THE STRUCTURE OF INFINITE 2-GROUPS WITH A UNIQUE 2-ELEMENT SUBGROUP

TARAS BANAKH

Abstract

We prove that each infinite 2 -group G with a unique 2-element subgroup is isomorphic either to the quasicyclic 2-group $C_{2 \infty}$ or to the infinite group of generalized quaternions $Q_{2 \infty}$. The latter group is generated by the set $C_{2} \infty \cup Q_{8}$ in the algebra of quaternions \mathbb{H}.

In this paper we describe the structure of 2-groups that contain a unique 2-element subgroup. For finite groups this was done in [2, 5.3.6]: Each finite 2-group with a unique 2-element subgroup is either cyclic or is a group of generalized quaternions.

Let us recall that a group G is called a 2-group if each element $x \in G$ has order 2^{k} for some $k \in \mathbb{N}$. The order of an element x is the smallest number $n \in \mathbb{N}$ such that $x^{n}=1$ where 1 denotes the neutral element of the group. By ω we denote the set of non-negative integer numbers.

For $n \in \omega$ denote by

$$
C_{2^{n}}=\left\{z \in \mathbb{C}: z^{2^{n}}=1\right\}
$$

the cyclic group of order 2^{n}. The union

$$
C_{2^{\infty}}=\bigcup_{n \in \mathbb{N}} C_{2^{n}} \subset \mathbb{C}
$$

is called the quasicyclic 2-group.
The group of quaternions is the 8 -element subgroup

$$
Q_{8}=\{1,-1, i,-i, j,-j, k,-k\}
$$

in the algebra of quaternions \mathbb{H} (endowed with the operation of multiplication of quaternions). The real algebra \mathbb{H} contains the field of complex numbers \mathbb{C} as a subalgebra.

For $n \in \mathbb{N}$ the subgroup $Q_{2^{n}}$ of \mathbb{H} generated by the set $C_{2^{n-1}} \cup Q_{8}$ is called the group of generalized quaternions. For $n \geq 3$ this group has a presentatiom

$$
\left\langle x, y \mid x^{4}=1, x^{2}=y^{2^{n-2}}, x y x^{-1}=y^{-1}\right\rangle .
$$

The union

$$
Q_{2^{\infty}}=\bigcup_{n \in \mathbb{N}} Q_{2^{n}}
$$

will be called the infinite group of generalized quaternions. The quasicyclic group $C_{2 \infty}$ has index 2 in $Q_{2^{\infty}}$ and each element $x \in Q_{2^{\infty}} \backslash C_{2 \infty}$ has order 4.

The main result of this paper is the following extension of Theorem 5.3.6 [2]. It will be essentially used in [1] for describing of the structure of minimal left ideals of the superextensions of twinic groups.

Theorem 1. Each 2-group with a unique 2-element subgroup is isomorphic to $C_{2^{n}}$ or $Q_{2^{n}}$ for some $n \in \mathbb{N} \cup\{\infty\}$.

As we already know, for finite groups this theorem was proved in [2, 5.3.6]. Let us write this fact as a lemma for the future reference:

[^0]Lemma 1. Each finite 2-group with a unique 2-element subgroup is isomorphic to $C_{2^{n}}$ or $Q_{2^{n}}$ for some $n \in \mathbb{N}$.

So, it remains to prove Theorem 1 for infinite groups. The abelian case is easy:
Lemma 2. Each infinite abelian 2-group G with a unique 2-element subgroup is isomorphic to the quasicyclic 2-group $C_{2^{\infty}}$.

Proof. Let Z be the unique 2-element subgroup of G and $f: Z \rightarrow C_{2}$ be an isomorphism. Since the group $C_{2^{\infty}}$ is injective, by Baer's Theorem [2, 4.1.2], the homomorphism $f: Z \rightarrow C_{2} \subset C_{2 \infty}$ extends to a homomorphism $\bar{f}: G \rightarrow C_{2 \infty}$. We claim that \bar{f} is an isomorphism. Indeed, the kernel $\bar{f}^{-1}(1)$ of \bar{f} is trivial since it is a 2 -group and contains no element of order 2 . So, \bar{f} is inejective and then $\bar{f}(G)$ concides with $C_{2^{\infty}}$, being an infinite subgroup of $C_{2^{\infty}}$.

The non-abelian case is a bit more difficult. For two elements a, b of a group G by $\langle a, b\rangle$ we shall denote the subgroup of G generated by the elements a and b. The following lemma gives conditions under which the subgroup $\langle a, b\rangle$ is finite.

Lemma 3. The subgroup $\langle a, b\rangle$ generated by elements a, b of a group G is finite provided that the following conditions are satisfied:
(1) $b^{2} \in\langle a\rangle$;
(2) $a^{2} b \in b \cdot\langle a\rangle$;
(3) the elements a and ab have finite order.

Proof. Since the element a has finite order and $b^{2} \in\langle a\rangle$, the element b has finite order too. It is clear that the subgroup $H=\langle a, b\rangle$ generated by the elements a, b can be written as the countable union $H=\bigcup_{k \in \omega} H_{k}$ where $H_{0}=\{1\}$ and H_{k} is the subset of elements of the form $a^{n_{1}} b^{m_{1}} \cdots a^{n_{k}} b^{m_{k}}$ where $n_{i}, m_{i} \geq 0$ for $i \leq k$.

For every $k \in \omega$ consider the set

$$
\Pi_{k}=\left\{(a b)^{i} a^{j}, b(a b)^{i} a^{j}: 0 \leq i \leq k, j \geq 0\right\}
$$

and observe that $\Pi_{k} \cdot a=\Pi_{k}$ and $\{1, a, a b\} \cdot \Pi_{k} \subset \Pi_{k+1}$.
Claim 1. $H_{k} \subset \Pi_{k}$ for each $k \in \omega$.
This claim will be proved by induction on k. The inclusion $H_{0}=\{1\} \subset \Pi_{0}$ is trivial. Assume that for some number $k>0$ the inclusion $H_{k-1} \subset \Pi_{k-1}$ has been proved.

In order to show that $H_{k} \subset \Pi_{k}$, take any element $x=a^{n_{1}} b^{m_{1}} a^{n_{2}} b^{m_{2}} \ldots a^{n_{k}} b^{m_{k}} \in H_{k}$. Since $b^{2} \in\langle a\rangle$, we can assume that $m_{1} \in\{0,1\}$. Observe that the product $y=a^{n_{2}} b^{m_{2}} \cdots a^{n_{k}} b^{m_{k}} \in H_{k-1}$.

If $m_{1}=0$, then $x=a^{n_{1}+n_{2}} j^{m_{2}} \cdots a^{n_{k}} j^{m_{k}} \in H_{k-1} \subset \Pi_{k-1} \subset \Pi_{k}$.
Next, assume that $m_{1}=1$. It follows from $a^{2} b \in b \cdot\langle a\rangle$ that for every $n \in \omega$ we get $a^{2 n} b \in b \cdot\langle a\rangle$. Write the number n_{1} as $n_{1}=2 n+\varepsilon$ for some $n \in \omega$ and some $\varepsilon \in\{0,1\}$. Then $a^{n_{1}} b=a^{\varepsilon} a^{2 n} b=a^{\varepsilon} b a^{m}$ for some $m \in \omega$ and hence

$$
x=a^{2 n+\varepsilon} b y=a^{\varepsilon} b a^{m} y \in a^{\varepsilon} b a^{m} \cdot H_{k-1}=a^{\varepsilon} b \cdot H_{k-1} \subset a^{\varepsilon} b \cdot \Pi_{k-1} \subset \Pi_{k} .
$$

This completes the proof of the claim.
Since the element $a b$ has finite order, we see that the union $\bigcup_{k \in \omega} \Pi_{k}$ is finite and so is the subgroup $H=\bigcup_{k \in \omega} \subset \bigcup_{k \in \omega} \Pi_{k}$.

The proof of Theorem 1 will be complete as soon as we prove that each infinite non-abelian 2-group G with a unique element of order 2 is isomorphic to $Q_{2 \infty}$. Let 1 denote the neutral element of G and -1 denote the unique element of order 2 in G. It commutes with any other element of G.

Now we prove a series of lemmas and in the final Lemma 12 we shall prove that G is isomorphic to $Q_{2^{\infty}}$.

Lemma 4. The group G contains an element of order 8.
Proof. In the opposite case $x^{4}=1$ for each element $x \in G$. The subgroup $Z=\{1,-1\}$ lies in the center of the group G and hence is normal. Since $x^{2} \in Z$ for all $x \in G$, the quotient group G / Z is Boolean in the sense that $y^{2}=1$ for all $y \in G / Z$. Being Boolean, the group G / Z is abelian and locally finite (the latter means that each finite subset of G / Z generates a finite subgroup). Then the group G is locally finite too. Since G is infinite, it contains a finite subgroup H of order $|H| \geq 16$. By Lemman, H is isomorphic to $C_{2^{n}}$ or $Q_{2^{n}}$ for some $n \geq 4$. In both cases H contains an element of order 8 , which contradicts our hypothesis.

Let $F=\left\{x \in G: x^{2}=-1\right\}$ denote the set of elements of order 4 in the group G.
Lemmas 1 and 2 imply:
Lemma 5. $|F \cap A| \leq 2$ for each abelian subgroup $A \subset G$.
Lemma 6. For each $x \in G$ and $b \in F \backslash\langle x\rangle$ we get $b x b^{-1}=x^{-1}$.
Proof. This lemma will be proved by induction on the order 2^{k} of the element x. The equality $b x b^{-1}=x^{-1}$ is true if x has oder ≤ 2 (in which case x is equal to 1 or -1).

Next, we check that the lemma is true if $k=2$. In this case $b^{2}=x^{2}=-1 \in\langle x\rangle$ and $x b^{2}=x x^{2}=$ $x^{2} x=b^{2} x \in b^{2} \cdot\langle x\rangle$. By Lemma 3, the subgroup $\langle x, b\rangle$ is finite. Now we see that $\langle x, b\rangle$ is a finite 2 -group with a single element of order $2,\langle x, b\rangle$ is generated two elements of order 4 and contains two distinct cyclic subgroups of order 4 . Lemma $\mathbb{1}$ implies that Q_{8} is a unique group with these properties. Analyzing the structure of the quaternion group Q_{8}, we see that $b x b^{-1}=x^{-1}$ (because b and x generate two distinct cyclic subgroups of order 4).

Now assume that for some $n \geq 3$ we have proved that $b x b^{-1}=x^{-1}$ for any element $x \in G$ of order $2^{k}<2^{n}$ such that $b \in F \backslash\langle x\rangle$. Let $x \in G$ be an element of order 2^{n} and $b \in F \backslash\langle x\rangle$. Then the element x^{-2} has order $2^{n-1} \geq 4$ and $b \in F \backslash\left\langle x^{-2}\right\rangle$. By the inductive hypothesis, $b x^{-2} b^{-1}=x^{2}$, which implies $x^{2} b=b x^{-2} \in b \cdot\langle x\rangle$. By Lemma 3, the subgroup $\langle x, b\rangle$ is finite. Since $b x^{-2}=x^{2} b \neq x^{-2} b$, the subgroup $\langle x, b\rangle$ is not abelian and by Lemma 1 , it is isomorphic to $Q_{2^{m}}$ for some m. Now the properties of the group $Q_{2^{m}}$ imply that $b x b^{-1}=x^{-1}$.

Lemma 7. For each maximal abelian subgroup $A \subset G$ of cardinality $|A|>4$ and each $b \in F \backslash A$, we get $F \backslash A=b A$.

Proof. By Lemmas 1 and 2, the group A is isomorphic to $C_{2^{m}}$ for some $3 \leq m \leq \infty$. Take any element $b \in F \backslash A$. To see that $b A \subset F \backslash A$, take any element $x \in A$. The inclusion $b x \in F \backslash A$ is trivial if x has order ≤ 2. So we assume that x has order ≥ 4. Since $b \notin A$, we see that $b \notin\langle x\rangle$. By Lemma 6, $b x b^{-1}=x^{-1}$. Then $b x b x=b x b^{-1} b^{2} x=x^{-1}(-1) x=-1$, which means that $b x \in F$. Since $x \in A$ and $b \notin A$, we get $b x \in G \backslash A$. Thus $b A \subset F \backslash A$.

To see that $F \backslash A \subset b A$, take any element $c \in F \backslash A$. By Lemma 6, $c x c^{-1}=x^{-1}$ for all $x \in A$. Then for each $x \in A, b^{-1} c x c^{-1} b=b^{-1} x^{-1} b=x$, which means that the element $b^{-1} c$ commutes with all elements of A, and thus $b^{-1} c \in A$ by the maximality of A. Then $c=b\left(b^{-1} c\right) \in b A$.
Lemma 8. For each maximal abelian subgroup $A \subset G$ and each $x \in G \backslash A$ with $x^{2} \in A$ we get $x^{2}=-1$.
Proof. Assuming that $x^{2} \neq-1$, we conclude that the element x^{2} has oder ≥ 4. The maximality of $A \nexists x$ guarantees that $A \neq\left\langle x^{2}\right\rangle$. By Lemmas 1 or $2, A$ is cyclic or quasicyclic, which allows us to find an element $a \in A$ with $a^{2}=x^{2}$. Observe that $x^{2}=a^{2} \in\langle a\rangle$ and $a x^{2}=x^{2} a \in x^{2} \cdot\langle a\rangle$. By Lemma 3, the subgroup $\langle a, x\rangle$ is finite and by Lemma 1, it is isomorphic to $C_{2^{n}}$ or $Q_{2^{n}}$ for some $n \in \mathbb{N}$. Observe that $\langle a\rangle$ and $\langle x\rangle$ are two distinct cyclic subgroups of order ≥ 8, which cannot happen in the groups $C_{2^{n}}$ and $Q_{2^{n}}$. This contradiction completes the proof of the equality $x^{2}=-1$.
Lemma 9. $|F| \geq 10$.

Proof. By Lemma 4, the group G contains an element a of order 8. By Zorn's Lemma, the element a lies in some maximal abelian subgroup $A \subset G$. Since G is non-commutative, there is an element $b \in G \backslash A$. Replacing b by a suitable power $b^{2^{k}}$, we can additionally assume that $b^{2} \in A$. By Lemma 8, $b^{2}=-1$ and thus $b \in F \backslash A$. By Lemma 7, we get $b A=F \backslash A$, which implies that $|F|=|F \cap A|+|b A| \geq 2+8=10$.
Lemma 10. For any $n \geq 3$ the group G contains at most one cyclic subgroup of order 2^{n}.
Proof. Assume that a, b be two elements generating distinct cyclic subgroups of order 2^{n}. First we show that these elements do not commute. Otherwise, the subgroup $\langle a, b\rangle$ is abelian and by Lemma 1 is cyclic and hence contains a unique subgroup of order 2^{n}. Let $A, B \subset G$ be maximal abelian subgroups containing the elements a, b, respectively.

Observe that the set

$$
D=(F \cap A) \cup(F \cap B) \cup(F \cap B) a^{-1}
$$

contains at most $2 \cdot 3=6$ elements. Since $|F| \geq 10$, we can find an element $c \in F \backslash D$. By Lemma 7 , $c a \in c A=F \backslash A$ and $c b \in c B=F \backslash B$. The choice of the element c guarantees that $c a \notin F \cap B$ and hence $c a \in(F \backslash A) \cap(F \backslash B) \subset F \backslash B=c B$. Then $a \in B$ and a commutes with b, which is a contradiction.

Let $A \subset G$ be a maximal abelian subgroup of cardinality ≥ 8. Such a subgroup exists by Zorn's Lemma and Lemma 4.
Lemma 11. $G \backslash A=F \backslash A$ and A is a normal subgroup of index 2 in G.
Proof. The inequality $G \backslash A \neq F \backslash A$ implies the existence of an element $x \in G \backslash A$ of order $2^{n} \geq 8$. Find a number $k<n$ such that $x^{2^{k}} \notin A$ but $x^{2^{k+1}} \in A$. By Lemma 团, $x^{2^{k+1}}=-1$ and thus $k=n-2 \geq 1$. Then the element $z=x^{2^{k-1}}$ has order 8 and does not belong to A as $z^{2} \notin A$. By Lemma 10, G contains a unique cyclic subgroup of order 8 , which is a subgroup of A. Consequently, $z \in\langle z\rangle \subset A$ and this is a contradiction proving the equality $G \backslash A=F \backslash A$.

By Lemma 7 for any $b \in G \backslash A=F \backslash A$ we get $b A=F \backslash A=G \backslash A$, which means that A has index 2 in G and is normal.
Lemma 12. The group G is isomorphic to $Q_{2^{\infty}}$.
Proof. The subgroup A is infinite (as a subgroup of finite index in the infinite group G). By Lemma 2 , there is an isomorphism $\varphi: A \rightarrow C_{2 \infty}$. Given any elements $b \in F \backslash A$ and $\bar{\varphi}(b) \in Q_{2^{\infty}} \backslash C_{2^{\infty}}$, extend φ to an isomorphism $\bar{\varphi}: G \rightarrow Q_{2 \infty}$ letting $\bar{\varphi}(b x)=\bar{\varphi}(b) \varphi(x)$ for $x \in A$. Using Lemma 6 it is easy to check that $\bar{\varphi}: G \rightarrow Q_{2 \infty}$ is a well-defined isomorphism between the groups G and $Q_{2 \infty}$.

1. Acknowledgments

The anonumous referee of this paper pointed out that Theorem 1 can be deduced from an old result of Shunkov [3].

References

[1] T.Banakh, V.Gavrylkiv, Algebra in the superextensions of twinic groups, Dissert. Math., to appear; (arXiv:0811.0796).
[2] D. Robinson, A course in the theory of groups, Springer, NY, 1996.
[3] V.P. Shunkov, A certain class of p-groups, Algebra i Logika 9:4 (1970) 484-496.
Department of Mathematics, Ivan Franko National University of Lviv, Ukraine, and
Instytut Matematyki, Uniwersytet Humanistyczno-Przyrodniczy jana Kochanowskiego, Kielce, Poland
E-mail address: tbanakh@gmail.com

[^0]: 1991 Mathematics Subject Classification. 20E34.
 Key words and phrases. 2-group, quasicyclic 2-group, the group of generalized quaternions.

