Gröbner-Shirshov Bases and Hilbert Series of Free Dendriform Algebras*

Yuqun Chen and Bin Wang
School of Mathematical Sciences, South China Normal University
Guangzhou 510631, P. R. China
yqchen@scnu.edu.cn
windywang2004@126.com

Abstract

In this paper, we give a Gröbner-Shirshov basis of the free dendriform algebra as a quotient algebra of an L-algebra. As applications, we obtain a normal form of the free dendriform algebra. Moreover, Hilbert series and Gelfand-Kirillov dimension of finitely generated free dendriform algebras are obtained.

Key words: Gröbner-Shirshov basis; L-algebra; dendriform algebra; Hilbert series; Gelfand-Kirillov dimension.
AMS 2000 Subject Classification: 13P10, 16S15, 17D99, 16P90.

1 Introduction

The theories of Gröbner-Shirshov bases and Gröbner bases were invented independently by A.I. Shirshov ($[8,1962$) for (commutative, anti-commutative) non-associative alegbras, by H. Hironaka ($[4], 1964)$ for infinite series algebras (both formal and convergent) and by B. Buchberger (first publication in 3], 1965) for polynomial algebras. Gröbner-Shirshov technique is very useful in the study of presentations of many kinds of algebras defined by generators and defining relations.

An L-algebra (see [5]) is a vector space over a field k with two operations \prec, \succ satisfying one identity: $(x \succ y) \prec z=x \succ(y \prec z)$. A dendriform algebra (see [6, 7]) is an L-algebra with two identities: $(x \prec y) \prec z=x \prec(y \prec z)+x \prec(y \succ z)$ and $x \succ(y \succ z)=(x \succ y) \succ z+(x \prec y) \succ z$.

The Composition-Diamond lemma for L-algebras is established in a recent paper [1]. In this paper, by using the Composition-Diamond lemma for L-algebras in [1], we give a Gröbner-Shirshov basis of the free dendriform algebra as a quotient algebra of a free L algebra and then a normal form of a free dendriform algebra is obtained. As applications, we obtain the Hilbert series and Gelfand-Kirillov dimension of the free dendriform algebra generated by a finite set.

[^0]
$2 \quad L$-algebras

We first introduce some concepts and results from the literature which are related to the Gröbner-Shirshov bases for L-algebras. We will use some definitions and notations which are mentioned in [1].

Let k be a field, X a set of variables, Ω a set of multilinear operations, and

$$
\Omega=\cup_{n \geq 1} \Omega_{n},
$$

where $\Omega_{n}=\left\{\delta_{i}^{(n)} \mid i \in I_{n}\right\}$ is the set of n-ary operations, $n=1,2, \ldots$. Now, we define " Ω-words".
Define

$$
(X, \Omega)_{0}=X
$$

For $m \geqslant 1$, define

$$
(X, \Omega)_{m}=X \cup \Omega\left((X, \Omega)_{m-1}\right)
$$

where

$$
\Omega\left((X, \Omega)_{m-1}\right)=\cup_{t=1}^{\infty}\left\{\delta_{i}^{(t)}\left(u_{1}, u_{2}, \ldots, u_{t}\right) \mid \delta_{i}^{(t)} \in \Omega_{t}, u_{j} \in(X, \Omega)_{m-1}\right\} .
$$

Let

$$
(X, \Omega)=\bigcup_{m=0}^{\infty}(X, \Omega)_{m} .
$$

Then each element in (X, Ω) is called an Ω-word.
Definition 2.1 [5] An L-algebra is a k-vector space L equipped with two bilinear operations $\prec, \quad \succ: L^{\otimes^{2}} \rightarrow L$ verifying the so-called entanglement relation:

$$
(x \succ y) \prec z=x \succ(y \prec z), \forall x, y, z \in L .
$$

Let $\Omega=\{\prec, \succ\}$. In this case, we call an Ω-word as an L-word.
Definition 2.2 [1] An L-word u is a normal L-word if u is one of the following:
i) $u=x$, where $x \in X$.
ii) $u=v \succ w$, where v and w are normal L-words.
iii) $u=v \prec w$ with $v \neq v_{1} \succ v_{2}$, where v_{1}, v_{2}, v, w are normal L-words.

We denote u by $[u]$ if u is a normal L-word.
We denote the set of all the normal L-words by N. Then, the free L-algebra has an expression $L(X)=k N=\left\{\sum \alpha_{i} u_{i} \mid \alpha_{i} \in k, u_{i} \in N\right\}$ with k-basis N and the operations \prec, \succ : for any $u, v \in N$,

$$
u \prec v=[u \prec v], \quad u \succ v=[u \succ v] .
$$

Clearly, $[u \succ v]=u \succ v$ and

$$
[u \prec v]= \begin{cases}u \prec v & \text { if } u=u_{1} \prec u_{2}, \text { or } u \in X, \\ u_{1} \succ\left[u_{2} \prec v\right] & \text { if } u=u_{1} \succ u_{2} .\end{cases}
$$

Now, we order N in the same way as in [1].
Let X be a well ordered set. We denote \succ by δ_{1}, \prec by δ_{2}. For any normal L-word u, define

$$
w t(u)= \begin{cases}(1, x), & \text { if } u=x \in X ; \\ \left(|u|, \delta_{i}, u_{1}, u_{2}\right), & \text { if } u=\delta_{i}\left(u_{1}, u_{2}\right) \in N,\end{cases}
$$

where $|u|$ is the number of $x \in X$ in u. Then we order N as follows:

$$
u>v \Longleftrightarrow w t(u)>w t(v) \quad \text { lexicographically }
$$

by induction on $|u|+|v|$, where $\delta_{2}>\delta_{1}$.
Let $\star \notin X$. By a \star - L-word we mean any expression in $(X \cup\{\star\},\{\prec, \succ\})$ with only one occurrence of \star.

Let u be a \star - L-word and $s \in L(X)$. Then we call $\left.u\right|_{s}=\left.u\right|_{\star \leftrightarrow s s}$ an s-word in $L(X)$.
An s-word $\left.u\right|_{s}$ is called a normal s-word if $\left.u\right|_{s} \in N$.
It is shown in [1] that the above ordering on N is monomial in the sense that for any \star - L-word w and any $u, v \in N, u>v$ implies $\left[\left.w\right|_{u}\right]>\left[\left.w\right|_{v}\right]$.

Assume that $L(X)$ is equipped with the monomial ordering $>$ as above. For any L polynomial $f \in L(X)$, let \bar{f} be the leading normal L-word of f. If the coefficient of \bar{f} is 1 , then f is called monic.

Definition 2.3 [1] Let $f, g \in L(X)$ are two monic polynomials.

1) Composition of right multiplication.

If $\bar{f}=u_{1} \succ u_{2}$ for some $u_{1}, u_{2} \in N$, then for any $v \in N, f \prec v$ is called a composition of right multiplication.
2) Composition of inclusion.

If $w=\bar{f}=\left.u\right|_{\bar{g}}$ where $\left.u\right|_{g}$ is a normal g-word, then

$$
(f, g)_{w}=f-\left.u\right|_{g}
$$

is called the composition of inclusion and w is called the ambiguity of the composition $(f, g)_{\omega}$.

Definition 2.4 [1] Let the ordering on N be as before, $S \subset L(X)$ a monic set and $f, g \in S$.

1) The composition of right multiplication $f \prec v$ is called trivial modulo S, denoted by $f \prec v \equiv 0 \bmod (S)$, if

$$
f \prec v=\left.\sum \alpha_{i} u_{i}\right|_{s_{i}},
$$

where each $\alpha_{i} \in k, s_{i} \in S,\left.u_{i}\right|_{s_{i}}$ normal s_{i}-word, and $\left.u_{i}\right|_{\overline{s_{i}}} \leqslant \overline{f \prec v}$.
2) The composition of inclusion $(f, g)_{w}$ is called trivial modulo (S, w), denoted by $(f, g)_{w} \equiv 0 \bmod (S, w)$, if

$$
(f, g)_{w}=\left.\sum \alpha_{i} u_{i}\right|_{s_{i}},
$$

where each $\alpha_{i} \in k, s_{i} \in S,\left.u_{i}\right|_{s_{i}}$ normal s_{i}-word, and $\left.u_{i}\right|_{\overline{s_{i}}}<w$.
S is called a Gröbner-Shirshov basis in $L(X)$ if any composition of polynomials in S is trivial modulo S (and w).

Theorem 2.5 [1] (Composition-Diamond lemma for L-algebras) Let $S \subset L(X)$ be a monic set and the ordering on N as before. Let $\operatorname{Id}(S)$ be the ideal of $L(X)$ generated by S. Then the following statements are equivalent:
(I) S is a Gröbner-Shirshov basis in $L(X)$.
(II) $f \in I d(S) \Rightarrow \bar{f}=\left.u\right|_{\bar{s}}$ for some $s \in S$, where $\left.u\right|_{s}$ is a normal s-word.
(III) The set $\operatorname{Irr}(S)=\left\{u \in N|u \neq v|_{s}, s \in S,\left.v\right|_{s}\right.$ is a normal s-word $\}$ is a k-basis of the L-algebra $L(X \mid S)=L(X) / I d(S)$.

3 Gröbner-Shirshov bases for free dendriform algebras

In this section, we give a Gröbner-Shirshov basis of the free dendriform algebra $D D(X)$ generated by X. As an application, we obtain a normal form of $D D(X)$.

Definition 3.1 [6] A dendriform algebra is a k-vector space $D D$ with two bilinear operations \prec, \succ subject to the three axioms below: for any $x, y, z \in D D$,

1) $(x \succ y) \prec z=x \succ(y \prec z)$,
2) $(x \prec y) \prec z=x \prec(y \prec z)+x \prec(y \succ z)$,
3) $x \succ(y \succ z)=(x \succ y) \succ z+(x \prec y) \succ z$.

Thus, any dendriform algebra is an L-algebra.
It is clear that the free dendriform algebra generated by X, denoted by $D D(X)$, has an expression

$$
\begin{aligned}
L(X \quad \mid & (x \prec y) \prec z=x \prec(y \prec z)+x \prec(y \succ z), \\
& x \succ(y \succ z)=(x \succ y) \succ z+(x \prec y) \succ z, x, y, z \in N) .
\end{aligned}
$$

The following theorem gives a Gröbner-Shirshov basis for $D D(X)$.

Theorem 3.2 Let the ordering on N be as before. Let

$$
\begin{aligned}
f_{1}(x, y, z) & =(x \prec y) \prec z-x \prec(y \prec z)-x \prec(y \succ z), \\
f_{2}(x, y, z) & =(x \prec y) \succ z+(x \succ y) \succ z-x \succ(y \succ z), \\
f_{3}(x, y, z, v) & =((x \succ y) \succ z) \succ v-(x \succ y) \succ(z \succ v)+(x \succ(y \prec z)) \succ v .
\end{aligned}
$$

Then, $S=\left\{f_{1}(x, y, z), f_{2}(x, y, z), f_{3}(x, y, z, v) \mid x, y, z, v \in N\right\}$ is a Gröbner-Shirshov basis in $L(X)$.

Proof. All the possible compositions of right multiplication in S are as follows.

1) $f_{2}(x, y, z) \prec u, u \in N$. We have

$$
\begin{aligned}
f_{2}(x, y, z) \prec u= & ((x \prec y) \succ z) \prec u+((x \succ y) \succ z) \prec u-(x \succ(y \succ z)) \prec u \\
= & (x \prec y) \succ(z \prec u)+(x \succ y) \succ(z \prec u)-x \succ((y \succ z) \prec u) \\
\equiv & -(x \succ y) \succ(z \prec u)+x \succ(y \succ(z \prec u))+(x \succ y) \succ(z \prec u) \\
& -x \succ((y \succ z) \prec u) \\
\equiv & 0 \bmod (S) .
\end{aligned}
$$

2) $f_{3}(x, y, z, v) \prec u, u \in N$. We have

$$
\begin{aligned}
f_{3}(x, y, z, v) \prec u= & (((x \succ y) \succ z) \succ v) \prec u-((x \succ y) \succ(z \succ v)) \prec u \\
& +((x \succ(y \prec z)) \succ v) \prec u \\
= & ((x \succ y) \succ z) \succ(v \prec u)-(x \succ y) \succ(z \succ(v \prec u)) \\
& +(x \succ(y \prec z)) \succ(v \prec u) \\
\equiv & (x \succ y) \succ(z \succ(v \prec u))-(x \succ(y \prec z)) \succ(v \prec u) \\
& -(x \succ y) \succ(z \succ(v \prec u))+((x \succ(y \prec z)) \succ v) \prec u \\
\equiv & 0 \bmod (S) .
\end{aligned}
$$

We denote by $f_{i} \wedge f_{j}$ an inclusion composition of the polynomials f_{i} and $f_{j}, i, j=1,2,3$. All the possible ambiguities in S are listed as follows:
3) $f_{1}(x, y, z) \wedge f_{1}(a, b, c):$
$3.1 w_{3.1}=\left(\left.x\right|_{((a \prec b) \prec c)} \prec y\right) \prec z$,
$3.2 w_{3.2}=\left(\left.x \prec y\right|_{((a \prec b) \prec c)}\right) \prec z$,
$3.3 w_{3.3}=\left.(x \prec y) \prec z\right|_{((a \prec b) \prec c)}$, $3.4 w_{3.4}=((a \prec b) \prec c) \prec z$.
4) $f_{1}(x, y, z) \wedge f_{2}(a, b, c)$:
$4.1 w_{4.1}=\left(\left.x\right|_{((a \prec b) \succ c)} \prec y\right) \prec z$,
$4.2 w_{4.2}=\left(\left.x \prec y\right|_{((a \prec b) \succ c)}\right) \prec z$,
$4.3 w_{4.3}=\left.(x \prec y) \prec z\right|_{((a \prec b) \succ c)}$.
5) $f_{1}(x, y, z) \wedge f_{3}(a, b, c, d)$:
$5.1 w_{5.1}=\left(\left.x\right|_{(((a \succ b) \succ c) \succ d)} \prec y\right) \prec z$, $5.2 w_{3.2}=\left(\left.x \prec y\right|_{(((a \succ b) \succ c) \succ d)}\right) \prec z$,
$5.3 w_{5.3}=\left.(x \prec y) \prec z\right|_{(((a \succ b) \succ c) \succ d)}$.
6) $f_{2}(a, b, c) \wedge f_{1}(x, y, z)$:

We will prove that all compositions are trivial $\bmod (S, w)$. Here, for example, we only check Case 6.4, Case 10.5 and Case 11.6. The others are easy to check.

Case 6.4:

$$
\begin{aligned}
& \left(f_{2}(a, b, c), f_{1}(x, y, z)\right)_{w_{6.4}} \\
\equiv & (x \prec(y \prec z)) \succ c+(x \prec(y \succ z)) \succ c-(x \prec y) \succ(z \succ c) \\
& +((x \prec y) \succ z) \succ c \\
\equiv & x \succ((y \prec z) \succ c)-(x \succ(y \prec z)) \succ c+x \succ((y \succ z) \succ c) \\
& -(x \succ(y \succ z)) \succ c-x \succ(y \succ(z \succ c))+(x \succ y) \succ(z \succ c) \\
& +(x \succ(y \succ z)) \succ c-((x \succ y) \succ z) \succ c \\
\equiv & x \succ(y \succ(z \succ c))-(x \succ(y \prec z)) \succ c-x \succ(y \succ(z \succ c)) \\
& +(x \succ y) \succ(z \succ c)-((x \succ y) \succ z) \succ c \\
\equiv & 0 \bmod \left(S, w_{6.4}\right) .
\end{aligned}
$$

Case 10.5:

$$
\begin{aligned}
& \left(f_{3}(x, y, z, v), f_{2}(a, b, c)\right)_{w_{10.5}} \\
\equiv & ((a \succ(b \succ c)) \succ z) \succ v-(((a \succ b) \succ c) \succ z) \succ v \\
& -((a \prec b) \succ c) \succ(z \succ v)+((a \prec b) \succ(c \prec z)) \succ v \\
\equiv & (a \succ(b \succ c)) \succ(z \succ v)-(a \succ((b \succ c) \prec z)) \succ v \\
& -((a \succ b) \succ c) \succ(z \succ v)+((a \succ b) \succ(c \prec z)) \succ v \\
& -(a \succ(b \succ c)) \succ(z \succ v)+((a \succ b) \succ c) \succ(z \succ v) \\
& +(a \succ(b \succ(c \prec z)) \succ v-((a \succ b) \succ(c \prec z)) \succ v \\
\equiv & 0 \bmod \left(S, w_{10.5}\right) .
\end{aligned}
$$

Case 11.6:

$$
\begin{aligned}
& \left(f_{3}(x, y, z, v), f_{3}(a, b, c, d)\right)_{w_{11.6}} \\
\equiv & (((a \succ b) \succ(c \succ d)) \succ z) \succ v-(((a \succ(b \prec c)) \succ d) \succ z) \succ v \\
& -(((a \succ b) \succ c) \succ d) \succ(z \succ v)+(((a \succ b) \succ c) \succ(d \prec z)) \succ v \\
\equiv & ((a \succ b) \succ(c \succ d)) \succ(z \succ v)-((a \succ b) \succ((c \succ d) \prec z)) \succ v \\
& -((a \succ(b \prec c)) \succ d) \succ(z \succ v)+((a \succ(b \prec c)) \succ(d \prec z)) \succ v \\
& -((a \succ b) \succ(c \succ d)) \succ(z \succ v)+((a \succ(b \prec c)) \succ d) \succ(z \succ v) \\
& +((a \succ b) \succ(c \succ(d \prec z)) \succ v-((a \succ(b \prec c)) \succ(d \prec z)) \succ v \\
\equiv & 0 \bmod \left(S, w_{11.6}\right) .
\end{aligned}
$$

The proof is complete.
Definition 3.3 An L-word u is called a normal $D D$-word, denoted by $\lceil u\rceil$, if

1) $u=x, x \in X$,
2) $u=x \prec\lceil v\rceil, x \in X$,
3) $u=x \succ\lceil v\rceil, x \in X$,
4) $u=\left(x \succ\left\lceil u_{1}\right\rceil\right) \succ\left\lceil u_{2}\right\rceil, x \in X$.

Remark From Definition 2.2 and Definition 3.3, we know that any normal $D D$-word is a normal L-word.

The following corollary follows from Theorem [2.5] and Theorem 3.2.

Corollary 3.4 The set $\operatorname{Irr}(S)=\{u \mid u$ is a normal DD-word $\}$ is a k-basis of the free dendriform algebra $D D(X)$.

4 Hilbert series and Gelfand-Kirillov dimension of the free dendriform algebra

In this section, we give Hilbert series of the free dendriform algebra $D D(X)$ where $|X|$ is finite. As an application, we prove that Gelfand-Kirillov dimension of the free dendriform algebra $D D(X)$ is infinite.

We introduce some basic definitions and concepts that we will use throughout this section.

Definition 4.1 Let $V=(V, \prec, \succ)$ be a dendriform algebra. Then V is called a finitely graded algebra if

$$
V=\oplus_{m \geq 1} V_{m}
$$

as k-vector spaces such that

$$
\operatorname{dim}_{k} V_{m}<\infty \text { and } \quad \delta\left(V_{i}, V_{j}\right) \subseteq V_{i+j} \quad \text { for all } i, j \geq 1, \delta \in\{\prec, \succ\}
$$

Definition 4.2 Let $V=\oplus_{m \geq 1} V_{m}$ be a finitely graded dendriform algebra and $\operatorname{dim}_{k}\left(V_{m}\right)$, the dimension of the vector space V_{m}. Then the Hilbert series of V is defined to be

$$
\mathcal{H}(V, t)=\sum_{m=1}^{\infty} \operatorname{dim}_{k}\left(V_{m}\right) t^{m}
$$

Let $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and $D D_{m}$ the subspace of $D D(X)$ generated by all normal $D D$-words in $D D(X)$ of degree m. Then

$$
D D(X)=\oplus_{m \geq 1} D D_{m}
$$

is a finitely graded dendriform algebra.
By the definition of normal $D D$-words, one has

$$
\operatorname{dim}_{k}\left(D D_{1}\right)=n, \operatorname{dim}_{k}\left(D D_{2}\right)=2 n^{2} .
$$

Assume that for any $m \geq 1, \operatorname{dim}_{k}\left(D D_{m}\right)=f(m) n^{m}$. Then $f(1)=1, f(2)=2$. For convenience, let $f(0)=1$.

For any $m>2$, it is clear that $D D_{m}$ has a k-basis

$$
\begin{aligned}
& \quad\{x \prec\lceil u\rceil|x \in X,|u|>1,\lceil u\rceil \text { is a normal } D D \text {-word }\} \\
& \bigcup\{x \succ\lceil u\rceil|x \in X,|u|>1\lceil u\rceil \text { is a normal } D D \text {-word }\} \\
& \bigcup\left\{\left(x \succ\left\lceil u_{1}\right\rceil\right) \succ\left\lceil u_{2}\right\rceil\left|x \in X,\left|u_{1}\right|,\left|u_{2}\right| \geq 1,\left\lceil u_{1}\right\rceil,\left\lceil u_{2}\right\rceil \text { are normal } D D \text {-words }\right\}\right. \text {. }
\end{aligned}
$$

It follows that

$$
\begin{aligned}
f(m)= & 2 \times f(m-1)+1 \times 1 \times f(m-2)+1 \times f(m-2) \times 1 \\
& +1 \times \sum_{i=2}^{m-3} f(i) f(m-3-i) \\
= & \sum_{i=0}^{m-1} f(i) f(m-1-i) .
\end{aligned}
$$

Therefore, we prove the following lemma.

Lemma 4.3 Let X be a finite set with $|X|=n$. Then the Hilbert series of the free dendriform algebra $D D(X)$ is

$$
\mathcal{H}(D D(X), t)=\sum_{m \geq 1} f(m) n^{m} t^{m}
$$

where $f(m)$ satisfies the recursive relation $(f(0)=1)$:

$$
f(m)=\sum_{i=0}^{m-1} f(i) f(m-1-i), \quad m \geq 1
$$

Now, we describe the Hilbert series of $D D(X)$ with another way.
Let A, B, C be the subspaces of $D D(X)$ with k-bases

$$
\begin{aligned}
& \{x \prec\lceil u\rceil \mid x \in X,\lceil u\rceil \text { is a normal } D D \text {-word }\}, \\
& \{x \succ\lceil u\rceil \mid x \in X,\lceil u\rceil \text { is a normal } D D \text {-word }\}, \\
& \left\{\left(x \succ\left\lceil u_{1}\right\rceil\right) \succ\left\lceil u_{2}\right\rceil \mid x \in X,\left\lceil u_{1}\right\rceil,\left\lceil u_{2}\right\rceil \text { are normal } D D \text {-words }\right\},
\end{aligned}
$$

respectively. Assume that their Hilbert series are $\mathcal{H}(A, t), \mathcal{H}(B, t), \mathcal{H}(C, t)$, respectively. Clearly, we have

$$
\mathcal{H}(B, t)=\mathcal{H}(A, t)
$$

Noting that A has a k-basis

$$
\left\{x_{i} \prec x_{j} \mid x_{i}, x_{j} \in X\right\} \bigcup\{x \prec\lceil u\rceil||u|>1, x \in X,\lceil u\rceil \text { is a normal } D D \text {-word }\},
$$

we have

$$
\begin{align*}
\mathcal{H}(A, t) & =n^{2} t^{2}+n t \times(\mathcal{H}(A, t)+\mathcal{H}(B, t)+\mathcal{H}(C, t)) \\
& =n^{2} t^{2}+n t \times(2 \mathcal{H}(A, t)+\mathcal{H}(C, t)) \tag{1}
\end{align*}
$$

Since C has a k-basis

$$
\begin{aligned}
& \left\{\left(x_{i} \succ x_{j}\right) \succ x_{k} \mid x_{i}, x_{j}, x_{k} \in X\right\} \\
& \bigcup\left\{\left(x_{i} \succ x_{j}\right) \succ\lceil u\rceil\left|x_{i}, x_{j} \in X,|u|>1,\lceil u\rceil \text { is a normal } D D \text {-word }\right\}\right. \\
& \bigcup\left\{\left(x_{i} \succ\lceil u\rceil\right) \succ x_{j}\left|x_{i}, x_{j} \in X,|u|>1,\lceil u\rceil \text { is a normal } D D \text {-word }\right\}\right. \\
& \bigcup\{(x \succ\lceil u\rceil) \succ\lceil v\rceil||u|,|v|>1,\lceil u\rceil,\lceil v\rceil \text { are normal } D D \text {-words }\},
\end{aligned}
$$

we have

$$
\begin{align*}
\mathcal{H}(C, t)= & n^{3} t^{3}+2 n^{2} t^{2} \times(\mathcal{H}(A, t)+\mathcal{H}(B, t)+\mathcal{H}(C, t))+n t \times(\mathcal{H}(A, t) \\
& +\mathcal{H}(B, t)+\mathcal{H}(C, t))^{2} \\
= & n t \times(n t+(2 \mathcal{H}(A, t)+\mathcal{H}(C, t)))^{2} \tag{2}
\end{align*}
$$

From equations (1) and (2), we obtain

$$
\mathcal{H}(A, t)=\frac{1-2 n t \pm \sqrt{1-4 n t}}{2}
$$

Since $\mathcal{H}(A, 0)=0$, we have

$$
\mathcal{H}(A, t)=\frac{1-2 n t-\sqrt{1-4 n t}}{2}
$$

Therefore,

$$
\mathcal{H}(C, t)=\frac{1-(1-2 n t) \sqrt{1-4 n t}}{2 n t}-2+n t .
$$

Thus, we have the following theorem.
Theorem 4.4 Let X be a finite set with $|X|=n$. The Hilbert series of the free dendriform algebra $D D(X)$ is

$$
\mathcal{H}(D D(X), t)=\frac{1-2 n t-\sqrt{1-4 n t}}{2 n t}
$$

We now give an exact expression of the function $\mathcal{H}(D D(X), t)$.
For $t \leq \frac{1}{4 n}$, we have

$$
\sqrt{1-4 n t}=(1+(-4 n t))^{\frac{1}{2}}=1+\sum_{i=1}^{\infty} \frac{\frac{1}{2}\left(\frac{1}{2}-1\right) \cdots\left(\frac{1}{2}-i+1\right)}{i!} \times(-1)^{i} 4^{i} n^{i} t^{i}
$$

From this and Lemma 4.3 we get the following theorem.
Theorem 4.5 Let X be a finite set with $|X|=n$. Then the Hilbert series of the free dendriform algebra $D D(X)$ is

$$
\begin{aligned}
\mathcal{H}(D D(X), t) & =\sum_{m=1}^{\infty} \frac{1 \times 3 \times \cdots(2 m-1) \times 2^{m}}{(m+1)!} n^{m} t^{m} \\
& =\sum_{m=1}^{\infty} \frac{(2 m)!\times n^{m} \times t^{m}}{(m+1)!m!}
\end{aligned}
$$

Therefore, $\operatorname{dim}_{k}\left(D D_{m}\right)=\frac{(2 m)!\times n^{m}}{(m+1)!m!}, m \geq 1$.
Now, by using Theorem 4.5, we show that Gelfand-Kirillov dimension of the free dendriform algebra $D D(X)$ is infinite when $|X|$ is finite.

Definition 4.6 [2] Let R be a finitely presented algebra over a field k and $x_{1}, x_{2}, \ldots, x_{n}$ be its generators. Consider $R=\bigcup_{d \in N} V_{(d)}$, where $V_{(d)}$ is spanned by all the monomials in x_{i} of length $\leq d$. The quantity

$$
G K R=\varlimsup_{d \rightarrow \infty} \frac{\log \operatorname{dim}_{k} V_{(d)}}{\log d}
$$

is called the Gelfand-Kirillov dimension of R.

Theorem 4.7 Let X be a finite set with $|X|=n$. Then the Gelfand-Kirillov dimension of free dendriform algebra $D D(X)$ is

$$
G K D D(X)=\infty
$$

Proof. For a fixed natural d, let $D D_{(d)}$ be the subspace spanned by all the monomials in x_{i} of length $\leq d$. Then

$$
\operatorname{dim} D D_{(d)}=\sum_{i=1}^{d} \operatorname{dim}_{k}\left(D D_{i}\right) \geq \operatorname{dim}_{k}\left(D D_{d}\right)
$$

Therefore,

$$
\begin{aligned}
G K D D(X) & \geq \varlimsup_{d \rightarrow \infty} \frac{\log \operatorname{dim}_{k}\left(D D_{d}\right)}{\log d}=\varlimsup_{d \rightarrow \infty} \frac{\ln \frac{(2 d)!\times n^{d}}{(d+1)!d!}}{\ln d} \\
& =\varlimsup_{d \rightarrow \infty} \frac{d \ln 2 n+\sum_{i=1}^{d} \ln (2 i-1)-\sum_{i=1}^{d+1} \ln i}{\ln d} \\
& =\varlimsup_{d \rightarrow \infty} d \ln 2 n+\varlimsup_{d \rightarrow \infty} \sum_{i=1}^{d} \frac{\ln \frac{2 i-1}{i}}{\ln d}-1 \\
& =\varlimsup_{d \rightarrow \infty}(d \ln 2 n)+\varlimsup_{d \rightarrow \infty}\left(\frac{d}{\ln d} \sum_{i=1}^{d} \frac{\ln \left(2-\frac{1}{i}\right)}{d}\right)-1 \\
& =\infty .
\end{aligned}
$$

References

[1] L.A. Bokut, Yuqun Chen and Jiapeng Huang, Gröbner-Shirshov Bases for L-algebras, arXiv: 1005.0118 v 1
[2] L.A. Bokut, G.P. Kukin, Algorithmic and Combinatorial Algebra, Kluwer Academic Publishers (1994).
[3] B. Buchberger, An algorithmical criteria for the solvability of algebraic systems of equations [in German], Aequationes Math. 4(1970) 374-383.
[4] H. Hironaka, Resolution of singularities of an algebtaic variety over a field of characteristic zero I, II, Ann. Math. 79 (1964) 109-203, 205-326.
[5] P. Leroux, L-algebras, triplicial-algebras, within an equivalence of categories motivated by grahs, arXiv: 0709.3453 v 2
[6] J.L. Loday, Dialgebras, in dialgebras and related operads, Lecture Notes in Mathematics, Vol. 1763. Berlin: Springer Verl. (2001) 7-66.
[7] J.L. Loday, Encyclopedia of types of algebras, http.//www-irma.u-strasbg.fr/ loday/PAPERS/EncyclopALG(root).pdf.
[8] A.I. Shirshov, Some algorithmic problem for Lie algebras, Sibirsk. Mat. Z. 3 (1962) 292-296 (in Russian); English translation in SIGSAM Bull. 33 (2) (1999) 3-6.
[9] Selected works of A.I. Shirshov, Eds L.A. Bokut, V. Latyshev, I. Shestakov, E. Zelmanov, Trs M. Bremner, M. Kochetov, Birkhäuser, Basel, Boston, Berlin (2009).

[^0]: *Supported by the NNSF of China (No.10771077) and the NSF of Guangdong Province (No.06025062).

