
word ui|si, si ∈ S. Let wi = ui|si and w1 = w2 = · · · = wl > wl+1 ≥ · · · . We will prove
the result by using induction on l and w1.

If l = 1, then the result is clear. If l > 1, then w1 = u1|s1 = u2|s2. Now, by (i) and
Lemma 2.4, u1|s1 ≡ u2|s2 mod(S, w1). Thus,

α1u1|s1 + α2u2|s2 = (α1 + α2)u1|s1 + α2(u2|s2 − u1|s1)

≡ (α1 + α2)u1|s1 mod(S, w1).

Therefore, if α1 + α2 6= 0 or l > 2, then the result follows from the induction on l. For
the case α1 + α2 = 0 and l = 2, we use the induction on w1. Now the result follows.

(ii) ⇒ (iii). By Lemma 2.5, Irr(S) generates the factor algebra. Moreover, if 0 6=
h =

∑
βjuj ∈ Id(S), uj ∈ Irr(S), u1 > u2 > · · · and β1 6= 0, then u1 = h̄ = u|s̄, a

contradiction. This shows that Irr(S) is a k-linear basis of the factor algebra.

(iii) ⇒ (i). For any f, g ∈ S, since k[Y ]S ⊆ Id(S), we have h = (f, g)w ∈ Id(S). The
result is trivial if (f, g)w = 0. Assume that (f, g)w 6= 0. Then, by Lemma 2.5, (iii) and by
noting that w > (f, g)w = h̄, we have (f, g)w ≡ 0 mod(S, w).

This shows (i). �

Remark: Theorem 2.6 is the Composition-Diamond lemma for non-associative algebras
when Y = ∅.
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3 Applications

Let A be an arbitrary K-algebra and A be presented by generators X and defining rela-
tions S

A = K(X|S).

Let K have a presentation by generators Y and defining relations R

K = k[Y |R]

as a quotient algebra of the polynomial algebra k[Y ] over k.

Then with a natural way, as k[Y ]-algebras, we have an isomorphism

k[Y |R](X|S) → k[Y ](X|Sl, Rx, x ∈ X),
∑

(fi + Id(R))ui + Id(S) 7→
∑

fiui + Id(S ′),

where fi ∈ k[Y ], ui ∈ X∗∗, S ′ = Sl∪{gx|g ∈ R, x ∈ X}, Sl = {
∑

fiui ∈ k[Y ](X)|
∑

(fi+
Id(R))ui ∈ S}. Then A has an expression

A = k[Y |R](X|S) = k[Y ](X|Sl, gx, g ∈ R, x ∈ X).

Theorem 3.1 Each countably generated non-associative algebra over an arbitrary com-
mutative algebra K can be embedded into a two-generated non-associative algebra over
K.

Proof. Let the notation be as before. Let A be the non-associative algebra over K =
k[Y |R] generated by X = {xi|i = 1, 2, . . . }. We may assume that A = k[Y |R](X|S) is
defined as above. Then A can be presented as A = k[Y ](X|Sl, gxi, g ∈ R, i = 1, 2, . . . ).
By Shirshov algorithm, we can assume that, with the deg-lex ordering >Y on [Y ], R is
a Gröbner-Shirshov basis in the free commutative algebra k[Y ]. Let >X be the deg-lex
ordering on X∗∗, where x1 > x2 > . . . . We can also assume, by Shirshov algorithm,
that with the ordering on [Y ]X∗∗ defined as before, S ′ = Sl ∪ {gx|g ∈ R, x ∈ X} is a
Gröbner-Shirshov basis in k[Y ](X).

Let B = k[Y ](X, a, b|S1} where S1 consists of

f1 = Sl,

f2 = {gx|g ∈ R, x ∈ X},

f3 = {a(bi)− xi|i = 1, 2, . . . },

f4 = {ga|g ∈ R},

f5 = {gb|g ∈ R}.

Clearly, B is a K-algebra generated by a, b. Thus, to prove the theorem, by using our
Theorem 2.6, it suffices to show that with the ordering on [Y ](X ∪ {a, b})∗∗ as before,
where a > b > xi, i = 1, 2, . . . , S1 is a Gröbner-Shirshov basis in k[Y ](X, a, b).

Denote by (i ∧ j)wij
the composition of the type fi and type fj with respect to the

ambiguity wij. Since S ′ is a Gröbner-Shirshov basis in k[Y ](X), we need only to check
all compositions related to the following ambiguities wij :

1 ∧ 4, w14 = L(f̄Y , ḡ)(z1(f̄
X)z2az3);
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1 ∧ 5, w15 = L(f̄Y , ḡ)(z1(f̄
X)z2bz3);

2 ∧ 4, w24 = L(ḡ′, ḡ)(z1xz2az3);

2 ∧ 5, w25 = L(ḡ′, ḡ)(z1xz2bz3);

3 ∧ 4, w34 = ḡa(bi);

3 ∧ 5, w35 = ḡa(bi);

4 ∧ 1, w41 = L(ḡ, f̄Y )(z1az2(f̄
X)z3);

4 ∧ 2, w42 = L(ḡ, ḡ′)(z1az2xz3);

4 ∧ 4, w44 = L(g1, g2)a;

4 ∧ 5, w45 = L(ḡ, ḡ′)(z1az2bz3);

5 ∧ 1, w51 = L(ḡ, f̄Y )(z1bz2(f̄
X)z3);

5 ∧ 2, w52 = L(ḡ, ḡ′)(z1bz2xz3);

5 ∧ 4, w54 = L(ḡ, ḡ′)(z1bz2az3);

5 ∧ 5, w55 = L(g1, g2)b;

where g, g′, g1, g2 ∈ R, f ∈ Sl, z1, z2, z3 ∈ (X∪{a, b})∗ and (z1v1z2v2z3) is some bracketing.

Now, we prove that all the compositions are trivial.

1 ∧ 4, w14 = L(f̄Y , ḡ)(z1(f̄
X)z2az3), where f ∈ Sl, g ∈ R.

We can write f̄X = (uxv), where u, v ∈ X∗. Since S ′ = {Sl, Rx, x ∈ X} is a Gröbner-
Shirshov basis in k[Y ](X), we have (f, gx)w =

∑
αiui|si , where w = L(f̄Y , ḡ)f̄X , each

αi ∈ k, si ∈ S ′, ui ∈ [Y ]X∗∗ and w > ui|si . Then

(1, 4)w14
=

L

f̄Y
(z1fz2az3)−

L

ḡ
(z1(f̄

X)z2gaz3)

=
L

f̄Y
(z1fz2az3)−

L

ḡ
(z1(ugxv)z2az3) +

L

ḡ
(z1(ugxv)z2az3)−

L

ḡ
(z1(f̄

X)z2gaz3)

= (z1(
L

f̄Y
f −

L

ḡ
(ugxv))z2az3) +

L

ḡ
g((z1(uxv)z2az3)− (z1(f̄

X)z2az3))

= (z1(f, gx)wz2az3) +
L

ḡ
g((z1(f̄

X)z2az3)− (z1(f̄
X)z2az3))

=
∑

αi(z1ui|siz2az3)

≡ 0 mod(S1, w14).

Similarly, (1, 5)w15
≡ 0, (4, 1)w41

≡ 0, (5, 1)w51
≡ 0.

2 ∧ 4, w24 = L(ḡ′, ḡ)(z1xz2az3), where g, g′ ∈ R.

If |ḡ′| + |ḡ| > |L|, then since R is a Gröbner-Shirshov basis in k[Y ], (g′, g)w = ( L
ḡ′
g′ −

L
ḡ
g) =

∑
αiuihi, where w = L(ḡ′, ḡ), each αi ∈ k, ui ∈ [Y ], hi ∈ R and w > uihi. Thus

(2, 4)w24
=

L

ḡ′
(z1g

′xz2az3)−
L

ḡ
(z1xz2gaz3)

= (
L

ḡ′
g′ −

L

ḡ
g)(z1xz2az3)

=
∑

αiuihi(z1xz2az3)

=
∑

αiui(z1xz2hiaz3)

≡ 0 mod(S1, w24).
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.

Similarly, (2, 5)w25
≡ 0, (4, 2)w42

≡ 0, (4, 5)w45
≡ 0, (5, 2)w52

≡ 0 and (5, 4)w54
≡ 0.

3 ∧ 4, w34 = ḡa(bi), where g ∈ R.

Let g = ḡ + r ∈ R. Then

(3, 4)w34
= −ḡxi − ra(bi)

≡ −ḡxi − rxi

≡ gxi

≡ 0 mod(S1, w34).

Similarly, (3, 5)w35
≡ 0.

4 ∧ 4, w44 = L(g1, g2)a, where g1, g2 ∈ R.

If |ḡ1| + |ḡ2| > |L|, then since R is a Gröbner-Shirshov basis in k[Y ], (g1, g2)w =
( L
ḡ1
g1 − L

ḡ2
g2) =

∑
αiuihi, where w = L(ḡ1, ḡ2), each αi ∈ k, ui ∈ [Y ], hi ∈ R and

w > uihi. Thus

(4, 4)w44
=

L

ḡ1
(g1a)−

L

ḡ2
(g2a)

= (
L

ḡ1
g1 −

L

ḡ2
g2)a

=
∑

αiuihia

≡ 0 mod(S1, w44).

.

If |ḡ1|+ |ḡ2| = |L|, then

(4, 4)w44
=

L

ḡ1
(g1a)−

L

ḡ2
(g2a)

= (ḡ2g1 − ḡ1g2)a

≡ ((g1 − ḡ1)g2 − (g2 − ḡ2)g1)a

≡ 0 mod(S1, w44).

Similarly, (5, 5)w55
≡ 0.

Now we have proved that S1 is a Gröbner-Shirshov basis in k[Y ](X, a, b).

The proof is complete. �

A special case of Theorem 3.1 is the following corollary.

Corollary 3.2 Every countably generated non-associative algebra over a free commuta-
tive algebra can be embedded into a two-generated non-associative algebra over a free
commutative algebra.

Acknowledgement. The authors would like to express their deepest gratitude to Profes-
sor L.A. Bokut for his kind guidance, useful discussions and enthusiastic encouragement.
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