ŁUKASZ GRABOWSKI

ABSTRACT. Recently groups giving rise to irrational l^2 -Betti numbers have been found. All the examples known so far share a common property: they have one of the lamplighter groups $\mathbb{Z}_{p} \wr \mathbb{Z}$ as a subgroup. In this paper we prove that in fact already all the groups $\mathbb{Z}_{p} \wr \mathbb{Z}$ give rise to transcendental l^2 -Betti numbers.

CONTENTS

1. Introduction	1
A. Presentation of the result	1
B. Outline of the paper	2
C. Basic notation	3
D. Thanks and acknowledgements	3
2. Preliminaries on certain graphs	4
A. The graph $g(k)$	4
B. The graph $h(l)$	5
C. The graph $j(k, l)$	5
3. Our computational tool	7
4. Description of the operator	8
5. Application of the computational tool	9
A. The trivial S -graph \mathbf{u}	9
B. The S-graph $\mathbf{g}(k)$	10
C. The S-graph $\mathbf{h}(l)$	11
D. The S-graph $\mathbf{j}(k, l)$	12
E. The measure space S -Graphs _{fin}	13
6. Back to the lamplighter groups	15
References	16

1. INTRODUCTION

1-A. PRESENTATION OF THE RESULT

Let G be a countable discrete group. We will say that a non-negative real number r is an l^2 -Betti number arising from G if and only if there exists $\theta \in M_m(\mathbb{Q}G)$, a matrix over the rational group ring of G, such that the von Neumann dimension of kernel of θ is r. The motivation for the name is as follows: when G is finitely presented and r is an l^2 -Betti number arising from G, then there exists a closed manifold M whose fundamental group is G, and such that one of the l^2 -Betti numbers of the universal cover of M is equal to r. We refer to [Eck00] and [Lüc02] for more details.

The following problem is a fine-grained version of a question asked by Atiyah in [Ati76].

Question 1 (The Atiyah problem for a group G). What is the set of l^2 -Betti numbers arising from G?

Let us call this set the l^2 -complexity of G, and denote it by $\mathcal{C}(G)$. For a class of groups **G** define $\mathcal{C}(\mathbf{G}) = \bigcup_{G \in \mathbf{G}} \mathcal{C}(G)$.

So far $\mathcal{C}(G)$ has been computed only in cases where $\mathcal{C}(G)$ is a subset of \mathbb{Q} . In fact, what has become to be known as the *Atiyah conjecture for torsion-free groups* says that $\mathcal{C}(G) = \mathbb{N}$ for any torsion-free group, and till the article [DS02] of Dicks and Schick it was widely conjectured that $\mathcal{C}(G) \subset \mathbb{Q}$ for every group G. However, Dicks and Schick gave an example of an operator $\theta \in \mathbb{Q}((\mathbb{Z}_{2} \wr \mathbb{Z})^{2})$ together with an heuristic argument showing why $\dim_{vN} \ker \theta$ is probably irrational. Their work was motivated by the article [GZ01] of Grigorchuk and Żuk.

Only recently Austin has been able to obtain a definite result by proving in [Aus09] that C(Finitely generated groups) is uncountable. This work has been a motivation for much of the following efforts, by showing that computation of dim_{vN} can be sometimes done by analyzing certain dynamical systems and using Pontryagin duality.

Subsequently it has been shown independently by the author in [Gra10] and by Pichot, Schick and Żuk in [PSZ10] that in fact $C(\text{Finitely generated groups}) = \mathbb{R}_{\geq 0}$ and that $C(\text{Finitely presented groups}) \notin \mathbb{Q}$. Moreover, in [Gra10] it is shown that $C((\mathbb{Z}_{2} \wr \mathbb{Z})^3) \notin \mathbb{Q}$.

More recently, Lehner and Wagner showed in [LW10] that $\mathcal{C}(\mathbb{Z}_{p} \wr F_d)$ contains irrational algebraic numbers, where F_d is the free group on d generators, and $d \geq 2, p \geq 2d - 1$.

In all the articles cited above the following is trivial to check: if it is proven that for a given group G it holds that $\mathcal{C}(G) \not\subseteq \mathbb{Q}$ then there exists p such that $\mathbb{Z}_{/p} \wr \mathbb{Z} \subset G$. In other words, according to the current state of knowledge, $\mathbb{Z}_{/p} \wr \mathbb{Z} \subset G$ could be the necessary condition for $\mathcal{C}(G) \not\subseteq \mathbb{Q}$. We prove that it is a sufficient condition. Indeed, it is very easy to see that if $A \subset B$ are groups then $\mathcal{C}(A) \subset \mathcal{C}(B)$ (see for example Corollary 4.2.2 in [Gra10]) and here we prove the following theorem.

Theorem A. Let $p \geq 2$. Then $\mathcal{C}(\mathbb{Z}_{p} \wr \mathbb{Z})$ contains transcendental numbers.

We finish this subsection by stating two related open questions. The first one summarizes the current state of knowledge on irrational l^2 -Betti numbers.

Question 2. Is it the case that $\mathcal{C}(G) \not\subseteq \mathbb{Q}$ is equivalent to $\mathbb{Z}_{/p} \wr \mathbb{Z} \subset G$ for some p?

As mentioned above, $\mathcal{C}(G)$ has been computed only in cases where in fact $\mathcal{C}(G) \subset \mathbb{Q}$. The "easiest" group known so far for which $\mathcal{C}(G) \not\subseteq \mathbb{Q}$ is $\mathbb{Z}_{/2} \wr \mathbb{Z}$, and hence the following question.

Question 3. What is $\mathcal{C}(\mathbb{Z}_{/2} \wr \mathbb{Z})$?

This question contains many interesting subquestions. For example, does $\mathcal{C}(\mathbb{Z}_{2} \wr \mathbb{Z})$ contain irrational algebraic numbers?

1-B. OUTLINE OF THE PAPER

In order to prove Theorem A we need to find an operator in $M_m(\mathbb{Q}(\mathbb{Z}_{p} \wr \mathbb{Z}))$ whose kernel has transcendental von Neumann dimension. However, Lemma 6.1 says that $|H| \cdot C(G \times H) = C(G)$, for any group G and any finite group H, so we can as well find such an operator in $\mathbb{Q}(\mathbb{Z}_{p} \wr \mathbb{Z} \times H)$, where H is some finite group.

In Section 6, *Back to the lamplighter groups*, we see how Pontryagin duality allows us to exchange the above question with a question about existence of an operator in the von Neumann algebra $L^{\infty}(X) \rtimes \Gamma$ whose kernel has transcendental von Neumann dimension, where $X := \mathbb{Z}_{/p}^{\mathbb{Z}} \times \mathbb{Z}_{/2}^{3}$, and $\Gamma := \mathbb{Z} \times GL_{3}(\mathbb{Z}_{/2})$.

The operator $T \in L^{\infty}(X) \rtimes \Gamma$, whose dimension we are able to calculate, is defined in Section 4, *Description of the operator*, in terms of another operator S. Our computational tool is the one developed in [Gra10], and we present it in Section 3, Our computational tool.

The main idea is as follows: we are given a probability measure space (X, μ) , an action $\rho: \Gamma \curvearrowright X$ by measure preserving maps, an operator $S \in L^{\infty}(X) \rtimes \Gamma$, and another operator T which is defined in terms of S. In order to compute $\dim_{vN} \ker T$ we proceed as follows: we decompose X into family of sets, each of which is the set of vertices of certain graph g - this decomposition depends on the operator S. Next, we "restrict" the operator T to an operator T^g defined on the Hilbert space l^2g spanned by vertices of g (i.e. points of X.) Computing dim ker T^g turns out to be relatively easy, and it turns out that to obtain $\dim_{vN} \ker T$ one needs to "integrate" the function dim ker T^g over all the graphs g which appear as "subgraphs" of X.

The graphs which appear in the decomposition of X induced by our S are described in Section 2, *Preliminaries on certain graphs*. In Section 5, *Application of the computational tool*, we prove that the graphs described in Section 2 are indeed all the graphs we need to consider. After this we are ready to apply the computational tool: Corollary 5.6 shows what is $\dim_{vN} \ker T$; transcendence of it follows from the work [aT02] of Tanaka.

1-C. BASIC NOTATION

The symbols \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} and \mathbb{C} denote respectively the sets $\{0, 1, \ldots\}$, the set of integers, the set of rational numbers, the set of real numbers and the set of complex numbers. We choose one of the two generators of \mathbb{Z} once and for all and denote it by t.

The cyclic group of order p is denoted by \mathbb{Z}_{p} .

For two groups A and B, A^B denotes the set of functions $B \to A$. Usually B will be equal to \mathbb{Z} in which case A-valued functions will be identified with A-valued sequences. $A^{\oplus B}$ denotes the set of finitely supported functions $B \to A$.

The wreath product of a group A with \mathbb{Z} is defined as $A \wr \mathbb{Z} := A^{\oplus \mathbb{Z}} \rtimes_{\rho} \mathbb{Z}$, where $[\rho(t)((a_i))]_j := a_{j+1}$.

Given a group G, the Hilbert space spanned by the elements of G is denoted by l^2G ; elements of the canonical basis of l^2G are denoted by $\zeta_g, g \in G$. Given a field K of complex numbers we often consider the group ring KG of linear combinations of elements of Gwith coefficients in K. KG acts on l^2G by the linear extension of the rule $g \cdot \zeta_h := \zeta_{gh}$, $g, h \in A$.

Given a ring R and a positive integer m, $M_m(R)$ denotes the ring of $m \times m$ matrices over R. The elements of the matrix ring $M_m(\mathbb{Q}G) = \mathbb{Q}G \otimes M_m(\mathbb{Q})$ act on the Hilbert space $(l^2G)^m = l^2G \otimes \mathbb{C}^m$.

Given $\theta \in \mathbb{Q}G$, we can investigate the kernel ker $\theta \subset l^2 G$ of θ . The von Neumann dimension $\dim_{vN} \ker \theta$ of kernel of θ is defined as

$$\dim_{vN} \ker \theta := \operatorname{tr}_{vN}(P_{\theta}),$$

where $P_{\theta} : l^2 G \to l^2 G$ is the orthogonal projection onto ker θ , and the von Neumann trace tr_{vN} on a given operator T is defined as $\operatorname{tr}_{vN}(T) := \langle T\zeta_e, \zeta_e \rangle$, with e being the neutral element of G. We proceed similarly when $\theta \in M_m(\mathbb{Q}G)$, by defining the von Neumann trace on $B(l^2G) \otimes M_m(\mathbb{C})$ as $\operatorname{tr}_{vN} \otimes \operatorname{tr}$, where tr is the standard matrix trace. For details and motivations see [Eck00] or [Lüc02].

1-D. THANKS AND ACKNOWLEDGEMENTS

I thank Manuel Koehler for commiting his time to discussions which allowed clarifying arguments presented here.

I also thank Światosław Gal, Jarek Kędra, Thomas Schick and Andreas Thom, who submitted many valuable comments which greatly improved clarity and readability of this paper.

2. Preliminaries on certain graphs

In this section we consider directed graphs g whose vertices are labeled by the letters A, B, C, D, I (as in *Initial*) and F (as in *Final*), and whose edges are labeled by integers. The sets of vertices and edges are denoted respectively by V(g) and E(g). The labels of an edge e and a vertex v are denoted respectively by L(e) and L(v). The starting and final vertices of e are denoted respectively by s(e) and t(e).

The Hilbert space spanned by the vertices of g is denoted by l^2g ; elements of its canonical basis are denoted by ζ_v , $v \in V(g)$. The scalar product in l^2g is denoted by $\langle \zeta_1, \zeta_2 \rangle$. The convention about which place is linear and which is conjugate linear is such that for a given vector $\zeta \in l^2g$ and $v \in V(g)$, the coefficient of ζ_v in the representation of ζ in the canonical basis is equal to $\langle \zeta, \zeta_v \rangle$.

We say that a vertex v is directly smaller (resp. directly greater) than a vertex w, denote it by $v \leftarrow w$ (resp. $v \rightarrow w$), if and only if there exists an outgoing edge from w to v (resp. from v to w.) The denotation v < w will be used for the binary relation generated by the relation \leftarrow . The words "greatest" or "smallest" will be used with respect to this relation.

Given a graph g we will consider an operator $T^g: l^2g \to l^2g$ defined in the following way:

$$T^{g}(\zeta_{v}) := \sum_{e \in E(g): \ s(e) = v} L(e)\zeta_{t(e)} + \begin{cases} 0 & \text{if } L(v) \in \{I, F\} \\ \zeta_{v} & \text{otherwise} \end{cases}$$

Sometimes we use the letter T alone when g is understood.

2.1. **Definition.** For a vertex $v \in V(g)$ and $\zeta \in l^2g$ define the *incoming flow at* v *with* respect to ζ to be

$$\sum_{e \in E(g): t(e) = v} L(e) \cdot \langle \zeta, \zeta_{s(e)} \rangle.$$

The following lemma will be used many times. It follows directly from the definition of T^{g} .

2.2. Lemma ("flow lemma"). If $\zeta \in \ker T$ then for every vertex v with label other than I or F, $-\langle \zeta, \zeta_v \rangle$ is equal to the incoming flow at v. For a vertex with label I or F the incoming flow is 0.

2-A. The graph g(k)

The graph $g(k), k \in \{1, 2, ...\}$, is depicted on Figure 1.

We need some notation for vertices. The greatest vertex with label A will be called a_1 ; for m < k the vertex with label A which is directly smaller than a_m will be called a_{m+1} . The smallest vertex with label B will be called b_1 ; for m < k the vertex with label Bwhich is directly greater than b_m will be called b_{m+1} .

2.3. **Lemma.** dim ker $T^{g(k)} = 0$

Proof. We first check the case k = 1, by explicitly writing down the matrix of T.

For k > 1 suppose that $\zeta \in l^2(g(k))$ is such that $T(\zeta) = 0$. From the flow lemma we see that $\langle \zeta, \zeta_{a_1} \rangle = \langle \zeta, \zeta_{b_1} \rangle$, and using induction we prove that $\langle \zeta, \zeta_{a_1} \rangle = \langle \zeta, \zeta_{b_k} \rangle$ and finally that $\langle \zeta, \zeta_{a_1} \rangle = \langle \zeta, \zeta_{a_k} \rangle$.

FIGURE 1. The graph g(k)

But on the other hand from the flow lemma it follows by induction that $\langle \zeta, \zeta_{a_1} \rangle = 2^{k-1} \langle \zeta, \zeta_{a_k} \rangle$. Since k > 1, this proves that $\langle \zeta, \zeta_{a_1} \rangle = 0$, and thus $\langle \zeta, \zeta_{a_i} \rangle = \langle \zeta, \zeta_{b_i} \rangle = 0$.

2-B. The graph h(l)

The graph $h(l), l \in \{1, 2, ...\}$, is depicted on Figure 2.

Let the unique vertex with label F be denoted by f. Let the greatest vertex with label C (resp. D) be called c_1 (resp. d_1); for m < l the vertex with label C (resp. D) which is directly smaller than c_m (resp. d_m) will be called c_{m+1} (resp. d_{m+1}).

Figure 2. The graph h(l)

2.4. Lemma. dim ker $T^{h(l)} = 1$

Proof. Let us consider the matrix of T in the basis $\zeta_{c_1}, \ldots, \zeta_{c_l}, \zeta_{d_1}, \ldots, \zeta_{d_l}, \zeta_f$. This matrix is lower triangular, and the diagonal consists of 2l 1's and of one 0 (the one which corresponds to ζ_f .) This shows the lemma.

2-C. The graph j(k, l)

The graph $j(k, l), k, l \in \{1, 2, ...\}$ is depicted on Figure 3. It consists of a copy of the graph g(k), a copy of the graph h(l), and one additional vertex with the label I together with three additional edges. The vertex with the label I will be denoted by ι . The rest of the vertices will be denoted in the way described in the two previous subsections.

2.5. Lemma. If
$$l = 2^{k-1} - 1$$
 then dim ker $T^{j(k,l)} = 2$. Otherwise dim ker $T^{j(k,l)} = 1$

FIGURE 3. The graph j(k, l)

Proof. We will focus on the case k > 1. The arguments in the case k = 1 are very similar and are left to the reader.

First, let $l = 2^{k-1} - 1$. The first generator of ker T is ζ_f , and the coefficients of another generator of ker T are depicted on Figure 4.

FIGURE 4. Coefficients of the second generator of ker $T^{j(k,2^{k-1}-1)}$

To see that these two vectors generate the whole ker T let us prove a general (i.e. valid for all pairs (k, l) claim:

Claim. Let $\zeta \in \ker T$ be such that $\langle \zeta, \zeta_f \rangle = 0$ and $\langle \zeta, \zeta_{a_1} \rangle = 0$. Then $\zeta = 0$.

Proof. First we see from the flow lemma that $\langle \zeta, \zeta_{a_1} \rangle = 0$ implies $\langle \zeta, \zeta_{\iota} \rangle = \langle \zeta, \zeta_{c_1} \rangle = 0$ on the one hand, and on the other we see inductively that $\langle \zeta, \zeta_{a_i} \rangle = \langle \zeta, \zeta_{b_i} \rangle = 0$ for $i=1,\ldots k.$

Now, $\langle \zeta, \zeta_{c_1} \rangle = \langle \zeta, \zeta_{\iota} \rangle = 0$ implies that $\langle \zeta, \zeta_{d_1} \rangle = 0$, and $\langle \zeta, \zeta_{c_i} \rangle = 0$ gives us $\langle \zeta, \zeta_{c_{i+1}} \rangle = 0$. 10. Finally $\langle \zeta, \zeta_{d_i} \rangle = \langle \zeta, \zeta_{c_{i+1}} \rangle = 0$ implies $\langle \zeta, \zeta_{d_{i+1}} \rangle = 0$ which shows that in fact also $\langle \zeta, \zeta_{c_i} \rangle = \langle \zeta, \zeta_{d_i} \rangle = 0$ for all $i = 1, \ldots, l$; and $\langle \zeta, \zeta_f \rangle$ is equal to 0 by assumption.

Thus to finish the proof it is enough to show that if $\zeta \in \ker T$ is such that $\langle \zeta, \zeta_{a_1} \rangle = 1$ then $l = 2^{k-1} - 1$.

Indeed, $\langle \zeta, \zeta_{a_1} \rangle = 1$ implies $\langle \zeta, \zeta_{a_2} \rangle = 2$ and, inductively, $\langle \zeta, \zeta_{a_k} \rangle = 2^{k-1}$. This implies that $\langle \zeta, \zeta_{b_k} \rangle = 2^{k-1}$, and, by induction, $\langle \zeta, \zeta_{b_1} \rangle = 2^{k-1}$.

Now, $\langle \zeta, \zeta_{a_1} \rangle = 1$ and $\langle \zeta, \zeta_{b_1} \rangle = 2^{k-1}$ imply that $\langle \zeta, \zeta_{\iota} \rangle = 2^{k-1} - 1$. On the other hand $\langle \zeta, \zeta_{a_1} \rangle = 1$ implies also $\langle \zeta, \zeta_{c_1} \rangle = 1$; since $\langle \zeta, \zeta_{c_i} \rangle = 1$ clearly implies $\langle \zeta, \zeta_{c_{i+1}} \rangle = 1$ we get

 $\langle \zeta, \zeta_{c_i} \rangle = 1 \text{ for } i = 1, \dots, l.$ Note that $\langle \zeta, \zeta_l \rangle = 2^{k-1} - 1$ and $\langle \zeta, \zeta_{c_1} \rangle = 1$ imply $\langle \zeta, \zeta_{d_1} \rangle = 2^{k-1} - 2$; but from the flow lemma we see $\langle \zeta, \zeta_{d_{i+1}} \rangle = \langle \zeta, \zeta_{d_i} \rangle - \langle \zeta, \zeta_{c_{i+1}} \rangle = \langle \zeta, \zeta_{d_i} \rangle - 1$ so using induction we get that $\langle \zeta, \zeta_{d_l} \rangle = 2^{k-1} - l - 1.$

Note that $T(\zeta_{d_l}) = \zeta_{d_l} - \zeta_f$, and that $T(\zeta_{d_l}) \perp \zeta_f$, where $\zeta_{d_l}^{\perp}$ denotes the orthogonal complement of the subspace spanned by ζ_{d_l} . This means that $0 = \langle T(\zeta), \zeta_f \rangle =$ $\langle \langle \zeta, \zeta_{d_l} \rangle T(\zeta_{d_l}), \zeta_f \rangle = -\langle \zeta, \zeta_{d_l} \rangle$ and thus $2^{k-1} - l - 1 = 0$.

3. Our computational tool

In this section (X,μ) can be taken to be any probability measure space, and $\rho \colon \Gamma \curvearrowright X$ any probability measure preserving action.

Let us recall some definitions from Section 5 of [Gra10].

Let $S \in L^{\infty}(X) \rtimes \Gamma$ be given as $S := \sum_{i=1}^{n} \theta_i \chi_i$, where θ_i 's are elements of the group ring $\mathbb{C}\Gamma$, and χ_i 's are characteristic functions of pairwise disjoint measurable sets X_i . The coefficients of θ_i 's will be denoted by $\theta_i(\gamma)$, i.e. $\theta_i = \sum_{\gamma \in \Gamma} \theta_i(\gamma) \gamma$.

In what follows we can without a loss of generality assume that the union of the sets X_i is the whole of X, by adding to S an additional summand $0 \cdot \chi_{X - \bigcup X_i}$.

In a directed graph g whose edges and vertices are labeled, L(v) and L(e) will denote, as in Section 2, respectively the label of a vertex v and of an edge e. The rest of the notation from Section 2 will also be adopted.

3.1. **Definition.** An S-graph is a directed graph **g** whose vertices are labeled by elements of the set $\{1, \ldots, n\}$, and whose edges are labeled by elements of Γ , in such a way that the following conditions hold.

- (1) For every vertex v the labels of the edges starting at v are pairwise different.
- (2) For every vertex v and every $\gamma \in \operatorname{supp} \theta_{L(v)}$ there exists an edge starting at v with label γ .

An X-embedded S-graph is a pair (\mathbf{g}, ϕ) , where \mathbf{g} is an S-graph and $\phi: V(\mathbf{g}) \to X$ is an injection such that for every edge $e \in E(\mathbf{g})$ we have that $\phi(t(e)) = \rho(L(e))(s(e))$

A maximal X-embedded S-graph is an X-embedded S-graph (\mathbf{g}, ϕ) such that if $x \in X_i$ and $\gamma \in \operatorname{supp} \theta_i$ are such that $\rho(\gamma)(x) \in \phi(V(\mathbf{g}))$ then $x \in \phi(V(\mathbf{g}))$.

3.2. Remark. In the applications it is often convenient to enumerate the vertices of a given S-graph by the sets X_i (instead of numbers $1, \ldots, n$.)

Given a (not necessarily directed) path p in an S-graph g, one can define the label L(p)of p as the product of labels and inverses of labels of consecutive edges in p, depending on their orientation (see Definition 5.3.5 in [Gra10] for details.)

3.3. **Definition.** We will say that an S-graph \mathbf{g} is simply connected if and only if for every closed path p in g the label L(p) of p is the neutral element of Γ .

There is a natural notion of isomorphism for S-graphs (bijection between the sets of vertices which is Γ -equivariant wherever it can) and maximal X-embedded S-graphs (bijection as before which commutes with the embedding maps) - see Definition 5.3.8 in [Gra10] for details. Let S-Graphs_{fin} denote the set of isomorphism classes of those S-graphs **g** such that $V(\mathbf{g})$ is finite and such that there exists a maximal X-embedded S-graph (\mathbf{g}, ϕ). We will sometimes identify maximal X-embedded S-graphs with finite number of vertices with their images in S-Graphs_{fin}.

For an element $\mathbf{g} \in S$ -Graphs_{fin} define $\mu(\mathbf{g})$ to be equal to $\mu(\{x \in X : \text{there exists a } x \in X \}$ maximal X-embedded S-graph (\mathbf{g}, ϕ) such that $x \in \phi(V(h))$). This gives a measure on the countable set S-Graphs_{fin}.

For an S-graph **g** and every i = 1, ..., n we define $\chi_i^{\mathbf{g}} : l^2 \mathbf{g} \to l^2 \mathbf{g}$ on the canonical basis by

$$\chi_i^{\mathbf{g}}(\zeta_v) := \begin{cases} \zeta_v & \text{if } i = L(v) \\ 0 & \text{otherwise.} \end{cases}$$

Similarly for $\gamma \in \Gamma$, let $\gamma^{\mathbf{g}}$ be given by

$$\gamma^{\mathbf{g}}(\zeta_{s(e)}) := \begin{cases} \zeta_{t(e)} & \text{if } L(e) = \gamma \\ 0 & \text{otherwise.} \end{cases}$$

Finally define $\theta_i^{\mathbf{g}} := \sum_{\gamma \in \Gamma} \theta(\gamma) \cdot \gamma^{\mathbf{g}}$ and $S^{\mathbf{g}} := \sum_{i=1}^n \theta_i^{\mathbf{g}} \gamma_i^{\mathbf{g}}$.

Let $T \in L^{\infty}(X) \rtimes \Gamma$ be a polynomial expression in S and χ_i 's. For a given S-graph \mathbf{g} define $T^{\mathbf{g}} : l^2 \mathbf{g} \to l^2 \mathbf{g}$ to be the same polynomial expression in $S^{\mathbf{g}}$ and $\chi_i^{\mathbf{g}}$'s.

3.4. Theorem. Suppose that

- (1) the measure μ on S-Graphs_{fin} is a probability measure,
- (2) the elements of S-Graphs_{fin} are simply-connected,
- (3) the elements of S-Graphs_{fin} do not possess non-trivial automorphisms (as S-graphs.)

Then

$$\dim_{vN} \ker T = \sum_{\mathbf{g} \in S \text{-}Graphs_{fin}} \frac{\mu(\mathbf{g})}{|V(\mathbf{g})|} \dim \ker T^{\mathbf{g}}.$$

This is a direct consequence of Theorem 5.4.12 in [Gra10].

4. Description of the operator

Let us fix $p \in \{2, 3, ...\}$ and let (X, μ) be the compact abelian group $\mathbb{Z}_{/p}^{\mathbb{Z}} \times \mathbb{Z}_{/2}^{3}$ with the normalized Haar measure, let Γ be the group $\mathbb{Z} \times GL_3(\mathbb{Z}_{/2})$, and let $\rho \colon \Gamma \curvearrowright X$ be the action of Γ on X by the following measure-preserving group automorphisms: the generator t of \mathbb{Z} acts on $\mathbb{Z}_{/p}^{\mathbb{Z}}$ by $[\rho(t)((a_i))]_j = a_{j+1}$, and $GL_3(\mathbb{Z}_{/2})$ acts in the natural way on $\mathbb{Z}_{/2}^{3}$.

We will now describe an operator T in the von Neumann algebra $L^{\infty}(X) \rtimes \Gamma$. One standard monograph on the subject of von Neumann algebras is [Sak98]. For our notation see Subsection 2.2 of [Gra10].

It is convenient to think of elements of $\mathbb{Z}_{/2}{}^3$ as "labels". Thus let $A, B, C, D, F, I, U_1, U_2$ (U stands for "unimportant") denote the elements of $\mathbb{Z}_{/2}{}^3$. The only assumption on the bijection between the above letters and the elements of $\mathbb{Z}_{/2}{}^3$ is that the first 6 symbols correspond to non-zero elements of $\mathbb{Z}_{/2}{}^3$.

For every pair $(x, y) \in \{A, B, C, D, F, I\}$, let us fix an automorphism $[xy] \in GL_3(\mathbb{Z}_{/2})$ which sends x to y, in such a way that

$$[4.1) [xy] = [yx]^{-1}$$

and

$$[AC][CD] = [AI][ID].$$

When dealing with subsets of $\mathbb{Z}_{/p}$ and $\mathbb{Z}_{/p}^{\mathbb{Z}}$, the symbol 0 will denote the set $\{0\} \subset \mathbb{Z}_{/p}$ and the symbol 1 will denote the set $\{1, 2, 3, \ldots, p-1\} \subset \mathbb{Z}_{/p}$. Let

$$(\varepsilon_{-a}\varepsilon_{-a+1}\ldots\varepsilon_{-1}\underline{\varepsilon_0}\varepsilon_1\ldots\varepsilon_b,x),$$

where $\varepsilon_i \in \{0, 1\} \subset 2^{\mathbb{Z}/p}$ denote the following subset of X:

$$\{((m_i), y) \in \mathbb{Z}_{/p}^{\mathbb{Z}} \times \mathbb{Z}_{/2}^{3} : m_{-a} \in \varepsilon_{-a}, \dots, m_b \in \varepsilon_b, y = x\}.$$

Let

$$\chi(\varepsilon_{-a}\varepsilon_{-a+1}\ldots\varepsilon_{-1}\underline{\varepsilon_0}\varepsilon_1\ldots\varepsilon_b,x)$$

be the characteristic function of $(\varepsilon_{-a}\varepsilon_{-a+1}\ldots\varepsilon_{-1}\underline{\varepsilon_0}\varepsilon_1\ldots\varepsilon_b, x)$.

Let us define an operator S as the sum of the following summands:

(4.3)	$\left(-t[ID] + t^{-1}[IA]\right)$	·	$\chi(101, I)$
(4.4)	$(-t^2[AC] - 2t^{-1})$	•	$\chi(1\underline{1}01, A)$
(4.5)	$-t^2[AC]$	•	$\chi(0\underline{1}01,A)$
(4.6)	$-2t^{-1}$	•	$\chi(1\underline{1}00, A)$
(4.7)	0	•	$\chi(0\underline{1}00,A)$
(4.8)	$-2t^{-1}$	•	$\chi(1\underline{1}1, A)$
(4.9)	-[AB]	•	$\chi(0\underline{1}1,A)$
(4.10)	-t	•	$\chi(\underline{1}1,B)$
(4.11)	-[BA]	•	$\chi(\underline{1}0,B)$
(4.12)	(-t + [CD])	•	$\chi(\underline{1}1, C)$
(4.13)	+[CD]	•	$\chi(\underline{1}0, C)$
(4.14)	-t		$\chi(\underline{1}1, D)$
(4.15)	-[DF]	•	$\chi(\underline{1}0,D)$
(4.16)	0	•	$\chi(\underline{1}0,F)$
(4.17)	0	•	$\chi(U),$

where U denotes "all the rest", i.e. the complement of the union of the sets $(\underline{101}, I)$, $(\underline{1101}, A)$, $(\underline{0101}, A)$, $(\underline{1100}, A)$, $(\underline{0100}, A)$, $(\underline{111}, A)$, $(\underline{011}, A)$, $(\underline{11}, B)$, $(\underline{10}, B)$, $(\underline{11}, C)$, $(\underline{10}, C)$, $(\underline{11}, D)$, $(\underline{10}, D)$ and $(\underline{10}, F)$; and $\chi(U)$ is the characteristic function of U.

The operator T in which we are interested is defined as

(4.18)
$$T := S + (1 - \chi(U) - \chi(\underline{10}1, I) - \chi(\underline{10}, F))$$

5. Application of the computational tool

We will now compute $\dim_{vN} \ker T$, where T is the operator from Section 4. First we compute the (countable) measure space S-Graphs_{fin} (S is also from Section 4.)

5-A. The trivial S-graph \mathbf{u}

The S-graph \mathbf{u} is shown on Figure 5. It consists of a single vertex with label U and no edges.

5.1. **Lemma.**

- (1) dim ker $T^{\mathbf{u}} = 1$
- (2) The S-graph \mathbf{u} does not possess non-trivial automorphisms.
- (3) The S-graph **u** is simply-connected.

(4)
$$\mu(\mathbf{u}) = \frac{1}{8}(2 + 5\frac{1}{p} + p^3 + 2\frac{p-1}{p}p^2 + \frac{p-1}{p} + (\frac{p-1}{p})^2)$$

Proof. Note that properties (1)-(3) concern S-graphs (as opposed to embedded S-graphs.)

(1) is clear since $T^{\mathbf{u}}$ is the 0-endomorphism of a one-dimensional space.

(2) and (3) are also clear.

As to (4), note that for every point x of U we get an embedded S-graph (\mathbf{u}, ϕ) by sending the unique vertex of **u** to x. We will now check that (\mathbf{u}, ϕ) is in fact a maximal embedded S-graph.

Note that $U = (0, A) \cup (0, B) \cup (0, C) \cup (0, D) \cup (\cdot, U_1) \cup (\cdot, U_2) \cup (0, F) \cup (11, F) \cup (11$ $(\underline{1}, I) \cup (\underline{100}, I) \cup (\underline{001}, I) \cup (\underline{000}, I).$

Suppose for example that $x \in (0, A)$, and consider for example the summand (4.3) of S, i.e. $(-t[ID] + t^{-1}[IA]) \cdot \chi(101, I)$. According to Definition 3.1 we need to check that $x \notin \rho(t[ID])((101,I)) \cup \rho(t^{-1}[IA])((101,I))$. This is clear since $\rho(t[ID])((101,I)) \subset (\cdot,D)$ and $\rho(t^{-1}[IA])((101, I)) = (101, A).$

All the remaining cases (4.4) - (4.16) are checked in an analogous straight-forward fashion. Similarly when x is an element of another summand of U.

This shows that $\mu(\mathbf{u}) \ge \mu(U)$, which is easily computed to be $\frac{1}{8}(2+5\frac{1}{p}+p^3+2\frac{p-1}{p}p^2+$ $\frac{p-1}{p} + (\frac{p-1}{p})^2$). The opposite inequality is clear since the unique vertex of **u** has to be sent to U.

5-B. The S-graph $\mathbf{g}(k)$

The S-graph $\mathbf{g}(k), k \in \{1, 2, \ldots\}$, is shown on Figure 6.

FIGURE 6. The S-graph $\mathbf{g}(k)$

It is straightforward to see that there is a unique bijection $V(\mathbf{g}(k)) \to V(q(k))$ which induces an isomorphism of directed graphs, and which sends vertices with labels of the form (..., x) to vertices with the label x, for every $x \in \{A, B, C, D, I, F\}$. Note that this bijection induces an isomorphism $l^2 \mathbf{g} \to l^2 g$ which intertwines $T^{\mathbf{g}}$ with T^{g} .

5.2. Lemma.

- (1) dim ker $T^{\mathbf{g}(k)} = 0$
- (2) The S-graphs $\mathbf{g}(k)$ do not possess non-trivial automorphisms.
- (3) The S-graphs $\mathbf{g}(k)$ are simply-connected. (4) $\mu(\mathbf{g}(k)) \ge 2k \cdot \frac{1}{8} \cdot (\frac{1}{p})^3 \cdot (\frac{p-1}{p})^k$

Proof. (1) follows from the existence of an isomorphism $l^2 \mathbf{g} \to l^2 g$ intertwining $T^{\mathbf{g}}$ with T^g .

(2) and (3) are straightforward to check using the fact that [AB][BA] = Id (which follows from equation (4.1).)

As to (4), let x be a fixed element of the set $(01^{k-1}\underline{1}00, A)$, where 1^x denotes x symbols 1. Let us denote x by $(-01^{k-1}100, A)$. Similarly, for example $t^{-1}(x)$ will be denoted by $(-01^{k-2}1100-, A).$

On Figure 7 we show an embedded S-graph $(\mathbf{g}(k), \phi)$. Label of a given vertex is the value of ϕ on this vertex. In particular, different vertices are mapped to different points of X.

FIGURE 7. The embedded S-graph $(\mathbf{g}(k), \phi)$

As in Lemma 5.1, it is straightforward, although tedious, to check from the definition of S that Figure 7 contains in fact a maximal embedded S-graph. It follows that $\mu(\mathbf{g}(k))$ is at least equal to $|V(\mathbf{g}(k))| \cdot \mu((01^{k-1}\underline{1}00, A)) = 2k \cdot \frac{1}{8} \cdot (\frac{1}{p})^3 (\frac{p-1}{p})^k$.

5-C. The S-graph $\mathbf{h}(l)$

The S-graph $\mathbf{h}(l)$ is shown on on Figure 8.

FIGURE 8. The S-graph h(l)

As in Subsection B, note the existence of a bijection $V(\mathbf{h}(l)) \to V(h(l))$ which induces an isomorphism $l^2\mathbf{h}(l) \to l^2h(l)$ intertwining $T^{\mathbf{h}(l)}$ and $T^{h(l)}$.

5.3. Lemma.

- (1) dim ker $T^{\mathbf{h}(l)} = 1$
- (2) The S-graphs $\mathbf{h}(l)$ do not possess non-trivial automorphisms.
- (3) The S-graphs $\mathbf{h}(l)$ are simply-connected.
- (4) $\mu(\mathbf{h}(l)) \ge (2l+1) \cdot \frac{1}{8} \cdot (\frac{1}{p})^3 \cdot (\frac{p-1}{p})^l$

Proof. (1), (2) and (3) are proved as in Lemma 5.2.

To prove (4) we proceed also as in Lemma 5.2, and we use analogous notation. Thus let $x = (-00\underline{1}1^{l-1}0, C)$ be a fixed element of the set $(00\underline{1}1^{l-1}0, C)$. On Figure 9 we show an embedded S-graph $(h(l), \phi)$.

It is again straightforward but tedious to check that Figure 9 contains in fact a maximal embedded S-graph. It follows that $\mu(\mathbf{h}(l))$ is at least equal to $|V(\mathbf{h}(l))| \cdot \mu((00\underline{1}1^{l-1}0, A)) = (2l+1) \cdot \frac{1}{8} \cdot (\frac{1}{p})^3 \cdot (\frac{p-1}{p})^l$

FIGURE 9. The embedded S-graph $(\mathbf{h}(l), \phi)$

5-D. The S-graph $\mathbf{j}(k, l)$

The S-graph $\mathbf{j}(k, l)$ is shown on Figure 10.

FIGURE 10. The S-graph $\mathbf{j}(k, l)$

As in Subsection B, note the existence of a bijection $V(\mathbf{j}(k,l)) \to V(j(k,l))$ which induces an isomorphism $l^2 \mathbf{j}(k,l) \to l^2 j(k,l)$ intertwining $T^{\mathbf{j}(k,l)}$ and $T^{j(k,l)}$.

5.4. Lemma.

(1) dim ker $T^{\mathbf{j}(k,l)} = \begin{cases} 2 & if \ l = 2^{k-1} - 1 \\ 1 & otherwise \end{cases}$ (2) The S-graphs $\mathbf{j}(k,l)$ do not possess non-trivial automorphisms. (3) The S-graphs $\mathbf{j}(k,l)$ are simply-connected. (4) $\mu(\mathbf{j}(k,l)) \ge (2k+2l+2) \cdot \frac{1}{8} \cdot (\frac{1}{p})^3 \cdot (\frac{p-1}{p})^{k+l}$

Proof. (1), (2) are proved as in Lemma 5.2. (3) follows from the fact that [AB][BA] = [CD][DC] = 1 (eq. (4.1)) and [AC][CD] = [AI][ID] (eq. (4.2).)

To prove (4) we proceed also as in Lemma 5.2, and we use analogous notation. Thus let $x = (-01^k \underline{0}1^l 0, I)$ be a fixed element of the set $(01^k \underline{0}1^l 0, I)$. On Figure 11 we show an embedded S-graph $(j(k, l), \phi)$.

FIGURE 11. The embedded S-graph $(\mathbf{j}(k, l), \phi)$

It is again straightforward and quite tedious to check from the definition of S that Figure 11 contains in fact a maximal embedded S-graph. It follows that $\mu(\mathbf{j}(k,l))$ is at least equal to $|V(\mathbf{j}(k,l))| \cdot \mu((-01^k \underline{0}1^l 0 -, I)) = (2k + 2l + 2) \cdot \frac{1}{8} \cdot (\frac{1}{p})^3 \cdot (\frac{p-1}{p})^{k+l}$. \Box

5-E. The measure space S-Graphs_{fin}

In this subsection let $\alpha = \frac{1}{p}, \beta = \frac{p-1}{p}$.

5.5. Corollary. The measure space (S-Graphs_{fin}, $\mu)$ is a probability measure space. Its only points with non-trivial measure are \mathbf{u} , $\mathbf{g}(k)$, $k \ge 1$, $\mathbf{h}(l)$, $l \ge 1$, and $\mathbf{j}(k,l)$, $k, l \ge 1$. Their measures are as follows:

$$\begin{split} \mu(\mathbf{u}) &= \frac{1}{8}(2+5\frac{1}{p}+p^3+2\frac{p-1}{p}p^2+\frac{p-1}{p}+(\frac{p-1}{p})^2)\\ \mu(\mathbf{g}(k)) &= 2k\cdot\frac{1}{8}\cdot(\frac{1}{p})^3\cdot(\frac{p-1}{p})^k,\\ \mu(\mathbf{h}(l)) &= (2l+1)\cdot\frac{1}{8}\cdot(\frac{1}{p})^3\cdot(\frac{p-1}{p})^l,\\ \mu(\mathbf{j}(k,l)) &= (2k+2l+2)\cdot\frac{1}{8}\cdot(\frac{1}{p})^3\cdot(\frac{p-1}{p})^{k+l}. \end{split}$$

Proof. We know from Section 5.4 of [Gra10] (see in particular proof of Theorem 5.4.12) that the measure space S-Graphs_{fin} is always a subspace of a probability measure space. On the other hand we know already that

$$\begin{split} \mu(\mathbf{u}) &\geq \frac{1}{8} (2 + 5\frac{1}{p} + p^3 + 2\frac{p-1}{p}p^2 + \frac{p-1}{p} + (\frac{p-1}{p})^2) \\ \mu(\mathbf{g}(k)) &\geq 2k \cdot \frac{1}{8} \cdot (\frac{1}{p})^3 \cdot (\frac{p-1}{p})^k, \\ \mu(\mathbf{h}(l)) &\geq (2l+1) \cdot \frac{1}{8} \cdot (\frac{1}{p})^3 \cdot (\frac{p-1}{p})^l, \\ \mu(\mathbf{j}(k,l)) &\geq (2k+2l+2) \cdot \frac{1}{8} \cdot (\frac{1}{p})^3 \cdot (\frac{p-1}{p})^{k+l}, \end{split}$$

so to prove the corollary it is enough to check that

$$\frac{1}{8}(2+5\frac{1}{p}+p^3+2\frac{p-1}{p}p^2+\frac{p-1}{p}+(\frac{p-1}{p})^2) + \sum_{k=1}^{\infty} 2k \cdot \frac{1}{8} \cdot (\frac{1}{p})^3 \cdot (\frac{p-1}{p})^k + \sum_{l=1}^{\infty} (2l+1) \cdot \frac{1}{8} \cdot (\frac{1}{p})^3 \cdot (\frac{p-1}{p})^l + \sum_{k,l=1}^{\infty} (2k+2l+2) \cdot \frac{1}{8} \cdot (\frac{1}{p})^3 \cdot (\frac{p-1}{p})^{k+l} = 1.$$

Recall the formula

$$\sum_{n=1}^{\infty} (n+C)x^n = \frac{x}{(1-x)^2} + \frac{Cx}{1-x}$$

for $0 \le x \le 1$. Using this formula we see that

$$\sum_{k\geq 1} 2k \cdot \frac{1}{8} \cdot \alpha^3 \cdot \beta^k = \frac{\alpha^3}{4} \sum_{k\geq 1} k\beta^k = \frac{\alpha^3}{4} \cdot \frac{\beta}{\alpha^2} = \frac{\alpha\beta}{4}.$$

Similarly

$$\sum_{l \ge 1} (2l+1) \cdot \frac{1}{8} \cdot \alpha^3 \beta^l = \frac{\alpha^3}{4} \sum_{l \ge 1} l\beta^l + \frac{\alpha^3}{8} \sum_{l \ge 1} \beta^l = \frac{\alpha\beta}{4} + \frac{\alpha^3}{8} \frac{\beta}{1-\beta} = \frac{\alpha\beta}{4} + \frac{\alpha^2\beta}{8}.$$

Finally

$$\begin{split} \sum_{k,l\geq 1} (2k+2l+2) \cdot \frac{1}{8} \cdot \alpha^3 \beta^{k+l} &= \frac{\alpha^3}{4} \sum_k \beta^k \sum_l (l+(k+1)) \beta^l \\ &= \frac{\alpha^3}{4} \sum_k \beta^k (\frac{(k+1)\beta}{\alpha} + \frac{\beta}{\alpha^2}) \\ &= \frac{\alpha^2 \beta}{4} \sum_k (k+1) \beta^k + \frac{\alpha \beta}{4} \sum_k \beta^k \\ &= \frac{\alpha^2 \beta}{4} (\frac{\beta}{\alpha^2} + \frac{\beta}{\alpha}) + \frac{\alpha \beta}{4} \frac{\beta}{\alpha} \\ &= \frac{\beta^2}{2} + \frac{\alpha \beta^2}{4}. \end{split}$$

Putting everything together we get

$$\frac{1}{8}(2+5\alpha+\alpha^3+2\beta\alpha^2+\beta+\beta^2) + \frac{\alpha\beta}{4} + (\frac{\alpha\beta}{4}+\frac{\alpha^2\beta}{8}) + (\frac{\beta^2}{2}+\frac{\alpha\beta^2}{4}) = \\ = \left(\frac{1}{4}+\frac{5}{8}\alpha+\frac{1}{8}\alpha^3+\frac{1}{4}\alpha^2-\frac{1}{4}\alpha^3+\frac{1}{8}-\frac{1}{8}\alpha+\frac{1}{8}-\frac{1}{4}\alpha+\frac{1}{8}\alpha^2\right) + \\ + \left(\frac{1}{4}\alpha-\frac{1}{4}\alpha^2\right) + \left(\frac{1}{4}\alpha-\frac{1}{4}\alpha^2+\frac{1}{8}\alpha^2-\frac{1}{8}\alpha^3\right) + \left(\frac{1}{2}-\alpha+\frac{1}{2}\alpha^2+\frac{1}{4}\alpha-\frac{1}{2}\alpha^2+\frac{1}{4}\alpha^3\right) = 1, \\ \text{as required.} \qquad \Box$$

as requ

5.6. Corollary. Let T be the operator defined in Section 4. Then

$$\dim_{vN} \ker T = \frac{4p^3 + 3p^2 + 2p - 1}{8p^3} + \frac{1}{8p^2(p-1)} \sum_{k=1}^{\infty} (\frac{p-1}{p})^{k+2^{k-1}},$$

which is a transcendental number.

Proof. As Lemmas 5.1-5.4 and Corollary 5.5 show, we can use Theorem 3.4:

$$\dim_{vN} \ker T = \sum_{\mathbf{g} \in S \text{-}\mathrm{Graphs}_{\mathrm{fin}}} \frac{\mu(\mathbf{g})}{|V(\mathbf{g})|} \dim \ker T^{\mathbf{g}}$$

According to Corollary 5.5 the above sum can be written as

$$\frac{1}{8}(2+5\alpha+\alpha^3+2\beta\alpha^2+\beta+\beta^2)\cdot\dim\ker T^{\mathbf{u}} + \\ \sum_{k=1}^{\infty}\frac{1}{8}\cdot\alpha^3\cdot\beta^k\cdot\dim\ker T^{\mathbf{g}(k)} + \\ +\sum_{l=1}^{\infty}\frac{1}{8}\cdot\alpha^3\beta^l\dim\ker T^{\mathbf{h}(l)} + \\ \sum_{k,l=1}^{\infty}\frac{1}{8}\cdot\alpha^3\beta^{k+l}\dim\ker T^{\mathbf{j}(k,l)}.$$

Substituting the values for $\dim \ker T$'s we get

$$\frac{1}{8}(2+5\alpha+\alpha^{3}+2\beta\alpha^{2}+\beta+\beta^{2}) + \\ 0 + \\ \sum_{l=1}^{\infty} \frac{1}{8} \cdot \alpha^{3}\beta^{l} + \\ \sum_{l=1}^{\infty} \frac{1}{8} \cdot \alpha^{3}\beta^{k+l} + \sum_{k=1}^{\infty} \frac{1}{8} \cdot \alpha^{3}\beta^{k+2^{k-1}-1}.$$

Noting that $\sum_{k,l=1}^{\infty} \beta^{k+l} = \sum_k \beta^k \sum_l \beta^l = \left(\frac{\beta}{\alpha}\right)^2$ we get

$$\frac{1}{8}(2+5\alpha+\alpha^3+2\beta\alpha^2+\beta+\beta^2)+\frac{1}{8}\alpha^2\beta+\frac{1}{8}\alpha\beta^2+\frac{1}{8}\frac{\alpha^3}{\beta}\sum_{k=1}^{\infty}\beta^{k+2^{k-1}},$$

which is easily seen to be what we want.

Clearly to prove transcendence of $\dim_{vN} \ker T$ it is enough to prove that $\sum_{k=1}^{\infty} \left(\frac{p-1}{p}\right)^{k+2^{k-1}}$ is transcendental. This follows directly from Tanaka's Theorem 1 in [aT02]. Although similar series have been investigated already by Mahler in [Mah29], to the author's best knowledge [aT02] is the first work which implies transcendence of $\sum_{k=1}^{\infty} \left(\frac{p-1}{p}\right)^{k+2^{k-1}}$.

6. BACK TO THE LAMPLIGHTER GROUPS

In the previous section we have seen that the operator $T \in L^{\infty}(\mathbb{Z}_{/p} \times \mathbb{Z}_{/2}) \rtimes (\mathbb{Z} \times Gl_3(\mathbb{Z}_{/2}))$ defined in Section 4 has kernel with transcendental von Neumann dimension. Using Pontryagin duality (see for example Subsection 4.2 of [Gra10] for details) we get an operator $\widehat{T} \in K\left[\left(\mathbb{Z}_{/p} \oplus \mathbb{Z} \rtimes \mathbb{Z}\right) \times \left(\mathbb{Z}_{/2}^3 \rtimes Gl_3(\mathbb{Z}_{/2})\right)\right]$ with the same dimension of the kernel, where K is the smallest subfield of \mathbb{C} such all the characteristic functions which appear in the definitions of S, i.e. in equations (4.3)-(4.16), and of T, i.e. equation (4.18), are in the image of the Fourier transform

$$K(\mathbb{Z}_{p}^{\oplus \mathbb{Z}} \oplus \mathbb{Z}_{2}^{3}) \to L^{\infty}(\mathbb{Z}_{p}^{\mathbb{Z}} \times \mathbb{Z}_{2}^{3}),$$

where $K(\mathbb{Z}_{p}^{\oplus \mathbb{Z}} \oplus \mathbb{Z}_{2}^{3})$ is the group ring over K of the group $\mathbb{Z}_{p}^{\oplus \mathbb{Z}} \oplus \mathbb{Z}_{2}^{3}$.

We claim that in our case $K = \mathbb{Q}$. Indeed, all the functions in the equations (4.3)-(4.16) and (4.18) are products of functions of two types: (1) functions of the form

$$\mathbb{Z}_{/p}^{\mathbb{Z}} \times \mathbb{Z}_{/2}^{3} \to \mathbb{Z}_{/2} \xrightarrow{f} \mathbb{R},$$

where f is the characteristic function of either the set $\{0\}$ or $\{1\}$; and (2) functions of the form

$$\mathbb{Z}_{/p}^{\mathbb{Z}} \times \mathbb{Z}_{/2}^{3} \to \mathbb{Z}_{/p} \xrightarrow{g} \mathbb{R}_{/p}^{2}$$

where g is either the characteristic function of the set $\{0\}$ or of the set $\{1, 2, ..., p-1\}$. Thus our claim follows from functoriality of the Pontryagin duality and the fact that both f and g are in the images of Fourier transforms

$$\mathbb{Q}\widehat{\mathbb{Z}_{/2}} \to L^{\infty}(\mathbb{Z}_{/2})$$

and, respectively,

$$\mathbb{Q}\widehat{\mathbb{Z}_{p}} \to L^{\infty}(\mathbb{Z}_{p}).$$

Indeed, it is straightforward to check that $\pi := \frac{0+1}{2} \in \mathbb{Q}\widehat{\mathbb{Z}_{/2}}$ is mapped to the characteristic function of $\{0\} \subset \mathbb{Z}_{/2}, 1 - \pi$ is mapped to the characteristic function of $\{1\} \subset \mathbb{Z}_{/2}$; and $\sigma := \frac{0+1+\ldots+(p-1)}{p} \in \mathbb{Q}\widehat{\mathbb{Z}_{/p}}$ is mapped to the characteristic function of $\{0\} \subset \mathbb{Z}_{/p}, 1 - \sigma$ is mapped to the characteristic function of $\{1, 2, \ldots, (p-1)\} \subset \mathbb{Z}_{/p}$.

It is clear that to finish the proof of Theorem A it is enough to prove the following lemma.

6.1. Lemma. Let G be a discrete countable group and let H be a finite group. Then $|H| \cdot C(G \times H) = C(G)$.

Proof. Note that $|H| \cdot \mathcal{C}(G \times H) \supseteq \mathcal{C}(G)$, since there is a projection π in $\mathbb{Q}H \subset \mathbb{Q}G \times H$ whose trace is $\frac{1}{|H|}$ and which commutes with $\mathbb{Q}G \subset \mathbb{Q}(G \times H)$. It is easy to check that $|H| \cdot \dim_{vN} \ker((1-\pi) + \pi\theta) = \dim_{vN} \ker \theta$ (see for example proof of Proposition 4.2.7 in [Gra10].)

For the other containment note first that the regular representation of H gives rise to a unital injection of *-algebras $\iota: \mathbb{Q}H \hookrightarrow M_{|H|}(\mathbb{Q})$ such that $|H| \operatorname{tr}_{H}(\theta) = \operatorname{tr}(\iota(\theta))$. This means that the unital *-homomorphism $\hat{\iota} := \operatorname{Id} \otimes \iota: M_{k}(\mathbb{Q}(G \times H)) = M_{k}(\mathbb{Q}G) \otimes \mathbb{Q}H \to$ $M_{k}(\mathbb{Q}G) \otimes M_{|H|}(\mathbb{Q}) = M_{k+|H|}(\mathbb{Q}G)$ also has the property $|H| \operatorname{tr}_{H}(\theta) = \operatorname{tr}(\hat{\iota}(\theta))$.

Now the result follows for example from Lemma 4.2.1 in [Gra10] by taking G there to be equal to $G \times H$ here, and L there to be $M_{k+|H|}(\mathbb{Q}G)$ with normalized trace.

References

- [aT02] Taka aki Tanaka. Transcendence of the values of certain series with Hadamard's gaps. Arch. Math. (Basel), 78(3):202–209, 2002.
- [Ati76] M. F. Atiyah. Elliptic operators, discrete groups and von Neumann algebras. In Colloque "Analyse et Topologie" en l'Honneur de Henri Cartan (Orsay, 1974), pages 43–72. Astérisque, No. 32–33. Soc. Math. France, Paris, 1976.
- [Aus09] Tim Austin. Rational group ring elements with kernels having irrational dimension, 2009. Preprint, available at http://arxiv.org/abs/0909.2360.
- [DS02] Warren Dicks and Thomas Schick. The spectral measure of certain elements of the complex group ring of a wreath product. *Geom. Dedicata*, 93:121–137, 2002.
- [Eck00] Beno Eckmann. Introduction to l₂-methods in topology: reduced l₂-homology, harmonic chains, l₂-Betti numbers. Israel J. Math., 117:183–219, 2000. Notes prepared by Guido Mislin.
- [Gra10] L. Grabowski. On Turing machines, dynamical systems and the Atiyah problem. ArXiv e-prints, April 2010. Available at http://arxiv.org/abs/1004.2030.
- [GŽ01] Rostislav I. Grigorchuk and Andrzej Żuk. The lamplighter group as a group generated by a 2-state automaton, and its spectrum. *Geom. Dedicata*, 87(1-3):209–244, 2001.

- [Lüc02] Wolfgang Lück. L²-invariants: theory and applications to geometry and K-theory, volume 44 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, 2002.
- [LW10] F. Lehner and S. Wagner. Free Lamplighter Groups and a Question of Atiyah. ArXiv e-prints, May 2010. Available at http://arxiv.org/abs/1005.2347.
- [Mah29] Kurt Mahler. Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen. Math. Ann., 101(1):342–366, 1929.
- [PSZ10] M. Pichot, T. Schick, and A. Zuk. Closed manifolds with transcendental L2-Betti numbers. ArXiv e-prints, May 2010. Available at http://arxiv.org/abs/1005.1147.
- $[Sak98] Shôichirô Sakai. C^*-algebras and W^*-algebras. Classics in Mathematics. Springer-Verlag, Berlin, 1998. Reprint of the 1971 edition.$

Georg-August-Universität Göttingen, Mathematisches Institut, Bunsenstrasse 3-5, D-37073 Göttingen, Germany

E-mail address: graboluk@gmail.com