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ON MAXIMAL PRIMITIVE QUOTIENTS OF

INFINITESIMAL CHEREDNIK ALGEBRAS OF gln

AKAKI TIKARADZE

Abstract. We prove analogues of some of Kostant’s theorems for in-
finitesimal Cherednik algebras of gl

n
. As a consequence, it follows that

in positive characteristic the Azumaya and smooth loci of the center of
these algebras coincide.

Infinitesimal Cherednik algebras (more generally, infinitesimal Hecke al-
gebras) were introduced by Etingof, Gan and Ginzburg [EGG]. Here we will
be concerned with infinitesimal Cherednik algebras of gln. Let us recall the
definition. Let h = C

n denote the standard representation of g = gln. Denote
by yi the standard basis elements of h, and by xi the dual basis of h

∗. For the
given deformation parameter b = b0+b1τ+· · ·+bmτm ∈ C[τ ], bm 6= 0,m ≥ 0,
one defines the infinitesimal Cherednik algebra of gln with parameter b, to
be denoted by Hb, as the quotient of the semi-direct product Ug⋉T (h⊕ h∗)
by the relations

[x, x′] = 0, [y, y′] = 0, [y, x] = b0r0(x, y)+b1r1(x, y)+· · ·+bmrm(x, y),

where x, x′ ∈ h, y, y′ ∈ h∗, and ri(x, y) ∈ Ug are the symmetrizations of the
following functions on g (thought of as elements in Sym g in the standard
way):

(x, (1−tA)−1y) det(1−tA)−1 = r0(x, y)(A)+r1(x, y)(A)t+r2(x, y)(A)t
2+· · ·

The algebras Hb have the following PBW property. If we introduce the
filtration on Hb by setting deg x = deg y = 1, x ∈ h∗, y ∈ h,deg g = 0, g ∈ g,
then the natural map : Ug⋉ Sym(h⊕ h∗) → grHb is an isomorphism.

Besides the action of G = GLn(C) on Hb, we also have the action of h
and h∗ defined as follows. For any v ∈ h, the adjoint action ad(v) is locally
nilpotent on Hb. Thus exp(ad(v)) gives an automorphism of Hb, and in this
way h acts on Hb. The action of h∗ on Hb is defined similarly. Combining
these actions with the G-action, we get the actions of G⋉ h, G⋉ h∗ on Hb.

The enveloping algebra U(sln+1) is an example of Hb (for m = 1). In fact,
the algebras Hb have many properties similar to the enveloping algebras of
simple Lie algebras.

Let Q1, ..., Qn ∈ k[g]G be defined as follows:

det(t Id−X) =

n∑

j=0

(−1)jtn−jQj(X).
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Also let α1, · · ·αn be the corresponding elements of Z(Ug) under the stan-

dard identification of C[g]G and Z(Ug). It was shown in [T1] that the fol-
lowing elements generate the center of Hb

ti =
∑

j

[αi, xj ]yj − ci =
∑

xj [αi, yj ]− ci ∈ Z(Hb),

where ci ∈ Z(Ug) are certain elements. Namely, if we consider the following
element of C[g][t, τ ] given by

c′ = bm
det(t−A)

(tτ − 1) det(1− τA)

then the top symbol of ci considered as an element of C[g] is the coefficient
of tn−iτm in c′. We have that Z(Hb) = C[t1, · · · , tn]. For a character χ :
C[t1, · · · , tn] → C, denote by Ub,χ the quotient Hb/ ker(χ)Hb.

From now on we will assume that m ≥ 1. Let us introduce a new filtration
on Hb by setting degxi = m,deg yi = 1,deg g = 1, g ∈ g. Then, grHb =
Sym(g⊕ h⊕ h∗) is a Poisson algebra (and the Poisson bracket only depends
on m). We will denote it by Am. Denote Bm = grHb/(gr ti). Again, Bm is
a Poisson algebra m ≥ 0. As remarked earlier, SpecB1 is the nilpotent cone
of sln+1(C). The main result of this paper is the following analogue of some
of Kostant’s theorems for semi-simple Lie algebras [K].

Theorem 0.1. The algebra Hb is a free module over its center. Bm is a an

integral domain which is a normal, complete intersection ring. Moreover,

the smooth locus of SpecBm under the Poisson bracket is symplectic.

Proof. We will partially follow [BL]. Denote by fy (respectively fx) the el-
ement det{αi, yj} ∈ Bm. Then the localization (Bm)fy is isomorphic to
the polynomial algebra Sym(g ⊕ h). We will use the notation D(f) =
Spec(Bm)f ⊂ SpecBm, f ∈ Bm. Let us set U = D(fx)∪D(fy). To show that
X = SpecBm is an irreducible, reduced and normal variety, it is enough to
show that it is Cohen-Macaulay, U is connected, and dim(X\U) ≤ dimX−2
[BL].

We have an action of the affine group G ⋉ h on Sym(g ⊕ h). Then fy
is a semi-invariant of this action, i.e., (g, v)fy = det(g)fy, g ∈ G, v ∈ h.
As explained in [R1], the set D(fy) ⊂ SpecSym(g ⊕ h) is the dense orbit
under the action of G ⋉ h on Spec Sym(g ⊕ h). In fact, this set consists
of pairs (A, v) with A ∈ g, v ∈ h, such that v,Av, · · ·An−1v are linearly
independent. We have a similar statement about D(fx), and the action of
G⋉ h∗ on Sym(g⊕ h∗).

Recall that the algebra C[α1, · · · , αn] is finite over C[c1, · · · , cn]. In par-
ticular, C[c1, · · · , cn] is isomorphic to the polynomial algebra in n variables.
ThereforeC[α1, · · · , αn] is a finitely generated free module over C[c1, · · · , cn].

Let us introduce a filtration on Am, where deg g = 1, g ∈ g deg xi,deg yj =
0. Since Sym g is a free C[α1, · · · , αn]-module (by Kostant’s theorem for
g [BL]), we conclude that Sym g is a free C[c1, · · · , cn]-module. This im-
plies that (t1, · · · , tn) is a regular sequence (since cj = gr tj) and grAm is
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a free module over C[gr t1, · · · , gr tn]. Therefore Am is a free module over
C[t1, · · · , tn]. In particular, Hb is a free Z(Hb)-module. Also, we obtain
that Bn is a complete intersection ring.

The latter filtration on Am induces the corresponding filtration on its
quotient Bm. Then the degeneration of X \ U under this filtration will be
given by equations ci = 0, i = 1, · · · n, fx = 0, fy = 0. Therefore, what we get
is nothing but Y = h×h∗×N∩(fx = 0 = fy), whereN denotes the nilpotent
cone of g. We need to prove that dimY ≤= dimX = dimN + 2dim h − 2.
Consider the projection map p : Z → N . Let U ⊂ N denote the open subset
of regular nilpotent matrices. Then clearly dim p−1(U) ≤ dimN+2dim h−2,
and p−1(N \U) = (N \U)× h× h∗, whose dimension is dimN +2dim h− 2.

Finally, it is obvious that D(fx)∩D(fy) is nonempty. It is also clear that
D(xf ) ∪ D(yf ) is in the orbit of any element of D(xf ) ∩ D(yf ) under the
actions of G⋉ h, G⋉ h∗. Therefore D(xf )∪D(yf ) lies in a single symplectic
leaf. �

As a consequence we get that grUb,χ = Bm is a domain, so Ub,χ is also a
domain.

In analogy with semi-simple Lie algebras, one defines an analogue of the
category O, and Verma modules for Hb [T1]. Let us recall their definition.
Denote by n+ (respectively n−) the Lie subalgebra of g consisting of up-
per (lower) triangular matrices. Then we have a triangular decomposition
Hb = H−⊗U(C)⊗H+, where H+ (respectively H−) denotes the subalgebra
of Hb generated by n+ (n−), h(h

∗), and C ⊂ g is the Cartan subalgebra of
all diagonal matrices. For a weight λ ∈ C∗, the corresponding Verma mod-
ule M(λ) is defined as Hb ⊗U(C)⊗H+

Cλ, where Cλ is the 1-dimensional

representation of U(C)⊗H+ on which C acts by λ and n+, h act like 0.
We have the following analogue of a theorem of Duflo [D].

Corollary 0.1. The annihilator of a Verma module M(λ) is generated by

Ann(M(λ)) ∩ Z(Hb).

Proof. Directly following [J], using the fact that Verma mudules have finite
length [T1], it follows that Hb/Ann(M(λ)) has the same Gelfand-Kirillov
dimension as Hb/Ann(M(λ)) ∩Z(Hb). But since the latter is a domain, we
get that Ann(M(λ)) = (Ann(M(λ)) ∩ Z(Hb))Hb. �

Let us discuss the case of a field k = k̄ of positive characteristic. We will
assume that char(k) ≫ 0, then the definition of Hb over k makes sense. One

checks easily that hp, h∗p, gp−g[p] ∈ Z(Hb), g ∈ g, where g[p] ∈ g denotes the
p-th power of g as a matrix. We will denote by Z0(Hb) the algebra generated
by the above elements. We have following result which we conjectured in
[T1].

Corollary 0.2. The smooth and Azumaya loci of Z(Hb) coincide, and

Z(Hb) is generated by t1, · · · , tn over Z0(Hb). The PI-degree of Hb is
1
2(n

2+
n).



4 AKAKI TIKARADZE

The corollary follows from the following trivial proposition and [T2].

Proposition 0.1. Let S be a Poisson algebra over k, and let (f1, · · · , fn)
be a regular sequence of Poisson central elements. Let S/(f1, · · · , fn) be a

normal domain such that its smooth locus is symplectic. Then the Poisson

center of S is generated as an algebra by Sp, f1, · · · , fn.

Proof. It follows immediately that the Poisson center of S lies in Sp + I
[T1]. Let f ∈ Ik be in the Poisson center of S. But Ik/Ik+1 is a free Poisson
S/I-module, so f ∈ Sp[f1, · · · , fn] + Ik+1. Continuing by induction on k,
we are done. �
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