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THE STRUCTURE OF INFINITE 2-GROUPS

WITH A UNIQUE 2-ELEMENT SUBGROUP

TARAS BANAKH

Abstract. We prove that each infinite 2-group G with a unique 2-element subgroup is isomorphic
either to the quasicyclic 2-group C2∞ or to the infinite group of generalized quaternions Q2∞ . The
latter group is generated by the set C2∞ ∪Q8 in the algebra of quaternions H.

In this paper we describe the structure of 2-groups that contain a unique 2-element subgroup. For
finite groups this was done in [2, 5.3.6]: Each finite 2-group with a unique 2-element subgroup is either
cyclic or is a group of generalized quaternions.

Let us recall that a group G is called a 2-group if each element x ∈ G has order 2k for some k ∈ N.
The order of an element x is the smallest number n ∈ N such that xn = 1 where 1 denotes the neutral
element of the group. By ω we denote the set of non-negative integer numbers.

For n ∈ ω denote by

C2n = {z ∈ C : z2
n

= 1}

the cyclic group of order 2n. The union

C2∞ =
⋃

n∈N

C2n ⊂ C

is called the quasicyclic 2-group.
The group of quaternions is the 8-element subgroup

Q8 = {1,−1, i,−i, j,−j, k,−k}

in the algebra of quaternions H (endowed with the operation of multiplication of quaternions). The
real algebra H contains the field of complex numbers C as a subalgebra.

For n ∈ N the subgroup Q2n of H generated by the set C2n−1 ∪Q8 is called the group of generalized

quaternions. For n ≥ 3 this group has a presentatiom

〈x, y | x4 = 1, x2 = y2
n−2

, xyx−1 = y−1〉.

The union

Q2∞ =
⋃

n∈N

Q2n

will be called the infinite group of generalized quaternions. The quasicyclic group C2∞ has index 2 in
Q2∞ and each element x ∈ Q2∞ \ C2∞ has order 4.

The main result of this paper is the following extension of Theorem 5.3.6 [2]. It will be essentially
used in [1] for describing of the structure of minimal left ideals of the superextensions of twinic groups.

Theorem 1. Each 2-group with a unique 2-element subgroup is isomorphic to C2n or Q2n for some

n ∈ N ∪ {∞}.

As we already know, for finite groups this theorem was proved in [2, 5.3.6]. Let us write this fact
as a lemma for the future reference:
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Lemma 1. Each finite 2-group with a unique 2-element subgroup is isomorphic to C2n or Q2n for

some n ∈ N.

So, it remains to prove Theorem 1 for infinite groups. The abelian case is easy:

Lemma 2. Each infinite abelian 2-group G with a unique 2-element subgroup is isomorphic to the

quasicyclic 2-group C2∞.

Proof. Let Z be the unique 2-element subgroup of G and f : Z → C2 be an isomorphism. Since the
group C2∞ is injective, by Baer’s Theorem [2, 4.1.2], the homomorphism f : Z → C2 ⊂ C2∞ extends
to a homomorphism f̄ : G → C2∞ . We claim that f̄ is an isomorphism. Indeed, the kernel f̄−1(1) of
f̄ is trivial since it is a 2-group and contains no element of order 2. So, f̄ is inejective and then f̄(G)
concides with C2∞ , being an infinite subgroup of C2∞ . �

The non-abelian case is a bit more difficult. For two elements a, b of a group G by 〈a, b〉 we shall
denote the subgroup of G generated by the elements a and b. The following lemma gives conditions
under which the subgroup 〈a, b〉 is finite.

Lemma 3. The subgroup 〈a, b〉 generated by elements a, b of a group G is finite provided that the

following conditions are satisfied:

(1) b2 ∈ 〈a〉;
(2) a2b ∈ b · 〈a〉;
(3) the elements a and ab have finite order.

Proof. Since the element a has finite order and b2 ∈ 〈a〉, the element b has finite order too. It is clear
that the subgroup H = 〈a, b〉 generated by the elements a, b can be written as the countable union
H =

⋃
k∈ω Hk where H0 = {1} and Hk is the subset of elements of the form an1bm1 · · · ankbmk where

ni,mi ≥ 0 for i ≤ k.
For every k ∈ ω consider the set

Πk = {(ab)iaj , b(ab)iaj : 0 ≤ i ≤ k, j ≥ 0}

and observe that Πk · a = Πk and {1, a, ab} · Πk ⊂ Πk+1.

Claim 1. Hk ⊂ Πk for each k ∈ ω.

This claim will be proved by induction on k. The inclusion H0 = {1} ⊂ Π0 is trivial. Assume that
for some number k > 0 the inclusion Hk−1 ⊂ Πk−1 has been proved.

In order to show that Hk ⊂ Πk, take any element x = an1bm1an2bm2 . . . ankbmk ∈ Hk. Since b
2 ∈ 〈a〉,

we can assume that m1 ∈ {0, 1}. Observe that the product y = an2bm2 · · · ankbmk ∈ Hk−1.
If m1 = 0, then x = an1+n2jm2 · · · ankjmk ∈ Hk−1 ⊂ Πk−1 ⊂ Πk.
Next, assume that m1 = 1. It follows from a2b ∈ b · 〈a〉 that for every n ∈ ω we get a2nb ∈ b · 〈a〉.

Write the number n1 as n1 = 2n+ε for some n ∈ ω and some ε ∈ {0, 1}. Then an1b = aεa2nb = aεbam

for some m ∈ ω and hence

x = a2n+εby = aεbamy ∈ aεbam ·Hk−1 = aεb ·Hk−1 ⊂ aεb · Πk−1 ⊂ Πk.

This completes the proof of the claim.
Since the element ab has finite order, we see that the union

⋃
k∈ω Πk is finite and so is the subgroup

H =
⋃

k∈ω ⊂
⋃

k∈ω Πk. �

The proof of Theorem 1 will be complete as soon as we prove that each infinite non-abelian 2-group
G with a unique element of order 2 is isomorphic to Q2∞ . Let 1 denote the neutral element of G and
−1 denote the unique element of order 2 in G. It commutes with any other element of G.

Now we prove a series of lemmas and in the final Lemma 12 we shall prove that G is isomorphic to
Q2∞ .
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Lemma 4. The group G contains an element of order 8.

Proof. In the opposite case x4 = 1 for each element x ∈ G. The subgroup Z = {1,−1} lies in the
center of the group G and hence is normal. Since x2 ∈ Z for all x ∈ G, the quotient group G/Z
is Boolean in the sense that y2 = 1 for all y ∈ G/Z. Being Boolean, the group G/Z is abelian and
locally finite (the latter means that each finite subset of G/Z generates a finite subgroup). Then the
group G is locally finite too. Since G is infinite, it contains a finite subgroup H of order |H| ≥ 16.
By Lemma 1, H is isomorphic to C2n or Q2n for some n ≥ 4. In both cases H contains an element of
order 8, which contradicts our hypothesis. �

Let F = {x ∈ G : x2 = −1} denote the set of elements of order 4 in the group G.
Lemmas 1 and 2 imply:

Lemma 5. |F ∩A| ≤ 2 for each abelian subgroup A ⊂ G.

Lemma 6. For each x ∈ G and b ∈ F \ 〈x〉 we get bxb−1 = x−1.

Proof. This lemma will be proved by induction on the order 2k of the element x. The equality
bxb−1 = x−1 is true if x has oder ≤ 2 (in which case x is equal to 1 or −1).

Next, we check that the lemma is true if k = 2. In this case b2 = x2 = −1 ∈ 〈x〉 and xb2 = xx2 =
x2x = b2x ∈ b2 · 〈x〉. By Lemma 3, the subgroup 〈x, b〉 is finite. Now we see that 〈x, b〉 is a finite
2-group with a single element of order 2, 〈x, b〉 is generated two elements of order 4 and contains
two distinct cyclic subgroups of order 4. Lemma 1 implies that Q8 is a unique group with these
properties. Analyzing the structure of the quaternion group Q8, we see that bxb−1 = x−1 (because b
and x generate two distinct cyclic subgroups of order 4).

Now assume that for some n ≥ 3 we have proved that bxb−1 = x−1 for any element x ∈ G of order
2k < 2n such that b ∈ F \ 〈x〉. Let x ∈ G be an element of order 2n and b ∈ F \ 〈x〉. Then the
element x−2 has order 2n−1 ≥ 4 and b ∈ F \ 〈x−2〉. By the inductive hypothesis, bx−2b−1 = x2, which
implies x2b = bx−2 ∈ b · 〈x〉. By Lemma 3, the subgroup 〈x, b〉 is finite. Since bx−2 = x2b 6= x−2b,
the subgroup 〈x, b〉 is not abelian and by Lemma 1, it is isomorphic to Q2m for some m. Now the
properties of the group Q2m imply that bxb−1 = x−1. �

Lemma 7. For each maximal abelian subgroup A ⊂ G of cardinality |A| > 4 and each b ∈ F \ A, we
get F \ A = bA.

Proof. By Lemmas 1 and 2, the group A is isomorphic to C2m for some 3 ≤ m ≤ ∞. Take any element
b ∈ F \ A. To see that bA ⊂ F \ A, take any element x ∈ A. The inclusion bx ∈ F \ A is trivial if x
has order ≤ 2. So we assume that x has order ≥ 4. Since b /∈ A, we see that b /∈ 〈x〉. By Lemma 6,
bxb−1 = x−1. Then bxbx = bxb−1b2x = x−1(−1)x = −1, which means that bx ∈ F . Since x ∈ A and
b /∈ A, we get bx ∈ G \ A. Thus bA ⊂ F \ A.

To see that F \ A ⊂ bA, take any element c ∈ F \ A. By Lemma 6, cxc−1 = x−1 for all x ∈ A.
Then for each x ∈ A, b−1cxc−1b = b−1x−1b = x, which means that the element b−1c commutes with
all elements of A, and thus b−1c ∈ A by the maximality of A. Then c = b(b−1c) ∈ bA. �

Lemma 8. For each maximal abelian subgroup A ⊂ G and each x ∈ G \ A with x2 ∈ A we get

x2 = −1.

Proof. Assuming that x2 6= −1, we conclude that the element x2 has oder ≥ 4. The maximality of
A 6∋ x guarantees that A 6= 〈x2〉. By Lemmas 1 or 2, A is cyclic or quasicyclic, which allows us to find
an element a ∈ A with a2 = x2. Observe that x2 = a2 ∈ 〈a〉 and ax2 = x2a ∈ x2 · 〈a〉. By Lemma 3,
the subgroup 〈a, x〉 is finite and by Lemma 1, it is isomorphic to C2n or Q2n for some n ∈ N. Observe
that 〈a〉 and 〈x〉 are two distinct cyclic subgroups of order ≥ 8, which cannot happen in the groups
C2n and Q2n . This contradiction completes the proof of the equality x2 = −1. �

Lemma 9. |F | ≥ 10.
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Proof. By Lemma 4, the group G contains an element a of order 8. By Zorn’s Lemma, the element
a lies in some maximal abelian subgroup A ⊂ G. Since G is non-commutative, there is an element

b ∈ G \ A. Replacing b by a suitable power b2
k

, we can additionally assume that b2 ∈ A. By
Lemma 8, b2 = −1 and thus b ∈ F \ A. By Lemma 7, we get bA = F \ A, which implies that
|F | = |F ∩A|+ |bA| ≥ 2 + 8 = 10. �

Lemma 10. For any n ≥ 3 the group G contains at most one cyclic subgroup of order 2n.

Proof. Assume that a, b be two elements generating distinct cyclic subgroups of order 2n. First we
show that these elements do not commute. Otherwise, the subgroup 〈a, b〉 is abelian and by Lemma 1 is
cyclic and hence contains a unique subgroup of order 2n. Let A,B ⊂ G be maximal abelian subgroups
containing the elements a, b, respectively.

Observe that the set
D = (F ∩A) ∪ (F ∩B) ∪ (F ∩B)a−1

contains at most 2 · 3 = 6 elements. Since |F | ≥ 10, we can find an element c ∈ F \D. By Lemma 7,
ca ∈ cA = F \ A and cb ∈ cB = F \ B. The choice of the element c guarantees that ca /∈ F ∩ B
and hence ca ∈ (F \ A) ∩ (F \ B) ⊂ F \ B = cB. Then a ∈ B and a commutes with b, which is a
contradiction. �

Let A ⊂ G be a maximal abelian subgroup of cardinality ≥ 8. Such a subgroup exists by Zorn’s
Lemma and Lemma 4.

Lemma 11. G \ A = F \ A and A is a normal subgroup of index 2 in G.

Proof. The inequality G\A 6= F \A implies the existence of an element x ∈ G\A of order 2n ≥ 8. Find

a number k < n such that x2
k

/∈ A but x2
k+1

∈ A. By Lemma 8, x2
k+1

= −1 and thus k = n− 2 ≥ 1.

Then the element z = x2
k−1

has order 8 and does not belong to A as z2 /∈ A. By Lemma 10, G
contains a unique cyclic subgroup of order 8, which is a subgroup of A. Consequently, z ∈ 〈z〉 ⊂ A
and this is a contradiction proving the equality G \A = F \ A.

By Lemma 7, for any b ∈ G \A = F \A we get bA = F \A = G \A, which means that A has index
2 in G and is normal. �

Lemma 12. The group G is isomorphic to Q2∞ .

Proof. The subgroup A is infinite (as a subgroup of finite index in the infinite group G). By Lemma 2,
there is an isomorphism ϕ : A → C2∞ . Given any elements b ∈ F \ A and ϕ̄(b) ∈ Q2∞ \ C2∞ , extend
ϕ to an isomorphism ϕ̄ : G → Q2∞ letting ϕ̄(bx) = ϕ̄(b)ϕ(x) for x ∈ A. Using Lemma 6 it is easy to
check that ϕ̄ : G → Q2∞ is a well-defined isomorphism between the groups G and Q2∞ . �
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