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1 Introduction

The theories of Grébner-Shirshov bases and Grobner bases were invented independently
by A.IL Shirshov ([§], 1962) for (commutative, anti-commutative) non-associative alegbras,
by H. Hironaka ([4], 1964) for infinite series algebras (both formal and convergent) and by
B. Buchberger (first publication in [3], 1965) for polynomial algebras. Grébner—Shirshov
technique is very useful in the study of presentations of many kinds of algebras defined
by generators and defining relations.

An L-algebra (see [0]) is a vector space over a field k with two operations <, >
satisfying one identity: (z > y) < z =z > (y < 2). A dendriform algebra (see [0} [7])is
an L-algebra with two identities: (z < y) < 2z =2 < (y < 2)+2 < (y > 2) and
r=y>=2))=@>y)=z+(r<y) >z

The Composition-Diamond lemma for L-algebras is established in a recent paper [I].
In this paper, by using the Composition-Diamond lemma for L-algebras in [1], we give a
Grobner-Shirshov basis of the free dendriform algebra as a quotient algebra of a free L-
algebra and then a normal form of a free dendriform algebra is obtained. As applications,
we obtain the Hilbert series and Gelfand-Kirillov dimension of the free dendriform algebra
generated by a finite set.
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2 L-algebras

We first introduce some concepts and results from the literature which are related to the
Grobner-Shirshov bases for L-algebras. We will use some definitions and notations which
are mentioned in [IJ.

Let k be a field, X a set of variables, €2 a set of multilinear operations, and

Q= UnZlgna
where Q, = {5§")|z’ € I,} is the set of n-ary operations, n = 1,2,.... Now, we define
“Q-words”.
Define
(X, Q)O - X

For m > 1, define
(X, )m =X UQU(X,92)m1)

where
QX Q) 1) = U2 {0 (wr, ua, )| 67 € Qpuy € (X, Q)i ).
Let .
(X, Q) = [ J (X, Q.
m=0

Then each element in (X, Q) is called an Q-word.

Definition 2.1 [5] An L-algebra is a k-vector space L equipped with two bilinear opera-
tions <, >: L®2 — L werifying the so-called entanglement relation:

(x=y)<z=x>(y=<2),YazyzeclL.

Let Q = {<,>}. In this case, we call an 2-word as an L-word.
Definition 2.2 [1] An L-word u is a normal L-word if u is one of the following:

i) uw=ux, wherezx € X.

i) u=1v > w, where v and w are normal L-words.

i) w=v < w with v # vy = vy, where vy, vy, v, W are normal L-words.
We denote u by [u] if u is a normal L-word.

We denote the set of all the normal L-words by N. Then, the free L-algebra has an
expression L(X) = kN = {> auu; | a; € k, u; € N} with k-basis N and the operations
<, »: for any u,v € N,

u<v=I[u=<v], u=v=I[u>ouv.



Clearly, [u > v] = u > v and

< 0] = u=<v if u=wu; <ug,orueX,
S| our - Jue <] ifw=ug > us.

Now, we order N in the same way as in [1].

Let X be a well ordered set. We denote > by d;, < by d,. For any normal L-word w,
define

Hu) {(1,:10), ifu=z¢€X;
wi\u) =
(|U|,5i,U1,UQ>, ifuzél-(ul,UQ) EN,

where |u| is the number of z € X in u. Then we order N as follows:
u > v <= wt(u) > wt(v) lexicographically

by induction on |u| + |v|, where dy > d;.
Let x ¢ X. By a - L-word we mean any expression in (X U {x},{=<,>}) with only one
occurrence of *.

Let u be a x-L-word and s € L(X). Then we call u|s = t|.ss an s-word in L(X).
An s-word ul, is called a normal s-word if uls € N.

It is shown in [I] that the above ordering on N is monomial in the sense that for any
*-L-word w and any u, v € N, u > v implies [w],] > [w],].

Assume that L(X) is equipped with the monomial ordering > as above. For any L-
polynomial f € L(X), let f be the leading normal L-word of f. If the coefficient of f is
1, then f is called monic.

Definition 2.3 [1] Let f, g € L(X) are two monic polynomials.

1) Composition of right multiplication.

If f = ui > us for some ui, us € N, then for any v € N, f < v is called a
composition of right multiplication.

2)  Composition of inclusion.

If w = f = ulg where u|, is a normal g-word, then

(fyg)w:f_u‘g

15 called the composition of inclusion and w s called the ambiguity of the composition

<f7 g)w

Definition 2.4 [1] Let the ordering on N be as before, S C L(X) a monic set and
f,g€es.

1) The composition of right multiplication f < v is called trivial modulo S, denoted
by f <v=0mod(S), if
f=<v= Z%‘Uﬂs”

where each o; € k, s; € S, u;|s, normal s;-word, and u;|s; < f < v.
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2)  The composition of inclusion (f,g)w is called trivial modulo (S,w), denoted by
(f,9)w = 0 mod(S,w), if
(fs9)w = Zaiuﬂsi,

where each o; € k, s; € S, u;|s, normal s;-word, and ;|5 < w.

S is called a Grobner-Shirshov basis in L(X) if any composition of polynomials in S is
trivial modulo S (and w).

Theorem 2.5 [1] (Composition-Diamond lemma for L-algebras) Let S C L(X) be a
monic set and the ordering on N as before. Let 1d(S) be the ideal of L(X) generated by
S. Then the following statements are equivalent:

(I) S is a Grébner-Shirshov basis in L(X).
(II) f € I1d(S)= f=uls for some s € S, where u|, is a normal s-word.

(III) The set Irr(S) = {u € N| u # vls, s € S, v|s is a normal s-word} is a k-basis of
the L-algebra L(X| S) = L(X)/1d(S).

3 Grobner-Shirshov bases for free dendriform alge-
bras

In this section, we give a Grobner-Shirshov basis of the free dendriform algebra DD(X)
generated by X. As an application, we obtain a normal form of DD(X).

Definition 3.1 [6] A dendriform algebra is a k-vector space DD with two bilinear oper-
ations <, > subject to the three axioms below: for any x, y, z € DD,

1) (x=y)<z=z» (y<2),
2) (x<y)<z=z<{y<2)+z=<(y>2),
3)x-y=-2)=@=y)=z+(x<y) >z

Thus, any dendriform algebra is an L-algebra.

It is clear that the free dendriform algebra generated by X, denoted by DD(X), has
an expression

LX | (z<y)<z=zx<(y<2)+z=<(y>2),
r=(y=z)=(x=y)=z+ @<y >z x,y,z€ N).

The following theorem gives a Grobner-Shirshov basis for DD(X).



Theorem 3.2 Let the ordering on N be as before. Let

filr,y,2) = (=<y)<z—az<@Wy<z2)—x=<@y>=2),
folzy,z) = (x<y)=z+(x=y)=z—x> (y > 2),
fs(z,y,z,0) = ((x=y)=2)=v—(z>=y)=(z=v)+ (x> (y<2)) =0

Then, S = {fi(z,y,2), folz,y,2), f3(z,y,2,0)| x,y,z,v € N} is a Grébner-Shirshov

basis in L(X).

Proof. All the possible compositions of right multiplication in S are as follows.
1) fo(z,y,2) < u, u € N. We have

fo(z,y,2) <=u = ((z<y)=2)<u+((z>=y)=2)<u—(r=(y=2)<u

(x=<y)=(z<u)+(@>y)»EZ<u—x=(y=2z) <u)
—(x=y)=<u)t+z=y=zZ=<u))+(@=y) = (z<u)

—z > ((y = 2) <u)
= 0 mod(S).

2) f3(z,y,2,v) <u, u € N. We have

f3($7yazav) <u =

(x=y)=2)=v)<u—((z>=y) = (z=v) <u
+((x=(y<2))=v)<u
(x=y)=2)=(v=<u)—(x=1y)= (2= (v=<u)
+ax > (y<2) = (v=<u)
(x=y)=(z=(w=<u)—(r>(y=<2)=(v=<u)
—(@=y) = (2= (v =<uw)+{(z>(y=<2)-v)<u
0 mod(S).

We denote by f; A f; an inclusion composition of the polynomials f; and f;, 7,7 = 1,2, 3.
All the possible ambiguities in S are listed as follows:

3) filz,y,2) A fi(a,b,c) :

3.1 w1 = (@|((a=p)<c) < ¥) =< 2, 3.2 w32 = (T < Y((a=b)=e) =< 2,
3.3 w33 = (2 < Y) < 2|((axb)=<c)s 34wsy=((a<b)<c)< 2z

4) fi(x,y,z) A fa(a,b,c) :

11 was = (#l(aare) < ¥) < 2 12 iz = (@ < Yleirra) < 2
4.3 wys = (¢ < Y) < 2| ((axb)sc)-

5) fiz,y,2) A fs(a,b,c,d) :
5.1 ws1 = (2|((arb)re)=a) < Y) < 2, 52 ws2 = (2 2 Yl((arty-o-a)) < 2
5.3 ws3 = (¥ < Y) < 2|((arb)-c)-d)-

6) fa(a,b,c) A fi(x,y, 2):



6.1 we1 = (a|((zxy)<x) < D) = ¢, 6.2 we2 = (a < bl((w<y)<2)) = €
6.3 We.3 = ((1, < b) ~ C|((a:-<y)-<z)7 6.4 We.4 = ((l’ < y) < Z) > C.

7) f2(a7 b7 C) A fg(.T, Y, Z)I
7.1 wry = (a|(w<y)=2) < b) > ¢, 7.2 wrz = (a < bl(@=y)-2) = ¢,
7.3 wrz = (a < b) = cf(@=y)-2)-

8) f2(a7 b7 C) A fg(ﬂf, Y, z, U):
8.1 wg1 = (a|(((asy)=2)>v) < ) = ¢, 8.2 wgg = (@ < b|(((asy)=2)>v)) = C,
8.3 ws1 = (a < b) > ¢|(((wry)=2)-v)-

9) .f3(xa Y, z, 'U) A fl(a, b, C)Z
9.1 wg.1 = ((2]((a=b)=c) = ¥) = 2) = v, 9.2 wgs = (T > Yl((axb)=e)) = 2) = 0,
9.3 wes = ((x > y) > 2|(a<p)=e)) = v, 94wy = ((z = y) = 2) = V| ((axb)<0)-

10) fi(x,y,z,v) A fa(a, b, c):

10.1 wio1 = ((%|((axbysc) = Y) = 2) = v, 10.2 w102 = (% = Y|((a<b)sc)) > 2) =,
10.3 w103 = ((z > ¥) > 2|((a=b)=c)) > U, 10.4 wip4 = ((x = y) = 2) = V|((a<b)=0)
10.5 wio5 = (((a = b) > ¢) = z) > v.

11) fg(.'lf, Y, 27,0) A f3<a7 b7 C, d)
11.1 wira = (2] ((amb)se)ma) = Y) = 2) = v,

11.2 wire = (= = Yl((@=b)=c)-a)) = 2) = v,
11.3 w3 = ((z > y) >~ z|(((a>b)>c)>d)) ~,
11.4 wirg = ((x = y) = 2) = V]((amb)>-c)=d)»
11.5 wi15 = (((a > b) = ¢) = d) > v,

11.6 w6 = ((((a = b) = ¢) = d) = z) = v.

We will prove that all compositions are trivial mod(S,w). Here, for example, we only
check Case 6.4, Case 10.5 and Case 11.6. The others are easy to check.

Case 6.4:

(fala, b,¢), f1(2,Y, 2) e
(x<y=<z2)=c+@<(y=2)=c—(x<y)=(z>c)
+((x <y) = 2) = c
z=((y<z2)=c)—(z=(y=<2)=ct+x>=((y>=z2) =c
—(@z=(y=2)=c—a=(y=(z>=c)+(x>y) = (2>¢
+ax=(y=2)=c—((z=y)=2)=c
x=(y=(z=¢)—(z=(y=<2)=c—x>(y>=(2>0)
+arx=y)=(z=c)—((x=y) = 2)=c

0 mod(S, we.4).



Case 10.5:

(fg(x,y,z,v),fg(a, b7 C))U}m.s
((a=((b>=c)=2)=v—((a>=b)>=c)=z)>wv
—((a=<b)>=c)=(z=v)+((a=<b) = (c<2))=v
(a=b=c)=(z=v)—(a=((b=¢c)<2))=v
—((a>=b)>=c)=(z=v)+((a>=b) = (c<2)) =v
—(a=(b=c)=(z=v)+((a=b)=c) = (z>v)
+a=b=(c<2)=v—((a=b)=(c<2)=v
0 mod(S, wio35)-

Case 11.6:

(fg(x,y,z,v),fg(a,b,c,d))wlw
((a=b)=(c=d)=2)=v—(((a=(b=<c))=d)»z2)=v
—(((a>=b)=c)=d)=(z=v)+(((a=b)=c)=(d<2)) =v
((a=b)=(c=d)=(z=v)—((a=b) = ((c=d)<2)=v
—((la=b=<c)=d)=(z=v)+((a=(b=<c)=(d=<z2))=v
—((a=b)=(c=d)=(z=v)+((a=(b=<c))=d) > (z>v)
+(a=b)=(c=(d=<2)=v—(_(a=(b=<¢)=(d=<2))=v
0

mod(S, wi1.6)-

The proof is complete. O

Definition 3.3 An L-word u is called a normal DD-word, denoted by [u], if
H)u=z x€X,
20 u=z<[v],reX,
3) u=z> [v], zeX,

4) u= (x> Jui]) > Jus], x € X.

Remark From Definition and Definition B.3] we know that any normal D D-word is
a normal L-word.

The following corollary follows from Theorem and Theorem

Corollary 3.4 The set Irr(S) = {u| u is a normal DD-word } is a k-basis of the free
dendriform algebra DD(X).



4 Hilbert series and Gelfand-Kirillov dimension of
the free dendriform algebra

In this section, we give Hilbert series of the free dendriform algebra D D(X) where | X]| is

finite. As an application, we prove that Gelfand-Kirillov dimension of the free dendriform

algebra DD(X) is infinite.

We introduce some basic definitions and concepts that we will use throughout this
section.

Definition 4.1 Let V = (V,<,>) be a dendriform algebra. Then V is called a finitely
graded algebra if
V= @mzlvm

as k-vector spaces such that
dimy Ve, <00 and 6(V;,V;) CViy; forall 4,57 >1, § € {<,>}.

Definition 4.2 Let V = &,,>1V,, be a finitely graded dendriform algebra and dimy(Viy,),
the dimension of the vector space V,,. Then the Hilbert series of V' is defined to be

H(Vt) = dimy (Vo)™
m=1
Let X = {x1,29,...,2,} and DD,, the subspace of DD(X) generated by all normal
D D-words in DD(X) of degree m. Then

DD(X) = &,>1 DDy,
is a finitely graded dendriform algebra.

By the definition of normal D D-words, one has
dimy,(DDy) = n, dimy(DD,) = 2n*.

Assume that for any m > 1, dimg(DD,,) = f(m)n™. Then f(1) =1, f(2) = 2. For
convenience, let f(0) = 1.
For any m > 2, it is clear that DD,, has a k-basis

{z < [u]|z € X, |u|] > 1, [u] is a normal DD-word}
U{x = [ul|z € X, |u| > 1[u] is a normal DD-word}
U{(:c = [up]) = [uzl|z € X, |ug|, |ua| > 1, [u1], [ug] are normal DD-words}.
It follows that
fm) = 2x fm—-1)+1x1x f(m—=2)+1x f(m—2) x1

+1 x Z_:f(z')f(m—g—z’)

—

= f@)f(m—1—1).

i

3

I
o

Therefore, we prove the following lemma.



Lemma 4.3 Let X be a finite set with |X| = n. Then the Hilbert series of the free
dendriform algebra DD(X) is

H(DD(X),t) =) f(m)n™t™,

where f(m) satisfies the recursive relation (f(0) =1):
fm) =) f@)f(m—1—i), m=>1
i=0

Now, we describe the Hilbert series of DD(X) with another way.

Let A, B, C be the subspaces of DD(X) with k-bases

{z < [u]| x € X, [u] is a normal DD-word},
{z > [u]| z € X, [u] is a normal DD-word},
{(x = [u1]) = [u2]| x € X, [u1], [ug] are normal DD-words},

respectively. Assume that their Hilbert series are H(A,t), H(B,t), H(C,t), respectively.
Clearly, we have

H(B,t) = H(A,1).
Noting that A has a k-basis
{z; < zj| @, z; € X} U{x < Jul| |u| > 1, x € X, [u] is a normal DD-word},
we have

H(At) = n*t* +nt x (H(At) +H(B,t) + H(C,1))
= n?t? +nt x (QH(A,t) +H(C,1)). (1)

Since C has a k-basis

{(z; = z;) > xk| T, xj,x € X}

U{ (@i > ;) = Jul|lxi,z; € X, |u| > 1, [u] is a normal DD-word}
U {(z; > [u]) = x|z, z; € X, |u] > 1, [u] is a normal DD-word}
U{ x| [v]] |ul|, |v| > 1, [u],[v] are normal DD-words},

we have
H(C,t) = 03> +20°t x (H(A,t) + H(B,t) + H(C,t)) +nt x (H(A,1)
+H(B,t) + H(C, 1))
= nt x (nt+ (2QH(At) + H(C,1)))? (2)

From equations () and (2)), we obtain

1 —2nt+ 1 —4nt
5 .

H(At) =



Since H(A,0) = 0, we have

1—2nt — /1 —4nt
i )

H(At) =

Therefore,
1 — (1 —2nt)y/1—4nt

— 2+ nt.
2nt +

H(C,t) =
Thus, we have the following theorem.

Theorem 4.4 Let X be a finite set with |X| = n. The Hilbert series of the free dendri-
form algebra DD(X) is

1—2nt — /1 —4nt

2nt

H(DD(X),t) =

We now give an exact expression of the function H(DD(X),1t).

For ¢t < -, we have

NI

V1 —dnt = (1+ (—4nt))

i l(l_l)...(l_i_|_1) S
2\2 2 AL, T4
lJrE1 i x (—1)4'n't".

From this and Lemma we get the following theorem.

Theorem 4.5 Let X be a finite set with | X| = n. Then the Hilbert series of the free
dendriform algebra DD(X) is

HDD(X), 1) = Y XX (m<iml)_' D) X2

m=1

= (2m)! x n™ x t™

(m+1)Im!

m=1

Therefore, dimy,(DD,,) = ((mjz'g,fn, , m>1.

Now, by using Theorem [L.5] we show that Gelfand-Kirillov dimension of the free den-
driform algebra DD(X) is infinite when |X]| is finite.

Definition 4.6 [2] Let R be a finitely presented algebra over a field k and x1,xs, . .., 2y,
be its generators. Consider R = cn Via), where Vigy is spanned by all the monomials in
x; of length < d. The quantity

log dimyVig)
GKR = lim Tim 2 2Tk Y (d)
d—oo  log d

is called the Gelfand-Kirillov dimension of R.
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Theorem 4.7 Let X be a finite set with | X| = n. Then the Gelfand-Kirillov dimension
of free dendriform algebra DD(X) is

GKDD(X) = .

Proof. For a fixed natural d, let DD 4 be the subspace spanned by all the monomials
in x; of length < d. Then

d
dimDD(gy = Y _dimg(DD;) > dimy(DDy).
=1

Therefore,
. (2d)! xn?
—log d DD I, Gdixn?
GKDD(X) > T 29 dme(DDa) _ o @i
d—r00 log d d—oo  In d
F—d In 2n + S n(2i—1) =S H in
= lim
= limd In2n + lim —
d—oo d—)oo ln d
In (
= C}nglo(d In2n) + hm ln dz 1
= oo.
O
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