
ON THE ATIYAH PROBLEM FOR THE LAMPLIGHTER GROUPS

ŁUKASZ GRABOWSKI

Abstract. Recently groups giving rise to irrational l2-Betti numbers have been found.
All the examples known so far share a common property: they have one of the lamp-
lighter groups Z/p o Z as a subgroup. In this paper we prove that in fact already all the
groups Z/p o Z give rise to transcendental l2-Betti numbers.
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1. Introduction

1-A. Presentation of the result

Let G be a countable discrete group. We will say that a non-negative real number r
is an l2-Betti number arising from G if and only if there exists θ ∈ Mm(QG), a matrix
over the rational group ring of G, such that the von Neumann dimension of kernel of θ
is r. The motivation for the name is as follows: when G is finitely presented and r is an
l2-Betti number arising from G, then there exists a closed manifoldM whose fundamental
group is G, and such that one of the l2-Betti numbers of the universal cover ofM is equal
to r. We refer to [Eck00] and [Lüc02] for more details.

The following problem is a fine-grained version of a question asked by Atiyah in [Ati76].
Question 1 (The Atiyah problem for a group G). What is the set of l2-Betti numbers
arising from G?
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Let us call this set the l2-complexity of G, and denote it by C(G). For a class of groups
G define C(G) = ∪G∈GC(G).

So far C(G) has been computed only in cases where C(G) is a subset of Q. In fact,
what has become to be known as the Atiyah conjecture for torsion-free groups says that
C(G) = N for any torsion-free group, and till the article [DS02] of Dicks and Schick it
was widely conjectured that C(G) ⊂ Q for every group G. However, Dicks and Schick
gave an example of an operator θ ∈ Q((Z/2 o Z)2) together with an heuristic argument
showing why dimvN ker θ is probably irrational. Their work was motivated by the article
[GŻ01] of Grigorchuk and Żuk.

Only recently Austin has been able to obtain a definite result by proving in [Aus09]
that C(Finitely generated groups) is uncountable. This work has been a motivation for
much of the following efforts, by showing that computation of dimvN can be sometimes
done by analyzing certain dynamical systems and using Pontryagin duality.

Subsequently it has been shown independently by the author in [Gra10] and by Pichot,
Schick and Żuk in [PSZ10] that in fact C(Finitely generated groups) = R≥0 and that
C(Finitely presented groups) * Q. Moreover, in [Gra10] it is shown that C((Z/2oZ)3) * Q.

More recently, Lehner and Wagner showed in [LW10] that C(Z/p oFd) contains irrational
algebraic numbers, where Fd is the free group on d generators, and d ≥ 2, p ≥ 2d− 1.

In all the articles cited above the following is trivial to check: if it is proven that for a
given group G it holds that C(G) * Q then there exists p such that Z/p oZ ⊂ G. In other
words, according to the current state of knowledge, Z/p o Z ⊂ G could be the necessary
condition for C(G) * Q. We prove that it is a sufficient condition. Indeed, it is very easy
to see that if A ⊂ B are groups then C(A) ⊂ C(B) (see for example Corollary 4.2.2 in
[Gra10]) and here we prove the following theorem.

Theorem A. Let p ≥ 2. Then C(Z/p o Z) contains transcendental numbers.

We finish this subsection by stating two related open questions. The first one summa-
rizes the current state of knowledge on irrational l2-Betti numbers.

Question 2. Is it the case that C(G) * Q is equivalent to Z/p o Z ⊂ G for some p?

As mentioned above, C(G) has been computed only in cases where in fact C(G) ⊂ Q.
The “easiest” group known so far for which C(G) * Q is Z/2 oZ, and hence the following
question.

Question 3. What is C(Z/2 o Z)?

This question contains many interesting subquestions. For example, does C(Z/2 o Z)
contain irrational algebraic numbers?

1-B. Outline of the paper

In order to prove Theorem A we need to find an operator in Mm(Q(Z/p o Z)) whose
kernel has transcendental von Neumann dimension. However, Lemma 6.1 says that |H| ·
C(G×H) = C(G), for any group G and any finite group H, so we can as well find such
an operator in Q(Z/p o Z×H), where H is some finite group.

In Section 6, Back to the lamplighter groups, we see how Pontryagin duality allows us
to exchange the above question with a question about existence of an operator in the von
Neumann algebra L∞(X)oΓ whose kernel has transcendental von Neumann dimension,
where X := Z/pZ × Z/23, and Γ := Z×GL3(Z/2).

The operator T ∈ L∞(X) o Γ, whose dimension we are able to calculate, is defined in
Section 4, Description of the operator, in terms of another operator S. Our computational
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tool is the one developed in [Gra10], and we present it in Section 3, Our computational
tool.

The main idea is as follows: we are given a probability measure space (X,µ), an action
ρ : Γ y X by measure preserving maps, an operator S ∈ L∞(X) o Γ, and another
operator T which is defined in terms of S. In order to compute dimvN kerT we proceed
as follows: we decompose X into family of sets, each of which is the set of vertices of
certain graph g - this decomposition depends on the operator S. Next, we “restrict” the
operator T to an operator T g defined on the Hilbert space l2g spanned by vertices of g
(i.e. points of X.) Computing dim kerT g turns out to be relatively easy, and it turns out
that to obtain dimvN kerT one needs to “integrate” the function dim kerT g over all the
graphs g which appear as “subgraphs” of X.

The graphs which appear in the decomposition of X induced by our S are described in
Section 2, Preliminaries on certain graphs. In Section 5, Application of the computational
tool, we prove that the graphs described in Section 2 are indeed all the graphs we need to
consider. After this we are ready to apply the computational tool: Corollary 5.6 shows
what is dimvN kerT ; transcendence of it follows from the work [aT02] of Tanaka.

1-C. Basic notation

The symbols N, Z, Q, R and C denote respectively the sets {0, 1, . . .}, the set of
integers, the set of rational numbers, the set of real numbers and the set of complex
numbers. We choose one of the two generators of Z once and for all and denote it by t.

The cyclic group of order p is denoted by Z/p.
For two groups A and B, AB denotes the set of functions B → A. Usually B will be

equal to Z in which case A-valued functions will be identified with A-valued sequences.
A⊕B denotes the set of finitely supported functions B → A.

The wreath product of a group A with Z is defined as A o Z := A⊕Z oρ Z, where
[ρ(t)((ai))]j := aj+1.

Given a group G, the Hilbert space spanned by the elements of G is denoted by l2G;
elements of the canonical basis of l2G are denoted by ζg, g ∈ G. Given a fieldK of complex
numbers we often consider the group ring KG of linear combinations of elements of G
with coefficients in K. KG acts on l2G by the linear extension of the rule g · ζh := ζgh,
g, h ∈ A.

Given a ring R and a positive integer m, Mm(R) denotes the ring of m ×m matrices
over R. The elements of the matrix ring Mm(QG) = QG ⊗Mm(Q) act on the Hilbert
space (l2G)m = l2G⊗ Cm.

Given θ ∈ QG, we can investigate the kernel ker θ ⊂ l2G of θ. The von Neumann
dimension dimvN ker θ of kernel of θ is defined as

dimvN ker θ := trvN(Pθ),

where Pθ : l2G→ l2G is the orthogonal projection onto ker θ, and the von Neumann trace
trvN on a given operator T is defined as trvN(T ) := 〈Tζe, ζe〉, with e being the neutral
element of G. We proceed similarly when θ ∈ Mm(QG), by defining the von Neumann
trace on B(l2G)⊗Mm(C) as trvN ⊗ tr, where tr is the standard matrix trace. For details
and motivations see [Eck00] or [Lüc02].

1-D. Thanks and acknowledgements

I thank Manuel Koehler for commiting his time to discussions which allowed clarifying
arguments presented here.
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I also thank Światosław Gal, Jarek Kędra, Thomas Schick and Andreas Thom, who
submitted many valuable comments which greatly improved clarity and readability of
this paper.

2. Preliminaries on certain graphs

In this section we consider directed graphs g whose vertices are labeled by the letters
A, B, C, D, I (as in Initial) and F (as in Final), and whose edges are labeled by integers.
The sets of vertices and edges are denoted respectively by V (g) and E(g). The labels of
an edge e and a vertex v are denoted respectively by L(e) and L(v). The starting and
final vertices of e are denoted respectively by s(e) and t(e).

The Hilbert space spanned by the vertices of g is denoted by l2g; elements of its
canonical basis are denoted by ζv, v ∈ V (g). The scalar product in l2g is denoted by
〈ζ1, ζ2〉. The convention about which place is linear and which is conjugate linear is such
that for a given vector ζ ∈ l2g and v ∈ V (g), the coefficient of ζv in the representation of
ζ in the canonical basis is equal to 〈ζ, ζv〉.

We say that a vertex v is directly smaller (resp. directly greater) than a vertex w,
denote it by v←w (resp. v→w), if and only if there exists an outgoing edge from w to v
(resp. from v to w.) The denotation v < w will be used for the binary relation generated
by the relation ←. The words “greatest” or “smallest” will be used with respect to this
relation.

Given a graph g we will consider an operator T g : l2g → l2g defined in the following
way:

T g(ζv) :=
∑

e∈E(g): s(e)=v
L(e)ζt(e) +

{
0 if L(v) ∈ {I, F}
ζv otherwise

Sometimes we use the letter T alone when g is understood.

2.1. Definition. For a vertex v ∈ V (g) and ζ ∈ l2g define the incoming flow at v with
respect to ζ to be ∑

e∈E(g):t(e)=v
L(e) · 〈ζ, ζs(e)〉.

The following lemma will be used many times. It follows directly from the definition
of T g.

2.2. Lemma (“flow lemma”). If ζ ∈ kerT then for every vertex v with label other than
I or F , −〈ζ, ζv〉 is equal to the incoming flow at v. For a vertex with label I or F the
incoming flow is 0.

2-A. The graph g(k)

The graph g(k), k ∈ {1, 2, . . .}, is depicted on Figure 1.
We need some notation for vertices. The greatest vertex with label A will be called a1;

for m < k the vertex with label A which is directly smaller than am will be called am+1.
The smallest vertex with label B will be called b1; for m < k the vertex with label B
which is directly greater than bm will be called bm+1.

2.3. Lemma. dim kerT g(k) = 0

Proof. We first check the case k = 1, by explicitly writing down the matrix of T .
For k > 1 suppose that ζ ∈ l2(g(k)) is such that T (ζ) = 0. From the flow lemma we

see that 〈ζ, ζa1〉 = 〈ζ, ζb1〉, and using induction we prove that 〈ζ, ζa1〉 = 〈ζ, ζbk
〉 and finally

that 〈ζ, ζa1〉 = 〈ζ, ζak
〉.
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Figure 1. The graph g(k)

But on the other hand from the flow lemma it follows by induction that 〈ζ, ζa1〉 =
2k−1〈ζ, ζak

〉. Since k > 1, this proves that 〈ζ, ζa1〉 = 0, and thus 〈ζ, ζai
〉 = 〈ζ, ζbi

〉 = 0.
�

2-B. The graph h(l)

The graph h(l), l ∈ {1, 2, . . .}, is depicted on Figure 2.
Let the unique vertex with label F be denoted by f . Let the greatest vertex with label

C (resp. D) be called c1 (resp. d1); for m < l the vertex with label C (resp. D) which is
directly smaller than cm (resp. dm) will be called cm+1 (resp. dm+1).

h(2)

C

D

F

C

D
−1

−1

−1

1 1

l

h(l)

C

D

F

C C C

D D D

1111

−1−1

−1 −1

−1

h(1)

C

D

F

−1

1

Figure 2. The graph h(l)

2.4. Lemma. dim kerT h(l) = 1

Proof. Let us consider the matrix of T in the basis ζc1 , . . . , ζcl
, ζd1 , . . . , ζdl

, ζf . This matrix
is lower triangular, and the diagonal consists of 2l 1’s and of one 0 (the one which
corresponds to ζf .) This shows the lemma. �

2-C. The graph j(k, l)

The graph j(k, l), k, l ∈ {1, 2, . . .} is depicted on Figure 3. It consists of a copy of the
graph g(k), a copy of the graph h(l), and one additional vertex with the label I together
with three additional edges. The vertex with the label I will be denoted by ι. The rest
of the vertices will be denoted in the way described in the two previous subsections.

2.5. Lemma. If l = 2k−1 − 1 then dim kerT j(k,l) = 2. Otherwise dim kerT j(k,l) = 1
5
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AAAAA

B B B B B

I
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1

1 1 11
−1

Figure 3. The graph j(k, l)

Proof. We will focus on the case k > 1. The arguments in the case k = 1 are very similar
and are left to the reader.

First, let l = 2k−1− 1. The first generator of kerT is ζf , and the coefficients of another
generator of kerT are depicted on Figure 4.

k

12k−22k−1

2k−1 2k−1 2k−1 2k−1 0

1 1 1 1

0
1

−1 −1

−1−1−1−2−2−2

−1 −1−1

−1
−1

−1

1

1 1 11

24

2k−1

−1

2k−1−1 2k−1−2 2k−1−3

2k−1−1

Figure 4. Coefficients of the second generator of kerT j(k,2k−1−1)

To see that these two vectors generate the whole kerT let us prove a general (i.e. valid
for all pairs (k, l)) claim:
Claim. Let ζ ∈ kerT be such that 〈ζ, ζf〉 = 0 and 〈ζ, ζa1〉 = 0. Then ζ = 0.
Proof. First we see from the flow lemma that 〈ζ, ζa1〉 = 0 implies 〈ζ, ζι〉 = 〈ζ, ζc1〉 = 0
on the one hand, and on the other we see inductively that 〈ζ, ζai

〉 = 〈ζ, ζbi
〉 = 0 for

i = 1, . . . k.
Now, 〈ζ, ζc1〉 = 〈ζ, ζι〉 = 0 implies that 〈ζ, ζd1〉 = 0, and 〈ζ, ζci

〉 = 0 gives us 〈ζ, ζci+1〉 =
0. Finally 〈ζ, ζdi

〉 = 〈ζ, ζci+1〉 = 0 implies 〈ζ, ζdi+1〉 = 0 which shows that in fact also
〈ζ, ζci

〉 = 〈ζ, ζdi
〉 = 0 for all i = 1, . . . , l; and 〈ζ, ζf〉 is equal to 0 by assumption. �

Thus to finish the proof it is enough to show that if ζ ∈ kerT is such that 〈ζ, ζa1〉 = 1
then l = 2k−1 − 1.

Indeed, 〈ζ, ζa1〉 = 1 implies 〈ζ, ζa2〉 = 2 and, inductively, 〈ζ, ζak
〉 = 2k−1. This implies

that 〈ζ, ζbk
〉 = 2k−1, and, by induction, 〈ζ, ζb1〉 = 2k−1.

Now, 〈ζ, ζa1〉 = 1 and 〈ζ, ζb1〉 = 2k−1 imply that 〈ζ, ζι〉 = 2k−1 − 1. On the other hand
〈ζ, ζa1〉 = 1 implies also 〈ζ, ζc1〉 = 1; since 〈ζ, ζci

〉 = 1 clearly implies 〈ζ, ζci+1〉 = 1 we get
〈ζ, ζci

〉 = 1 for i = 1, . . . , l.
Note that 〈ζ, ζι〉 = 2k−1 − 1 and 〈ζ, ζc1〉 = 1 imply 〈ζ, ζd1〉 = 2k−1 − 2; but from the

flow lemma we see 〈ζ, ζdi+1〉 = 〈ζ, ζdi
〉 − 〈ζ, ζci+1〉 = 〈ζ, ζdi

〉 − 1 so using induction we get
that 〈ζ, ζdl

〉 = 2k−1 − l − 1.
6



Note that T (ζdl
) = ζdl

− ζf , and that T (ζ⊥dl
) ⊥ ζf , where ζ⊥dl

denotes the orthogo-
nal complement of the subspace spanned by ζdl

. This means that 0 = 〈T (ζ), ζf〉 =
〈 〈ζ, ζdl

〉T (ζdl
), ζf 〉 = −〈ζ, ζdl

〉 and thus 2k−1 − l − 1 = 0 . �

3. Our computational tool

In this section (X,µ) can be taken to be any probability measure space, and ρ : Γ y X
any probability measure preserving action.

Let us recall some definitions from Section 5 of [Gra10].
Let S ∈ L∞(X) o Γ be given as S := ∑n

i=1 θiχi, where θi’s are elements of the group
ring CΓ, and χi’s are characteristic functions of pairwise disjoint measurable sets Xi. The
coefficients of θi’s will be denoted by θi(γ), i.e. θi = ∑

γ∈Γ θi(γ)γ.
In what follows we can without a loss of generality assume that the union of the sets

Xi is the whole of X, by adding to S an additional summand 0 · χX−∪Xi
.

In a directed graph g whose edges and vertices are labeled, L(v) and L(e) will denote,
as in Section 2, respectively the label of a vertex v and of an edge e. The rest of the
notation from Section 2 will also be adopted.
3.1. Definition. An S-graph is a directed graph g whose vertices are labeled by elements
of the set {1, . . . , n}, and whose edges are labeled by elements of Γ, in such a way that
the following conditions hold.

(1) For every vertex v the labels of the edges starting at v are pairwise different.
(2) For every vertex v and every γ ∈ supp θL(v) there exists an edge starting at v with

label γ.
An X-embedded S-graph is a pair (g, φ), where g is an S-graph and φ : V (g) → X is

an injection such that for every edge e ∈ E(g) we have that φ(t(e)) = ρ(L(e))(s(e))
A maximal X-embedded S-graph is an X-embedded S-graph (g, φ) such that if x ∈ Xi

and γ ∈ supp θi are such that ρ(γ)(x) ∈ φ(V (g)) then x ∈ φ(V (g)).
3.2. Remark. In the applications it is often convenient to enumerate the vertices of a given
S-graph by the sets Xi (instead of numbers 1, . . . , n.)

Given a (not necessarily directed) path p in an S-graph g, one can define the label L(p)
of p as the product of labels and inverses of labels of consecutive edges in p, depending
on their orientation (see Definition 5.3.5 in [Gra10] for details.)
3.3. Definition. We will say that an S-graph g is simply connected if and only if for
every closed path p in g the label L(p) of p is the neutral element of Γ.

There is a natural notion of isomorphism for S-graphs (bijection between the sets
of vertices which is Γ-equivariant wherever it can) and maximal X-embedded S-graphs
(bijection as before which commutes with the embedding maps) - see Definition 5.3.8
in [Gra10] for details. Let S-Graphsfin denote the set of isomorphism classes of those
S-graphs g such that V (g) is finite and such that there exists a maximal X-embedded
S-graph (g, φ). We will sometimes identify maximal X-embedded S-graphs with finite
number of vertices with their images in S-Graphsfin.

For an element g ∈ S-Graphsfin define µ(g) to be equal to µ({x ∈ X : there exists a
maximal X-embedded S-graph (g, φ) such that x ∈ φ(V (h)) }). This gives a measure on
the countable set S-Graphsfin.

For an S-graph g and every i = 1, . . . , n we define χg
i : l2g → l2g on the canonical

basis by

χg
i (ζv) :=

{
ζv if i = L(v)
0 otherwise.
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Similarly for γ ∈ Γ, let γg be given by

γg(ζs(e)) :=
{
ζt(e) if L(e) = γ
0 otherwise.

Finally define θg
i := ∑

γ∈Γ θ(γ) · γg and Sg := ∑n
i=1 θ

g
i γ

g
i .

Let T ∈ L∞(X) o Γ be a polynomial expression in S and χi’s. For a given S-graph g
define T g : l2g→ l2g to be the same polynomial expression in Sg and χg

i ’s.

3.4. Theorem. Suppose that
(1) the measure µ on S-Graphsfin is a probability measure,
(2) the elements of S-Graphsfin are simply-connected,
(3) the elements of S-Graphsfin do not possess non-trivial automorphisms (as S-

graphs.)
Then

dimvN kerT =
∑

g∈S-Graphsfin

µ(g)
|V (g)| dim kerT g.

This is a direct consequence of Theorem 5.4.12 in [Gra10].

4. Description of the operator

Let us fix p ∈ {2, 3, . . .} and let (X,µ) be the compact abelian group Z/pZ ×Z/23 with
the normalized Haar measure, let Γ be the group Z × GL3(Z/2), and let ρ : Γ y X be
the action of Γ on X by the following measure-preserving group automorphisms: the
generator t of Z acts on Z/pZ by [ρ(t)((ai))]j = aj+1, and GL3(Z/2) acts in the natural
way on Z/23.

We will now describe an operator T in the von Neumann algebra L∞(X) o Γ. One
standard monograph on the subject of von Neumann algebras is [Sak98]. For our notation
see Subsection 2.2 of [Gra10].

It is convenient to think of elements of Z/23 as “labels”. Thus let A, B, C, D, F , I,
U1, U2 (U stands for “unimportant”) denote the elements of Z/23. The only assumption
on the bijection between the above letters and the elements of Z/23 is that the first 6
symbols correspond to non-zero elements of Z/23.

For every pair (x, y) ∈ {A,B,C,D, F, I}, let us fix an automorphism [xy] ∈ GL3(Z/2)
which sends x to y, in such a way that
(4.1) [xy] = [yx]−1

and
(4.2) [AC][CD] = [AI][ID].

When dealing with subsets of Z/p and Z/pZ, the symbol 0 will denote the set {0} ⊂ Z/p
and the symbol 1 will denote the set {1, 2, 3, . . . , p− 1} ⊂ Z/p. Let

(ε−aε−a+1 . . . ε−1ε0ε1 . . . εb, x),
where εi ∈ {0, 1} ⊂ 2Z/p denote the following subset of X:

{((mi), y) ∈ Z/pZ × Z/23 : m−a ∈ ε−a, . . . ,mb ∈ εb, y = x}.
Let

χ(ε−aε−a+1 . . . ε−1ε0ε1 . . . εb, x)
be the characteristic function of (ε−aε−a+1 . . . ε−1ε0ε1 . . . εb, x).

8



Let us define an operator S as the sum of the following summands:
(−t[ID] + t−1[IA]) · χ(101, I)(4.3)

(−t2[AC]− 2t−1) · χ(1101, A)(4.4)
−t2[AC] · χ(0101, A)(4.5)
−2t−1 · χ(1100, A)(4.6)

0 · χ(0100, A)(4.7)
−2t−1 · χ(111, A)(4.8)
−[AB] · χ(011, A)(4.9)
−t · χ(11, B)(4.10)

−[BA] · χ(10, B)(4.11)
(−t+ [CD]) · χ(11, C)(4.12)

+[CD] · χ(10, C)(4.13)
−t · χ(11, D)(4.14)

−[DF ] · χ(10, D)(4.15)
0 · χ(10, F )(4.16)
0 · χ(U),(4.17)

where U denotes “all the rest”, i.e. the complement of the union of the sets (101, I),
(1101, A), (0101, A), (1100, A), (0100, A), (111, A), (011, A), (11, B), (10, B), (11, C),
(10, C), (11, D), (10, D) and (10, F ); and χ(U) is the characteristic function of U .

The operator T in which we are interested is defined as
(4.18) T := S + (1− χ(U)− χ(101, I)− χ(10, F ))

5. Application of the computational tool

We will now compute dimvN kerT , where T is the operator from Section 4. First we
compute the (countable) measure space S-Graphsfin (S is also from Section 4.)

5-A. The trivial S-graph u

The S-graph u is shown on Figure 5. It consists of a single vertex with label U and no
edges.

U

Figure 5. The S-graph u

5.1. Lemma.
(1) dim kerTu = 1
(2) The S-graph u does not possess non-trivial automorphisms.
(3) The S-graph u is simply-connected.
(4) µ(u) = 1

8(2 + 51
p

+ p3 + 2p−1
p
p2 + p−1

p
+ (p−1

p
)2)

Proof. Note that properties (1)-(3) concern S-graphs (as opposed to embedded S-graphs.)
(1) is clear since Tu is the 0-endomorphism of a one-dimensional space.
(2) and (3) are also clear.
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As to (4), note that for every point x of U we get an embedded S-graph (u, φ) by
sending the unique vertex of u to x. We will now check that (u, φ) is in fact a maximal
embedded S-graph.

Note that U = (0, A) ∪ (0, B) ∪ (0, C) ∪ (0, D) ∪ (·, U1) ∪ (·, U2) ∪ (0, F ) ∪ (11, F ) ∪
(1, I) ∪ (100, I) ∪ (001, I) ∪ (000, I).

Suppose for example that x ∈ (0, A), and consider for example the summand (4.3) of
S, i.e. (−t[ID] + t−1[IA]) · χ(101, I). According to Definition 3.1 we need to check that
x /∈ ρ(t[ID])((101, I))∪ρ(t−1[IA])((101, I)). This is clear since ρ(t[ID])((101, I)) ⊂ (·, D)
and ρ(t−1[IA])((101, I)) = (101, A).

All the remaining cases (4.4) - (4.16) are checked in an analogous straight-forward
fashion. Similarly when x is an element of another summand of U .

This shows that µ(u) ≥ µ(U), which is easily computed to be 1
8(2 + 51

p
+ p3 + 2p−1

p
p2 +

p−1
p

+ (p−1
p

)2). The opposite inequality is clear since the unique vertex of u has to be sent
to U . �

5-B. The S-graph g(k)

The S-graph g(k), k ∈ {1, 2, . . .}, is shown on Figure 6.

(111, A)

(11, B) (11, B) (11, B) (10, B)

[BA]
[AB]

t−1 t−1

t t t

k

g(k)

(111, A)(011, A) (111, A) (1100, A)

(11, B)

t−1

(10, B)

[BA]

g(1)

[BA]
[AB]

(11, B) (10, B)

t

(1100, A)

g(2)

(011, A)(0100, A)

t−1

Figure 6. The S-graph g(k)

It is straightforward to see that there is a unique bijection V (g(k)) → V (g(k)) which
induces an isomorphism of directed graphs, and which sends vertices with labels of the
form (..., x) to vertices with the label x, for every x ∈ {A,B,C,D, I, F}. Note that this
bijection induces an isomorphism l2g→ l2g which intertwines T g with T g.

5.2. Lemma.
(1) dim kerT g(k) = 0
(2) The S-graphs g(k) do not possess non-trivial automorphisms.
(3) The S-graphs g(k) are simply-connected.
(4) µ(g(k)) ≥ 2k · 1

8 · (
1
p
)3 · (p−1

p
)k

Proof. (1) follows from the existence of an isomorphism l2g → l2g intertwining T g with
T g.

(2) and (3) are straightforward to check using the fact that [AB][BA] = Id (which
follows from equation (4.1).)

As to (4), let x be a fixed element of the set (01k−1100, A), where 1x denotes x symbols
1. Let us denote x by (−01k−1100−, A). Similarly, for example t−1(x) will be denoted by
(−01k−21100−, A).

On Figure 7 we show an embedded S-graph (g(k), φ). Label of a given vertex is the
value of φ on this vertex. In particular, different vertices are mapped to different points
of X.
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[BA]
[AB]

t−1 t−1

t t t

k

t−1

(−01k−21100−, A)

(−011k−100−, B) (−01k−311100−, B) (−01k−1100−, B)(−0111k−200−, B) (−01k−21100−, B)

(−0111k−200−, A) (−01k−311100−, A) (−01k−1100−, A)(−011k−100−, A)

Figure 7. The embedded S-graph (g(k), φ)

As in Lemma 5.1, it is straightforward, although tedious, to check from the definition
of S that Figure 7 contains in fact a maximal embedded S-graph. It follows that µ(g(k))
is at least equal to |V (g(k))| · µ((01k−1100, A)) = 2k · 1

8 · (
1
p
)3(p−1

p
)k. �

5-C. The S-graph h(l)

The S-graph h(l) is shown on on Figure 8.

h(1)

(10, C)

(10, D)

(10, F )

[CD]

[DF ]

t

t

(11, C)

(11, D)

t

t

(11, C)

(11, D)

(11, C)

(11, D)

[CD] [CD] [CD]

(10, C)

(10, D)

(10, F )

[CD]

[DF ]

l

h(l)

(10, C)

(10, D)

(10, F )

t

t

(11, C)

[CD] [CD]

[DF ]
(11, D)

h(2)

Figure 8. The S-graph h(l)

As in Subsection B, note the existence of a bijection V (h(l))→ V (h(l)) which induces
an isomorphism l2h(l)→ l2h(l) intertwining Th(l) and T h(l).

5.3. Lemma.
(1) dim kerTh(l) = 1
(2) The S-graphs h(l) do not possess non-trivial automorphisms.
(3) The S-graphs h(l) are simply-connected.
(4) µ(h(l)) ≥ (2l + 1) · 1

8 · (
1
p
)3 · (p−1

p
)l

Proof. (1), (2) and (3) are proved as in Lemma 5.2.
To prove (4) we proceed also as in Lemma 5.2, and we use analogous notation. Thus

let x = (−0011l−10−, C) be a fixed element of the set (0011l−10, C). On Figure 9 we
show an embedded S-graph (h(l), φ).

It is again straightforward but tedious to check that Figure 9 contains in fact a maximal
embedded S-graph. It follows that µ(h(l)) is at least equal to |V (h(l))|·µ((0011l−10, A)) =
(2l + 1) · 1

8 · (
1
p
)3 · (p−1

p
)l �

11



t

t

t

t

[CD] [CD] [CD] [CD]

[DF ]

l

(−001l−110−, D)

(−001l−110−, F )

(−0011l−10−, C) (−001l−2110−, C)

(−001l−2110−, D)(−0011l−10−, D) (−00111l−20−, D)

(−00111l−20−, C) (−001l−110−, C)

Figure 9. The embedded S-graph (h(l), φ)

5-D. The S-graph j(k, l)

The S-graph j(k, l) is shown on Figure 10.

(111, A)

(11, B) (11, B) (11, B) (10, B)

[BA]
[AB]

t−1 t−1

t t t

k

(111, A)(011, A) (111, A)

(11, B)

t−1
(101, I)

t

t

(11, C)

(11, D)

t

t

(11, C)

(11, D)

(11, C)

(11, D)

[CD] [CD] [CD]

(10, C)

(10, D)

(10, F )

[CD]

[DF ]

l

t2[AC]

(1101, A)
t−1[IA] t[ID]

Figure 10. The S-graph j(k, l)

As in Subsection B, note the existence of a bijection V (j(k, l)) → V (j(k, l)) which
induces an isomorphism l2j(k, l)→ l2j(k, l) intertwining T j(k,l) and T j(k,l).

5.4. Lemma.

(1) dim kerT j(k,l) =
{

2 if l = 2k−1 − 1
1 otherwise

(2) The S-graphs j(k, l) do not possess non-trivial automorphisms.
(3) The S-graphs j(k, l) are simply-connected.
(4) µ(j(k, l)) ≥ (2k + 2l + 2) · 1

8 · (
1
p
)3 · (p−1

p
)k+l

Proof. (1), (2) are proved as in Lemma 5.2. (3) follows from the fact that [AB][BA] =
[CD][DC] = 1 (eq. (4.1)) and [AC][CD] = [AI][ID] (eq. (4.2).)

To prove (4) we proceed also as in Lemma 5.2, and we use analogous notation. Thus
let x = (−01k01l0−, I) be a fixed element of the set (01k01l0, I). On Figure 11 we show
an embedded S-graph (j(k, l), φ).
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[BA]
[AB]

t−1 t−1

t t t

k

t−1

t

t

t

t

[CD] [CD] [CD] [CD]

[DF ]

l

t2[AC]

t−1[IA] t[ID]

(−01k−21101l0−, B)

(−01k−1101l0−, B)(−01k−311101l0−, B)(−011k−101l0−, B)

(−01k−1101l0−, A)

(−0111k−201l0−, B)

(−011k−101l0−, A) (−01k−311101l0−, A)

(−0111k−201l0−, A) (−01k−21101l0−, A)

(−01k01l−110−, C)
(−01k01l−211−, C)(−01k011l−10−, C)

(−01k0111l−20−, D) (−01k01l−211−, D)

(−01k01l−110−, D)

(−01k0111l−20−, C)

(−01k01l−110−, I)

(−01k01l0−, I)
(−01k011l−10−, D)

Figure 11. The embedded S-graph (j(k, l), φ)

It is again straightforward and quite tedious to check from the definition of S that
Figure 11 contains in fact a maximal embedded S-graph. It follows that µ(j(k, l)) is at
least equal to |V (j(k, l))| · µ((−01k01l0−, I)) = (2k + 2l + 2) · 1

8 · (
1
p
)3 · (p−1

p
)k+l. �

5-E. The measure space S-Graphsfin

In this subsection let α = 1
p
, β = p−1

p
.

5.5. Corollary. The measure space (S-Graphsfin, µ) is a probability measure space. Its
only points with non-trivial measure are u, g(k), k ≥ 1, h(l), l ≥ 1, and j(k, l), k, l ≥ 1.
Their measures are as follows:

µ(u) = 1
8(2 + 51

p
+ p3 + 2p− 1

p
p2 + p− 1

p
+ (p− 1

p
)2),

µ(g(k)) = 2k · 1
8 · (

1
p

)3 · (p− 1
p

)k,

µ(h(l)) = (2l + 1) · 1
8 · (

1
p

)3 · (p− 1
p

)l,

µ(j(k, l)) = (2k + 2l + 2) · 1
8 · (

1
p

)3 · (p− 1
p

)k+l.

Proof. We know from Section 5.4 of [Gra10] (see in particular proof of Theorem 5.4.12)
that the measure space S-Graphsfin is always a subspace of a probability measure space.
On the other hand we know already that

µ(u) ≥ 1
8(2 + 51

p
+ p3 + 2p− 1

p
p2 + p− 1

p
+ (p− 1

p
)2),

µ(g(k)) ≥ 2k · 1
8 · (

1
p

)3 · (p− 1
p

)k,

µ(h(l)) ≥ (2l + 1) · 1
8 · (

1
p

)3 · (p− 1
p

)l,

µ(j(k, l)) ≥ (2k + 2l + 2) · 1
8 · (

1
p

)3 · (p− 1
p

)k+l,
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so to prove the corollary it is enough to check that
1
8(2 + 51

p
+ p3 + 2p− 1

p
p2 + p− 1

p
+ (p− 1

p
)2) +

∞∑
k=1

2k · 1
8 · (

1
p

)3 · (p− 1
p

)k +

∞∑
l=1

(2l + 1) · 1
8 · (

1
p

)3 · (p− 1
p

)l +

∞∑
k,l=1

(2k + 2l + 2) · 1
8 · (

1
p

)3 · (p− 1
p

)k+l = 1.

Recall the formula ∞∑
n=1

(n+ C)xn = x

(1− x)2 + Cx

1− x
for 0 ≤ x ≤ 1. Using this formula we see that∑

k≥1
2k · 1

8 · α
3 · βk = α3

4
∑
k≥1

kβk = α3

4 ·
β

α2 = αβ

4 .

Similarly∑
l≥1

(2l + 1) · 1
8 · α

3βl = α3

4
∑
l≥1

lβl + α3

8
∑
l≥1

βl = αβ

4 + α3

8
β

1− β = αβ

4 + α2β

8 .

Finally ∑
k,l≥1

(2k + 2l + 2) · 1
8 · α

3βk+l = α3

4
∑
k

βk
∑
l

(l + (k + 1))βl

= α3

4
∑
k

βk((k + 1)β
α

+ β

α2 )

= α2β

4
∑
k

(k + 1)βk + αβ

4
∑
k

βk

= α2β

4 ( β
α2 + β

α
) + αβ

4
β

α

= β2

2 + αβ2

4 .

Putting everything together we get

1
8(2 + 5α + α3 + 2βα2 + β + β2) + αβ

4 + (αβ4 + α2β

8 ) + (β
2

2 + αβ2

4 ) =

=
(1

4 + 5
8α + 1

8α
3 + 1

4α
2 − 1

4α
3 + 1

8 −
1
8α + 1

8 −
1
4α + 1

8α
2
)

+

+
(1

4α−
1
4α

2
)

+
(1

4α−
1
4α

2 + 1
8α

2 − 1
8α

3
)

+
(1

2 − α + 1
2α

2 + 1
4α−

1
2α

2 + 1
4α

3
)

= 1,

as required. �

5.6. Corollary. Let T be the operator defined in Section 4. Then

dimvN kerT = 4p3 + 3p2 + 2p− 1
8p3 + 1

8p2(p− 1)

∞∑
k=1

(p− 1
p

)k+2k−1
,

which is a transcendental number.
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Proof. As Lemmas 5.1-5.4 and Corollary 5.5 show, we can use Theorem 3.4:

dimvN kerT =
∑

g∈S-Graphsfin

µ(g)
|V (g)| dim kerT g

According to Corollary 5.5 the above sum can be written as
1
8(2 + 5α + α3 + 2βα2 + β + β2) · dim kerTu +

∞∑
k=1

1
8 · α

3 · βk · dim kerT g(k) +

+
∞∑
l=1

1
8 · α

3βl dim kerTh(l) +

∞∑
k,l=1

1
8 · α

3βk+l dim kerT j(k,l).

Substituting the values for dim kerT ’s we get
1
8(2 + 5α + α3 + 2βα2 + β + β2) +

0 +
∞∑
l=1

1
8 · α

3βl +

∞∑
k,l=1

1
8 · α

3βk+l +
∞∑
k=1

1
8 · α

3βk+2k−1−1.

Noting that ∑∞k,l=1 β
k+l = ∑

k β
k∑

l β
l = (β

α
)2 we get

1
8(2 + 5α + α3 + 2βα2 + β + β2) + 1

8α
2β + 1

8αβ
2 + 1

8
α3

β

∞∑
k=1

βk+2k−1
,

which is easily seen to be what we want.
Clearly to prove transcendence od dimvN kerT it is enough to prove that∑∞k=1(p−1

p
)k+2k−1

is transcendental. This follows directly from Tanaka’s Theorem 1 in [aT02]. Although
similar series have been investigated already by Mahler in [Mah29], to the author’s best
knowledge [aT02] is the first work which implies transcendence of ∑∞k=1(p−1

p
)k+2k−1 .

�

6. Back to the lamplighter groups

In the previous section we have seen that the operator T ∈ L∞(Z/pZ × Z/23) o (Z ×
Gl3(Z/2)) defined in Section 4 has kernel with transcendental von Neumann dimension.
Using Pontryagin duality (see for example Subsection 4.2 of [Gra10] for details) we get
an operator T̂ ∈ K

[ (
Z/p⊕Z o Z

)
×
(
Z/23 oGl3(Z/2)

) ]
with the same dimension of the

kernel, where K is the smallest subfield of C such all the characteristic functions which
appear in the definitions of S, i.e. in equations (4.3)-(4.16), and of T , i.e. equation (4.18),
are in the image of the Fourier transform

K(Z/p⊕Z ⊕ Z/23)→ L∞(Z/pZ × Z/23),

where K(Z/p⊕Z ⊕ Z/23) is the group ring over K of the group Z/p⊕Z ⊕ Z/23.
15



We claim that in our caseK = Q. Indeed, all the functions in the equations (4.3)-(4.16)
and (4.18) are products of functions of two types: (1) functions of the form

Z/pZ × Z/23 → Z/2
f→ R,

where f is the characteristic function of either the set {0} or {1}; and (2) functions of
the form

Z/pZ × Z/23 → Z/p
g→ R,

where g is either the characteristic function of the set {0} or of the set {1, 2, . . . , p− 1}.
Thus our claim follows from functoriality of the Pontryagin duality and the fact that both
f and g are in the images of Fourier transforms

QẐ/2 → L∞(Z/2)
and, respectively,

QẐ/p → L∞(Z/p).
Indeed, it is straightforward to check that π := 0+1

2 ∈ QẐ/2 is mapped to the characteristic
function of {0} ⊂ Z/2, 1 − π is mapped to the characteristic function of {1} ⊂ Z/2; and
σ := 0+1+...+(p−1)

p
∈ QẐ/p is mapped to the characteristic function of {0} ⊂ Z/p, 1− σ is

mapped to the characteristic function of {1, 2, . . . , (p− 1)} ⊂ Z/p.
It is clear that to finish the proof of Theorem A it is enough to prove the following

lemma.

6.1. Lemma. Let G be a discrete countable group and let H be a finite group. Then
|H| · C(G×H) = C(G).

Proof. Note that |H| · C(G×H) ⊇ C(G), since there is a projection π in QH ⊂ QG×H
whose trace is 1

|H| and which commutes with QG ⊂ Q(G ×H). It is easy to check that
|H| · dimvN ker((1− π) + πθ) = dimvN ker θ (see for example proof of Proposition 4.2.7 in
[Gra10].)

For the other containment note first that the regular representation of H gives rise to
a unital injection of ∗-algebras ι : QH ↪→ M|H|(Q) such that |H| trH(θ) = tr(ι(θ)). This
means that the unital ∗-homomorphism ι̂ := Id⊗ι : Mk (Q(G×H)) = Mk(QG)⊗QH →
Mk(QG)⊗M|H|(Q) = Mk+|H|(QG) also has the property |H| trH(θ) = tr(ι̂(θ)).

Now the result follows for example from Lemma 4.2.1 in [Gra10] by taking G there to
be equal to G×H here, and L there to be Mk+|H|(QG) with normalized trace. �
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