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1 Introduction

Recently, we studied the p-Laplacian with C1-potentials and solved the inverse

nodal problem and Ambarzumyan problem for Dirichlet boundary conditions [7].

In this note, we want to extend the results to periodic or anti-periodic boundary

conditions, and to L1 potentials.

Consider the equation

−
(
y′(p−1)

)′
= (p− 1)(λ− q(x))y(p−1) , (1.1)

where f (p−1) = |f |p−1sgnf . Assume that q(1+ x) = q(x) for x ∈ R, then (1.1) can be

coupled with periodic or anti-periodic boundary conditions respectively:

y(0) = y(1) , y′(0) = y′(1) (1.2)

or

y(0) = −y(1) , y′(0) = −y′(1). (1.3)

When p = 2, the above is the classical Hill’s equation. It follows from Floquet theory

that there are countably many interlacing periodic and anti-periodic eigenvalues of

Hill’s operator. However, Floquet theory does not work for the case p 6= 2. In

2001, Zhang [11] studied the properties of eigenvalues for p > 1 with L1-potentials.

He applied the rotation number function to define the minimal eigenvalue λn(q) and

the maximal eigenvalue λn(q) corresponding to eigenfunctions having n zeros in [0, 1),

respectively. These numbers λn(q) and λn(q) are called rotational periodic eigenvalues

and satisfy

(i) If n ∈ N ∪ {0} is even, then λn(q) and λn(q) are eigenvalues of (1.1) and (1.2);

if n ∈ N is odd, then λn(q) and λn(q) are eigenvalues of (1.1) and (1.3).

(ii) λ0(q) < λ1(q) ≤ λ1(q) < λ2(q) ≤ λ2(q) < · · · · · · .

Although the above properties are very similar to the linear case, it should be

mentioned that the case for the p-Laplacian is much more complicated. For example,

for the periodic or anti-periodic boundary conditions, there may exist an infinite
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sequence of variational eigenvalues and non-variational eigenvalues ([3]). In the same

paper, the authors also showed that the minimal periodic eigenvalue is simple and

variational, while the minimal anti-periodic eigenvalue is variational but may be not

simple.

In 2008, Brown and Eastham [4] derived a sharp asymptotic expansion of eigen-

values of the p-Laplacian with locally integrable and absolutely continuous (r − 1)

derivative potentials respectively. Below is a version of their theorem for periodic

eigenvalues of the p-Laplacian (1.1), (1.2).

Theorem 1.1. ([4, Theorem 3.1]) Let q be 1-periodic and locally integrable in (−∞,∞).

Then the rotationally periodic eigenvalue λ2n = λ2n, or λ2n satisfies

λ
1/p
2n = 2nπ̂ +

1

p(2nπ̂)p−1

∫ 1

0

q(t)dt+ o(
1

np−1
). (1.4)

By a similar argument, the asymptotic expansion of the anti-periodic eigenvalue

λ2n−1 = λ2n−1 or λ2n−1, which corresponds to the anti-periodic eigenfunction with

2n− 1 zeros in [0, 1), satisfies

λ
1/p
2n−1 = (2n− 1)π̂ +

1

p((2n− 1)π̂)p−1

∫ 1

0

q(t)dt+ o(
1

np−1
). (1.5)

The inverse nodal problem is the problem of understanding the potential function

through its nodal data. In 2006, some of us (C.-L.) [5] studied Hill’s equation. We first

made a translation of the interval by the first nodal length so that the periodic problem

is reduced to a Dirichlet problem, and then solved the uniqueness, reconstruction and

stability problems using the nodal set of periodic eigenfunctions.

We denote by {x
(n)
i }n−1

i=0 the zeros of the eigenfunction corresponding to λn, and

define the nodal length ℓ
(n)
i = x

(n)
i+1 − x

(n)
i and j = jn(x) = max{i : x

(n)
i ≤ x}. Our

main theorem is as follows.

Theorem 1.2. Let q ∈ L1(0, 1) be 1-periodic. Define Fn(x) as the following:

(a) For periodic boundary condition, let

F2n(x) = p(2nπ̂)p[(2n)ℓ
(2n)
j − 1] +

∫ 1

0

q(t)dt,
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(b) For the anti-periodic boundary condition, let

F2n−1(x) = p((2n− 1)π̂)p[(2n− 1)ℓ
(2n−1)
j − 1] +

∫ 1

0

q(t)dt.

Then both {F2n} and {F2n−1} converges to q pointwisely a.e. and in L1(0, 1).

Thus either one of the sequences {F2n}/{F2n−1} will give the reconstruction for-

mula for q. Note that here q ∈ L1(0, 1). Furthermore, the map between the nodal

space and the set of admissible potentials are homeomorphic after a partition (cf.[7]).

The same idea also works for linear separated boundary value problems with inte-

grable potentials.

Using the eigenvalue asymptotics above, the Ambarzumyan problems for the pe-

riodic and anti-periodic boundary conditions can also be solved.

Theorem 1.3. Let q ∈ L1(0, 1) be periodic of period 1.

(a) If the spectrum of periodic eigenvalues problem (1.1), (1.2) contains {(2nπ̂)p :

n ∈ N ∪ {0}} and 0 is the least eigenvalue, then q = 0 on [0, 1].

(b) If the spectrum of anti-periodic eigenvalue problem (1.1), (1.3) contains {((2n−

1)π̂)p : n ∈ N}; π̂p is the least eigenvalue and
∫ 1

0
q(t)(Sp(π̂t)S

′
p(π̂t)

(p−1))′dt = 0,

then q = 0 on [0, 1].

In section 2, we shall apply Theorem 1.1 to study on periodic and anti-periodic

boundary conditions. In section 3, we shall deal with the case of linear separated

boundary conditions.

The stability issue of the inverse nodal problem with L1 potentials associated

with perodic/antiperiodic as well as linear separated boundary conditions can also be

proved. The proof goes in the same manner as in [7] and is so omitted.

2 Proof of main results

Fix p > 1 and assume that q = 0 and λ = 1. Then (1.1) becomes

−(y′(p−1))′ = (p− 1)y(p−1).
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Let Sp be the solution satisfying the initial conditions Sp(0) = 0, S ′
p(0) = 1. It is

well known that Sp and its derivative S ′
p are periodic functions on R with period 2π̂,

where π̂ = 2π
p sin(π

p
)
. The two functions also satisfy the following identities (cf. [4, 7]).

Lemma 2.1. (a) |Sp(x)|
p + |S ′

p(x)|
p = 1 for any x ∈ R;

(b) (SpS
′(p−1)
p )′ = |S ′

p|
p − (p− 1)|Sp|

p = 1− p|Sp|
p = (1− p) + p|S ′

p|
p .

Next we define a generalized Prüfer substitution using Sp and S ′
p:

y(x) = r(x)Sp(λ
1/pθ(x)), y′(x) = λ1/pr(x)S ′

p(λ
1/pθ(x)) . (2.1)

By Lemma 2.1, one obtains ([7])

θ′(x) = 1−
q

λ
|Sp(λ

1/pθ(x))|p . (2.2)

Theorem 2.2. In the periodic/antiperiodic eigenvalue problem, if q ∈ L1(0, 1) be

periodic of period 1, then

q(x) = lim
n→∞

pλn

(
λ
1/p
n ℓ

(n)
j

π̂
− 1

)
,

pointwisely a.e. and in L1(0, 1), where j = jn(x) = max{k : x
(n)
k ≤ x}.

The proof below works for both even and odd n’s, i.e. for both periodic and

antiperiodic problems. Some of the arguments above are motivated by [6]. See also

[8].

Proof. First, integrating (2.2) from x
(n)
k to x

(n)
k+1 with λ = λn, we have

π̂

λ
1/p
n

= ℓ
(n)
k −

∫ x
(n)
k+1

x
(n)
k

q(t)

λn

|Sp(λ
1/p
n θ(t))|pdt ,

= ℓ
(n)
k −

1

pλn

∫ x
(n)
k+1

x
(n)
k

q(t)dt−
1

λn

∫ x
(n)
k+1

x
(n)
k

q(t)(|Sp(λ
1/p
n θ(t))|p −

1

p
)dt .

Hence,

ℓ
(n)
k =

π̂

λ
1/p
n

+
1

pλn

∫ x
(n)
k+1

x
(n)
k

q(t)dt+
1

λn

∫ x
(n)
k+1

x
(n)
k

q(t)(|Sp(λ
1/p
n θ(t))|p −

1

p
)dt . (2.3)
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and

pλn

(
λ
1/p
n ℓ

(n)
k

π̂
− 1

)
=

λ
1/p
n

π̂

∫ x
(n)
k+1

x
(n)
k

q(t)dt+
pλ

1/p
n

π̂

∫ x
(n)
k+1

x
(n)
k

q(t)(|Sp(λ
1/p
n θ(t))|p −

1

p
)dt .

(2.4)

Now, for x ∈ (0, 1), let j = jn(x) = max{k : x
(n)
k ≤ x}. Then x ∈ [x

(n)
j , x

(n)
j+1) and,

for large n,

[x
(n)
j , x

(n)
j+1) ⊂ B(x,

2π̂

λ
1/p
n

) ,

where B(t, ε) is the open ball centering t with radius ε. That is, the sequence of

intervals {[x
(n)
j , x

(n)
j+1) : n is sufficiently large} shrinks to x nicely (cf. Rudin [9, p.140]).

Since q ∈ L1(0, 1) and
λ
1/p
n ℓ

(n)
k

π̂
= 1 + o(1), we have

hn(x) ≡
λ
1/p
n

π̂

∫ x
(n)
j+1

x
(n)
j

q(t)dt =
λ
1/p
n ℓ

(n)
j

π̂

1

ℓ
(n)
j

∫ x
(n)
j+1

x
(n)
j

q(t)dt

converges to q(x) pointwisely a.e. x ∈ (0, 1). Furthermore, since

|hn(x)| ≤
λ
1/p
n

π̂

∫ x
(n)
j+1

x
(n)
j

|q(t)|dt ≡ gn(x) ,

and ∫ 1

0

gn(t)dt =
n−1∑

k=0

λ
1/p
n ℓ

(n)
k

π̂

∫ x
(n)
k+1

x
(n)
k

|q(t)|dt = (1 + o(1))‖q‖1 ,

we have hn(t) → q(t) in L1(0, 1) by Lebesgue dominated convergence theorem. On

the other hand, let qk,n ≡ 1

ℓ
(n)
k

∫ x
(n)
k+1

x
(n)
k

q(t)dt. Then qj,n converges to q pointwisely a.e.

x ∈ (0, 1). Let φn(t) = |Sp(λ
1/p
n θ(t))|p − 1

p
. Then

Tn(x) ≡
pλ

1/p
n

π̂

∫ x
(n)
j+1

x
(n)
j

q(t)φn(t)dt ,

=
pλ

1/p
n

π̂

∫ x
(n)
j+1

x
(n)
j

(q(t)− qj,n)φn(t)dt+
pλ

1/p
n

π̂

∫ x
(n)
j+1

x
(n)
j

qj,nφn(t)dt ,

≡ An +Bn .
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By Lemma 2.1(b) and (2.2),

Bn =
pλ

1/p
n qj,n
π̂

∫ x
(n)
j+1

x
(n)
j

(
|Sp(λ

1/p
n θ(t))|p −

1

p

)(
θ′(t) +

q(t)

λn

|Sp(λ
1/p
n θ(t))|p

)
dt,

= −
pqj,n
π̂

Sp(λ
1/p
n θ(t))S ′

p(λ
1/p
n θ(t))(p−1)

∣∣∣
x
(n)
j+1

x
(n)
j

+O(λ−1+1/p
n ) ,

= O(λ−1+1/p
n ) .

Also,

|An| ≤
pλ

1/p
n

π̂

∫ x
(n)
j+1

x
(n)
j

|q(t)− qj,n|||Sp(λ
1/p
n θ(t))|p −

1

p
|dt ,

≤
(p− 1)λ

1/p
n

π̂

∫ x
(n)
j+1

x
(n)
j

|q(t)− qj,n|dt ,

which converges to 0 pointwisely a.e. x ∈ (0, 1) because the sequence of intervals

{[x
(n)
j , x

(n)
j+1) : n is sufficiently large} shrinks to x nicely. We conclude that Tn(x) → 0

a.e. x ∈ (0, 1). Finally, applying Lebesgue dominated convergence theorem as above,

Tn(x) → 0 in L1(0, 1). Hence the left hand side of (2.4) converges to q pointwisely

a.e. and in L1(0, 1).

Proof of Theorem 1.2.

By the eigenvalue estimates (1.4) and (1.5), we have

pλ2n(
λ
1/p
2n ℓ

(2n)
j2n(x)

π̂
− 1) = p(2nπ̂)p(2nℓ

(2n)
j − 1) + 2nℓ

(2n)
j2n(x)

∫ 1

0

q(t)dt+ o(1) . (2.5)

Hence by Theorem 2.2 and the fact that 2nℓ
(2n)
j = 1 + o(1),

F2n(x) ≡ p(2nπ̂)p(2nℓ
(2n)
j − 1) +

∫ 1

0

q(t)dt

also converges to q pointwisely a.e. and in L1(0, 1). The proof for (b) is the same.

Proof of Theorem 1.3.

Here we only give the proof of (b). First, since all anti-periodic eigenvalues include

{((2n− 1)π̂)p : n ∈ N}, we have, by (1.5),
∫ 1

0
q(t)dt = 0.
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Moreover, Sp(π̂x) satisfies anti-periodic boundary conditions. So by Lemma 2.1(b),

∫ 1

0

|S ′
p(π̂t)|

pdt−
p− 1

p
=

∫ 1

0

q(t)|Sp(π̂t)|
pdt =

∫ 1

0

|Sp(π̂t)|
pdt−

1

p
= 0 .

Hence, by the variational principle, we have

π̂p = λ1 ≤

∫ 1

0
π̂p|S ′

p(π̂t)|
pdt+ (p− 1)

∫ 1

0
q(t)|Sp(π̂t)|

pdt

(p− 1)
∫ 1

0
|Sp(π̂t)|pdt

= π̂p .

This implies Sp(π̂x) is the first eigenfunction. Therefore q = 0 on [0, 1].

3 Linear separated boundary conditions

Consider the one-dimensional p-Laplacian with linear separated boundary condi-

tions 



y(0)S ′
p(α) + y′(0)Sp(α) = 0

y(1)S ′
p(β) + y′(1)Sp(β) = 0

, (3.1)

where α, β ∈ [0, π̂). Letting λn be the nth eigenvalue whose associated eigenfunction

has exactly n− 1 zeros in (0, 1), the generalized phase θn as given in (2.2) satisfies

θn(0) =
−1

λ
1/p
n

C̃T
−1

p (−
C̃T p(α)

λ
1/p
n

); θn(1) =
1

λ
1/p
n

(
nπ̂ − C̃T

−1

p (−
C̃T p(β)

λ
1/p
n

)

)
, (3.2)

where the function CTp(γ) := Sp(γ)

S′

p(γ)
is an analogue of cotangent function, while

C̃T p(γ) := CTp(γ) if γ 6= 0; and C̃T p(γ) := 0 otherwise. Also C̃T
−1

p stands for

the inverse of C̃T p, taking values only in [0, π̂).

Let φn(x) = |Sp(λ
1/p
n θn(x)|

p − 1
p
, where . Below we shall state a general Riemann-

Lebesgue lemma, which shows that
∫ 1

0
φng → 0 for any g ∈ L1(0, 1), when λn’s

are associated with a certain linear separated boundary conditions. In the case of

periodic boundary conditions, Brown and Eastham [4] used a Fourier series expansion

of φn where φn(λ
1/p
n θn(x)) ≈ φn(α + 2nπ̂x) and apply Plancherel Theorem to show

convergence.

Lemma 3.1. Let fn be uniformly bounded and integrable on (0, 1). Suppose for each

n, there exists a partition {xn
0 = 0 < xn

1 < · · · < xn
n = 1} such that ∆xn

k = o(1), and
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F n
k (x) :=

∫ x

xn
k
fn(t) dt satisfies F n

k (x) = O( 1
n
) for x ∈ (xn

k , x
n
k+1) and F n

k (x
n
k+1) = o( 1

n
)

uniformly in k = 1, . . . , n− 2, as n → ∞. Then for any g ∈ L1(0, 1),
∫ 1

0
gfn → 0 as

n → ∞.

Proof. Take any ǫ > 0, there is a C1 function g̃ on [0, 1] such that
∫ 1

0
|g̃ − g| < ǫ. Let

|fn|, |g̃| ≤ M . Then ∫ 1

0

gfn =

∫ 1

0

(g − g̃)fn +

∫ 1

0

g̃fn,

where |
∫ 1

0
(g − g̃)fn| ≤ Mǫ. Also

∫ 1

0

g̃fn =
n−1∑

k=0

∫ xn
k+1

xn
k

g̃fn =
n−2∑

k=1

(
g̃(xn

k+1)F (xn
k+1)−

∫ xn
k+1

xn
k

g̃′F n
k

)
+ o(1),

where

|

∫ xn
k+1

xn
k

g̃′F n
k | = O(

1

n
)

∫ xn
k+1

xn
k

|g̃′| = o(
1

n
).

Therefore
∫ 1

0
g̃fn = o(1) as n → ∞.

Corollary 3.2. Consider the p-Laplacian (1.1) with boundary conditions (3.1). De-

fine φn(x) = |Sp(λ
1/p
n θn(x))|

p − 1
p
, then for any g ∈ L1(0, 1),

∫ 1

0
φng → 0.

Proof. Since θn(0) and θn(1) are as given in (3.2), φn is uniformly bounded on [0, 1].

Take xn
k be such that θ(xn

k) = kπ̂

λ
1/p
n

. Also by integrating the phase equation (2.2),

λ
1/p
n = O(n), and

∆xn = O(
1

λ
1/p
n

) = O(
1

n
).

Hence by Lemma 2.1(b) and (3.1), we have for k = 1, . . . , n− 2,

∫ xn
k+1

xn
k

φn(x) dx =
−1

pλ
1/p
n

∫ xn
k+1

xn
k

1

θ′n(x)

d

dx

[
Sp(λ

1/p
n θn(x))S

′
p(λ

1/p
n θn(x))

(p−1)
]
dx ,

=
−1

pλ
1/p
n

[
Sp(λ

1/p
n θn(x))S

′
p(λ

1/p
n θn(x))

(p−1)
]xn

k+1

xn
k

+O(
1

λn
) ,

= O(
1

λn
) = o(

1

n
) ,

since Sp(kπ̂) = 0. It is also clear that
∫ x

xn
k
φn(x) dx = O( 1

n
). Thus we may apply

Lemma 3.1 to complete the proof.
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Theorem 3.3. When q ∈ L1(0, 1), the eigenvalues λn of the Dirichlet p-Laplacian

(1.1) satisfies, as n → ∞,

λ1/p
n = nπ̂ +

1

p(nπ̂)p−1

∫ 1

0

q(t)dt+ o(
1

np−1
) . (3.3)

Furthermore, Fn converges to q pointwisely and in L1(0, 1), where

Fn(x) := p(nπ̂)p(nℓ
(n)
j − 1) +

∫ 1

0

q(t) dt.

Proof. Integrating (2.2) from 0 to 1, we have

λ1/p
n = nπ̂ +

1

pλ
1−1/p
n

∫ 1

0

q(t)|Sp(λ
1/p
n θ(t))|pdt ,

= nπ̂ +
1

pλ
1−1/p
n

∫ 1

0

q(t)dt+
1

pλ
1−1/p
n

∫ 1

0

q(t)(|Sp(λ
1/p
n θ(t))|p −

1

p
)dt .

Then by Corollary 3.2, we have
∫ 1

0

q(t)(|Sp(λ
1/p
n θ(t))|p −

1

p
)dt = o(1) ,

for any q ∈ L1(0, 1). Hence (3.3) holds. Furthermore, by Theorem 2.2, we can obtain

the reconstruction formula with pointwise and L1 convergence.

Remark. In the same way, the Ambarzumyan Theorems for Neumann as well as

Dirichlet boundary conditions as given in [7, Theorems 1.3 and 5.1] can also be

extended to work for L1 potentials. On the other hand, for general linear separated

boundary problems (3.1),

λ1/p
n = nαβ π̂ +

(C̃T p(β))
(p−1) − (C̃T p(α))

(p−1)

(nαβπ̂)p−1
+

1

p(nαβπ̂)p−1

∫ 1

0

q(x) dx+ o(
1

np−1
),

(3.4)

where

nαβ =





n if α = β = 0

n− 1/2 if α > 0 = β or β > 0 = α

n− 1 α, β > 0

This is because, after an integration of (2.2),

θn(1)− θn(0) = 1−
1

λn

∫ 1

0

q(x)|Sp(λ
1/p
n θ(x))|p dx+ o(

1

λn
). (3.5)
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By (3.2), if α = 0, then θn(0) = 0. Similarly θn(1) = 0 if β = 0. Now, let y =

CT−1
p (x). Then x = CTp(y) and hence

y′ = −
1/x2

1 + 1
|x|p

=
−|x|p−2

1 + |x|p
= −|x|p−2(1 +O(|x|p),

when |x| is sufficiently small. Since y(0) = π̂
2
, we have

y(x) =
π̂

2
−

x(p−1)

p− 1
+O(x2p−1) .

Therefore, when n is sufficiently large,

θn(0) =
π̂

2λ
1/p
n

+
(CTp(α))

(p−1)

(p− 1)λ
(p−1)/p
n

+O(λ
1−2p

p
n ).

Similarly, when β 6= 0,

θn(1) =
(n− 1

2
)π̂

λ
1/p
n

+
(CTp(β))

(p−1)

(p− 1)λ
(p−1)/p
n

+O(λ
1−2p

p
n ).

Hence (3.4) is valid. Furthermore, Fn converges to q pointwisely and in L1(0, 1),

where

Fn(x) := p(nαβ π̂)
p

[
(nαβ +

(C̃T p(β))
(p−1) − (C̃T p(α))

(p−1)

(nαβπ̂)p−1
)ℓ

(n)
j − 1

]
+

∫ 1

0

q(t) dt.
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