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THE STRUCTURE OF INFINITE 2-GROUPS
WITH A UNIQUE 2-ELEMENT SUBGROUP

TARAS BANAKH

ABSTRACT. We prove that each infinite 2-group G with a unique 2-element subgroup is isomorphic
either to the quasicyclic 2-group Ca2e or to the infinite group of generalized quaternions QQ2c. The
latter group is generated by the set Ca U Qs in the algebra of quaternions H.

In this paper we describe the structure of 2-groups that contain a unique 2-element subgroup. For
finite groups this was done in [2, 5.3.6]: Each finite 2-group with a unique 2-element subgroup is either
cyclic or is a group of generalized quaternions.

Let us recall that a group G is called a 2-group if each element = € G has order 2* for some k € N.
The order of an element x is the smallest number n € N such that ™ = 1 where 1 denotes the neutral
element of the group. By w we denote the set of non-negative integer numbers.

For n € w denote by

an:{ze(C:zznzl}

the cyclic group of order 2". The union
Cye = |JConCC
neN

is called the quasicyclic 2-group.
The group of quaternions is the 8-element subgroup

QS = {17 _17 i) _Z'ujv _j7 k? _k}
in the algebra of quaternions H (endowed with the operation of multiplication of quaternions). The
real algebra H contains the field of complex numbers C as a subalgebra.

For n € N the subgroup Qa» of H generated by the set Con-1 U Qs is called the group of generalized
quaternions. For n > 3 this group has a presentatiom

n—2 _ —
(mylat =1, 2 =¢* ", oy~ =y ")
The union
Qoo = U Qon
neN

will be called the infinite group of generalized quaternions. The quasicyclic group Co~ has index 2 in
Q2 and each element z € Q9 \ Cy~ has order 4.

The main result of this paper is the following extension of Theorem 5.3.6 [2]. It will be essentially
used in [I] for describing of the structure of minimal left ideals of the superextensions of twinic groups.

Theorem 1. Fach 2-group with a unique 2-element subgroup is isomorphic to Con or Qon for some
n € NU {oo}.
As we already know, for finite groups this theorem was proved in [2, 5.3.6]. Let us write this fact

as a lemma for the future reference:
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Lemma 1. FEach finite 2-group with a unique 2-element subgroup is isomorphic to Con or Qan for
some n € N,

So, it remains to prove Theorem [ for infinite groups. The abelian case is easy:

Lemma 2. FEach infinite abelian 2-group G with a unique 2-element subgroup is isomorphic to the
quasicyclic 2-group Cooo.

Proof. Let Z be the unique 2-element subgroup of G and f : Z — Cs be an isomorphism. Since the
group Ch is injective, by Baer’s Theorem [2} 4.1.2], the homomorphism f : Z — Cy C Cy~ extends
to a homomorphism f : G — Cy=. We claim that f is an isomorphism. Indeed, the kernel f~!(1) of
f is trivial since it is a 2-group and contains no element of order 2. So, f is inejective and then f(G)
concides with (o, being an infinite subgroup of Cyoo. O

The non-abelian case is a bit more difficult. For two elements a,b of a group G by (a,b) we shall
denote the subgroup of G generated by the elements a and b. The following lemma gives conditions
under which the subgroup (a, b) is finite.

Lemma 3. The subgroup {(a,b) generated by elements a,b of a group G is finite provided that the
following conditions are satisfied:

(1) b* € {a);

(2) a?b € b- {a);

(3) the elements a and ab have finite order.

Proof. Since the element a has finite order and b% € {a), the element b has finite order too. It is clear
that the subgroup H = (a,b) generated by the elements a,b can be written as the countable union
H = Jye,, Hr where Hy = {1} and Hy, is the subset of elements of the form a™10™! ---a"#b™ where
n;,m; > 0 for ¢ < k.

For every k € w consider the set

I, = {(ab)'a’ ,b(ab)'a’ : 0 <i <k, j >0}
and observe that 1Ty - a = Il and {1, a,ab} - Iy C Ii4q.
Claim 1. Hy C Il for each k € w.

This claim will be proved by induction on k. The inclusion Hy = {1} C Il is trivial. Assume that
for some number k£ > 0 the inclusion Hy_; C II;_1 has been proved.

In order to show that Hj, C IIj, take any element x = a™b™1a™2b™2 ... a™b™ € Hy,. Since b? € (a),
we can assume that my € {0,1}. Observe that the product y = a™2b™2 - --a™ b™k € Hj_;.

If my =0, then z = @™ *"2jM2 ... q"% ™ € Hy 1 C II},_; C II}.

Next, assume that m; = 1. It follows from a?b € b - (a) that for every n € w we get a®"b € b - (a).
Write the number n; as ny = 2n+¢ for some n € w and some ¢ € {0,1}. Then a™b = a*a®"b = aba™
for some m € w and hence

z = a® by = a®ba™y € aba™ - Hy,_1 = a°b- Hy,_1 C a®b - _q C IIL.

This completes the proof of the claim.
Since the element ab has finite order, we see that the union (J,, I is finite and so is the subgroup

H = UkEw - UkEw Hk g

The proof of Theorem Ml will be complete as soon as we prove that each infinite non-abelian 2-group
G with a unique element of order 2 is isomorphic to Q2. Let 1 denote the neutral element of G and
—1 denote the unique element of order 2 in G. It commutes with any other element of G.

Now we prove a series of lemmas and in the final Lemma [[2] we shall prove that G is isomorphic to

Q2.
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Lemma 4. The group G contains an element of order 8.

Proof. In the opposite case z* = 1 for each element 2 € G. The subgroup Z = {1, -1} lies in the
center of the group G and hence is normal. Since 22 € Z for all € G, the quotient group G/Z
is Boolean in the sense that y? = 1 for all y € G/Z. Being Boolean, the group G/Z is abelian and
locally finite (the latter means that each finite subset of G/Z generates a finite subgroup). Then the
group G is locally finite too. Since G is infinite, it contains a finite subgroup H of order |H| > 16.
By Lemma[Il H is isomorphic to Caon or Qon for some n > 4. In both cases H contains an element of
order 8, which contradicts our hypothesis. O

Let F = {z € G: 22> = —1} denote the set of elements of order 4 in the group G.
Lemmas [Il and 2 imply:

Lemma 5. |F'NA| <2 for each abelian subgroup A C G.
Lemma 6. For each x € G and b € F \ (x) we get bxb™! =z~ L.

Proof. This lemma will be proved by induction on the order 2* of the element x. The equality
brb~! = 27! is true if  has oder < 2 (in which case z is equal to 1 or —1).

Next, we check that the lemma is true if k = 2. In this case b? = 2? = —1 € (z) and zb* = z2? =
2?2z = b’z € b - (z). By Lemma [ the subgroup (z,b) is finite. Now we see that (x,b) is a finite
2-group with a single element of order 2, (z,b) is generated two elements of order 4 and contains
two distinct cyclic subgroups of order 4. Lemma [I] implies that (Jg is a unique group with these
properties. Analyzing the structure of the quaternion group Qg, we see that bzb~! = 27! (because b
and x generate two distinct cyclic subgroups of order 4).

Now assume that for some n > 3 we have proved that brb~t = 2~ for any element x € G of order
2k < 2" such that b € F \ (x). Let 2 € G be an element of order 2" and b € F \ (). Then the
element 272 has order 2"~! >4 and b € F'\ (z~2). By the inductive hypothesis, bx~2b~! = 22, which
implies 22b = bx™2 € b- (x). By Lemma [3, the subgroup (z,b) is finite. Since bz~2 = 22b # x2b,
the subgroup (x,b) is not abelian and by Lemma [ it is isomorphic to Qom for some m. Now the
properties of the group Qom imply that bab™' = 2~ L. O

Lemma 7. For each mazimal abelian subgroup A C G of cardinality |A| > 4 and each b € F'\ A, we
get F\ A =0DA.

Proof. By Lemmas[Iland 2], the group A is isomorphic to Cym for some 3 < m < co. Take any element
be F\ A To see that bA C F'\ A, take any element = € A. The inclusion bz € F'\ A is trivial if
has order < 2. So we assume that x has order > 4. Since b ¢ A, we see that b ¢ (z). By Lemma [6]
brb~! = 271, Then bzbx = brb~ %z = 27!(—~1)z = —1, which means that bz € F. Since x € A and
b¢ A, we get bx € G\ A. Thus bA C F'\ A.

To see that F'\ A C bA, take any element ¢ € F'\ A. By Lemma B, cze™! = 27! for all x € A.
Then for each = € A, b='cxc™'b = b~'2~ b = , which means that the element b~'c commutes with
all elements of A, and thus b~!c € A by the maximality of A. Then ¢ = b(b~!c) € bA. 0

Lemma 8. For each mazimal abelian subgroup A C G and each x € G\ A with 2> € A we get
2
e =—1.

Proof. Assuming that 2 # —1, we conclude that the element 22 has oder > 4. The maximality of
A # x guarantees that A # (22). By Lemmas I or @}, A is cyclic or quasicyclic, which allows us to find
an element a € A with a® = 2. Observe that 22 = a? € (a) and ax?® = 2%a € 22 - (a). By Lemma[3]
the subgroup (a, x) is finite and by Lemma[I], it is isomorphic to Con or Qo for some n € N. Observe
that (a) and (x) are two distinct cyclic subgroups of order > 8, which cannot happen in the groups
Cyn and Qon. This contradiction completes the proof of the equality z? = —1. O

Lemma 9. |F| > 10.
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Proof. By Lemma [l the group G contains an element a of order 8. By Zorn’s Lemma, the element
a lies in some maximal abelian subgroup A C G. Since G is non-commutative, there is an element
b € G\ A. Replacing b by a suitable power b2k, we can additionally assume that b> € A. By
Lemma B »*> = —1 and thus b € F'\ A. By Lemma [ we get bA = F \ A, which implies that
|F| = |FnA|l+[bA] > 2+ 8=10. O

Lemma 10. For any n > 3 the group G contains at most one cyclic subgroup of order 2".

Proof. Assume that a,b be two elements generating distinct cyclic subgroups of order 2". First we
show that these elements do not commute. Otherwise, the subgroup (a, b) is abelian and by Lemma [lis
cyclic and hence contains a unique subgroup of order 2". Let A, B C G be maximal abelian subgroups
containing the elements a, b, respectively.
Observe that the set
D=(FNA)U(FNB)UFNB)a*

contains at most 2 - 3 = 6 elements. Since |F'| > 10, we can find an element ¢ € F'\ D. By Lemma [7],
ca € cA=F\Aand chb € ¢cB=F)\ B. The choice of the element ¢ guarantees that ca ¢ F N B
and hence ca € (F\ A)N(F\ B) C F\ B = c¢B. Then a € B and a commutes with b, which is a
contradiction. O

Let A C G be a maximal abelian subgroup of cardinality > 8. Such a subgroup exists by Zorn’s
Lemma and Lemma @l

Lemma 11. G\ A= F\ A and A is a normal subgroup of index 2 in G.

Proof. The inequality G\ A # F'\ A implies the existence of an element z € G\ A of order 2" > 8. Find
a number k < n such that 22" ¢ A but 22" ¢ A. By Lemma B 22" = —1 and thus k =n — 2 > 1.
Then the element z = 22" has order 8 and does not belong to A as 22 ¢ A. By Lemma [0, G
contains a unique cyclic subgroup of order 8, which is a subgroup of A. Consequently, z € (z) C A
and this is a contradiction proving the equality G\ A = F'\ A.

By Lemmal[7] for any b € G\ A= F\ A we get bA = F\ A = G\ A, which means that A has index
2 in G and is normal. O

Lemma 12. The group G is isomorphic to Qoco.

Proof. The subgroup A is infinite (as a subgroup of finite index in the infinite group G). By Lemma 2]
there is an isomorphism ¢ : A — Ca~. Given any elements b € F'\ A and ¢(b) € Qa2 \ Cao, extend
¢ to an isomorphism ¢ : G — Qo letting ¢(bx) = @(b)¢(x) for x € A. Using Lemma [Al it is easy to
check that ¢ : G — Qs is a well-defined isomorphism between the groups G and QQs. O
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