A further note on the inverse nodal problem and Ambarzumyan problem for the p-Laplacian

Y.H. Cheng ${ }^{1}$, C.K. Law ${ }^{2}$, Wei-Cheng Lian ${ }^{3}$ and Wei-Chuan Wang ${ }^{4}$

September 2, 2010

Abstract

In this note, we extend some results in a previous paper on the inverse nodal problem and Ambarzumyan problem for the p-Laplacian to periodic or anti-periodic boundary conditions, and to L^{1} potentials.

[^0]
1 Introduction

Recently, we studied the p-Laplacian with C^{1}-potentials and solved the inverse nodal problem and Ambarzumyan problem for Dirichlet boundary conditions [7]. In this note, we want to extend the results to periodic or anti-periodic boundary conditions, and to L^{1} potentials.

Consider the equation

$$
\begin{equation*}
-\left(y^{\prime(p-1)}\right)^{\prime}=(p-1)(\lambda-q(x)) y^{(p-1)}, \tag{1.1}
\end{equation*}
$$

where $f^{(p-1)}=|f|^{p-1} \operatorname{sgn} f$. Assume that $q(1+x)=q(x)$ for $x \in \mathbb{R}$, then (1.1) can be coupled with periodic or anti-periodic boundary conditions respectively:

$$
\begin{equation*}
y(0)=y(1), \quad y^{\prime}(0)=y^{\prime}(1) \tag{1.2}
\end{equation*}
$$

or

$$
\begin{equation*}
y(0)=-y(1), \quad y^{\prime}(0)=-y^{\prime}(1) \tag{1.3}
\end{equation*}
$$

When $p=2$, the above is the classical Hill's equation. It follows from Floquet theory that there are countably many interlacing periodic and anti-periodic eigenvalues of Hill's operator. However, Floquet theory does not work for the case $p \neq 2$. In 2001, Zhang [11] studied the properties of eigenvalues for $p>1$ with L^{1}-potentials. He applied the rotation number function to define the minimal eigenvalue $\underline{\lambda}_{n}(q)$ and the maximal eigenvalue $\bar{\lambda}_{n}(q)$ corresponding to eigenfunctions having n zeros in $[0,1)$, respectively. These numbers $\underline{\lambda}_{n}(q)$ and $\bar{\lambda}_{n}(q)$ are called rotational periodic eigenvalues and satisfy
(i) If $n \in \mathbb{N} \cup\{0\}$ is even, then $\underline{\lambda}_{n}(q)$ and $\bar{\lambda}_{n}(q)$ are eigenvalues of (1.1) and (1.2); if $n \in \mathbb{N}$ is odd, then $\underline{\lambda}_{n}(q)$ and $\bar{\lambda}_{n}(q)$ are eigenvalues of (1.1) and (1.3).
(ii) $\bar{\lambda}_{0}(q)<\underline{\lambda}_{1}(q) \leq \bar{\lambda}_{1}(q)<\underline{\lambda}_{2}(q) \leq \bar{\lambda}_{2}(q)<\cdots \cdots$.

Although the above properties are very similar to the linear case, it should be mentioned that the case for the p-Laplacian is much more complicated. For example, for the periodic or anti-periodic boundary conditions, there may exist an infinite
sequence of variational eigenvalues and non-variational eigenvalues ([3]). In the same paper, the authors also showed that the minimal periodic eigenvalue is simple and variational, while the minimal anti-periodic eigenvalue is variational but may be not simple.

In 2008, Brown and Eastham [4] derived a sharp asymptotic expansion of eigenvalues of the p-Laplacian with locally integrable and absolutely continuous $(r-1)$ derivative potentials respectively. Below is a version of their theorem for periodic eigenvalues of the p-Laplacian (1.1), (1.2).

Theorem 1.1. ([4, Theorem 3.1]) Let q be 1-periodic and locally integrable in $(-\infty, \infty)$. Then the rotationally periodic eigenvalue $\lambda_{2 n}=\underline{\lambda}_{2 n}$, or $\bar{\lambda}_{2 n}$ satisfies

$$
\begin{equation*}
\lambda_{2 n}^{1 / p}=2 n \widehat{\pi}+\frac{1}{p(2 n \widehat{\pi})^{p-1}} \int_{0}^{1} q(t) d t+o\left(\frac{1}{n^{p-1}}\right) . \tag{1.4}
\end{equation*}
$$

By a similar argument, the asymptotic expansion of the anti-periodic eigenvalue $\lambda_{2 n-1}=\underline{\lambda}_{2 n-1}$ or $\bar{\lambda}_{2 n-1}$, which corresponds to the anti-periodic eigenfunction with $2 n-1$ zeros in $[0,1)$, satisfies

$$
\begin{equation*}
\lambda_{2 n-1}^{1 / p}=(2 n-1) \widehat{\pi}+\frac{1}{p((2 n-1) \widehat{\pi})^{p-1}} \int_{0}^{1} q(t) d t+o\left(\frac{1}{n^{p-1}}\right) . \tag{1.5}
\end{equation*}
$$

The inverse nodal problem is the problem of understanding the potential function through its nodal data. In 2006, some of us (C.-L.) [5] studied Hill's equation. We first made a translation of the interval by the first nodal length so that the periodic problem is reduced to a Dirichlet problem, and then solved the uniqueness, reconstruction and stability problems using the nodal set of periodic eigenfunctions.

We denote by $\left\{x_{i}^{(n)}\right\}_{i=0}^{n-1}$ the zeros of the eigenfunction corresponding to λ_{n}, and define the nodal length $\ell_{i}^{(n)}=x_{i+1}^{(n)}-x_{i}^{(n)}$ and $j=j_{n}(x)=\max \left\{i: x_{i}^{(n)} \leq x\right\}$. Our main theorem is as follows.

Theorem 1.2. Let $q \in L^{1}(0,1)$ be 1-periodic. Define $F_{n}(x)$ as the following:
(a) For periodic boundary condition, let

$$
F_{2 n}(x)=p(2 n \widehat{\pi})^{p}\left[(2 n) \ell_{j}^{(2 n)}-1\right]+\int_{0}^{1} q(t) d t
$$

(b) For the anti-periodic boundary condition, let

$$
F_{2 n-1}(x)=p((2 n-1) \widehat{\pi})^{p}\left[(2 n-1) \ell_{j}^{(2 n-1)}-1\right]+\int_{0}^{1} q(t) d t
$$

Then both $\left\{F_{2 n}\right\}$ and $\left\{F_{2 n-1}\right\}$ converges to q pointwisely a.e. and in $L^{1}(0,1)$.
Thus either one of the sequences $\left\{F_{2 n}\right\} /\left\{F_{2 n-1}\right\}$ will give the reconstruction formula for q. Note that here $q \in L^{1}(0,1)$. Furthermore, the map between the nodal space and the set of admissible potentials are homeomorphic after a partition (cf.[7]). The same idea also works for linear separated boundary value problems with integrable potentials.

Using the eigenvalue asymptotics above, the Ambarzumyan problems for the periodic and anti-periodic boundary conditions can also be solved.

Theorem 1.3. Let $q \in L^{1}(0,1)$ be periodic of period 1 .
(a) If the spectrum of periodic eigenvalues problem (1.1), (1.2) contains $\left\{(2 n \widehat{\pi})^{p}\right.$: $n \in \mathbb{N} \cup\{0\}\}$ and 0 is the least eigenvalue, then $q=0$ on $[0,1]$.
(b) If the spectrum of anti-periodic eigenvalue problem (1.1), (1.3) contains $\{((2 n-$ $\left.1) \widehat{\pi})^{p}: n \in \mathbb{N}\right\} ; \widehat{\pi}^{p}$ is the least eigenvalue and $\int_{0}^{1} q(t)\left(S_{p}(\widehat{\pi} t) S_{p}^{\prime}(\widehat{\pi} t)^{(p-1)}\right)^{\prime} d t=0$, then $q=0$ on $[0,1]$.

In section 2, we shall apply Theorem 1.1 to study on periodic and anti-periodic boundary conditions. In section 3, we shall deal with the case of linear separated boundary conditions.

The stability issue of the inverse nodal problem with L^{1} potentials associated with perodic/antiperiodic as well as linear separated boundary conditions can also be proved. The proof goes in the same manner as in [7] and is so omitted.

2 Proof of main results

Fix $p>1$ and assume that $q=0$ and $\lambda=1$. Then (1.1) becomes

$$
-\left(y^{\prime(p-1)}\right)^{\prime}=(p-1) y^{(p-1)} .
$$

Let S_{p} be the solution satisfying the initial conditions $S_{p}(0)=0, S_{p}^{\prime}(0)=1$. It is well known that S_{p} and its derivative S_{p}^{\prime} are periodic functions on \mathbb{R} with period $2 \widehat{\pi}$, where $\widehat{\pi}=\frac{2 \pi}{p \sin \left(\frac{\pi}{p}\right)}$. The two functions also satisfy the following identities (cf. [4, 7]).

Lemma 2.1. (a) $\left|S_{p}(x)\right|^{p}+\left|S_{p}^{\prime}(x)\right|^{p}=1$ for any $x \in \mathbb{R}$;
(b) $\left(S_{p} S_{p}^{(p-1)}\right)^{\prime}=\left|S_{p}^{\prime}\right|^{p}-(p-1)\left|S_{p}\right|^{p}=1-p\left|S_{p}\right|^{p}=(1-p)+p\left|S_{p}^{\prime}\right|^{p}$.

Next we define a generalized Prüfer substitution using S_{p} and S_{p}^{\prime} :

$$
\begin{equation*}
y(x)=r(x) S_{p}\left(\lambda^{1 / p} \theta(x)\right), \quad y^{\prime}(x)=\lambda^{1 / p} r(x) S_{p}^{\prime}\left(\lambda^{1 / p} \theta(x)\right) \tag{2.1}
\end{equation*}
$$

By Lemma 2.1, one obtains ([7])

$$
\begin{equation*}
\theta^{\prime}(x)=1-\frac{q}{\lambda}\left|S_{p}\left(\lambda^{1 / p} \theta(x)\right)\right|^{p} . \tag{2.2}
\end{equation*}
$$

Theorem 2.2. In the periodic/antiperiodic eigenvalue problem, if $q \in L^{1}(0,1)$ be periodic of period 1, then

$$
q(x)=\lim _{n \rightarrow \infty} p \lambda_{n}\left(\frac{\lambda_{n}^{1 / p} \ell_{j}^{(n)}}{\widehat{\pi}}-1\right)
$$

pointwisely a.e. and in $L^{1}(0,1)$, where $j=j_{n}(x)=\max \left\{k: x_{k}^{(n)} \leq x\right\}$.
The proof below works for both even and odd n 's, i.e. for both periodic and antiperiodic problems. Some of the arguments above are motivated by [6]. See also [8].

Proof. First, integrating (2.2) from $x_{k}^{(n)}$ to $x_{k+1}^{(n)}$ with $\lambda=\lambda_{n}$, we have

$$
\begin{aligned}
\frac{\widehat{\pi}}{\lambda_{n}^{1 / p}} & =\ell_{k}^{(n)}-\int_{x_{k}^{(n)}}^{x_{k+1}^{(n)}} \frac{q(t)}{\lambda_{n}}\left|S_{p}\left(\lambda_{n}^{1 / p} \theta(t)\right)\right|^{p} d t \\
& =\ell_{k}^{(n)}-\frac{1}{p \lambda_{n}} \int_{x_{k}^{(n)}}^{x_{k+1}^{(n)}} q(t) d t-\frac{1}{\lambda_{n}} \int_{x_{k}^{(n)}}^{x_{k+1}^{(n)}} q(t)\left(\left|S_{p}\left(\lambda_{n}^{1 / p} \theta(t)\right)\right|^{p}-\frac{1}{p}\right) d t
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\ell_{k}^{(n)}=\frac{\widehat{\pi}}{\lambda_{n}^{1 / p}}+\frac{1}{p \lambda_{n}} \int_{x_{k}^{(n)}}^{x_{k+1}^{(n)}} q(t) d t+\frac{1}{\lambda_{n}} \int_{x_{k}^{(n)}}^{x_{k+1}^{(n)}} q(t)\left(\left|S_{p}\left(\lambda_{n}^{1 / p} \theta(t)\right)\right|^{p}-\frac{1}{p}\right) d t \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
p \lambda_{n}\left(\frac{\lambda_{n}^{1 / p} \ell_{k}^{(n)}}{\widehat{\pi}}-1\right)=\frac{\lambda_{n}^{1 / p}}{\widehat{\pi}} \int_{x_{k}^{(n)}}^{x_{k+1}^{(n)}} q(t) d t+\frac{p \lambda_{n}^{1 / p}}{\widehat{\pi}} \int_{x_{k}^{(n)}}^{x_{k+1}^{(n)}} q(t)\left(\left|S_{p}\left(\lambda_{n}^{1 / p} \theta(t)\right)\right|^{p}-\frac{1}{p}\right) d t . \tag{2.4}
\end{equation*}
$$

Now, for $x \in(0,1)$, let $j=j_{n}(x)=\max \left\{k: x_{k}^{(n)} \leq x\right\}$. Then $x \in\left[x_{j}^{(n)}, x_{j+1}^{(n)}\right)$ and, for large n,

$$
\left[x_{j}^{(n)}, x_{j+1}^{(n)}\right) \subset B\left(x, \frac{2 \widehat{\pi}}{\lambda_{n}^{1 / p}}\right),
$$

where $B(t, \varepsilon)$ is the open ball centering t with radius ε. That is, the sequence of intervals $\left\{\left[x_{j}^{(n)}, x_{j+1}^{(n)}\right): n\right.$ is sufficiently large $\}$ shrinks to x nicely (cf. Rudin [9, p.140]). Since $q \in L^{1}(0,1)$ and $\frac{\lambda_{n}^{1 / p} \ell_{k}^{(n)}}{\tilde{\pi}}=1+o(1)$, we have

$$
h_{n}(x) \equiv \frac{\lambda_{n}^{1 / p}}{\widehat{\pi}} \int_{x_{j}^{(n)}}^{x_{j+1}^{(n)}} q(t) d t=\frac{\lambda_{n}^{1 / p} \ell_{j}^{(n)}}{\widehat{\pi}} \frac{1}{\ell_{j}^{(n)}} \int_{x_{j}^{(n)}}^{x_{j+1}^{(n)}} q(t) d t
$$

converges to $q(x)$ pointwisely a.e. $x \in(0,1)$. Furthermore, since

$$
\left|h_{n}(x)\right| \leq \frac{\lambda_{n}^{1 / p}}{\widehat{\pi}} \int_{x_{j}^{(n)}}^{x_{j+1}^{(n)}}|q(t)| d t \equiv g_{n}(x),
$$

and

$$
\int_{0}^{1} g_{n}(t) d t=\sum_{k=0}^{n-1} \frac{\lambda_{n}^{1 / p} \ell_{k}^{(n)}}{\widehat{\pi}} \int_{x_{k}^{(n)}}^{x_{k+1}^{(n)}}|q(t)| d t=(1+o(1))\|q\|_{1}
$$

we have $h_{n}(t) \rightarrow q(t)$ in $L^{1}(0,1)$ by Lebesgue dominated convergence theorem. On the other hand, let $q_{k, n} \equiv \frac{1}{\ell_{k}^{(n)}} \int_{x_{k}^{(n)}}^{x_{k+1}^{(n)}} q(t) d t$. Then $q_{j, n}$ converges to q pointwisely a.e. $x \in(0,1)$. Let $\phi_{n}(t)=\left|S_{p}\left(\lambda_{n}^{1 / p} \theta(t)\right)\right|^{p}-\frac{1}{p}$. Then

$$
\begin{aligned}
T_{n}(x) & \equiv \frac{p \lambda_{n}^{1 / p}}{\widehat{\pi}} \int_{x_{j}^{(n)}}^{x_{j+1}^{(n)}} q(t) \phi_{n}(t) d t, \\
& =\frac{p \lambda_{n}^{1 / p}}{\widehat{\pi}} \int_{x_{j}^{(n)}}^{x_{j+1}^{(n)}}\left(q(t)-q_{j, n}\right) \phi_{n}(t) d t+\frac{p \lambda_{n}^{1 / p}}{\widehat{\pi}} \int_{x_{j}^{(n)}}^{x_{j+1}^{(n)}} q_{j, n} \phi_{n}(t) d t \\
& \equiv A_{n}+B_{n} .
\end{aligned}
$$

By Lemma 2.1(b) and (2.2),

$$
\begin{aligned}
B_{n} & =\frac{p \lambda_{n}^{1 / p} q_{j, n}}{\widehat{\pi}} \int_{x_{j}^{(n)}}^{x_{j+1}^{(n)}}\left(\left|S_{p}\left(\lambda_{n}^{1 / p} \theta(t)\right)\right|^{p}-\frac{1}{p}\right)\left(\theta^{\prime}(t)+\frac{q(t)}{\lambda_{n}}\left|S_{p}\left(\lambda_{n}^{1 / p} \theta(t)\right)\right|^{p}\right) d t \\
& =-\left.\frac{p q_{j, n}}{\widehat{\pi}} S_{p}\left(\lambda_{n}^{1 / p} \theta(t)\right) S_{p}^{\prime}\left(\lambda_{n}^{1 / p} \theta(t)\right)^{(p-1)}\right|_{x_{j}^{(n)}} ^{x_{j+1}^{(n)}}+O\left(\lambda_{n}^{-1+1 / p}\right) \\
& =O\left(\lambda_{n}^{-1+1 / p}\right)
\end{aligned}
$$

Also,

$$
\begin{aligned}
\left|A_{n}\right| & \left.\leq\left.\frac{p \lambda_{n}^{1 / p}}{\widehat{\pi}} \int_{x_{j}^{(n)}}^{x_{j+1}^{(n)}}\left|q(t)-q_{j, n}\right|| | S_{p}\left(\lambda_{n}^{1 / p} \theta(t)\right)\right|^{p}-\frac{1}{p} \right\rvert\, d t \\
& \leq \frac{(p-1) \lambda_{n}^{1 / p}}{\widehat{\pi}} \int_{x_{j}^{(n)}}^{x_{j+1}^{(n)}}\left|q(t)-q_{j, n}\right| d t
\end{aligned}
$$

which converges to 0 pointwisely a.e. $x \in(0,1)$ because the sequence of intervals $\left\{\left[x_{j}^{(n)}, x_{j+1}^{(n)}\right): n\right.$ is sufficiently large $\}$ shrinks to x nicely. We conclude that $T_{n}(x) \rightarrow 0$ a.e. $x \in(0,1)$. Finally, applying Lebesgue dominated convergence theorem as above, $T_{n}(x) \rightarrow 0$ in $L^{1}(0,1)$. Hence the left hand side of (2.4) converges to q pointwisely a.e. and in $L^{1}(0,1)$.

Proof of Theorem 1.2.
By the eigenvalue estimates (1.4) and (1.5), we have

$$
\begin{equation*}
p \lambda_{2 n}\left(\frac{\lambda_{2 n}^{1 / p} \ell_{2_{n}(x)}^{(2 n)}}{\widehat{\pi}}-1\right)=p(2 n \widehat{\pi})^{p}\left(2 n \ell_{j}^{(2 n)}-1\right)+2 n \ell_{j_{2 n}(x)}^{(2 n)} \int_{0}^{1} q(t) d t+o(1) . \tag{2.5}
\end{equation*}
$$

Hence by Theorem 2.2 and the fact that $2 n \ell_{j}^{(2 n)}=1+o(1)$,

$$
F_{2 n}(x) \equiv p(2 n \widehat{\pi})^{p}\left(2 n \ell_{j}^{(2 n)}-1\right)+\int_{0}^{1} q(t) d t
$$

also converges to q pointwisely a.e. and in $L^{1}(0,1)$. The proof for (b) is the same.
Proof of Theorem 1.3.
Here we only give the proof of (b). First, since all anti-periodic eigenvalues include $\left\{((2 n-1) \widehat{\pi})^{p}: n \in \mathbb{N}\right\}$, we have, by $(1.5), \int_{0}^{1} q(t) d t=0$.

Moreover, $S_{p}(\widehat{\pi} x)$ satisfies anti-periodic boundary conditions. So by Lemma 2.1(b),

$$
\int_{0}^{1}\left|S_{p}^{\prime}(\widehat{\pi} t)\right|^{p} d t-\frac{p-1}{p}=\int_{0}^{1} q(t)\left|S_{p}(\widehat{\pi} t)\right|^{p} d t=\int_{0}^{1}\left|S_{p}(\widehat{\pi} t)\right|^{p} d t-\frac{1}{p}=0
$$

Hence, by the variational principle, we have

$$
\widehat{\pi}^{p}=\lambda_{1} \leq \frac{\int_{0}^{1} \widehat{\pi}^{p}\left|S_{p}^{\prime}(\widehat{\pi} t)\right|^{p} d t+(p-1) \int_{0}^{1} q(t)\left|S_{p}(\widehat{\pi} t)\right|^{p} d t}{(p-1) \int_{0}^{1}\left|S_{p}(\widehat{\pi} t)\right|^{p} d t}=\widehat{\pi}^{p}
$$

This implies $S_{p}(\widehat{\pi} x)$ is the first eigenfunction. Therefore $q=0$ on $[0,1]$.

3 Linear separated boundary conditions

Consider the one-dimensional p-Laplacian with linear separated boundary conditions

$$
\left\{\begin{array}{l}
y(0) S_{p}^{\prime}(\alpha)+y^{\prime}(0) S_{p}(\alpha)=0 \tag{3.1}\\
y(1) S_{p}^{\prime}(\beta)+y^{\prime}(1) S_{p}(\beta)=0
\end{array}\right.
$$

where $\alpha, \beta \in[0, \widehat{\pi})$. Letting λ_{n} be the nth eigenvalue whose associated eigenfunction has exactly $n-1$ zeros in $(0,1)$, the generalized phase θ_{n} as given in (2.2) satisfies

$$
\begin{equation*}
\theta_{n}(0)=\frac{-1}{\lambda_{n}^{1 / p}} \widetilde{C T}_{p}^{-1}\left(-\frac{\widetilde{C T}_{p}(\alpha)}{\lambda_{n}^{1 / p}}\right) ; \quad \theta_{n}(1)=\frac{1}{\lambda_{n}^{1 / p}}\left(n \widehat{\pi}-\widetilde{C T}_{p}^{-1}\left(-\frac{\widetilde{C T}_{p}(\beta)}{\lambda_{n}^{1 / p}}\right)\right) \tag{3.2}
\end{equation*}
$$

where the function $C T_{p}(\gamma):=\frac{S_{p}(\gamma)}{S_{p}^{\prime}(\gamma)}$ is an analogue of cotangent function, while $\widetilde{C T}_{p}(\gamma):=C T_{p}(\gamma)$ if $\gamma \neq 0$; and $\widetilde{C T}_{p}(\gamma):=0$ otherwise. Also $\widetilde{C T}_{p}^{-1}$ stands for the inverse of $\widetilde{C T}_{p}$, taking values only in $[0, \widehat{\pi})$.

Let $\phi_{n}(x)=\left\lvert\, S_{p}\left(\left.\lambda_{n}^{1 / p} \theta_{n}(x)\right|^{p}-\frac{1}{p}\right.$, where. Below we shall state a general Riemann- \right. Lebesgue lemma, which shows that $\int_{0}^{1} \phi_{n} g \rightarrow 0$ for any $g \in L^{1}(0,1)$, when λ_{n} 's are associated with a certain linear separated boundary conditions. In the case of periodic boundary conditions, Brown and Eastham [4] used a Fourier series expansion of ϕ_{n} where $\phi_{n}\left(\lambda_{n}^{1 / p} \theta_{n}(x)\right) \approx \phi_{n}(\alpha+2 n \widehat{\pi} x)$ and apply Plancherel Theorem to show convergence.

Lemma 3.1. Let f_{n} be uniformly bounded and integrable on $(0,1)$. Suppose for each n, there exists a partition $\left\{x_{0}^{n}=0<x_{1}^{n}<\cdots<x_{n}^{n}=1\right\}$ such that $\Delta x_{k}^{n}=o(1)$, and
$F_{k}^{n}(x):=\int_{x_{k}^{n}}^{x} f_{n}(t) d t$ satisfies $F_{k}^{n}(x)=O\left(\frac{1}{n}\right)$ for $x \in\left(x_{k}^{n}, x_{k+1}^{n}\right)$ and $F_{k}^{n}\left(x_{k+1}^{n}\right)=o\left(\frac{1}{n}\right)$ uniformly in $k=1, \ldots, n-2$, as $n \rightarrow \infty$. Then for any $g \in L^{1}(0,1), \int_{0}^{1} g f_{n} \rightarrow 0$ as $n \rightarrow \infty$.

Proof. Take any $\epsilon>0$, there is a C^{1} function \tilde{g} on $[0,1]$ such that $\int_{0}^{1}|\tilde{g}-g|<\epsilon$. Let $\left|f_{n}\right|,|\tilde{g}| \leq M$. Then

$$
\int_{0}^{1} g f_{n}=\int_{0}^{1}(g-\tilde{g}) f_{n}+\int_{0}^{1} \tilde{g} f_{n}
$$

where $\left|\int_{0}^{1}(g-\tilde{g}) f_{n}\right| \leq M \epsilon$. Also

$$
\int_{0}^{1} \tilde{g} f_{n}=\sum_{k=0}^{n-1} \int_{x_{k}^{n}}^{x_{k+1}^{n}} \tilde{g} f_{n}=\sum_{k=1}^{n-2}\left(\tilde{g}\left(x_{k+1}^{n}\right) F\left(x_{k+1}^{n}\right)-\int_{x_{k}^{n}}^{x_{k+1}^{n}} \tilde{g}^{\prime} F_{k}^{n}\right)+o(1)
$$

where

$$
\left|\int_{x_{k}^{n}}^{x_{k+1}^{n}} \tilde{g}^{\prime} F_{k}^{n}\right|=O\left(\frac{1}{n}\right) \int_{x_{k}^{n}}^{x_{k+1}^{n}}\left|\tilde{g}^{\prime}\right|=o\left(\frac{1}{n}\right)
$$

Therefore $\int_{0}^{1} \tilde{g} f_{n}=o(1)$ as $n \rightarrow \infty$.
Corollary 3.2. Consider the p-Laplacian (1.1) with boundary conditions (3.1). Define $\phi_{n}(x)=\left|S_{p}\left(\lambda_{n}^{1 / p} \theta_{n}(x)\right)\right|^{p}-\frac{1}{p}$, then for any $g \in L^{1}(0,1), \int_{0}^{1} \phi_{n} g \rightarrow 0$.

Proof. Since $\theta_{n}(0)$ and $\theta_{n}(1)$ are as given in (3.2), ϕ_{n} is uniformly bounded on $[0,1]$. Take x_{k}^{n} be such that $\theta\left(x_{k}^{n}\right)=\frac{k \hat{\pi}}{\lambda_{n}^{I / p}}$. Also by integrating the phase equation (2.2), $\lambda_{n}^{1 / p}=O(n)$, and

$$
\Delta x_{n}=O\left(\frac{1}{\lambda_{n}^{1 / p}}\right)=O\left(\frac{1}{n}\right) .
$$

Hence by Lemma 2.1(b) and (3.1), we have for $k=1, \ldots, n-2$,

$$
\begin{aligned}
\int_{x_{k}^{n}}^{x_{k+1}^{n}} \phi_{n}(x) d x & =\frac{-1}{p \lambda_{n}^{1 / p}} \int_{x_{k}^{n}}^{x_{k+1}^{n}} \frac{1}{\theta_{n}^{\prime}(x)} \frac{d}{d x}\left[S_{p}\left(\lambda_{n}^{1 / p} \theta_{n}(x)\right) S_{p}^{\prime}\left(\lambda_{n}^{1 / p} \theta_{n}(x)\right)^{(p-1)}\right] d x \\
& =\frac{-1}{p \lambda_{n}^{1 / p}}\left[S_{p}\left(\lambda_{n}^{1 / p} \theta_{n}(x)\right) S_{p}^{\prime}\left(\lambda_{n}^{1 / p} \theta_{n}(x)\right)^{(p-1)}\right]_{x_{k}^{n}}^{x_{k+1}^{n}}+O\left(\frac{1}{\lambda_{n}}\right), \\
& =O\left(\frac{1}{\lambda_{n}}\right)=o\left(\frac{1}{n}\right),
\end{aligned}
$$

since $S_{p}(k \widehat{\pi})=0$. It is also clear that $\int_{x_{k}^{n}}^{x} \phi_{n}(x) d x=O\left(\frac{1}{n}\right)$. Thus we may apply Lemma 3.1 to complete the proof.

Theorem 3.3. When $q \in L^{1}(0,1)$, the eigenvalues λ_{n} of the Dirichlet p-Laplacian (1.1) satisfies, as $n \rightarrow \infty$,

$$
\begin{equation*}
\lambda_{n}^{1 / p}=n \widehat{\pi}+\frac{1}{p(n \widehat{\pi})^{p-1}} \int_{0}^{1} q(t) d t+o\left(\frac{1}{n^{p-1}}\right) . \tag{3.3}
\end{equation*}
$$

Furthermore, F_{n} converges to q pointwisely and in $L^{1}(0,1)$, where

$$
F_{n}(x):=p(n \widehat{\pi})^{p}\left(n \ell_{j}^{(n)}-1\right)+\int_{0}^{1} q(t) d t
$$

Proof. Integrating (2.2) from 0 to 1 , we have

$$
\begin{aligned}
\lambda_{n}^{1 / p} & =n \widehat{\pi}+\frac{1}{p \lambda_{n}^{1-1 / p}} \int_{0}^{1} q(t)\left|S_{p}\left(\lambda_{n}^{1 / p} \theta(t)\right)\right|^{p} d t \\
& =n \widehat{\pi}+\frac{1}{p \lambda_{n}^{1-1 / p}} \int_{0}^{1} q(t) d t+\frac{1}{p \lambda_{n}^{1-1 / p}} \int_{0}^{1} q(t)\left(\left|S_{p}\left(\lambda_{n}^{1 / p} \theta(t)\right)\right|^{p}-\frac{1}{p}\right) d t
\end{aligned}
$$

Then by Corollary 3.2, we have

$$
\int_{0}^{1} q(t)\left(\left|S_{p}\left(\lambda_{n}^{1 / p} \theta(t)\right)\right|^{p}-\frac{1}{p}\right) d t=o(1)
$$

for any $q \in L^{1}(0,1)$. Hence (3.3) holds. Furthermore, by Theorem 2.2, we can obtain the reconstruction formula with pointwise and L^{1} convergence.

Remark. In the same way, the Ambarzumyan Theorems for Neumann as well as Dirichlet boundary conditions as given in [7, Theorems 1.3 and 5.1] can also be extended to work for L^{1} potentials. On the other hand, for general linear separated boundary problems (3.1),

$$
\begin{equation*}
\lambda_{n}^{1 / p}=n_{\alpha \beta} \widehat{\pi}+\frac{\left(\widetilde{C T}_{p}(\beta)\right)^{(p-1)}-\left(\widetilde{C T}_{p}(\alpha)\right)^{(p-1)}}{\left(n_{\alpha \beta} \widehat{\pi}\right)^{p-1}}+\frac{1}{p\left(n_{\alpha \beta} \widehat{\pi}\right)^{p-1}} \int_{0}^{1} q(x) d x+o\left(\frac{1}{n^{p-1}}\right) \tag{3.4}
\end{equation*}
$$

where

$$
n_{\alpha \beta}= \begin{cases}n & \text { if } \alpha=\beta=0 \\ n-1 / 2 & \text { if } \alpha>0=\beta \text { or } \beta>0=\alpha \\ n-1 & \alpha, \beta>0\end{cases}
$$

This is because, after an integration of (2.2),

$$
\begin{equation*}
\theta_{n}(1)-\theta_{n}(0)=1-\frac{1}{\lambda_{n}} \int_{0}^{1} q(x)\left|S_{p}\left(\lambda_{n}^{1 / p} \theta(x)\right)\right|^{p} d x+o\left(\frac{1}{\lambda_{n}}\right) \tag{3.5}
\end{equation*}
$$

By (3.2), if $\alpha=0$, then $\theta_{n}(0)=0$. Similarly $\theta_{n}(1)=0$ if $\beta=0$. Now, let $y=$ $C T_{p}^{-1}(x)$. Then $x=C T_{p}(y)$ and hence

$$
y^{\prime}=-\frac{1 / x^{2}}{1+\frac{1}{|x|^{p}}}=\frac{-|x|^{p-2}}{1+|x|^{p}}=-|x|^{p-2}\left(1+O\left(|x|^{p}\right)\right.
$$

when $|x|$ is sufficiently small. Since $y(0)=\frac{\widehat{\pi}}{2}$, we have

$$
y(x)=\frac{\widehat{\pi}}{2}-\frac{x^{(p-1)}}{p-1}+O\left(x^{2 p-1}\right) .
$$

Therefore, when n is sufficiently large,

$$
\theta_{n}(0)=\frac{\widehat{\pi}}{2 \lambda_{n}^{1 / p}}+\frac{\left(C T_{p}(\alpha)\right)^{(p-1)}}{(p-1) \lambda_{n}^{(p-1) / p}}+O\left(\lambda_{n}^{\frac{1-2 p}{p}}\right)
$$

Similarly, when $\beta \neq 0$,

$$
\theta_{n}(1)=\frac{\left(n-\frac{1}{2}\right) \widehat{\pi}}{\lambda_{n}^{1 / p}}+\frac{\left(C T_{p}(\beta)\right)^{(p-1)}}{(p-1) \lambda_{n}^{(p-1) / p}}+O\left(\lambda_{n}^{\frac{1-2 p}{p}}\right)
$$

Hence (3.4) is valid. Furthermore, F_{n} converges to q pointwisely and in $L^{1}(0,1)$, where

$$
F_{n}(x):=p\left(n_{\alpha \beta} \widehat{\pi}\right)^{p}\left[\left(n_{\alpha \beta}+\frac{\left(\widetilde{C T}_{p}(\beta)\right)^{(p-1)}-\left(\widetilde{C T}_{p}(\alpha)\right)^{(p-1)}}{\left(n_{\alpha \beta} \widehat{\pi}\right)^{p-1}}\right) \ell_{j}^{(n)}-1\right]+\int_{0}^{1} q(t) d t
$$

Acknowledgments

The authors are supported in part by National Science Council, Taiwan under contract numbers NSC $98-2115-\mathrm{M}-110-006$, NSC $97-2115-\mathrm{M}-005-\mathrm{MY} 2$ and NSC $97-$ 2115-M-022-001.

References

[1] P. Binding and P. Drábek, Sturm-Liouville theory for the p-Laplacian, Studia Scientiarum Mathematicarum Hungarica, 40 (2003), 373-396.
[2] P. Binding, P. Drábek and Y. Huang, On the Fredholm alternative for the p Laplacian, Proc. Amer. Math. Soc., 125, no. 12 (1997), 3555-3559.
[3] P.A. Binding and B.P. Rynne, Variational and non-variational eigenvalues of the p-Laplacian, J. Differential Equations, 244 (2008), 24-39.
[4] B.M. Brown and M.S.P. Eastham, Titchmarsh's asymptotic formula for periodic eigenvalues and an extension to the p-Laplacian, J. Math. Anal. Appl., 338 (2008), 1255-1266.
[5] Y.H. Cheng and C.K. Law, The inverse nodal problem for Hill's equation, Inverse Problems, 22 (2006), 891-901.
[6] S. Currie and B.A. Watson, Inverse nodal problems for Sturm-Liouville equations on graphs, Inverse Problems, 23 (2007), 2029-2040.
[7] C.K. Law, W.C. Lian and W.C. Wang, Inverse nodal problem and Ambarzumyan problem for the p-Laplacian, Proc. Royal Soc. Edinburgh, 139A (2009), 12611273.
[8] C.K. Law, C.L. Shen and C.F. Yang, The inverse nodal problem on the smoothness of the potential function, Inverse Problems, 15 (1999), 253-263; Errata, 17 (2001), 361-363.
[9] W. Rudin, Real and Complex Analysis, 3rd Edition, New York: McGraw-Hill, 1987.
[10] C.F. Yang, Z.Y. Huang and X.P. Yang, Ambarzumyam's theorems for vectorial Sturm-Liouville system with coupled boundary conditions, Taiwanese J. Math., to appear.
[11] M. Zhang, The rotation number approach to eigenvalues of the one-dimensional p-Laplacian with periodic potentials, J. London Math. Soc., 64 (2001), 125-143.

[^0]: AMS Subject Classification (2000) : 34A55, 34B24.
 Keywords: p-Laplacian; inverse nodal problem; Ambarzumyan theorem
 ${ }^{1}$ Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, Taiwan 804, R.O.C. E-mail: jengyh@math.nsysu.edu.tw
 ${ }^{2}$ Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, Taiwan 804, R.O.C. E-mail: law@math.nsysu.edu.tw
 ${ }^{3}$ Department of Information Management, National Kaohsiung Marine University, Kaohsiung, Taiwan 811, R.O.C. E-mail: wclian@mail.nkmu.edu.tw
 ${ }^{4}$ Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, Taiwan 804, R.O.C. E-mail: wangwc@math.nsysu.edu.tw

