
ar
X

iv
:1

00
9.

04
67

v1
  [

m
at

h.
A

P]
  2

 S
ep

 2
01

0

THE BUCKLEY-LEVERETT EQUATION WITH DYNAMIC CAPILLARY PRESSURE

K. SPAYD∗ AND M. SHEARER†

Abstract. The Buckley-Leverett equation for two phase flow in a porous medium is modified by including a dependence of
capillary pressure on the rate of change of saturation. This model, due to Gray and Hassanizadeh, results in a nonlinear pseudo-
parabolic partial differential equation. Phase plane analysis, including a separation function to measure the distance between
invariant manifolds, is used to determine when the equation supports traveling waves corresponding to undercompressive shocks.
The Riemann problem for the underlying conservation law is solved and the structures of the various solutions are confirmed
with numerical simulations of the partial differential equation.
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1. Introduction. The Buckley-Leverett equation for two-phase flow in a porous medium was formu-
lated in the 1940s to model the dynamics of water and oil in porous rock or compacted sand [2]. In its
original form, the equation is a scalar conservation law expressing the unidirectional nonlinear transport of
the two phases through a medium with uniform porosity. Buckley and Leverett effectively use the method of
characteristics to solve typical initial value problems and deduce the breakdown of smooth solutions, giving
rise to sharp interfaces or shock waves smoothed by the effect of capillary pressure. More recently, versions
of the Buckley-Leverett equation have included capillary pressure as a dissipative term [15, 17]. This pres-
sure has typically been treated as though interfacial forces equilibriate on a fast time scale, an assumption
brought into question by Gray and Hassanizadeh, who formulated a dynamic capillary pressure law [5, 6].

In this paper, we study solutions of the Buckley-Leverett equation with unidirectional nonlinear transport
and dynamic capillary pressure. The equation expresses conservation of mass for the saturation (volume
fraction) u = u(x, t) of one of the phases:

∂u

∂t
+

∂f(u)

∂x
= − ∂

∂x

[

H(u)
∂

∂x

(

pce(u)− τ
∂u

∂t

)]

. (1.1)

The flux function f(u), known as the fractional flow rate, depends on the ratio of relative permeabilities of
the two phases, and has a characteristic S-shaped graph (see Figure 2.1a). The dissipation function H(u)
(graphed in Figure 2.1b) is positive, but approaches zero at u = 0, 1 where one phase is absent. Consequently,
the PDE (1.1) is degenerate at u = 0, 1. The equilibrium capillary pressure pce(u) is a decreasing function of
saturation, and τ is a relaxation time for the dynamic capillary pressure with a linear rate dependence.

There has been much interest recently in refining the Gray–Hassanizadeh dynamic capillary pressure
model (see [14] and the references therein), and in exploring properties of wave-like solutions of equation
(1.1) [3, 4, 8, 10, 19]. Much of this effort has been expended on characterizing traveling wave solutions under
various simplifications and constitutive assumptions. A striking novel feature of the analysis is the presence
of traveling waves that are undercompressive in the sense of shock waves [7, 11, 13]. In this paper, we
analyze traveling wave solutions in the natural case in which relative permeabilities are quadratic functions
of saturation. The structure of traveling waves suggests the form of a nonclassical Riemann solver (when
capillary pressure is taken to be negligible), in which shock waves are deemed admissible only if they are
singular limits of traveling waves.

In §2, we describe the model in more detail, including specific conditions on relative permeabilities. In this
section we also characterize traveling waves as heteroclinic orbits of a system of ODEs, and recall conditions
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2 K. SPAYD AND M. SHEARER

for shock and rarefaction waves. In §3, we analyze the planar vector field derived from the traveling wave
ODE, using a separation function whose zeroes correspond to undercompressive traveling waves. In §4, we
solve the Riemann problem using the information about traveling waves to identify admissible shocks. The
solution is not much different from that predicted earlier [7] for a simpler regularization of the conservation
law. In §5 we use an implicit finite difference scheme on the PDE (1.1) to demonstrate some of the solutions
of the Riemann problem, except that now the solutions are smooth. As expected, the underlying structure
of the smooth solutions is predicted by the Riemann solver of §4. A concluding §6 discusses implications
of the results of the paper and possible avenues for further investigation. All of the figures and numerical
simulations in this paper were generated using MATLAB R©.

2. Preliminaries. In this section, we describe the Gray–Hassanizadeh model and outline the derivation
of equation (1.1). Traveling wave solutions of the PDE (1.1) correspond to trajectories between equilibria of
a system of ODE, presented in §2.2. Finally, in §2.3 we define shock and rarefaction solutions of the scalar
conservation law in which the right hand side of (1.1) is set to zero.

2.1. The Gray–Hassanizadeh model. The Gray–Hassanizadeh model of dynamic capillary pressure
[5, 6] is based on the observation that capillary pressure should be time dependent. The simplest form
of a time-dependent capillary pressure law introduces a linear rate-dependence of capillary pressure pc on
saturation:

pc(u, ut) = pce(u)−
1

Πw

∂u

∂t
. (2.1)

In this equation, u is the saturation (volume fraction) of the wetting phase (water), so that for a fully
saturated medium, the saturation of the non-wetting phase (oil) is 1 − u. Capillary pressure at equilibrium
is denoted by pce, and Πw is a positive material constant.

Let pj denote the pressure in the jth phase (j = n,w), with velocity vj , and mobility λj . Then Darcy’s
law is

vj = −λj ∂p
j

∂x
. (2.2)

The capillary pressure pc is the difference between the two phase pressures:

pc = pn − pw. (2.3)

Combining (2.1)–(2.3), we find

− vn

λn
+

vw

λw
=

∂pce(u)

∂x
− 1

Πw

∂2u

∂x∂t
.

In unidirectional flow, we can now eliminate one of the velocities by defining the total velocity vtotal = vn+vw,
as in [15]:

vw =
λwλn

λw + λn

(

∂pce(u)

∂x
− 1

Πw

∂2u

∂x∂t

)

+ vtotal
λw

λw + λn
. (2.4)

In what follows, we assume vtotal is constant, a parameter setting the velocity scale. The mobilities λj

depend on the total permeability constant K > 0, and on the relative permeabilities kn(1−u), kw(u). These
are increasing functions of their respective saturations, since the presence of one phase inhibits the flow of
the other phase. Specifically,

λn =
Kkn(1− u)

µn
, λw =

Kkw(u)

µw
, (2.5)
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Fig. 2.1: (a) Fractional flow rate f(u). (b) Capillary induced diffusion H(u) in (2.6)

in which µn, µw are the viscosities.
Substituting (2.4), (2.5) into the equation for conservation of mass of the wetting phase:

φ
∂u

∂t
+

∂vw

∂x
= 0,

and nondimensionalizing (as in [14]), gives the PDE (1.1):

∂u

∂t
+

∂f(u)

∂x
= − ∂

∂x

[

H(u)
∂

∂x

(

pce(u)− τ
∂u

∂t

)]

. (2.6)

Here, the non-dimensional parameter τ depends on the porosity φ and a length scale L : τ =
K

ΠwL2φµn
.

The flux f(u), the fractional flow rate, and H(u), the capillary induced diffusion [4] are given by

f(u) =
kw(u)

kw(u) +mkn(1− u)
, H(u) =

kw(u)kn(1− u)

kw(u) +mkn(1− u)
,

in which m = µw/µn. The equilibrium capillary pressure pce has in fact been scaled by a typical pressure

p̄ = vtotalLµw

K , and is now dimensionless.
In this paper, we assume that relative permeability functions kw(u), kn(1 − u) are quadratic: kj(u) =

κju2, where κj > 0 is constant, j = w, n. Then we have the functional forms

f(u) =
u2

u2 +M(1− u)2
, H(u) =

κnu2(1− u)2

u2 +M(1− u)2
, M =

κn

κw
m.

The fractional flow rate f(u) is a convex-concave function with inflection point at uI ∈ (0, 1). This is
significant when describing the hyperbolic wave structure of solutions, as in [13]. Graphs of these functions
are shown in Figure 2.1 for M = 2, κn = 1, representative choices [19]. In this case, uI = 0.613. It is
commonly assumed that relative permeability functions may be ideally described by quadratic functions
[15], but other fractional powers are sometimes fit to relative permeability curves [18].

The (equilibrium) capillary pressure is generally taken to be a smooth and decreasing function of satu-
ration; for simplicity in this paper, we take it to be linear: pce(u) = −u. Then (2.6) becomes

∂u

∂t
+

∂f(u)

∂x
=

∂

∂x

[

H(u)

(

∂u

∂x
+ τ

∂2u

∂x∂t

)]

. (2.7)



4 K. SPAYD AND M. SHEARER

Linearizing about a constant u = ue, we obtain a linear PDE for the perturbation v(x, t) of ue :

vt + f ′(ue)vx = H(ue)(vxx + τvxxt). (2.8)

Solutions of (2.8) of the form v = eλt eikx are specified by the dispersion relation

λ+ ikf ′(ue) = −k2H(ue)− λk2τH(ue).

Thus,

λ = −ik
f ′(ue)

1 + k2τH(ue)
− k2H(ue)

1 + k2τH(ue)
.

Let c(k) =
f ′(ue)

1 + k2τH(ue)
and µ(k) =

k2H(ue)

1 + k2τH(ue)
. Then

v = eik(x−c(k)t) e−µ(k)t.

Thus the solution has wave speed c(k) bounded above by the characteristic speed f ′(ue) for all k. Moreover,
µ(k) → 1/τ as k → ∞, suggesting that τ is akin to a relaxation time.

2.2. Traveling Waves. A traveling wave solution of (2.7) is of the form u(x, t) = ũ(η), η = x − st.
Substituting into (2.7) gives the third order ODE (omitting tildes)

− su′ + (f(u))′ = [H(u)u′]
′ − sτ [H(u)u′′]

′
(2.9)

where ′ = d/dη. Integrating (2.9) with boundary conditions

u(±∞) = u±, u′(±∞) = 0, u′′(±∞) = 0,

leads to the second order ODE

− s(u− u+) + f(u)− f(u+) = H(u)u′ − sτH(u)u′′, (2.10)

together with the Rankine-Hugoniot condition

− s(u+ − u−) + f(u+)− f(u−) = 0. (2.11)

As in [19], it is convenient to write û(ξ) = u(η) where ξ = η/
√
sτ . Then equation (2.10) becomes (hats

omitted)

H(u)u′′ − H(u)√
sτ

u′ − s(u− u+) + f(u)− f(u+) = 0, (2.12)

where ′ = d/dξ. We write (2.12) as a first order system of ODEs:

u′ = v (2.13a)

v′ =
1√
sτ

v +
1

H(u)
[s(u− u−)− f(u) + f(u−)] . (2.13b)

Traveling waves correspond to heteroclinic orbits between equilibria (u±, 0), analyzed in detail in §3.
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2.3. Shocks and rarefactions. A shock wave from u− to u+ with speed s is a discontinuous weak
solution of the scalar conservation law

ut + f(u)x = 0 (2.14)

which has the form

u(x, t) =

{

u− if x < st

u+ if x > st,
(2.15)

where s is defined by the Rankine-Hugoniot condition (2.11) as the slope of the chord connecting (u−, f(u−))
and (u+, f(u+)). (In this paper we consider only constant u±, s; more generally, u± would be one-sided limits
at a discontinuity x = x̃(t) with speed s(t) = x̃′(t).)

A Lax shock is a shock wave which satisfies the Lax entropy condition [12]:

f ′(u+) ≤ s ≤ f ′(u−), (2.16)

so that characteristics x(t) = f ′(u±)t+ x0 converge on the shock from each side.
A shock from u− to u+ with speed s is admissible if there exists a solution (u, v)(ξ) of (2.13) such that

(u, v)(±∞) = (u±, 0). Because of the presence of admissible undercompressive shocks, in which characteristics
converge on the shock only from ahead of the wave, not all admissible shocks are Lax shocks and not all Lax
shocks are admissible.

A rarefaction wave is a piecewise smooth weak solution of (2.14) which has the form

u(x, t) =











u− if x < f ′(u−)t

r(xt ) if f ′(u−)t ≤ x ≤ f ′(u+)t

u+ if x > f ′(u+)t

where u = r(ξ) is defined by f ′(u) = ξ. Note that this makes sense if f ′(u) is increasing from f ′(u−) to
f ′(u+).

3. Equilibria and heteroclinic orbits. In this section we investigate the structure of heteroclinic
orbits for system (2.13) using a combination of analysis and simulation. In §3.1, we describe when there
are three equilibria and characterize them as saddles, nodes and spirals. We define a separation function in
§3.2 which is used to determine pairs (u−, u+) for which there is a saddle-saddle connection. The numerical
computation of the separation function is detailed in §3.3. In §3.4, we analytically confirm properties
suggested by the numerical calculations.

3.1. Equilibria. Equilibria for system (2.13) are points (u, v) = (u, 0), where s(u − u−) = f(u) −
f(u−); these correspond to points of intersection between the graph of f and the line with slope s through
(u−, f(u−)). In particular, for the shock wave (2.15), (u±, 0) are equilibria. When there are three equilibria,
we will denote the corresponding values of u as ubot < umid < utop.

The Jacobian of (2.13),

J(u, 0) =







0 1

s− f ′(u)

H(u)

1√
sτ






,

has eigenvalues

λ± =
1

2

{

1√
sτ

±
√

1

sτ
+ 4

s− f ′(u)

H(u)

}

. (3.1)
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Consequently, the outside equilibria, u = ubot and u = utop, are saddle points since f ′(u) < s. The middle
equilibrium umid is an unstable node or spiral since f ′(umid) > s.

By a saddle-saddle connection from u− to u+ we mean a heteroclinic orbit from (u−, 0) to (u+, 0) when
(u±, 0) are saddle point equilibria. When ubot = u− < utop = u+, this saddle-saddle connection occurs in
the upper half plane. On the other hand, when ubot = u+ < utop = u−, the connection lies in the lower half
plane. Note that homoclinic orbits are possible only for τ = ∞ since the system is conservative only in this
limit.

For each u− ∈ [0, 1], consider the equation

f ′(u) =
f(u)− f(u−)

u− u−

, 0 < u < 1. (3.2)

Lemma 3.1. Suppose f : [0, 1] → [0, 1] is continuous and C4 on (0, 1). Suppose further that f ′(0) =
f ′(1) = 0, (u− uI)f

′′(u) < 0 for u 6= uI and f ′′′(uI) < 0. Then there is a continuous function uα : [0, 1] →
[0, 1] that is C4 on (0, 1) such that for each u− 6= uI, u = uα(u−) is the unique solution of (3.2); moreover,
uα(uI) = uI, and u′

α(uI) = − 1
2 .

Proof. Let

g(u−, y) := f ′(y)(y − u−)− f(y) + f(u−) (3.3)

with u−, y ∈ (0, 1). Without loss of generality, we assume u− < uI ≤ y. We begin by showing the existence

of uα(u−). By the Mean Value Theorem, f ′(z) =
f(y)− f(u−)

y − u−

for some z depending on y with u− < z < y.

Letting y = u−, we have f ′(z) < f ′(uI) for all z, u− < z < uI so that f ′(uI) >
f(uI)− f(u−)

uI − u−

. Thus

g(u−, uI) > 0. On the other hand, if y = 1, then f ′(z) > f ′(1) = 0 so that g(u−, 1) < 0. By continuity, there
is a value uα(u−) ∈ (uI , 1) such that g(u−, uα(u−)) = 0. Uniqueness follows from the inequality

∂g

∂y
= (y − u−)f

′′(y) < 0 for y > uI . (3.4)

Repeatedly differentiating (3.3) and evaluating at u− = y = uI leads to u′
α(uI) = −1

2
. Regularity follows

from (3.4) and the Implicit Function theorem except at u− = uI where the proof involves taking limits. This
completes the proof of Lemma 3.1.

The continuous function uα has range an interval Iα = {uα(u−) : u− ∈ [0, 1]}. Let uγ : Iα → [0, 1] be
the inverse of uα. Then u+ = uγ(u−) gives the intersection of the tangent through (u−, f(u−)) with the
graph of f(u) (where this intersection is in the unit interval):

f ′(u−) =
f(uγ(u−))− f(u−)

uγ(u−)− u−

. (3.5)

In Figure 3.1b, we show curves A and B defined by A = {(uα(u+), u+) : u+ ∈ [0, 1]}, B = {(u−, uα(u−)) :
u− ∈ [0, 1]}. The regions between these curves represent pairs (u−, u+) for which system (2.13) has three
equilibria and u± are corresponding saddle points.

Various phase portraits for which (2.13) has two or three equilibria are illustrated in Figure 3.2. The
first three portraits in Figure 3.2 show three equilibria; the outside two are saddles while the middle is
an unstable node. The trajectories connecting umid to ubot and umid to utop in Figure 3.2a correspond
to admissible Lax shocks with u− = umid. However, in Figure 3.2b, there is no trajectory from umid to
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Fig. 3.1: Values of u± for which there are three equilibria of (2.13); (a) Definitions of uα(u−), uγ(u−) on
flux function curve, (b) Graphs A, B of functions uγ(u−), uα(u−), respectively.

utop, even though u− = umid, u+ = utop satisfy the Lax entropy condition (2.16). Figure 3.2c illustrates
a saddle-saddle connection corresponding to an admissible undercompressive shock between ubot = u− and
utop = u+. This case separates those shown in Figures 3.2a, 3.2b.

Given a pair (u−, u+ = uγ(u−)) on curve A, (2.13) has only two equilibria: a degenerate saddle-node
at u− and a saddle at u+. The two possible phase portraits for such a pair with u− < uI are shown in
Figures 3.2d, 3.2e. As ubot = u− and umid approach each other, Figure 3.2a becomes Figure 3.2d, with
the connection between umid and utop = u+ being preserved, and Figure 3.2b transforms into Figure 3.2e.
Between these two cases is a limiting version of Figure 3.2c in which umid = ubot. In contrast to Figure 3.2d
there are no trajectories from (ubot, 0) above the stable manifold of (utop, 0).

3.2. Separation function. In this section, we define a separation function R(ν), for each value of the
parameters ν = (β, s, u−,M) where β = 1/

√
sτ. Zeroes of the separation function determine parameters for

which there is a saddle-saddle trajectory from u− to u+, where u+ 6= u− depends on u− and s through the
Rankine-Hugoniot condition (2.11). The separation function R, defined in [7], measures a distance, at the
middle equilibrium, between the unstable manifold emanating from (u−, 0) and the stable manifold entering
(u+, 0).

Let φ = (u, v). We use the notation ν0 = (β0, s0, u0
−,M

0) and φ0 = (u0, v0) to represent specific values
of the parameters and variables. Let K(φ; ν) denote the vector field in system (2.13):

K(φ; ν) =

(

v
βv + 1

H(u) (s(u − u−)− f(u) + f(u−))

)

.

Suppose that for a particular β0 and pair u0
± (with u0

− < u0
+), there is a saddle-saddle connection from

u0
− to u0

+ and let φ0(ξ) = (u0, v0)(ξ) be the corresponding trajectory. That is, φ0(ξ) is a solution of (2.13)
with boundary values φ0(±∞) = (u0

±, 0). For parameter values ν near ν0, there are saddle points (u±, 0) near
(u0

±, 0); the solution of (2.13) along the unstable manifold of the saddle equilibrium at u− is represented by
φ−(ξ; ν) and similarly φ+(ξ; ν) is the solution along the stable manifold of (u+, 0). We require that φ± ∈ C1
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Fig. 3.2: Phase portraits of (2.13) with M = 2, τ = 0.1 for various pairs (u−, u+) in the region marked “3
equilibria” in Figure 3.1b, with u− < uI . (a) The unstable manifold from u− = ubot is above the stable
manifold at u+ = utop. (b) The unstable manifold from u− is below the stable manifold into u+. (c) Saddle-
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at u+.
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in both ξ and ν (near ν0) and that φ± satisfy:

φ−(ξ, ν
0) = φ0(ξ), ξ ∈ (−∞, 0]; φ+(ξ, ν

0) = φ0(ξ), ξ ∈ [0,∞)

φ−(−∞; ν) = (u−, 0); φ+(∞; ν) = (u+, 0).

Let y(ξ) = K(φ−(ξ; ν), ν) × ∂θφ−(ξ; ν) where θ = β, s, u− or M. (The product U × V means the 2× 2
determinant formed from column vectors U, V .) Then (noting that divφK = β) y satisfies the ODE

dy

dξ
= βy + r(ξ)

where r(ξ) = K(φ−(ξ; ν), ν) × ∂θK(φ−(ξ; ν), ν). Solving this linear differential equation by using an inte-
grating factor, we obtain

y(0) =

∫ 0

−∞

e−βξr(ξ)dξ. (3.6)

We define the separation function R(ν) = K(φ0(0), ν0) × (φ−(0; ν) − φ+(0; ν)); then (3.6) and the corre-
sponding formula for φ+ give

∂R

∂θ
(ν0) =

∫ ∞

−∞

e−βξ

(

K(φ0(ξ), ν0)× ∂K

∂θ
(φ0(ξ), ν0)

)

dξ (3.7)

for each parameter θ.
Next, we use (3.7) to calculate the sign of each of the derivatives of R(ν) with respect to the parameters

β, u−, s. First, let θ = β. Then we have the following:

∂K

∂β
=

(

0
v0

)

, K × ∂K

∂β
= (v0)2.

Consequently,

∂R

∂β
(ν0) =

∫ ∞

−∞

e−βξ(v0)2dξ > 0. (3.8)

We next consider θ = u−. Since

∂K

∂u−

=





0
1

H(u)
(−s0 + f ′(u0

−))



 , K × ∂K

∂u−

=
v0

H(u0)
(f ′(u0

−)− s0),

we have:

∂R

∂u−

(ν0) =

∫ ∞

−∞

e−βξ v0

H(u0)
(f ′(u0

−)− s0)dξ < 0. (3.9)

Finally, for θ = s,

∂K

∂s
=

(

0
1

H(u) (u
0 − u0

−)

)

, K × ∂K

∂s
=

v0

H(u0)
(u0 − u0

−).

Thus,

∂R

∂s
(ν0) =

∫ ∞

−∞

e−βξ v0

H(u0)
(u0 − u0

−)dξ > 0. (3.10)
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Fig. 3.3: (a) Στ curves for τ = 0.1, 1,∞. The Στ curves are contained in the region between curves A and B,
defined in §3.1. Points (ū, ū+), (u, u+) are shown for the case τ = 0.1 only. (b) Region 0 ≤ u+ ≤ uI ≤ u−

of Figure 3.3a with only curves A and Σ0.1 shown. The labels a-e refer to corresponding phase portraits in
Figure 3.2.

3.3. Numerical calculations. For a fixed ν = (β, s, u−,M) we compute trajectories φ±(ξ; ν) from
ξ = ±∞ respectively, until they cross the vertical line u = umid at the middle equilibrium. Let vm± (ν) denote

the corresponding values of v. In practice, we fix τ,M and u−, and define R̃(u+) = vm− (ν)− vm+ (ν), in which

s varies with u+. Instead of computing zeroes of R(ν), we equivalently solve R̃(u+) = 0.

Our first step is to choose two values of u+ for which R̃(u+) has opposite signs; for u− < uI , this is the

case if we choose u
(1)
+ = uα(u−) + δ and u

(2)
+ = uγ(u−)− δ if u− ∈ Iα or u

(2)
+ = 1 − δ if u− /∈ Iα, where the

small parameter δ > 0 is needed to avoid degenerate equilibria. We then find a zero of R̃(u+) by interval
division. From (3.10) and the monotonic dependence of s on u+, we deduce that the zero u+ = uΣ(u−, τ)
of R̃(u+) is unique (shown in §3.4).

The points (u−, uΣ(u−, τ)) lie on a curve Στ , in the u−, u+ plane of Figure 3.3; Στ has two connected
components that terminate at points (u, u+), (ū, ū+) on the curve . In Figure 3.3, we label them only for
the case τ = 0.1.

3.4. Properties of the Στ curves. As τ > 0 varies, the Στ curves change as suggested in Figure 3.3.
The curves fill a region bounded by the Σ∞ curve, the curve labeled A and either the u− axis or the horizontal
line u+ = 1. In particular, each Στ curve approaches a corner (u−, u+) = (0, 1) or (u−, u+) = (1, 0).
As observed in [4], for quadratic relative permeabilities there can be no traveling wave connected to an
equilibrium with u± = 0 or 1. Although there is not a saddle-saddle connection from u− = 0 to u+ = 1, or
from u− = 1 to u+ = 0, we can regard the limits of the Στ curves as representing these connections.

We establish the structure seen in Figure 3.3 in two steps: first with τ = ∞ and then 0 < τ < ∞. In
both cases, we use an identity that involves integrating system (2.13) along a saddle-saddle trajectory from
u− to u+ = uΣ(u−) with speed s = s(u−, u+) given by the Rankine-Hugoniot condition (2.11). Along a
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saddle-saddle trajectory, v = v(u) is a function of u. Then

v
dv

du
= βv +

s(u − u−)− f(u) + f(u−)

H(u)
.

Let

G(u;u−, s) =
s(u − u−)− f(u) + f(u−)

H(u)
.

Then integrating from u− to u > u−, we have

1

2
v2(u) = β

∫ u

u
−

v(y) dy +

∫ u

u
−

G(y;u−, s) dy. (3.11)

For definiteness, suppose u− < u+. Then, letting u = u+, and since v(u) = u′ ≥ 0,

∫ u+

u
−

G(y;u−, s) dy = −β

∫ u+

u
−

v(y) dy ≤ 0,

with equality only for β = 0. We define

h(u−, u+) =

∫ u+

u
−

G(y;u−, s) dy.

The equation h(u−, u+) = 0 gives pairs (u−, u+) for which there is a saddle-saddle connection from u− to
u+ for β = 0, i.e., in the limit τ → ∞.

In what follows, it is useful to record the signs of
∂s

∂u−

and
∂s

∂u+
when u± correspond to saddle point

equilibria:

Lemma 3.2. For u− < uI and u+ > uα(u−),
∂s

∂u+
< 0 and

∂s

∂u−

> 0.

Proof. We first calculate
∂s

∂u+
from (2.11):

∂s

∂u+
=

1

u+ − u−

(f ′(u+)− s) < 0,

since u− < u+ and f ′(u+) < s. Similarly,

∂s

∂u−

=
1

u+ − u−

(s− f ′(u−)) > 0.

Proposition 3.1. (τ = ∞) The level curve {(u−, u+) : h(u−, u+) = 0} is a smooth monotonic curve
u+ = u∞(u−) joining (u−, u+) = (0, 1) to (u−, u+) = (1, 0). Moreover, u∞(u−) ∼ 1 − uM

− as u− → 0+ and

u∞(u−) ∼ (1− u−)
1/M as u− → 1−.

Proof. We begin by establishing the existence of the function u+ = u∞(u−) such that h(u−, u∞(u−)) = 0.
In the following lemma we restrict, without loss of generality, to the interval 0 < u− < uI .

Lemma 3.3. For every u− < uI, there exists a unique u+ = u∞(u−) > uI such that h(u−, u+) = 0.
Moreover, lim

u
−
→uI−

u∞(u−) = uI and lim
u
−
→0+

u∞(u−) = 1.
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Proof. We first show that as u+ → 1 with fixed u− < uI , h(u−, u+) → −∞. To begin, we observe that

G(u;u−, s) = G(u;u+, s) =
s(u− u+)− f(u) + f(u+)

H(u)
(3.12)

=
s(1− u+)

(1− u)2
− s

1− u
+ F1(u, u+, s) (3.13)

where F1(u, u+, s) has the property that
∫ u+

u
−

F1(u, u+, s) du has a finite limit as u+ → 1−. Consequently,

h(u−, u+) =

∫ u+

u
−

G(u;u+, s) du ∼ s ln(1− u+), as u+ → 1− . (3.14)

On the other hand, for u+ = uI , the area between the chord joining u− and u+ and the curve f(u) is positive
(since the chord lies above the graph of f); thus h(u−, uI) > 0. Since h(u−, u+) changes sign, there is a
value of u+ such that h(u−, u+) = 0. Uniqueness is established by the calculation

∂h

∂u+
=

∫ u+

u
−

u− u−

H(u)

∂s

∂u+
du < 0. (3.15)

To consider the case near the inflection point, we suppose that u− is close to uI . Then G(u;u−, s) < 0
for u ∈ (u−, uγ(u−)). Thus h(u−, uγ(u−)) < 0. Since h(u−, uI) > 0 (as observed above), we have uI <
u∞(u−) < uγ(u−). But uγ(u−) → uI as u− → uI , so that lim

u
−
→uI−

u∞(u−) = uI .

To show lim
u
−
→0+

u∞(u−) = 1, we observe that h(u−, u+) for fixed u+ < 1 has the asymptotic form

∫ a

u
−

G(u;u−, s) du ∼ −sM lnu− as u− → 0 + . (3.16)

Consequently, since h(u−, u∞(u−)) = 0, we must have u+ → 1 as u− → 0+ to avoid the singularity in (3.16).
(This idea is pursued more quantitatively below.) This completes the proof of the lemma.

Next, we show that u∞(u−) ∼ 1− uM
− as u− → 0+. We express h(u−, u+) with u+ = u∞(u−) as a sum

of three integrals:

h(u−, u+) =

∫ a

u
−

G(u;u−, s) du+

∫ b

a

G(u;u−, s) du+

∫ u+

b

G(u;u−, s) du = 0, (3.17)

where a and b are chosen such that
∫ b

a
G(u;u−, s) du = 0. Then the first and third terms in (3.17) must

balance each other as u− → 0+ and u+ → 1−. As in (3.14) and (3.16), respectively,

∫ u+

b

G(u;u−, s) du ∼ s ln(1− u+) as u+ → 1− (3.18)

∫ a

u
−

G(u;u−, s) du ∼ −sM lnu− as u− → 0 + .

The terms from these two integrals must add to zero which gives u+ = u∞(u−) ∼ 1− uM
− as u− → 0 + .

To show monotonicity of u∞(u−), we differentiate the identity h(u−, u∞(u−)) = 0 with respect to u−

and obtain:

∂h

∂u−

+
∂h

∂u+
u′

∞(u−) = 0.
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We have that
∂h

∂u+
< 0 from (3.15), and we calculate

∂h

∂u−

using (3.12) and Lemma 3.2 with s = s(u−, u+):

∂h

∂u−

=

∫ u+

u
−

u− u+

H(u)

∂s

∂u−

du < 0.

Therefore, u′
∞(u−) < 0. Defining u∞(0) = 1 and u∞(uI) = uI , the smooth curve

Σ∞ = {(u−, u∞(u−)) : 0 ≤ u− ≤ uI}

decreases monotonically from (0, 1) to (uI , uI).
A similar argument for u− > uI shows that Σ∞ extends monotonically from (uI , uI) to (1, 0) with

u∞(u−) ∼ (1− u−)
1/M as u− → 1−. This completes the proof of Proposition 3.1.

In defining the separation function R, it is natural to have it depend on parameters u−, s, β. However, in
the following proposition, we establish properties of the Στ curves in the (u−, u+) plane. It is thus convenient
to express zeroes of R in terms of parameters u±, τ , so we define

R̂(u−, u+, τ) = R(u−, s(u−, u+), β), in which β = 1/
√

s(u−, u+)τ .

Note that R̂ is not the same as the function R̃(u+) used to calculate zeroes of R (see §3.3). The proof of the
next proposition uses the inequality

∂R̂

∂u+
(u−, uΣ(u−, τ), τ) < 0, u− 6= uI . (3.19)

That is, R̂ is strictly decreasing in u+ at the zero u+ = uΣ(u−, τ) of R̂. Numerical results show clearly that
R̂(u−, u+, τ) is strictly decreasing as a function of u+, but proving this property is problematic for extreme
values of the parameters (specifically large values of τ). Consequently, we make (3.19) an assumption in the
proposition.

Proposition 3.2. (0 < τ < ∞) Assuming (3.19), for each τ ∈ (0,∞), there is a u = u(τ) with the
property that, for each u− ∈ (0, u), the equation R̂(u−, u+, τ) = 0 has a unique solution u+ = uΣ(u−, τ).
Moreover,

1. uΣ(u−, τ) is a C∞ function;

2.
∂uΣ

∂τ
< 0 and

∂uΣ

∂u−

< 0.

Proof. Let u− < uI . From Proposition 3.1, let u0
+ > u0

− satisfy h(u0
−, u

0
+) = 0. Then

∫ u0
+

u0
−

G(y;u0
−, s

0) dy =

0 and

∫ u

u0
−

G(y;u0
−, s

0) dy > 0 for u0
− < u < u0

+. The point (u0
+, 0) is an equilibrium with s0 = s(u0

−, u
0
+).

Then from (3.11), with u− = u0
− we find that v(u) > 0 for u0

− < u < u0
+. Consequently, comparing the

unstable manifold from (u0
−, 0) to the stable manifold entering (u0

+, 0) we conclude that R̂(u0
−, u

0
+, τ

0) > 0.
This corresponds to the phase portrait shown in Figure 3.2a.

Let u∗ be defined by (3.5) when uγ(u∗) = 1. Next we argue that R̂(u0
−, u+, τ

0) < 0 for u0
− < u∗ and u+

near 1. Suppose for a contradiction that v(u) > 0 for u ∈ (u0
−, u+] and so R̂(u0

−, u+, τ
0) > 0. From (3.18),

∫ u+

u0
−

G(u;u0
−, s(u

0
−, u+)) du → −∞, as u+ → 1−.
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However,

∫ u

u
−

v(u) du is uniformly bounded. Thus the right hand side of (3.11) is negative for u+ close

enough to 1 while the left hand side of (3.11) is positive for all u. This contradiction implies v(u) = 0 for
some u < u+, as in 3.2b.

For (u−, u+) on the curve A, (u−, 0) is a saddle-node equilibrium. In fact, the equilibrium has a positive
eigenvalue λ+ = β and a well defined eigenvector with corresponding unstable manifold. For this reason, as
in [16], the separation function R̂(u−, u+, τ) is well defined on A and continuous on U ∪ A ∪ Σ∞, where U
is the open region bounded by A, Σ∞ and the line u+ = 1.

As in the previous paragraph, since
∫ u+

u
−

G(u;u−, s) du → −∞ as u+ → 1, we conclude that R̂ < 0

for (u−, u+) on A near (u∗, 1). We also observe that R̂(u−, u+, τ) → 0 as (u−, u+) → (uI , uI). Set-
ting R̂(uI , uI , τ) = 0, we define u = min{u− : R̂(u−, uγ(u−), τ) = 0, u∗ < u− ≤ uI}. Consequently,

R̂(u−, uγ(u−), τ) < 0 for u∗ < u− < u.

For each u−, 0 < u− < u, we have identified values of u+ at which R̂ has opposite signs. Thus, by
continuity, there exists a value of u+ = uΣ(u−, τ) for which R̂ = 0. With existence established, we note that
uniqueness follows directly from assumption (3.19).

It follows from (3.19) and the Implicit Function Theorem that uΣ is a C∞ function. Differentiating
R̂(u−, uΣ(u−, τ), τ) = 0 with respect to τ , we find:

∂R̂

∂u+

∂uΣ

∂τ
+

∂R̂

∂τ
= 0. (3.20)

But
∂R̂

∂τ
=

∂R

∂β

∂β

∂τ
< 0 from (3.8) and β = 1/

√
sτ . It now follows from (3.19) and (3.20) that

∂uΣ

∂τ
< 0.

Similarly differentiating R̂(u−, uΣ, τ) = 0 with respect to u−,

∂R̂

∂u−

+
∂R̂

∂u+

∂uΣ

∂u−

= 0. (3.21)

But

∂R̂

∂u−

=
∂R

∂u−

+
∂R

∂s

∂s

∂u−

+
∂R

∂β

∂β

∂s

∂s

∂u−

<

∫ ∞

−∞

e−βξ v0

H(u0)

f ′(u−)− s

u+ − u−

(u+ − u)dξ < 0,

where we have combined (3.9), (3.10) and used (3.8) together with Lemma 3.2. Now it follows from (3.19)

and (3.21) that
∂uΣ

∂u−

< 0. This completes the proof of Proposition 3.2.

4. The Riemann Problem. In this section we solve the Riemann problem

ut + f(u)x = 0 (4.1a)

u(x, 0) =

{

ul if x < 0

ur if x > 0.
(4.1b)

Solutions of (4.1) are leading order approximations to solutions of (2.6) with jump initial data. The
discontinuity is propagated as combinations of shock and rarefaction waves, suggesting the decomposition
of solutions of general initial value problems for equation (2.6) into combinations of traveling waves approx-
imating shocks, and smooth waves approximating rarefaction waves. The solution of (4.1) relies crucially
on the description of undercompressive shocks, since these represent the boundary between admissible and
inadmissible Lax shocks.
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Fig. 4.1: Solution of the Riemann Problem for τ = 1,M = 2: (a) solutions for all values of uℓ, ur, (b)
solutions as uℓ varies and ur is fixed between ū+ and uI , (c) solutions as uℓ varies and ur is fixed between
0 and u+. Classical solutions include rarefaction and shock waves which are denoted R and S, respectively.
The notation Σ is used for the undercompressive shock solution.

In Figure 4.1, we represent the solution of the Riemann problem for all data (4.1b). The structure of
the solution is independent of τ > 0, so for definiteness we show the solution schematically for τ = 1. In
Figure 4.1a open regions are labeled according to the combination of shock and rarefaction waves appearing
in the solution: classical rarefaction and shock waves are denoted by R and S, respectively, while nonclassical
undercompressive shocks are denoted by Σ. The horizontal dashed line is located at ur = uI , the inflection
point of f(u). The horizontal lines at ur = u+ and ur = ū+ form the boundaries between the regions labeled
RS and RΣ. The curve separating regions RΣ and SΣ is the set of points (uℓ, ur) for which there is an
undercompressive shock from uℓ to ur (as in Figure 3.3a). The curves separating S and SΣ represent the
middle equilibria of undercompressive shocks: they consist of pairs (umid, ur), for which umid = umid(u−)
is the middle equilibrium for some u− and ur = uΣ(u−) is the right state of an undercompressive shock.
Since these curves are monotonic, it is convenient to parameterize them by ur. Accordingly, we let uo(ur) =
u−1
mid(ur), uσ(ur) = u−1

Σ (ur). The short curve through the point (uI , uI) consists of the points (uα(ur), ur).
It is part of the curve labeled ‘A’ in Figure 3.1b.

We describe solutions of the Riemann problem by fixing ur < uI in two cases (the construction for
ur > uI is similar) and varying uℓ. This approach is simpler than fixing uℓ, as in [7], which involves many
more cases and is more complicated because of the shape of the curves separating regions S and SΣ.

• For ū+ < ur < uI (Figure 4.1b), the Riemann problem has only classical solutions as uℓ varies
between 0 and 1. When uℓ < ur, a rarefaction wave joins the two states as, in this region, char-
acteristic speeds are increasing from uℓ to ur. An admissible Lax shock from uℓ to ur exists when
uℓ ∈ (ur, uα(ur)). For uα(ur) < uℓ < 1, the solution is a rarefaction-shock, a combination of a
rarefaction wave from uℓ to uα(ur) and an admissible Lax shock between uα(ur) and ur with speed



16 K. SPAYD AND M. SHEARER

f ′(uα(ur)).
• For 0 < ur < u+ (Figure 4.1c), solutions are either classical or a combination of classical and
nonclassical waves, depending on the value of uℓ. As in the previous case, a rarefaction wave joins
uℓ to ur when uℓ < ur. Recall that uo = uo(ur), uσ = uσ(ur) are the middle and top equilibria
for the undercompressive shock from uσ to ur. The graphs of these functions form the boundaries
between the regions S, SΣ, RΣ. For uℓ ∈ (ur, uo), the solution to (4.1) is an admissible Lax shock.
Once uℓ > uo, an admissible Lax shock connects uℓ to uσ and then an admissible undercompressive
shock joins uσ and ur. This structure persists as long as uℓ < uσ. Finally, for uσ < uℓ < 1, the
solution is a combination of a rarefaction wave from uℓ to uσ and an admissible undercompressive
shock from uσ to ur.

It is worth pointing out that by construction, even though double shock solutions SΣ of the Riemann
problem are not monotonic, nonetheless the values of u remain in the physically valid interval 0 ≤ u ≤ 1.
As we have seen in the construction of traveling waves for undercompressive shocks, this is a consequence of
the degeneracy of H(u) at u = 0, 1.

As τ → 0, we have β = 1/
√
sτ → ∞ since 1 ≤ s ≤ f ′(uI). To understand this limit, let ξ = βζ so that

(2.12) becomes

1

β2
u′′ = u′ +

1

H(u)
[s(u− u−)− f(u) + f(u−)] ,

in which ′ = d/dζ. In the limit β → ∞, this ODE reduces to

u′ = − 1

H(u)
[s(u− u−)− f(u) + f(u−)] .

Consequently, the traveling waves connect only adjacent equilibria u−, u+ satisfying the Rankine-Hugoniot
condition (2.11), corresponding to Lax shocks. The solution of the Riemann problem (4.1) is therefore
entirely classical. This is manifested in Figure 4.1a by the curves Στ (separating regions RΣ and SΣ in
the figure) approaching the horizontal lines u+ = 0 and u+ = 1, thereby collapsing the regions indicating
undercompressive shocks.

5. PDE Simulations. To verify the solution structures obtained in the previous section, we numeri-
cally simulate solutions of (2.7) with jump initial data (4.1b) and τ = 1,M = 2. Computations are performed
on the interval −2 ≤ x ≤ 4, with ∆x = h = 0.002 for the rarefaction and rarefaction-undercompressive shock
solutions and h = 0.005 in other cases. All solutions are shown at time t = 1, with ∆t = k = 0.1 (∆x)

2
. The

pairs (uℓ, ur) are chosen in each case by consulting Fig. 4.1a; for example, we choose (uℓ, ur) = (0.8, 0.2) to
generate the shock-undercompressive shock solution so that the size of the jumps and separation between
shocks are clear in the plots.

By scaling x and t by a small parameter ǫ, we can control the effects of the regularization terms in (2.7).
In particular, traveling waves then have width on the order of ǫ. With this scaling, (2.7) becomes

∂u

∂t
+

∂f(u)

∂x
=

∂

∂x

[

H(u)

(

ǫ
∂u

∂x
+ ǫ2τ

∂2u

∂x∂t

)]

.

The corresponding finite difference scheme is:

un
j − un−1

j

k
+

gj+1/2 − gj−1/2

h
=

ǫ

h2

[

H

(

ū
n

j+
1

2

)

(un
j+1 − u

n
j )−H

(

ū
n

j−
1

2

)

(un
j − u

n
j−1)

]

+

+
ǫ2τ

h2k

[

H

(

ū
n

j+
1

2

)

(un
j+1 − u

n
j − u

n−1

j+1 + u
n−1

j )−H

(

ū
n

j−
1

2

)

(un
j − u

n
j−1 − u

n−1

j + u
n−1

j−1 )

]

.

(5.1)
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Fig. 5.1: (a) Rarefaction wave solution for uℓ = 0.2, ur = 0.4, ǫ = .01, τ = 1,M = 2. (b) Admissible Lax
shock for uℓ = .6, ur = .6, ǫ = .05, τ = 1,M = 2.
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Fig. 5.2: (a) Admissible Lax shock trailing the undercompressive shock for uℓ = .8, ur = .2, ǫ = .05, τ =
1,M = 2. (b) Rarefaction wave trailing the undercompressive shock for uℓ = .9, ur = .4, ǫ = .01, τ = 1,M =
2.

where ū
j+

1
2
= 1

2 (uj + uj+1), and gj+1/2 = 1
12 (−f(uj+2) + 7f(uj+1) + 7f(uj) − f(uj−1)) is a high order

approximation of the flux function f(u) [7]. Specifically, it has truncation error that is O(h3) and so is
higher order than the truncation error from the right hand side of (5.1), which is O(ǫh2), provided h ≪ ǫ.
Even though H(u) is nonlinear, the modified equation has the same form as in [7]:

ut + f(u)x = ǫ(H(u)ux)x + ǫ2τ(H(u)uxt)x +O(h3) +O(ǫh2).
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The initial condition (4.1b) is smoothed slightly to avoid spurious small oscillations:

uj(0) = − tanh(δxj)
uℓ − ur

2
+

uℓ + ur

2
,

with δ = 250 in these simulations.

In Figure 5.1a, a smooth rarefaction wave connects uℓ = 0.2 to ur = 0.4. The classical Lax shock
from uℓ = 0.6 to ur = 0.4 is shown in Figure 5.1b. In Figure 5.2a, there is a Lax shock from uℓ = 0.8 to
the plateau value of uσ, and a faster undercompressive shock from uσ to ur = 0.2. Both shock solutions
have exponentially decaying oscillations behind the Lax shock due to the complex eigenvalues at uℓ. The
oscillation wavelengths can be computed from the coefficients of the eigenvalues’ imaginary parts (see (3.1);
accounting also for ǫ), and compare well with the distances between successive maxima in the plots. For
these two simulations, ǫ = 0.05 in order to show the oscillations clearly. When the simulations are done
with ǫ = 0.01 the predicted oscillations are too compressed to be seen clearly. Finally, Figure 5.2b illustrates
the rarefaction-undercompressive shock solution. The rarefaction wave connects uℓ = 0.9 to uσ and the
undercompressive shock takes uσ to ur = 0.4.

6. Concluding Remarks. With the inclusion of dynamic capillary pressure, the Buckley-Leverett
equation admits traveling waves corresponding to undercompressive shocks. For relative permeabilities that
depend quadratically on saturation, we have completely characterized undercompressive shocks and solutions
of the Riemann problem. It would be interesting to use these solutions to investigate the Cauchy problem
using wave front tracking, modifying the analysis in [13]. For numerical purposes, we have chosen specific
values of the parameters; due to the robust nature of the analysis, the broad structure of our results can be
expected to hold for more general relative permeability functions.

Propagating fronts in secondary oil recovery are known to be typically subject to viscous fingering [9].
On the other hand, undercompressive shocks in other contexts have been shown to be stable to transverse
perturbations [1]. It would be interesting to know whether the traveling waves in this paper are stable to two-
dimensional perturbations, since these undercompressive waves represent the leading edge of the oil-water
transition in secondary oil recovery.

Acknowledgement. The authors thank Steve Schecter for valuable discussions of the separation func-
tion.
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