
Keyboard Acoustic Emanations: An Evaluation of
Strong Passwords and Typing Styles

Tzipora Halevi
Electrical and Computer Engineering

Polytechnic Institute of New York University
thalev01@students.poly.edu

Nitesh Saxena
Computer Science and Engineering

Polytechnic Institute of New York University
nsaxena@poly.edu

Abstract—The sounds resulting from keyboard typing
can reveal information about the input data. In this
paper, we revisit such keyboard acoustic emanations for
the purpose of eavesdropping over “strong” (random)
passwords. Prior work that capitalized on dictionary and
HMM language models is not applicable in this scenario;
rather the attacker can only utilize the raw acoustic
information which has been recorded. We evaluate the
use of signal processing techniques to eavesdrop over
6-character strong passwords. In doing this evaluation,
we carefully examine the effect of typing style – a
crucial variable largely ignored by prior research – on
the detection accuracy. Specifically, we compare “hunt
and peck typing” with “touch typing”, and quantify the
impact of changing the typing style on the overall success
of the eavesdropping algorithms. We investigate several
existing signal processing techniques for our purpose, and
introduce a new technique that improves the detection
accuracy. Our results show that using the same typing
style (hunt and peck) for both training and decoding the
data, the best case success rate in retrieving a password
is 56%. However, when changing the typing style during
the decoding stage to touch typing, the success rate is
reduced to around 10.67% only.

Broadly, our work makes two contributions. First,
it systemizes and sheds light on existing knowledge on
the subject of keyboard acoustic eavesdropping. Second,
and more importantly, it takes the subject one step
further, bringing it closer to a full-fledged attack. That
is, it explores the limitations of acoustic eavesdropping
techniques under realistic and security-sensitive scenarios
(different typing styles and strong passwords). On one
hand, the results suggest that the performance of these
attacks degrades significantly under such conditions. On
the other hand, the results indicate that it is still possible
to reduce the entropy of the password search space by
about half, thus considerably reducing the exhaustive
search complexity.

Keywords: Keyboard acoustic emanations; strong pass-
words; signal processing

I. INTRODUCTION

The attacks based on acoustic emanations produced
by electronic devices have been a known source of
concern. These attacks present a threat to user privacy.
Specifically, a few studies examined acoustic emana-
tions of keyboard devices. These studies demonstrate
that the seemingly conspicuous sounds resulting from
keyboard typing can be used to learn information about
the input data. Asonov and Agrawal [2] were the first to
extract frequency features from the sound emanations of
different keyboard clicks so as to identify the different
keys used, utilizing neural networks to classify the
resulting keys. This work made an important discovery
that since the keyboard has a physical plate beneath the
keys, each key produces a different sound depending on
its location on the plate (this is very similar to hitting
a drum at different locations). This makes keyboard
typing vulnerable to eavesdropping attacks, in which
similarities between clicks of the same key can be used
to extract information about the keys pressed and the
resulting data typed by the user.

Zhuang et al. [22], [23] improved upon the attack of
[2] by obviating the need for a labeled training record-
ing. Instead, HMM English language-based model [10]
was used on a 10-minute typed English text to detect
and label the typed keys and decode the text. In this
work, a few iterations of feedback-based supervised
training using previously classified characters were used
to further improve the overall detection accuracy. The
authors showed that Mel Frequency Cepstrum Coeffi-
cients (MFCC) features [12] yield better classification
accuracies compared to the Fast Fourier Transform
(FFT) features previously used in [2].

Berger et al. [5] further utilized dictionary attacks to
decode 8 letter or longer English words. This attack was
implemented utilizing correlation calculations on the
recorded signal (in the time domain). For each recorded
word, the attack detected a list of best-matching words



from an English dictionary. The primary insight of
this work is that the keys which are in close physical
proximity on the keyboard typically have higher cross-
correlation than the keys that are farther from each
other.

A. Open Research Challenges

Our paper takes a fresh look at keyboard acoustic
attacks and aims to address some important aspects
that prior work left unexplored. First, it investigates
the possibility of eavesdropping over “strong” textual
passwords via keyboard acoustic emanations. (We limit
our work to strong passwords consisting of 6 lower-
case alphabets.) Textual passwords are by far the most
dominant means of user authentication deployed today,
used in a variety of different contexts and applica-
tions. However, passwords suffer from several well-
documented vulnerabilities [1], [11], [21]. One of the
most prominent problems is that users often select
“weak” passwords that can be easily guessed or are
susceptible to small-space dictionary attacks (i.e., for
a k-letter password, the size of the password space is
much smaller than 26k). In order to address this weak-
ness, users are often instructed, and at times forced,
to use strong passwords [9], [19]. These passwords
possess relatively high bit entropy and employ random
selection of characters. Therefore, in the realm of
eavesdropping over a strong password via keyboard
acoustic emanations, a dictionary attack or an HMM
language model is not useful and prior research is
not applicable.1 The first question this raises is: how
feasible it is to retrieve strong passwords by means of
keyboard acoustic eavesdropping?.

In addition, we examine the effect of typing style on
key detection and eavesdropping ability. Our hypothesis
is that the typing style has a significant effect on the
sound produced and can reduce the sound differences
among clicks of different keys (as well as the similar-
ities between separate clicks of the same key) which
are due to the physical mechanics of the keyboard
as discovered in [2]. To our knowledge, ours is the
first work that specifies the typing style employed in
the experiments and looks into the impact of different
typing styles. Previous research papers have only used
the “hunt and peck” or “search and peck” technique
[15], [20]. In this technique, as the name suggests,
the typist finds and presses each key individually [17].
However, in real-life scenarios, many people use “touch
typing” [17]. Consequently, the second question that we

1HMM model can still be useful for creating the training data,
but not for the actual password guessing.

ask is: how much is the eavesdropping ability impacted
by the variation in typing style, i.e., with respect to hunt
and peck typing versus touch typing?.

The two questions posed above together drive the
research we present in this paper. Our work starts by
generating training data and then uses it to classify
keys typed by making use of different signal processing
techniques. Our focus is on eavesdropping strong pass-
words. We emphasize, however, that in situations where
a dictionary or HMM model may be used (e.g., while
eavesdropping over English words or text), the tech-
niques we explore are still useful. Our work quantifies
the ability of these techniques to provide information
about the keys that can be combined with the language
models wherever applicable.

B. Our Technical Contributions

We believe that our work systemizes and sheds
light on keyboard acoustic eavesdropping attacks. In
addition, it takes these attacks one step closer to a full-
fledged attack. That is, it explores the limitations of
acoustic eavesdropping techniques under realistic and
security-sensitive scenarios (different typing styles and
strong passwords). In doing so, we believe that our
work brings about several technical contributions which
we outline below.
Evaluating Techniques for Individual Key Detection:
We investigate different signal processing techniques
for key detection from acoustic emanations. Utilizing
these techniques, we examine the ability to detect the
individual key pressed from its recorded signal.

Specifically, we consider signal processing based
techniques which were previously investigated (e.g., the
cross-correlation techniques of [5]) and compare them
to a well-known technique employed in speech recogni-
tion – Dynamic Time Warping [18]. We then introduce
a method based on time-frequency classification for key
detection.

Our implementation of and experimentation with
these techniques shows that the DTW technique
achieves better results compared to random guessing
of the data (46% vs. 4% for random choice of key)
but lower than the cross-correlation technique (which
produces 73% detection rate). The time-frequency clas-
sification technique further improves the detection ca-
pability, at a 83% rate, and gives the best results
compared to all the techniques we studied. These results
are applicable to both language text as well as strong
passwords.
Effect of Typing Style on Signal Similarity: We
provide an objective measure as to the degree of simi-



larity between different presses of the same key and the
ability to distinguish it from presses of other keys. We
examine the effect of different typing styles on the simi-
larity between the audio emanations of different presses
of the same key, using signal correlation measurements.

Our results indicate that this correlation diminishes
significantly when changing typing style from hunt and
peck typing to touch typing. This leads to our higher
level conclusion and key insight that while the location
of the key on the physical plate may contribute in part
to the audio emanations key similarity, its contribution
is limited and the resulting audio emanations are sig-
nificantly affected by the typing style. This renders the
problem of detecting the key typed fundamentally much
more challenging in realistic scenarios whereby people
often use touch typing. This insight is again applicable
to both language text as well as strong passwords.
Strong Password Detection with Different Typing
Styles: We examine the scenario whereby a user inputs
a strong password, and we determine the probability
of detecting such a password by eavesdropping using
key correlations (based on the techniques mentioned
previously).

In addition, we study different typing styles and the
effect they have on detecting the typed characters. We
look at three scenarios: typing each key separately,
typing strong passwords in a hunt and peck style, and
typing the same passwords using a touch typing style.
We compare the similarity results corresponding to
each typing style and the ability of an eavesdropper to
detect which key was typed. We demonstrate that the
performance of the key detection techniques reduces
significantly when the typing style changes. We further
show that our time-frequency classification technique
produces better results for the different typing styles.

Finally, we suggest two methods for performing
exhaustive search which reduce significantly the pass-
word search space while considerably improving the
detection capability over random search. Specifically,
we reduce the search space size from 228 to about
214 and achieve password detection rates of 56% and
10.67%, for hunt and peck typing and touch typing,
respectively. This is in contrast to the brute force attack
which would produce on average 0.005% success rate
for the search space of the same size (i.e., consisting
of about 214 entries).
Broader Implications: We note that in real-life, users
employ different typing styles. Specifically, touch typ-
ing is one of the more popular typing techniques used.
We examine the effect of different typing techniques
on the key detection in cases of strong passwords

where, as previously mentioned, a dictionary attack or
language-based model is not useful. The reason typing
style affects the audio emanations from the keys is
that the finger touches the key from different angles
as well as at different strengths. In addition, depending
on the hitting angle, other fingers may touch/hit other
keys, when using the touch typing style. Therefore,
understanding the effect of the typing style is necessary
to understanding keyboard eavesdropping attacks. We
also note that our attack gives an objective indication
as to the amount of data that eavesdropping can provide
about the keys. While utilizing a language-based model
can be very helpful to an eavesdropper, its success is
dependent on choosing an appropriate model for the
typed data context.

Paper organization: The remainder of this paper is
organized as follows. We start by defining our threat
model in Section II. We continue in Section III by de-
scribing the different techniques used to detect pressed
key and the performance of these techniques. We then
describe, in Section IV, our experiments for testing the
effect of different typing styles for eavesdropping over
strong passwords, followed by the performance of our
password detection techniques in Section V. Next, we
discuss and interpret our results in Section VI. Finally,
in Section VII, we review some other work related to
acoustic emanations and password attacks.

II. THREAT MODEL

Our attack model is very similar to the one consid-
ered by prior research on keyboard acoustic emanations
[2], [5], [22], [23]. Basically, we assume that the
adversary has installed a hidden audio listening device
very close to the keyboard (or host computer) being
used for user data input. A covert wireless “bug” or
a PC microphone (perhaps a compromised microphone
belonging to the host computer itself) is an example of
such a listening device. The listening device can be pro-
grammed to record the acoustic emanations as the user
types the data and transmits the recordings to another
computer controlled by the adversary. This computer
is then used for executing the signal processing and/or
machine learning techniques in order to extract the input
data corresponding to the recordings.

Where our model differs from prior research is in
two aspects. Firstly, the data of interest to the adver-
sary is a strong password typed by the user, and not
English (or text in other languages) or weak passwords
susceptible to dictionary attacks. Please recall that this
is a more challenging set-up for eavesdropping due to
the fact that the adversary can not use a language-based



model or dictionary to decode data. In our experiments,
we consider strong passwords consisting of 6 lower-
case English alphabets. We assume that the adversary
precisely knows the position of the password in the
stream of all the data input by the user and recorded
by the microphone.2 Secondly, we consider varying
typing styles employed by the user. As we discussed in
Section I, prior work was only restricted to the hunt and
peck typing style. Typing style is an important factor
in keyboard eavesdropping attacks and realistic typing
styles, such as touch typing, may significantly reduce
the success with which the data can be extracted.

Our attack examines the advantage which an ad-
versary can obtain by comparing previously taken
recordings of known data to new samples of data. The
attacker may also previously eavesdrop on an English
text and use an HMM language-based model in order
to recognize and label the typed keys, and use those
samples to train our system. Another possibility, which
we employ in our attack, is that the attacker itself uses
the hunt and peck style to capture samples with the
natural audio sounds of the keyboard, minimizing the
effect of the individual typing style of the user. To
emulate this possibility, our training data is captured
in a “mechanical” style (discussed in Section IV-A)
which maximizes the effect of the underlying keyboard
plate on the recorded sound. This data can then be used
to detect keyboard emanations of text recorded by the
user. We emphasize that since an HMM language-based
model or dictionary can not be used for the attack, and
since passwords may be as short as 6 characters, some
form of training is necessary to eavesdrop over strong
passwords. Using the training data, audio information
can be extracted about the keyboard and used later in
the password guessing step.

Finally, we assume that the attacker has access to
the device or a service that needs authentication (e.g., a
personal desktop or a web-site) for a limited amount
of time. The attacker is usually allowed to make a
certain number of password trials to determine the
correct password. We therefore suggest a method of
password exhaustive search that reduces significantly
the overall search space while increasing the probability
of correct password detection. We also provide the
success probabilities of finding the correct password
when the attacker is only allowed up to three trials,
as it is a common practice among many online services

2Contextual or timing information may be used to determine this.
As an example, the first keyboard input a user may provide every
morning, while logging to her work computer, would usually be a
password.

(especially banking web-sites) to lock out the owner’s
account after three failed attempts.

Attack Set-Up and Tools: Throughout our experi-
ments, we used a standard Lenovo keyboard (model
JME7053 English) for our typing needs and for pro-
ducing the acoustic data as an input to our algo-
rithms. We used a standard inexpensive PC micro-
phone for recording the keyboard acoustic signals and
a Thinkpad X60 laptop computer for our development
and evaluation work. To record the samples, we used
the RecordPad software (v.3.03). For the signal pro-
cessing computations, we used the Matlab software.
These off-the-shelf equipment and tools were used,
similar to the prior research [5], [22], [23], so as
to maximize the overall impact (feasibility) of the
underlying attacks, which can possibly be perpetrated
by an unsophisticated adversary. The strong passwords
were generated using the Matlab’s “rand” command
that yields uniformly distributed pseudo-random num-
bers. (The full password can be generated with the
“char(‘a’ + ceil( rand(1,6) * 26) - 1)” Matlab script).

III. TECHNIQUES FOR INDIVIDUAL KEY

DETECTION

To develop our attack algorithms, we started by
exploring techniques for the detection of individual
keys/characters pressed on the keyboard.

To this end, we examine the use of Dynamic
Time Warping (DTW) technique [18] – which has
been widely used in speech recognition – for key
detection. We then compare the performance of the
DTW technique to that of previously used tech-
niques for key recognition. Specifically, we utilize the
cross-correlation based technique employed in [5] and
frequency-based feature extraction using neural net-
works employed in [2] as well as suggest a method of
using frequency-based distance (similar to the technique
used in [5]) and analyze their suitability for detect-
ing the characters pressed. We next introduce the use
of time-frequency based classification for individual
key detection. In this method, we combine both the
cross-correlation and the frequency spectrum features
to choose the best matching key. We measure the
performance of this method for individual key detection
and eventually for strong password detection (as will be
discussed later in Section V).

A. Determining Key Press Signal

Keyboard acoustic signals have two distinct regions:
push (also referred to as press) and release (Figure 1),
as demonstrated in [2]. The push region relates to the



period where the finger touches the keyboard while the
release is the sound generated when the key is released.
However, our experiments detect that depending on the
force sustained while pressing the key, both the push
and the release have between 1 to 3 distinct peaks
(Figure 2 and Figure 3). We first examined using short
regions of the signal to measure the correlation between
signals generated by the same key. We compared be-
tween two cases: choosing the first peak in the push
region versus using the most pronounced one. We found
that the most pronounced peak gave the best result.
We then experimented with using larger regions versus
short regions and found that for regions of 50 ms (which
started from the beginning of the first press and release
regions), the results obtained were the best. The reason
seems to be that in this case, the region includes all of
the signal data produced by the key press.

Fig. 1. Acoustic Signal of a Single Key
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Fig. 2. Key Press Region
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Fig. 3. Key Release Region

Detecting Key Press Regions: We record our signals
with a sampling frequency of 44.1 kHz. To detect the
beginning of each press, we calculate the FFT (Fast
Fourier Transform) coefficients of the signal using a
window size of 440 samples. We then sum-up the
FFT coefficients in the range of 0.4-22 kHz and use
a threshold to detect the beginning of each keypress
(Figure 4 and Figure 5). To detect the key release
region, we examine the area following the push region
(first 50 ms section of the signal). Since the release is
less pronounced, we calculate the FFT coefficients for
the rest of the region using a smaller window size of
88 samples. We then sum-up again the FFT coefficients
and use a threshold to determine the beginning of the
release region. As stated in Section II, we utilized the
Matlab software to implement all our signal processing
calculations. For calculating the FFT coefficients for
each signal, we used the Matlab “specgram” command.
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Fig. 4. Recording of Multiple Keys
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B. Technique 1: Dynamic Time Warping

We utilized the Dynamic Time Warping (DTW) tech-
nique [18] for our purpose. DTW is an algorithm which
measures similarities between sequences. We examined
the performance of the algorithm for detecting the
similarities between recordings of different presses of
the same key (while distinguishing presses of different
keys). We tested the algorithm on both the press and
release regions of the signal. We experimented with
different signal length for the press and release, and
found that for the DTW technique, longer regions
(50 ms) produced better results (compared with using
shorter regions).

Our experiments showed that the audio key signals
have varying amplitude depending on the strength with
which the keys were pressed. Since correct normal-
ization is essential for DTW, we tried using different
methods of normalization (as well as no normalization).
We tried normalizing according to a few variables:
amplitude, mutual joint distribution [14], and energy.
We found that the best results were received when
normalizing according to the energy (with the energy
normalized to 1). This provided superior results to the
other methods and is inline with the normalization used
for the cross-correlation technique employed in [5]. We
also examined the results for using DTW only on the
push period, release period and on a mean of both.
We found that using the mean of the algorithm results
calculated for the push and release periods gave the best
results.

The DTW technique produces a distance measure
between each two signals. To match each test key with
an alphabet key, we examine all the instances in the
training data. To match each test instance to an alphabet

letter, we compare between two possibilities. In the first
case, we pick the closest training instance (the one with
the smallest distance to the test character) in the training
data and match its corresponding alphabet key. In the
second case, we calculate the average distance from the
test character for each alphabet key. This is done by
calculating the mean of the similarity measurement for
all the training instances belonging to each alphabet key
and the test character. We then pick the best match as
the alphabet key which has the highest average distance
to the test key. We found that using the mean value for
each training alphabet key produced better results, since
it minimizes the noise contribution of each single test
instance.

C. Technique 2: Cross-Correlation

Cross-Correlation (denoted X-Corr) is used to mea-
sure similarities between two vectors and is a known
technique commonly used in pattern recognition and
signal processing techniques. We perform the cross-
correlation between the recorded signals as reported in
[5]. The signals are first normalized according to the en-
ergy level. For each two signals, we calculate the cross
correlation between both their press regions and their
release regions. We then calculate the mean between
both values and use it as a similarity measurement (as
described in [5]).

To match each test instance to an alphabet letter,
similar to the DTW technique, we compared between
two cases. In the first case, we chose the key which
belongs to the closest instance in the training data (the
one with the highest correlation). In the second case, we
calculate the average similarity measurement for each
alphabet key. This is done by taking all the training
instances that belong to this alphabet key and calculat-
ing the average of their cross-correlation measurement,
receiving one similarity measurement for each alphabet
key. Then, we chose as the matching alphabet letter the
one with the highest similarity measurement. We found
that for the cross-correlation technique, choosing the
second option produced better results as well (similar
to the DTW technique).

Therefore, to determine the alphabet letter belonging
to our test character, we chose – as the best match –
the key which gives the highest cross-correlation to our
training signals.

We also compared using the mean between the press
and release cross-correlations to using only the press or
release cross-correlation. Our tests confirmed that the
mean between the press and release values produced
the best performance (similar to the results in [5]).



Another variation we tried was matching the peaks
of both signals and calculating the correlation, similarly
to the technique described in [7]. Our experiments
showed that this produces worse results than taking the
maximum correlation (contrary to what was found in
[7]). We therefore continued all our experiments using
the max correlation.

D. Technique 3: Frequency-domain Features with Neu-
ral Networks

We implemented the frequency-domain features
based technique, described in [2], and tested it on
our data. To detect the most active 3 ms window
corresponding to the press and release regions, we used
the algorithm described in Section III-A with a window
size of 3 ms (132 samples). We calculated the signal
spectrum and summarized the FFT coefficients over the
0.4-22 kHz, using a threshold to detect when the peak
press and peak release began.

After creating the frequency-domain features, we
used the Matlab Feed-Forward Neural Network to clas-
sify the keys. However, we were not able to reproduce
the results described in [2]. Our experiments indicated
that this technique was worse than either DTW, the
correlation techniques or the frequency-based distance
technique (which we will discuss in the following
subsection).

We note that previous research [22], [23] also could
not achieve results similar to the original ones de-
scribed. The difference in the findings could be due
to different reasons. (We did not have access to the
original data used for those tests.) The keyboard used
for our tests is different from the one used in the
experiments of [2] (which may have produced acoustic
emanations with higher volume or more pronounced
characteristics). Another difference could result from
the fact that we are using the Matlab neural network
while the original research used Java neural network.
Also, the authors of [2] did not specify how to choose
the press and release regions. We chose an automatic
method but other methods (based on visual examination
of the signal) may be used. However, such methods
will be less efficient and not quite feasible for an
eavesdropper using real-time data.

E. Technique 4: Frequency-domain Features-based
Distance Measure

The Frequency-domain Features-based Distance
Measure (denoted Freq-Dist) technique is similar to the
one described in [5]. However, instead of using only a
small part (typically 2-3 ms) of the press and release

signals, we take the full 50 ms region for both the
press and release region. We then produce the frequency
spectrum for both regions. We examined using different
bands of the frequencies but found that the best results
were achieved when using the coefficients in the 0.4
- 22 kHz. For each of the signals, we normalize the
coefficients to one.

We compute the frequency-based distance between
each two signals by calculating the Euclidean difference
between those features. We repeated this for both the
press and release parts of the signal and calculate the
mean of both to get a single distance measure.

We use the distance measure between the signals to
calculate the average distance between the test character
and each alphabet letter (as described in Section III-C).
We chose as the best match the alphabet letter which
gives the smallest distance to the test character.

Our experiments show that this technique produces
poorer results than the cross-correlation technique, but
produces significantly better results than the DTW
technique (please refer to the next subsection for our
performance results). We conclude that different in-
stances of the same key produce similar spectrum when
examining the full press and release signal.

F. Performance of Techniques 1, 2 and 4

The techniques were evaluated on the training data,
which was taken with the hunt and peck style and is
described in Section IV-A. This style minimizes the
noise due to the fingers touching other keys and the
overlap of other key presses.

While conducting our experiments to determine per-
formance of the techniques, due to the relatively high
computation requirements for the DTW algorithm, we
used only four instances per alphabet letter as our train-
ing data. We then tested the ability of the techniques to
pick the correct key pressed out of 26 alphabet letters.

Overall, we found that the cross-correlation technique
gave the best results, with a single key detection rate of
73%. The frequency-based distance measure produced
a lower detection rate of 63%.

For the DTW algorithm, the detection rate was 46%.
We note that if we were to pick the key value randomly,
our chances of picking the correct key would be less
then 4%. Thus, both DTW and cross-correlation signif-
icantly raise the ability to chose correctly the matching
key. The detection results for the training data, using
four instances per key, can be found in Table I.

For better visualization, we show, in Figure 6 and
Figure 7, the decoding results for the different alphabet
letters. Each letter was typed four times and is rep-



TABLE I
SINGLE CHARACTER DETECTION

Method Detection Rate

DTW 46.15%
X-Corr 73.08%

Freq-Dist 63.46%
Tim-Frq 82.69%

resented by its index (′a′ = 1 to ′z′ = 26). Each
row shows the decoding of the four instances of the
corresponding test alphabet letter (i.e., which training
letters were found to be the best matches for each of
the four instances tested). The brighter the rectangle,
the more instances were assigned to the same alphabet
letter.

DTW is used to measure similarity between two
sequences which vary in time or the speed in which they
occur. Since the audio key signals are affected by the
typing technique, we examine the possibility this causes
warping in the resulting press and release signals,
and different instances of the same key may include
delays which affect the output signals. However, our
experiments show that the DTW technique gives lower
detection results compared to the correlation algorithm.
This indicates that the key press and release do not vary
much in time, even when the typing technique changes.
As a result, using this technique causes reduction in
the differences between presses of different keys in the
keyboard, making it harder to distinguish between them
and therefore raising the error rate when choosing the
“best match” for each typed key.
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Fig. 6. DTW Decoding (4 recordings of each test alphabet letter)
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Fig. 7. Cross-Correlation Decoding (4 recordings of each test
alphabet letter)
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Fig. 8. Time-Frequency based Decoding (4 recordings of each test
alphabet letter)

G. New Technique: Time-Frequency Classification

In the time-frequency classification method (denoted
Tim-Frq), we combine both the correlation calculation
and the frequency-based calculations to choose the best-
matching letter for each training letter. We start by cal-
culating the frequency-domain features-based distance
measure for each instance, as described in section III-E.

For each of our test samples, we took 10 instances of
each typed key from our training data. We calculated
the frequency distance between each test character and
each alphabet key, for both the key press and the key
release. We then calculated the mean between the press
and the release value and obtained a final frequency
distance value F for each key combination.

Similarly, we calculated the cross-correlation for all



the test character with each alphabet key and obtained
the cross-correlation C value for each key combination.

We note that when calculating the frequency dif-
ference cross-correlation for the signal with itself, we
get F = 0 (which is the minimum possible value
for any two signals). Similarly, we get that the cross-
correlation is C = 1 (which is the maximum possible
cross-correlation value for any two signals). Since we
are looking to combine both elements, we calculate
MC = 1 − C. At this point, both F and MC are
ascending with a minimum of 0 for the distance of a
signal with itself.

To classify each key, we then look at (F , MC) as
a point on a 2-D space and calculate the Euclidean
distance from zero. We use this value as our distance
measure (denoted as TF ).

We then chose as the best match the alphabet letter
which yields the lowest distance measure (correspond-
ing to the point closest to zero).

Using the time-frequency classification technique, we
get an increased probability of 83% for the training
data (please refer to Table I for comparison with other
techniques). This technique combines the information
in both the time (cross-correlation) and the frequency
spectrum. We observe that even though the cross-
correlation provides better information in most cases,
in some of the cases, the time-based signal changes but
most of its frequency characteristics are still evident.
The time-frequency classification technique incorpo-
rates this information into the key classification process.
We therefore conclude that both the frequency and the
time data can be used together to produce better results.
In Figure 8, we provide a visualization for the decoding
results corresponding to different alphabet letters in
case of time-frequency classification.

IV. STRONG PASSWORDS AND TYPING STYLES

In this paper, our goal is to determine the advantage
that an attacker can have by using key detection tech-
niques to eavesdrop over strong passwords. We further
examine the effects of the typing style, i.e., hunt and
peck vs. touch typing, on the detection ability.

To this end, we first create the training data. The
training data produces the “best” sounds that the audio
emanations can provide - i.e., using the hunt and peck
and always hitting the keys from a vertical position.
This maximizes our ability to capture the sounds em-
anated from the physical plate underneath the keys
and minimizes the effect of the interaction between
the keys and the fingers. We recall that this typing
style has been employed in previous research and is

expected to produce the best similarity between the
audio emanations of the keys.

A. Straw Man Approach: Typing Each Key Separately

Our first scenario involves typing each letter multiple
times always using the same finger. In this scenario,
each letter is typed a few times continuously before
moving to the next letter and a few seconds are allowed
before typing the next letter (similar to the technique
used in [2]). This causes the finger to hit the key
from a vertical position in each case. The benefit of
using this technique is that it ensures virtually no
overlap of keyboard acoustic sounds. It also enabled
typing each letter using approximately the same force
and hitting the keys from the same angle, resulting in
a relatively similar sound for multiple clicks of the
same key. Overall, this technique minimizes any audio
signal noise or overlap sounds during the key press and
therefore maximized the contribution of the keys hitting
the underlying keyboard plate. Since this plate acts like
a “drum”, it produces the emanated audio sound ( [2]).
Since each key is positioned differently on the keyboard
plate, different keys will produce a different sound.

In addition, this technique maximizes the contribu-
tion of the underlying plate on the audio emanations
(relatively to other factors) while minimizing the typing
style contribution. This technique can therefore be used
to train the system by an attacker (not the original
typist) who is trying to get information about the
audio emanations of the keyboard which are due to the
physical structure of the keyboard and the differences
between the location of its keys.

We used the above technique to take ten signal
recordings for each key of the alphabet letters as our
training data. We refer to this data in the rest of the
paper as “Train Hunt and Peck data”.

B. Hunt and Peck Typing

In the second scenario, strong passwords are typed
using the hunt and peck style. This case differs from
the first case since consecutive letters are different
from each other. This causes the finger to hit the key
from possibly different angles (depending on which key
was typed earlier). For this test, we typed a total of
25 different strong passwords, and each password was
typed 3 times. We refer to this data as the “Test Hunt
and Peck data” in the rest of the paper.

C. Touch Typing

In the third scenario, we type the same password
list – as in the Hunt and Peck case – using the touch
typing technique. In this scenario, each key has its own



designated finger and the rest of the fingers may possi-
bly touch the keyboard while typing (depending on the
hands’ movement). We recall that this typing technique
is very popular among users. However, this typing style
does affect the acoustic emanations of the key as the key
is hit from different angle, depending both on the finger
used as well as the hand position during the typing of
each key (which depends on the previous letters typed).
In addition, since both hands touch the keyboard at the
same time, there are overlapping sounds from the other
fingers as they release the previous keys and are re-
positioned on the original middle keys. We refer to this
data as the “Test Touch Typing data”.

D. Effects of Typing Style on Signal Correlation

To measure the effect of typing style on the detection
of typed password, we examine the maximum correla-
tion between instances of the keys in the test data with
instances of the same keys in the training data, termed
as matching keys. We then compare it to the correlation
with the instances of the rest of the keys in the training
data, termed as non-matching keys. We note that for
each signal, the correlation with itself is normalized to
1. We therefore expect that max correlation with any
other signal to be between 0 and 1.

Our training data included 10 training samples using
the straw man typing approach (described in Section
IV-A), when each key was typed separately multiple
times. Recall that this causes the key to be hit from
a vertical angle each time and reduces the variability
within the signal.

Straw Man Typing: We started by using the afore-
mentioned data as test data itself. For each sample, we
calculate the maximum correlation between itself and
each of the other instances taken with the same key. We
then calculate the mean of these values. We did this for
both the press and release part of the signal. We found
that for this data, the mean correlation between different
instances of the same key is 0.425 for the key press,
and 0.382 for the key releases.

We examined the correlation between samples taken
with each key and the instances of the rest of the
keys. Specifically, for each key signal we calculated
the maximum correlation to each instance in the training
data belonging to each different key. We then calculated
the mean of these values between each two keys. For
each tested key, we take the highest value of the 25
values we received, which shows the correlation to the
most likely key to be chosen as a match to the original
key.

We then calculated the average of these correlations
for all the keys and found it is 0.38 for key press,
0.30 for key release. We therefore observe that for
the training data, the average correlation is higher for
instances of the same key than for any of the other keys
in the sample.

Hunt and Peck Typing: We performed the above analysis
for the passwords data typed in hunt and peck style, and
compared its correlation to the training data. We found
that for this case, the average correlation for instances
belonging to the same key was 0.35 for the key press
and 0.35 for the release.

For instances belonging to any other key, in contrast,
we found that the average correlation of the best match-
ing key to each instance is 0.38 for the key press and
0.35 for the release.

We therefore observe that on an average, the corre-
lation for the key press is higher with another key than
the same ones that the password samples were typed
with and the same for the key release. We therefore see
that when the typing style changed slightly (since the
keys are not hit from the top anymore in a monotonic
fashion but rather may hit the keys from different angle,
depending on the previous letter in the password), the
correlation between instances of the same key reduces
compared to the correlation to instances of the other
keys. Therefore, it is more likely to chose the wrong
key as the best matching key to the new sample.

Touch Typing: We further repeated the analysis for the
data taken with the touch typing style. We calculated
the correlation between these samples to the training
data. In this case, we found that the average correlation
with instances of the same key was reduced to 0.3 for
the key press and 0.26 for the key release.

For comparison, when examining the correlation to
the rest of the keys in the training sample, the average
correlation to the most likely key was 0.34 for the
key press and 0.29 for the key release. Therefore, the
correlation to at least one of the other 25 keys was
higher on average than the correlation to instances typed
with the same key.

A summary of the results of our overall analysis is
presented in Table II. In conclusion, we observe that
the maximum correlation is stronger between instances
of the same key taken with the same typing style but
reduces when the typing style changes. On the other
hand, the correlation to instances taken with other key
increases which makes it hard to detect correctly the
pressed key. This confirms our hypothesis that typing
style has a strong effect on the similarity of audio



TABLE II
CORRELATION OF MATCHING AND NON-MATCHING KEYS WITH TYPING STYLE VARIATION

Straw Man Typing Hunt and Peck Touch Typing
Type of Keys Press Release Press Release Press Release

Matching 0.425 0.382 0.35 0.35 0.30 0.26
Non-Matching 0.38 0.30 0.38 0.35 0.34 0.29

signals taken with the same key and the ability to
distinguish them from other keys in the keyboard. This
insight applies to both strong passwords as well as
language text.

V. PERFORMANCE OF PASSWORD DETECTION

TECHNIQUES

Out of the five techniques explored in Section III,
we found that the cross-correlation (X-Corr) and time-
frequency classification (Tim-Frq) techniques yielded
higher accuracies. In this section, we investigate the
advantage that an attacker can get by using these two
techniques to eavesdrop over strong passwords.

We examine the performance of these techniques
when the typing styles changes. We compare the detec-
tion rates – using the training data (specified in Section
IV-A) – for strong passwords typed with both the hunt
and peck and the touch typing styles.

We start by examining the key detection rate for
each of the data groups. We utilize as training data
ten instances of each alphabet key (as opposed to four
instances used in Section IV-A). This improves the
detection ability as it helps in reducing the effect of
noise in each instance.

We calculate the similarity measure – max correlation
for cross-correlation and TF distance for time-frequency
classification – between each tested instance and each
of the ten instances of the training data. We then
calculate the average of the similarity value to obtain
the average similarity measurement between each tested
instance and each alphabet letter in the training data.
For the cross-correlation technique, we chose as the best
matching letter the one with the highest correlation. For
the time-frequency classification technique, we chose
the alphabet letter with the lowest TF distance measure.

A. Training Data, Hunt and Peck style

To measure the performance for our training data,
we use the same method as discussed in Section III-C.
Since we now raise the number of instances for each
alphabet key to ten, this averages the noise per instance
and improves the detection performance.

As a result, we found that the cross-correlation statis-
tics calculated using this technique resulted in a 83%

accuracy rate per key (up from 73% when using only
four instances per alphabet key). We conclude that when
the typing is repetitive, the probability of detecting each
key using cross-correlation is relatively high and the
underlying physical characteristics of the keyboard has
strong effect on the acoustic emanations and the ability
to eavesdrop on the recorded characters. When using
the time-frequency based classification, we found that
the results were further improved to 89% .

B. Test Data, Hunt and Peck Style

For calculating the detection rate for the password
(test) data, we start by calculating the similarity mea-
sure (max correlation and time-frequency distance) for
each character in the password. To do this, we begin
by calculating the similarity to all the instances in the
training data. We then calculate the mean of the similar-
ity measure for each alphabet letter in the training data
(by averaging the values received for all the instances
of each letter). For the cross-correlation technique, we
chose the matching letter as the one with the highest
cross correlation for each test instance.

For the password data typed with the hunt and
peck typing style, we find that the cross-correlation
performance is reduced to a 53% accuracy rate per key.
We see that the typing style causes a reduction of the
detection accuracy compared to typing the same key
continuously. We conclude that the angle at which the
finger hits the key affects the acoustic signal emanated
by the key and the ability to detect correctly the key by
comparing it to the training data.

When employing the time-frequency classification
technique, we chose as the best matching alphabet
letter, for each test instance, the one which produces
the smallest TF distance. We found that our results were
improved to a detection rate of 54% per character in this
case.

C. Test data, Touch Typing Style

We repeated the testing process for the passwords
typed using the touch typing style. We find that for
this scenario, using the cross-correlation technique for
key detection, the accuracy rate is reduced to 33%.
When using the time-frequency based classification, we



observe that the rate of detection per correct character
is reduced to 30%.

D. Testing Additional Keys

In order to raise our detection rate, we decided to
create a list of additional keys to be checked against our
recorded password. We implemented this by creating a
list of keys having the highest max correlation, for the
cross-correlation technique, to each recorded password
character. For the time-frequency classification tech-
nique, we created a list of keys having the lowest TF
distance from the test character.

For each key, we tried matching both the best match-
ing letter and the next few highest matching alphabet
letters. When examining the ordered list of highest
matching alphabet letters, we saw that the probability
of the key matching each of the letters reduces signifi-
cantly after the fifth letters.

We therefore created a list of 5 best matching keys
for each typed character. We then determined the
probability of a correct detection for the five keys.
Using the correlation-based technique, we found that
the probability of each character to be in the list of the
top five keys was increased to 79% for the hunt and
peck data. For the touch typing data, in contrast, the
probability that the key is in the first five choices was
found to be 63%.

For the time-frequency based classification, we found
that the probability of each character to be in the list
of the top 5 keys was increased to 86%. For the touch
typing data, the rate was increased to 65%.3 All of our
results, corresponding to the single best key and the first
five keys produced by our algorithms, are summarized
in Table III.

E. Password Decoding

Next, we look at the advantage that an eavesdropper
can achieve by using an exhaustive search to detect
the full 6-character password (i.e., by making use of a
certain number of trials). While a brute-force attack on
the entire password space would take 266 ' 228 trials,
we try exhaustive search with lower number of tests.
This reduces significantly the computing complexity
and would allow an attack to finish in a much shorter
time, and can be used by an attacker who has access
to the device (or the service) that needs password
authentication for a limited amount of time. We also

3We observe that for the touch typing data, while the time-
frequency classification does not improve the result for the best
case single letter, it does yield better results when using the 5 best
matches.

provide the success probabilities of finding the correct
password when the attacker is only allowed up to three
trials, as it is a common practice among many online
services to lock out the owner’s account after three
failed attempts.

Specifically, we compare the accuracies of the cross-
correlation and time-frequency classification techniques
for detecting the full password for the exhaustive search
with different number of trials.

We first implement the cross-correlation based strat-
egy. Using this algorithm, we choose for each character
the five keys having the highest correlation to the
training data. We therefore reduce the number of tests
to 56 ' 214 thereby cutting the entropy of the password
search space by a factor of 2.

For hunt and peck typing, we managed to detect
24% of the whole passwords. For the touch typing
technique, on the other hand, the detection rates went
down significantly – to only 5.3%. We emphasize,
however, that our results are still considerably better
than a brute force attack which would produce on
average 0.005% success rate for the size of our search
space (which includes about 214 password tests).

We then compare our results to the one achieved with
the time-frequency classification. For the hunt and peck
typing, we obtain a detection rate of 37%. For the touch
typing techniques, our results improved to 9.3%.

Additionally, we examine the scenario where we take
the first two possible choices for each of the first five
characters in the password and test all 26 choices for
the last character. We refer to this method as the 2-step
exhaustive search. We find that this further improves
the results significantly while raising only slightly the
number of tests. This is due to the fact that most correct
letters appear in the first two places in the combined
list created by the time-frequency classification and that
there is a significant number of words with only one
character for which the correct key is not in the original
letter test list.

Based on the 2-step search, for the hunt and peck typ-
ing, using the cross-correlation technique, we observe
that our results are further improved to 36%, and for
touch typing, the password detection is raised to 9.3%.
Using the time-frequency classification, the password
detection is further raised to 56% for the hunt and peck
style, and to 10.67% for the touch typed passwords.

All of our results are summarized in Table IV. The
detection rates, for the case involving one trial, are
obtained directly from the detection rates corresponding
to the best matching single character listed in Table III.



TABLE III
SINGLE CHARACTER DETECTION RATES

1-Char D. Rate 5-Char D. Rate
Method Hunt and Peck Touch Typing Hunt and Peck Touch Typing
X-Corr 53.78% 33.78% 79.33% 63.78%

Tim-Frq 54.22% 30.67% 86.22% 65.33%
Random Guess 3.84% 19.23%

TABLE IV
6-CHARACTER PASSWORD DETECTION RATES (EXHAUSTIVE SEARCH)

S. Rate X-Corr S. Rate Tim-Frq
Method No. of Trials Hunt and Peck Touch Typing Hunt and Peck Touch Typing

EX 1 2.42% 0.15% 2.54% 0.08%
EX 2 2.95% 0.19% 3.23% 0.12%
EX 3 3.47% 0.24% 3.91% 0.15%
EX 15, 625 24% 5.33% 37.33% 9.33%

2-EX 16, 457 36% 9.33% 56% 10.67%
BF 1 3.24E−07%
BF 2 6.47E−07%
BF 3 9.71E−07%
BF 15, 625 0.0051%
BF 16, 457 0.0053%

The notations used in the two tables are as follows:
• “X-Corr” – cross-correlation technique
• “Tim-Frq” – time-frequency classification
• “1-Char D. Rate” – the probability of the first

choice of our detection algorithm to be correct
• “5-Char D. Rate” – the probability that the correct

key belongs to the list of the first 5 characters
produced by the algorithm

• “EX” – exhaustive search
• “2-EX” – 2-step exhaustive search
• “BF” – brute force attack algorithm produces
• “S. Rate” – success rate, i.e., the probability the

correct password was included in the passwords
list

VI. SUMMARY AND IMPLICATIONS OF RESULTS

Our research establishes that keyboard acoustic
eavesdropping attacks are affected by three variables,
namely, typing style, type of input data, and detection
technique. Below we outline some of the insights that
our research provides vis-a-vis these variables.

A. Typing Style

Our work demonstrates that typing style significantly
affects the emanated keyboard sound. We further con-
clude that while the underlying plate contributes to

the key sound, the typing style also contributes to it
significantly. We confirmed that the similarity between
the audio sounds belonging to each key is reduced
when the typing style changes from hunt and peck
typing to touch typing. One of our observations is that
while there are still sound differences between some
of the keys, when examining all the alphabet keys in
the keyboards, it becomes hard to distinguish between
a single key and the rest of the keys. While it may
be easier to distinguish the key from some of the keys
(which confirms out perception that some keys sound
“different”), distinguishing it from the rest of all the
alphabet keys is challenging and some of the audio
emanations corresponding to other keys may become
indistinguishable from the target key.

We found, from our experiments, that the accuracy of
detecting a single character on the keyboard goes down
by a factor of about 1.7 (Table III), when moving from
hunt and peck typing to touch typing. An implication of
our result therefore is that users who employ touch typ-
ing are less prone to keyboard acoustic eavesdropping.
Since in real-life many users touch type, this suggests
that, in practice, keyboard acoustic attacks may not
constitute to be as significant a threat as believed to
be.



B. Type of Input Data

Our research shows that detection of strong password
poses a significant challenge, since only the (raw) audio
signal is available as input to the attack. On the other
hand, attacks on English-text or weak passwords may
achieve better results due to the underlying language
model and the dictionary tools, as demonstrated by
prior research [5], [22], [23]. Such attacks may achieve
better results because the raw acoustic information
can be clubbed together with an optimized context-
based language models or a dictionary. This means
that strong passwords are less vulnerable to keyboard
eavesdropping attacks.

We can conclude that users who employ strong
passwords are less susceptible to keyboard acoustic
attacks than those who employ weak passwords. On
the other hand, our attacks on strong passwords are
still orders of magnitude more successful than random
guessing or brute-forcing attempts (as depicted in Table
IV). For example, with only 3 trials, for touch typed
passwords, our attacks are better by a factor of about
150,000; with 16,457 trials, they are better by a factor
of about 2,000.

C. Detection Technique

We explored several techniques, based both on the
time signal and frequency spectrum. Our work shows
that the signals do not “stretch” significantly in time
which results in the poorer performance of Dynamic
Time Warping technique compared to signal time cor-
relation (Table I). We conclude that while the audio
signal changes from click to click, the changes affect
mainly the audio signal amplitude. We further observe
that the similarities in signals emanated from the same
key are detectable both in the frequency and in the time
domain. Therefore, combining this information leads to
improved detection results, as is the case with our time-
frequency classification.

VII. OTHER RELATED WORK

Acoustic emanations were also utilized for eaves-
dropping on dot matrix printers. In [6], Briol showed
that significant information can be extracted about the
printed text, using acoustic emanations to distinguish
between the letters ‘W’ and ‘J’. In [3], Backes et al.
presented an attack which recovers English printed text
from the printer audio sounds. This attack is word-based
and starts by training the system with a list of dictionary
words. Then, an HMM language-based model is utilized
to detect the typed words from the dictionary word list.

In a proof-of-concept work published on the web
[13], Shamir and Tromer explore inferring of CPU
activities (e.g., patterns of CPU operations and memory
access) via acoustic emanations. In particular, they
investigate how acoustic emanations associated with
RSA decryption and signing operations produce unique
signatures per RSA private key, and how they can be
used to learn the keys.

In [8], Halevi and Saxena studied acoustic emana-
tions in order to learn key exchange information during
the wireless device pairing operation. In this work,
device pairing schemes utilizing out-of-band channels –
including audio-based key exchange and device vibra-
tions – were investigated and found to be vulnerable to
acoustic eavesdropping attacks.

Additional methods to extract keyboard input fo-
cus on other sources of information (i.e., other than
audio). In [4], Balzaroni et al. explored recovering
keyboard input based on video of the typing session.
In this approach, the manual typing is recorded using
a video camera and each typed key is assigned a list
of possible characters. Then, a language model and
context-sensitive techniques are used to choose the best
matching characters for each key typed. In [16], Song et
al. showed that timing information of key-presses can
be used to exploit weaknesses in SSH protocol. The
algorithm uses SSH data to first train an HMM model
for timing analysis. The system is then used to recover
passwords consisting of 5-8 characters.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we took a fresh look at the vulnerability
of keyboard typing to audio emanations. Our work
shows that keyboard eavesdropping is affected by a
few variables, including the typing style, the input data
and the detection technique. We showed that while
the detection performance is reduced for realistic typ-
ing styles, keyboard typing still remains vulnerable to
eavesdropping attacks.

Our work further provides an objective measure for
the performance of key detection. This information is
useful for implementing future language model and
dictionary based attacks as their success relies on the
underlying audio-based (raw) key detection capability.
Further, our work helps asses the performance of these
attacks, by providing an estimate as to how much the
use of a language model or dictionary may further
improve the final detection results.

Overall, we found that the strength of acoustic eaves-
dropping attacks is limited when using different typing
styles and strong passwords, and is therefore not as



significant a threat as previously believed to be under
such realistic and security-sensitive settings. On the
other hand, we succeeded in reducing by half the
entropy of the typed strong passwords and therefore
considerably sped-up the exhaustive search.

There exist several avenues for future work. First,
our work concentrated on English alphabets but can be
extended to also include numbers (e.g., numeric PINs or
credit card numbers). Since all the keys are positioned
on the keyboard in a similar way, have the same size and
share the same underlying physical plate, we expect the
detection behavior to be the same. However, it would
be interesting to verify this in future research. Another
possible extension can be to look at the combination
of the Shift key with other characters. This scenario
is interesting since an overlap is expected between the
acoustic emanations of the keys which may make it
harder to detect the pressed keys.

We believe that testing laptop keyboard acoustic ema-
nations is also an interesting further step. We conducted
preliminary tests and noticed that the press signal is
evident in laptop keyboard recordings. However, we
found that the release audio signal either had very low
volume or was not noticeable at all in the recorded
signal. Therefore, laptop keyboard eavesdropping needs
to rely only on the key press and is likely to be less
successful than traditional keyboard eavesdropping.
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