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Asymptotic linear stability of solitary water waves
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Abstract

We prove an asymptotic stability result for the water wave equations linearized around
small solitary waves. The equations we consider govern irrotational flow of a fluid with constant
density bounded below by a rigid horizontal bottom and above by a free surface under the
influence of gravity neglecting surface tension. For sufficiently small amplitude waves, with
waveform well-approximated by the well-known sech-squared shape of the KdV soliton, solutions
of the linearized equations decay at an exponential rate in an energy norm with exponential
weight translated with the wave profile. This holds for all solutions with no component in (i.e.,
symplectically orthogonal to) the two-dimensional neutral-mode space arising from infinitesimal
translational and wave-speed variation of solitary waves. We also obtain spectral stability in an
unweighted energy norm.
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2 Asymptotic linear stability of solitary water waves

1 Introduction

The discovery of solitary water waves by J. Scott Russell in 1834 was a seminal event in nonlinear

science. Russell’s observations gave him immediate confidence in the significance of these waves,

and led him to carry out an extensive program of experiments investigating solitary waves and their

interactions [40]. But mathematical understanding was slow to develop. The first significant steps

forward were made by Boussinesq [7, 8, 9, 10] and Rayleigh [38] by carefully balancing long-wave

and small-amplitude approximations. The simplest useful model (derived by Boussinesq already

in 1872, see [10, p. 360] and [30]) is the famous Korteweg-de Vries equation [25]. Its sech2 soliton

solution approximates the shape of small-amplitude solitary water waves.

Given the status of the KdV equation as an approximate model, it is important to understand

whether the soliton solutions of the KdV equation are approximations of some solutions of a more

exact water wave model with similar properties. In this paper, we focus on questions of stability

for exact solitary wave solutions of the Euler equations that govern incompressible and irrotational

motions of an inviscid, constant-density fluid of finite depth. The fluid occupies a two-dimensional

domain whose lower boundary is a flat rigid bottom and whose upper boundary is a free surface

that forms an interface with air of negligible density and viscosity. Surface tension on the free

surface is neglected.

For these water wave equations, the existence of solitary wave solutions with shape well-

approximated by the KdV soliton was proved by Lavrent’ev [27], Friedrichs and Hyers [13] and

Beale [1]. If the surface tension is positive and small, finite-energy, single-hump solitary waves

are not known to exist, and indeed, exact traveling waves approximated by the KdV soliton may

not exist without ‘ripples at infinity’ [2, 42]. For large surface tension, solitary water waves of

depression exist [42], but the relevant physical regime corresponds to water depth less than 0.5 cm.

Explaining the stability of solitary water waves mathematically remains a very challenging prob-

lem, despite considerable physical and numerical evidence. Remarkably, a valuable step forward

was made already by Boussinesq [9, 10], who argued for their stability based on a quantity he called

the ‘moment of instability,’ which he showed was invariant in time based on the KdV approxima-

tion. Over a century later, Benjamin [3] made use of the same quantity as a Hamiltonian energy,

constrained by a time-invariant momentum functional, to develop a rigorous variational method

to prove orbital stability for the set of solitary-wave solutions of the KdV equation. Benjamin’s

arguments were improved and perfected by Bona [5].

Variational methods for orbital stability and instability in Hamiltonian wave equations, based

on the use of energy-momentum functionals, were subsequently greatly advanced by many authors.

Notably, the general theory of Grillakis et al. [20, 21] has been applied extensively to many physical

systems. Using variational methods of this type for the case of solitary water waves of depression

for the Euler equations with large surface tension, orbital stability conditional on global existence

was obtained by Mielke [29] and Buffoni [11]. For small surface tension, such variational stability

results have also been obtained recently by Groves and Wahlen [22] for oscillatory traveling wave

packets of finite energy (also called solitary waves by several authors).

For solitary waves with zero surface tension, however, it appears hopeless to study stability

using variational methods based on constrained minimization. As remarked by Bona and Sachs [6],
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the usual energy-momentum functional is highly indefinite in this case—The second variation lacks

the finite-dimensional indefiniteness property key to the success of current variational methods.

Regarding the stability of solitary waves with zero surface tension, the only existing rigorous work

appears to be the recent paper of Lin [28], which addresses the linear instability of large waves close

to the wave of maximum height.

The present study involves a direct analysis of the Euler equations linearized about a small-

amplitude solitary wave solution. The linearized equations have a natural two-dimensional space

of neutral modes arising from infinitesimal shifts and changes in wave speed of solitary waves. We

deduce asymptotic stability for solutions in a space of perturbations naturally constrained to omit

these neutral-mode components, being symplectically orthogonal to them. Asymptotic stability is

obtained in a norm that is weighted spatially to decay exponentially behind the wave profile. The

time decay of such a norm corresponds to unidirectional scattering behavior for wave perturbations.

The weighted-norm linear stability analysis is also used to obtain a spectral stability result in an

unweighted energy norm. Our main results are stated precisely in section 3.

The use of exponential weights to obtain nonlinear asymptotic orbital stability for solitary waves

was developed for KdV solitons by Pego and Weinstein [36], for regularized long-wave equations by

Miller and Weinstein [31] and for Fermi-Pasta-Ulam lattice equations by Friesecke and Pego [14, 15,

16, 17]. Finiteness of an exponentially weighted norm imposes a condition of rapid decay in front of

the wave profile. But Mizumachi [33, 32] recently showed how to prove asymptotic orbital stability

for FPU solitary waves perturbed in the energy space, by using exponential weights together with

dispersive wave propagation estimates as developed by Martel and Merle.

Nonlinear stability for solitary water waves remains an open problem. This issue would likely

involve a general global existence theory for small-amplitude 2D fluid motions, which is not yet

available despite the substantial progress on well-posedness questions by Wu [43, 44].

There are a number of other works on (in)stability for 2D solitary water waves that concern the

case of waves of depression with large surface tension. These include results on 2D spectral stability

for finite-wavelength perturbations [23], spectral instability for transverse (3D) perturbations [35],

and a full nonlinear instability result for 3D perturbations by Rousset and Tzvetkov [39].

A convenient tool for singular perturbation theory, used in [35] and in the present paper to

study spectrum in the KdV scaling limit of long time and length scales, is an operator-theoretic

generalization of Rouché’s theorem due to Gohberg and Sigal [19]. This use of the KdV scaling

contrasts with works by Craig [12] and Schneider and Wayne [41] that concern the validity of

the KdV approximation for water waves over time scales of order O(ǫ−3) for waves of amplitude

O(ǫ2) that are long with length scales of order ǫ−1. Our use of the KdV approximation occurs

in the spectral domain, where it is used to obtain partial information regarding the behavior of

solutions to the linearized equations in the limit t → ∞. To establish stability for time and space

scales unrelated to the regime of validity of the KdV approximation requires a different technique

for dealing with the linearized Euler equations, which resemble a wave equation with variable

coefficients. We develop a method that obtains resolvent bounds from symmetrized weighted-norm

energy estimates that use Fourier filters to cut off low frequencies.
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2 Equations of motion and eigenvalue problem

In this section, we derive the equations of motion linearized around a solution steady in a frame

moving at a constant speed c to the right, and formulate the associated eigenvalue problem.

Basic equations. We deal with an inviscid, incompressible and irrotational fluid of constant

density ρ that is bounded above by a free surface y = η(x, t) and below by a horizontal rigid bottom

y = −h. The velocity field (u, v) is related to the velocity potential φ and the stream function ψ

by

(u, v) = (φx, φy) = (ψy,−ψx). (2.1)

On the free surface y = η(x, t), the kinematic and Bernoulli equations are:

∂tη + uηx = v, (2.2)

∂tφ+ 1
2(φ

2
x + φ2y) + gη = 0. (2.3)

To make the problem non-dimensional, we let

(x, y, t) = (hx̃, hỹ, ht̃/c), (η, u, v, φ, ψ) = (hη̃, cũ, cṽ, chφ̃, chψ̃). (2.4)

After dropping the tildes, the equations take again the same form in the non-dimensional variables,

with g replaced by

γ =
gh

c2
=

1

Fr2
, (2.5)

where Fr = c/
√
gh is the Froude number.

In the fluid region, where now −1 < y < η(x, t), −∞ < x < ∞, the velocity potential and

stream function are harmonic and are taken to satisfy the no-penetration boundary conditions

φy(x,−1) = 0, ψ(x,−1) = 0 (−∞ < x <∞). (2.6)

The dynamics is described in terms of the surface traces defined by

Φ(x, t) = φ(x, η(x, t), t), Ψ(x, t) = ψ(x, η(x, t), t). (2.7)

Then (
U
V

)
:=

(
Φx

Ψx

)
=

(
φx + ηxφy
ψx + ηxψy

)
=

(
1 ηx
ηx −1

)(
u
v

)
, (2.8)

and we will write

M(ηx) =

(
1 ηx
ηx −1

)
, M(ηx)

−1 =
M(ηx)

1 + η2x
. (2.9)

The non-dimensional equations of motion now take the form

∂tη = v − ηxu = −V, (2.10)

∂tΦ = ∂tφ+ φy∂tη = −γη − 1
2 (u

2 + v2)− v(v − ηxu)

= −γη − 1
2(U, V )M(ηx)

−1(U, V )T . (2.11)
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After transforming to a moving frame with x̂ = x − t (= (x − ct)/h dimensionally) and dropping

the hats, the time derivative ∂t is replaced by ∂t − ∂x. A solitary wave is a steady solution of the

resulting equations.

It is convenient to regard the wave motion as determined by the evolution of the pair (η,Φ),

with Ψ and V = Ψx determined from (η,Φ) by solving for the stream function using Laplace’s

equation and the relevant boundary conditions, namely (suppressing the t variable)

ψxx + ψyy = 0 (−∞ < x <∞, −1 < y < η(x)), (2.12)

ψ(x,−1) = 0, ψy − ηxψx = U(x) (−∞ < x <∞, y = η(x)). (2.13)

We write

Ψ = HηΦ = ψ(x, η(x)), V = Ψx. (2.14)

Up to a normalization, Hη is a Hilbert transform for the fluid domain. (Note φ+ iψ is an analytic

function of x+ iy.) This map will be studied in detail in a later section.

Linearization. We linearize the equations in the moving frame about a steady solution, de-

noting linearized variables with a dot. These linearized equations of motion take the form

0 = (∂t − ∂x)η̇ + V̇ , (2.15)

0 = (∂t − ∂x)Φ̇ + γη̇ + uU̇ + vV̇ − uv∂xη̇. (2.16)

Of course U̇ = ∂xΦ̇. To relate V̇ to (η̇, Φ̇), we linearize the boundary-value problem (2.12)-(2.13)

by formally differentiating with respect to a variational parameter. The variation ψ̇ is harmonic in

the fluid domain, zero on the bottom, and on the free surface y = η(x) satisfies

U̇ = ψ̇y − ηxψ̇x − η̇xψx + (ψyy − ηxψxy)η̇.

Since ψyy − ηxψxy = −∂x(ψx(x, η(x))) and −ψx = v , this means

ψ̇y − ηxψ̇x = ∂x(Φ̇(x)− η̇(x)v(x, η(x))). (2.17)

and by (2.14) this means ψ̇(x, η(x)) = Hη(Φ̇− vη̇). Hence V̇ = ∂xΨ̇ where

Ψ̇ = ψ(x, η(x))˙= ψ̇(x, η(x)) + ψy(x, η(x))η̇ = Hη(Φ̇− vη̇) + uη̇. (2.18)

We have found it to be important (much more than merely convenient) to study the linearized

equations of motion in terms of the combination of η̇ and Φ̇ expressed as

φ̇ = Φ̇− vη̇. (2.19)

This is the surface trace of the variation of velocity potential, rather than the variation of the surface

trace. A similar observation was made by Lannes [26] in his treatment of well-posedness for 3D

water waves locally in time. In terms of the pair (η̇, φ̇), the linearized equations of motion take the

form

(∂t −Aη)

(
η̇

φ̇

)
= 0, Aη =

(
∂x(1− u) −∂xHη

−γ + (1− u)v′ (1− u)∂x

)
, (2.20)
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where v′ is the multiplier v′(x) = ∂x(v(x, η(x))). Our analysis will show that the initial-value

problem for the linear system (2.20) is well-posed and (conditionally) asymptotically stable in

a certain weighted function space. The components η̇ and φ̇ will belong to spaces of different

order, however, and this complicates the problem of studying stability questions directly using the

variables (η̇, Φ̇).

Eigenvalue problem. Looking for solutions of (2.20) in the form (η̇, φ̇) = eλt(η1(x), φ1(x))

leads to the associated eigenvalue problem

(
λ− ∂x(1 − u) ∂xHη

γ − (1− u)v′ λ− (1− u)∂x

)(
η1
φ1

)
= 0. (2.21)

The hardest part of our analysis of the linearized dynamics involves showing that, in an appropriate

function space, this equation has no nontrivial solutions for all nonzero λ in a half plane Reλ ≥ −β
for some β > 0 depending on the wave amplitude.

3 Main results

Our main result is an asymptotic linear stability result for the classical family of small-amplitude

solitary water waves that exist for Froude number slightly more than 1, meaning γ < 1. Asymptotic

stability is conditional on the absence of neutral-mode components arising from translational shifts

of the solitary wave, and wave-speed variation, as is standard. The precise results involve L2 spaces

with exponential weights eax that decay to the left (having a > 0). For a ∈ R, we define L2
a to be

the Hilbert space

L2
a = {f | eaxf ∈ L2(R)},

with inner product and norm

〈f, g〉a =

∫ ∞

−∞
f(x)g(x)e2ax dx, ‖f‖a = ‖eaxf‖L2 .

Also, Hs
a = {f | eaxf ∈ Hs(R)} will denote a weighted Sobolev space with norm that is expressed

in terms of the Fourier transform Ff(k) = f̂(k) =
∫∞
−∞ e−ikxf(x) dx as

‖f‖Hs
a
= ‖eaxf‖Hs =

(
1

2π

∫ ∞

−∞
(1 + k2)s|f̂(k + ia)|2 dk

)1/2

.

Group velocity and weighted norms. The use of these weighted norms is motivated as

follows. For linearization at the trivial solution η = Φ = 0, the Hilbert transform for the fluid

domain is the Fourier multiplier H0 = i tanhD with L2 symbol i tanh k (see section 4). Then the

dispersion relation for solutions of (2.20) with space-time dependence eikx−i̟t is

̟ = −k ±
√
γk tanh k. (3.1)
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The solitary waves that we study travel faster than the speed of long gravity waves, meaning

c >
√
gh and so γ < 1. Thus, in this regime the group velocity of linear waves (relative to the

solitary wave) is always negative:
d̟

dk
< 0. (3.2)

Heuristically, linear waves scatter to the left. Our analysis makes essential use of this directionality

by measuring perturbation size using weights eax with a > 0. As a simple example, the solution

η(x, t) = f(x+ t) of the transport equation ∂tη = ∂xη satisfies ‖η(·, t)‖a = e−t‖f‖a.
In analytic terms, the isomorphism f 7→ eaxf from L2

a to L2 maps a Fourier multiplier A(D)

acting on L2
a to the weight-transformed operator eaxA(D)e−ax = A(D + ia) acting on L2. The

L2-symbol A(k) of the former is shifted to the symbol A(k+ ia) of the latter. The L2
a-spectrum of

A(D) is the closure of the image of the latter symbol. This is so since the resolvent (λ−A(D))−1

is bounded in L2
a exactly when the map fa 7→ (λ − A(k + ia))−1f̂a(k) is bounded in L2, where

fa = eaxf . For the Fourier multipliers

A±(D) = iD ±
√

−γD tanhD,

which correspond to the branches of the dispersion relation (3.1) for our water-wave problem,

the L2
a-spectrum shifts from the imaginary axis into the left half-plane for small a > 0 exactly

because the relative group velocity is negative. The same idea underlies the use of weights to

obtain nonlinear asymptotic stability for solitary waves of the KdV equation in [36] and of FPU

lattice equations in [15, 16, 17].

Energy and weighted norms. Zakharov [45] showed that the water wave equations have a

canonical Hamiltonian structure in terms of (η,Φ) with (nondimensional) Hamiltonian

1

2

∫ ∞

−∞

∫ η(x)

−1
|∇φ|2 dy dx+

1

2

∫ ∞

−∞
γη2 dx =

1

2

∫ ∞

−∞

(
Φ(−∂xHη)Φ + γη2

)
dx. (3.3)

The space that we use to study asymptotic stability of the linearized system (2.20) is equivalent to

a weighted linearization of this Hamiltonian about a flat surface. Namely, stability will be studied

with (η̇, φ̇) in the space Za = L2
a ×H

1/2
a with norm equivalent to the norm of (η̇,

√
D tanhDφ̇) in

L2
a × L2

a.

Scaling. We study waves in the regime where the parameter

ǫ =
√

1− γ (3.4)

is small and positive. For all ǫ in this well-studied regime, there is an even solitary-wave surface

elevation η with η and surface velocity (u, v) approximately given by

η(x) ∼ u(x) ∼ ǫ2Θ(ǫx), v(x) ∼ −ǫ3Θ′(ǫx)

where

Θ(x) = sech2(
√
3x/2). (3.5)
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For precise statements with estimates we use, see Theorems 5.1 and A.1. The significance of these

results is that we use stability information for the KdV soliton with the profile (3.5) to study the

eigenvalue problem (2.21) for |λ| small, using the KdV scaling x̂ = ǫx, λ = ǫ3λ̃. Because of this

scaling, we take the weighted-norm exponent to have the form a = ǫα, where α is required to satisfy

0 < α <
√
3 to have Θ ∈ L2

α. For convenience in analysis, our stability results are formulated with

the tighter restriction 0 < α ≤ 1
2 . The parameter α is taken as any fixed number in this range.

Neutral modes. The solitary waves we study belong to a two-parameter family, smoothly

parameterized by translation and Froude number (equivalently translation and wave speed c). By

consequence, as usual the value λ = 0 is an eigenvalue of Aη with algebraic multiplicity two, with

generalized eigenfunctions produced by differentiation with respect to x and c. Denoting these

functions with the notation

zx =

(
ηx
φx

)
, zc =

(
ηc
φ+c

)
,

we have Aηzx = 0, −Aηzc = zx. The details are developed in Appendix B. (The notation φ±c
indicates that different choices of an integration constant are made to ensure Φ± = ∂−1

x U ∈ H1/2
±a .)

Solutions of (2.20) that lie in the neutral-mode space spanned by zx and zc do not decay in

time, naturally. A necessary condition that a solutions of (2.20) decay in time is that it should have

no component in this neutral-mode space. The precise spectral meaning of this (being annihilated

by the spectral projection for the eigenvalue λ = 0) can be expressed in a simple form, due to the

canonical Hamiltonian structure of the problem. Namely, it turns out to be necessary that the

solution be symplectically orthogonal to the neutral mode space, meaning that

0 =

∫ ∞

−∞
η̇φx − φ̇ηx dx, 0 =

∫ ∞

−∞
η̇φ−c − φ̇ηc dx. (3.6)

Results. Our main results concern asymptotic stability for the linearized equations in a

weighted norm, and spectral stability in an unweighted norm.

Theorem 3.1 (Asymptotic stability with weights) Fix α ∈ (0, 12 ] and set a = αǫ. If ǫ > 0 is

sufficiently small and η, u, v correspond to the solitary wave profile given by Theorem 5.1, then the

following hold.

(i) With domain H1
a ×H

3/2
a , Aη is the generator of a C0-semigroup in Za = L2

a ×H
1/2
a .

(ii) Whenever Reλ ≥ −1
6αǫ

3 and λ 6= 0, λ is in the resolvent set of Aη.

(iii) The value λ = 0 is a discrete eigenvalue of Aη with algebraic multiplicity 2.

(iv) There exist constants K > 0 and β > 1
6αǫ

3 depending on ǫ and α, such that for all t ≥ 0,

‖ exp(tAη)ż‖Za
≤ Ke−βt‖ż‖Za

,

for every initial state ż = (η̇, φ̇) that satisfies the symplectic orthogonality conditions (3.6).



R. L. Pego and S.-M. Sun 9

Theorem 3.2 (Spectral stability without weights) For ǫ > 0 sufficiently small, in the space of pairs

(η1, φ1) such that ∫ ∞

−∞
φ1(D tanhD)φ1 + η21 dx <∞ (3.7)

the spectrum of the operator Aη is precisely the imaginary axis.

The asymptotic stability statement in part (iv) of Theorem 3.1 will be proved as a consequence

of the Gearhart-Prüss spectral mapping theorem [37] by establishing that the operator Aη has

uniformly bounded resolvent (λ − Aη)
−1 for |λ| large with Reλ ≥ −1

6αǫ
3, and using parts (ii)

and (iii) to infer the resolvent restricted to the spectral complement of the generalized kernel is

uniformly bounded for all λ with Reλ ≥ −1
6αǫ

3. The spectral stability result in Theorem 3.2 is

proved using Theorem 3.1 and symmetry of the problem without weights under space and time

reversal.

4 Riemann mapping and Hilbert transform for the fluid domain

4.1 Riemann stretch and strain

We will make much use of a Riemann mapping from the fluid domain Ωη to the flat strip Ω0, with

Ωη = {(x, y) : −∞ < x <∞, −1 < y < η(x)},
Ω0 = {(x, y) : −∞ < x <∞, −1 < y < 0}.

To denote the corresponding Riemann mapping and its inverse, we write

(x, y) = (Z1(x, y), Z2(x, y)), (x, y) = (z1(x, y), z2(x, y)). (4.1)

A key quantity is the ‘Riemann stretch’ ζ at the surface, given (with its inverse h = ζ−1) by

ζ(x) := z1(x, 0), h(x) = Z1(x, η(x)). (4.2)

The function z2 is harmonic in the strip Ω0, with boundary conditions

z2(x,−1) = −1, z2(x, 0) = η(x) := η ◦ ζ(x). (4.3)

Taking the Fourier transform in x leads to the formula

z2(x, y) = y +
1

2π

∫ ∞

−∞
eikx

sinh k(y + 1)

sinh k

∫ ∞

−∞
e−iksη(s) ds dk. (4.4)

Using the Cauchy-Riemann equation ∂xz1 = ∂yz2, we find that the ‘Riemann strain’ defined by

ω = ζ ′ − 1 satisfies

ω(x) = ζ ′(x)− 1 = D cothDη(x). (4.5)
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Integrating in x with an arbitrary constant of integration, we find that we can write

ζ(x) = x− i cothDη(x) + c0 = x−
∫ ∞

x
η(s) ds +Q1(D)η(x) + c0, (4.6)

where Q1(D) is the Fourier multiplier with symbol bounded on R given by

Q1(k) =
k cosh k − sinh k

ik sinh k
= i(k−1 − coth k).

If η is given, then since η = η ◦ζ, Eq. (4.6) is a fixed-point equation that determines ζ and therefore

h = ζ−1. It will turn out to be more convenient in our analysis, however, to directly study the

Riemann strain ω, and recover other quantities such as ζ and η from this.

4.2 Hilbert transform

The operator Hη admits a convenient expression in terms of the Riemann stretch ζ. To see this,

first we introduce pullback operators ζ# and ζ∗ via

ζ#U(x) = U ◦ ζ(x), ζ∗U(x) = ζ ′ζ#U(x) = (U ◦ ζ)(x) ζ ′(x). (4.7)

For later use, note that since h = ζ−1, the chain rule yields the simple relations

∂ζ# = ζ∗∂, ζ∗ = ζ ′ζ# = ζ#(1/h
′), h∗ζ∗ = ζ∗h∗ = id . (4.8)

Write ψ(x, y) = ψ(x, y). Then ψ is harmonic in Ω0, and the boundary conditions (2.13) transform

to

ψ(x,−1) = 0, ∂yψ(x, 0) = ζ∗U(x) = ∂x(Φ ◦ ζ)(x). (4.9)

By Fourier transform we find

ψ(x, y) =
1

2π

∫ ∞

−∞
eikx

sinh k(y + 1)

k cosh k

∫ ∞

−∞
e−iks∂(Φ ◦ ζ)(s) ds dk,

so since ψ(x, η(x)) = ψ(h(x), 0), after an integration by parts we find

Ψ(x) = ψ(x, η(x)) =
1

2π

∫ ∞

−∞
eikh(x)(i tanh k)

∫ ∞

−∞
e−iksΦ ◦ ζ(s) ds dk. (4.10)

In other words, since Ψ = HηΦ we have (with F denoting Fourier transform)

Hη = ζ−1
# H0ζ#, H0 = i tanhD = F−1(i tanh k)F . (4.11)

Here H0 is the Hilbert transform for the top boundary of the strip. Though we will make no use

of the fact, it is explicitly given in terms of an integral kernel by

H0U(x) =

∫ ∞

−∞
k0(x− s)U(s) ds, k0(x) =

−1

2 sinh(πx/2)
. (4.12)
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4.3 Linearization

To justify the later calculation of generalized eigenmodes (in Appendix B), we explain here how

the formal linearization formula in (2.18) follows from the representation formula in (4.11).

To proceed, start with a family of (smooth) Riemann strains ω small in L2 ∩L2
a and depending

smoothly on a variational parameter, and compute

ζ(x) = x+ ∂−1ω + c0, η =
tanhD

D
ω, η = η ◦ ζ−1.

Determine conjugate harmonic functions z1, z2 in the strip Ω0 such that (4.3) holds and z1(x, 0) =

ζ(x). Then the function Z(x + iy) = z1(x, y) + iz2(x, y) yields the Riemann mapping of Ω0 to Ωη

as described above.

Also take a family of (smooth) functions Φ (free surface velocity potential) and introduce φ as

the harmonic extension of Φ ◦ ζ into Ω0 satisfying ∂yφ = 0 at y = −1, and ψ as the harmonic

function conjugate to φ and satisfying ψ = 0 at y = −1. Then

φ(x, y) =
1

2π

∫ ∞

−∞
eikx

cosh k(y + 1)

cosh k

∫ ∞

−∞
e−iksΦ ◦ ζ(s) ds dk.

Write

Υ(x+ iy) = φ(x, y) + iψ(x, y), Υ = Υ ◦ Z−1.

Regarding Ω0 as a subset of the complex plane, we have that Υ and Z are analytic in Ω0 and that

Υ is analytic in Ωη = Z(Ω0). Define φ and ψ to satisfy

Υ(x+ iy) = φ(x, y) + iψ(x, y), (x, y) ∈ Ωη.

Ψ(x) = ψ(x, η(x)) is the trace on the fluid surface and satisfies

Ψ ◦ ζ = i tanhD (Φ ◦ ζ),

due to Ψ ◦ ζ(x) = ψ(x, 0) and Φ ◦ ζ(x) = φ(x, 0) and the boundary condition ImΥ = 0 at y = −1.

Denoting the derivative with respect to the variational parameter by a dot, we have

Ψ̇ ◦ ζ + ζ̇Ψx ◦ ζ = i tanhD(Φ̇ ◦ ζ + ζ̇Φx ◦ ζ) (4.13)

Note that ŻΥ′◦Z is analytic in Ω0 and has zero imaginary part on the bottom y = −1. This means

that the real and imaginary parts of the surface trace are related by the Hilbert transform for the

strip. But Ż = ż1 + iż2 = ζ̇ + iη̇ on y = 0, whence (abusing notation to write ψx for ψx(x, η(x))

with x = ζ(x), etc.)

ψxζ̇ + ψy η̇ = (i tanhD)(φxζ̇ + φyη̇). (4.14)

Using the formulas

η̇ = η̇ ◦ ζ + ζ̇ηx ◦ ζ, Φx = φx + φyηx, Ψx = ψx + ψyηx,
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together with (4.13) now yields

ζ̇Ψx = −η̇ψy + ζ̇ψx + η̇ψy

and similarly for Φ. Combining this with (4.14) yields

Ψ̇ ◦ ζ − η̇ψy = i tanhD(Φ̇ ◦ ζ − η̇φy), (4.15)

and composing with h = ζ−1 yields the desired linearization formula (2.18):

Ψ̇− uη̇ = Hη(Φ̇ − vη̇) (4.16)

(with (u, v) = (φx, φy) = (ψy,−ψx) on y = η(x)).

5 Solitary wave profiles

In this section and Appendix A, we will give a simple self-contained account of the existence of

small solitary waves by fundamentally the same approach as Friedrichs and Hyers [13], establishing

the estimates that we need regarding convergence of the scaled wave profiles in the KdV limit.

First, note that from (2.10)-(2.11), the steady equations for a solitary wave are

∂xη = V = ∂xHηΦ, U − γη =
1

2
(U, V )M(V )−1(U, V )T =

U2 − V 2 + 2UV 2

2(1 + V 2)
, (5.1)

whence

η = HηΦ, U − γη =
1

2
(U2 − V 2) + γηV 2. (5.2)

Using (4.11) and changing variables by applying ζ# we must have η = i tanhD(Φ ◦ ζ), hence by

(4.5),

ω = ζ ′ − 1 = (D cothD)η = ∂(Φ ◦ ζ) = ζ ′U ◦ ζ. (5.3)

Then we find

U ◦ ζ =
ω

1 + ω
= ω − ω2

1 + ω
, V ◦ ζ =

∂η

ζ ′
=
i tanhDω

1 + ω
. (5.4)

It is convenient to apply ζ# to (5.2b), and isolate ω on the left-hand side. This turns (5.2b)

into a fixed-point equation for the Riemann strain ω, in the form

ω =

(
1− γ

tanhD

D

)−1
(

3
2ω

2 + ω3 − 1
2(i tanhDω)2(1− 2γη)

(1 + ω)2

)
, η =

tanhD

D
ω. (5.5)

The following result provides scaled bounds for the fixed point approximating the sech2 KdV profile

from (3.5). The proof is given in appendix A.
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Theorem 5.1 Let α ∈ (0,
√
3), m ≥ 2, ν ∈ (0, 1), and Θ(x) = sech2(

√
3x/2). Then for ǫ > 0

sufficiently small, equation (5.5) has a unique even solution in H1
a of the form

ω(x) = ǫ2θ(ǫx) (5.6)

with ‖θ −Θ‖Hm
α
< ǫν . Moreover, the map ǫ 7→ ω is smooth.

The coefficients that appear in the linearized system (2.16) can now be expressed as follows.

Using (2.8), (5.1) and (5.4), on the fluid surface we have the formulas

u =
U + V 2

1 + V 2
, v =

−V (1− U)

1 + V 2
, (5.7)

ζ#u =
ω + ω2 + (i tanhDω)2

(1 + ω)2 + (i tanhDω)2
, ζ#v =

−i tanhDω
(1 + ω)2 + (i tanhDω)2

, ζ#v
′ =

∂ζ#v

1 + ω
. (5.8)

Note that η, ζ#u and ζ#v
′ are even functions (since functions have the same parity as their

Fourier transform). With the choice c0 =
∫∞
0 η(s) ds, ζ is odd, and η and u are even, with

v = (u− 1)ηx odd. Formally, we have the leading order approximations

ω(x) ∼ η(x) ∼ ζ#u(x) ∼ ǫ2Θ(ǫx), ζ#v
′(x) ∼ −ǫ4Θ′′(ǫx) (5.9)

For making estimates involving the quantities in (5.8) it is useful to note that

‖i tanh ǫDθ‖H1 =

∥∥∥∥ǫ∂
tanh ǫD

ǫD
θ

∥∥∥∥
H1

≤ ǫ‖θ‖H2 . (5.10)

6 Transforming the system

Flattening. Given the form of Hη in (4.11), it appears convenient to transform the eigenvalue

problem in (2.21) to work in variables associated with the flattened domain. We make a similarity

transform of (2.21) by applying the operator ζ∗ = ζ ′ζ# from (4.7) to the first equation and ζ# to

the second, introducing the variables

(
η2
φ2

)
=

(
ζ∗η1
ζ#φ1

)
. (6.1)

Noting that ζ∗∂h∗ = ∂ζ#h
′h# = ∂(1/ζ ′), (2.21) becomes


λ− ∂

(
1−u1

ζ′

)
−D tanhD

γ
(
1−v1
ζ′

)
λ−

(
1−u1

ζ′

)
∂



(
η2
φ2

)
= 0, (6.2)

where (with formal leading order behavior indicated)

u1 = ζ#u ∼ ω, v1 = ζ#γ
−1(1− u)v′ =

(1− ζ#u)∂ζ#v

γ(1 + ω)
∼ ζ#v

′. (6.3)
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Approximate diagonalization. In order to reduce the eigenvalue problem to the ‘right’ scalar

equation, it is helpful to balance off-diagonal terms (up to a commutator) and diagonalize the

leading part of the operator. Let us define p, q, up, uq, and for later reference also ρ and uρ, so

that
1− u1
ζ ′

= p = 1 + up,

√
1− v1
ζ ′

= q = 1 + uq,
√
q = ρ = 1 + uρ. (6.4)

Asymptotically we expect

up ∼ −2ω, uq ∼ −1
2ω uρ ∼ −1

4ω. (6.5)

To make precise estimates, we write

up(x) = ǫ2ũp(ǫx), uq(x) = ǫ2ũq(ǫx), uρ(x) = ǫ2ũρ(ǫx),

and apply the scaled H2 bounds from Theorem 5.1 and (5.10) to the expressions in (5.8), using

standard calculus inequalities. Straightforward computations yield the following.

Lemma 6.1 For ǫ > 0 sufficiently small, the H2 norms of ũp, ũq and ũρ are bounded by a constant

K independent of ǫ, and the functions up, uq, uρ satisfy the pointwise bounds

|up|+ |uq|+ |uρ| ≤ Kǫ2, |u′p|+ |u′q|+ |u′ρ| ≤ Kǫ3. (6.6)

Furthermore, as ǫ→ 0 we have

‖ũp + 2Θ‖H1 → 0, ‖ũq + 1
2Θ‖H1 → 0. (6.7)

Introduce the operator (Fourier multiplier)

S =
√

−γD tanhD. (6.8)

In order to balance orders of differentiation in the system, we change variables via
(
η3
φ3

)
=

(
γqη2
Sφ2

)
. (6.9)

The system (6.2) then takes the (partially symmetrized) form
(
λ− ∂p+R1 qS

Sq λ− ∂p+R2

)(
η3
φ3

)
= 0, (6.10)

where R1 and R2 (which will both turn out to be negligible) are given by

R1 = ∂p − q∂pq−1 = (∂q − q∂)pq−1 = q′pq−1, (6.11)

R2 = ∂p − Sp∂S−1 = p′ + [p,S]S−1∂. (6.12)

Finally, we approximately diagonalize by changing variables via
(
η4
φ4

)
=

(
1 −1
1 1

)(
η3
φ3

)
,

1

2

(
1 1
−1 1

)(
η4
φ4

)
=

(
η3
φ3

)
. (6.13)
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Then the system (6.10) takes the form
((

λ− ∂p 0
0 λ− ∂p

)
+

1

2

(
−Sq − qS +R1 +R2 −Sq + qS +R1 −R2

Sq − qS +R1 −R2 Sq + qS +R1 +R2

))(
η4
φ4

)
= 0. (6.14)

We make a few observations regarding the form of this system: First, the operators R2 and

[S, q] = Sq−qS involve commutators and will turn out to be bounded, while R1 is just a multiplier.

So the off-diagonal terms are bounded operators, involving no derivatives. Second, as is needed for

energy estimates, we will invoke the symmetrization identity

∂p =
√
p ∂

√
p+ 1

2p
′. (6.15)

The operator 1
2(Sq + qS) can be explicitly symmetrized (for energy estimates) up to a (double)

commutator in terms of ρ =
√
q:

1
2(Sq + qS) = √

q S√q + 1
2 [[S,

√
q],

√
q]. (6.16)

Finally, note that the weight-transformed operator eaxSe−ax is a Fourier multiplier with symbol

S(k + ia) =
√

−γξ tanh ξ, ξ = k + ia. (6.17)

The principal square root is used here and the real part is nonnegative. We define

A+ = ∂ + S, A− = ∂ − S. (6.18)

It is easy to see that these formulae define closed operators in L2
a with domainH1

a and with spectrum

given by the range of the weight-transformed Fourier multipliers

k 7→ A±(ξ) = iξ ±
√

−γξ tanh ξ, ξ = k + ia, k ∈ R.

Final form as system. Based on these observations, it will be convenient to write the eigenvalue

problem as follows. We use (6.4) to write the operator in the (1,1) and (2,2) slots of (6.14) as

λ−A11 and λ−A22 respectively, with

A11 = A+ + U + J11, U := ∂up + Suq, (6.19)

A22 = B− + J22, B± :=
√
p ∂

√
p±√

q S√q. (6.20)

The system (6.14) then takes the form

(λ−A)

(
η4
φ4

)
= 0, A =

(
A11 J12
J21 A22

)
, (6.21)

with the ‘junk terms’ Jij given in terms of R1 = q′pq−1 and R2 = p′ + [p,S]S−1∂ by
(
J11 J12
J21 J22

)
= −1

2

(
R2 +R1 + [S, q] R1 −R2 − [S, q]
R1 −R2 + [S, q] R1 + [p,S]S−1∂ + [[S, ρ], ρ]

)
. (6.22)

Another way we will sometimes use to write the (1,1) component of A is

A11 = B+ + J̃11, J̃11 = −1
2(R1 + [p,S]S−1∂ − [[S, ρ], ρ]). (6.23)

Our main results to be proved in this paper now amount to the following.
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Theorem 6.2 (Asymptotic stability with weights) Fix α ∈ (0, 12 ] and set a = αǫ. For ǫ > 0

sufficiently small the following hold:

(i) With domain (H1
a)

2, A is the generator of a C0 semigroup on (L2
a)

2.

(ii) Whenever Reλ ≥ −1
6αǫ

3 with λ 6= 0, λ is in the resolvent set of A.

(iii) The value λ = 0 is a discrete eigenvalue of A with algebraic multiplicity 2.

(iv) Restricted to the A-invariant spectral complement Ȳa of the generalized kernel of A, the semi-

group eAt is asymptotically stable, satisfying

‖eAtz‖a ≤ Ke−βt‖z‖a
for all t ≥ 0 and z ∈ Ȳa, with some constants K > 0 and β > 1

6αǫ
3 depending on ǫ and α.

Theorem 6.3 (Spectral stability without weights) For ǫ > 0 sufficiently small, with domain (H1)2

in the space (L2)2, the spectrum of the operator A is precisely the imaginary axis.

Equivalences. The statements in these correspond directly to those in Theorem 3.1 due to the

following facts. First, the map (η2, φ2) 7→ (η4, φ4) is clearly an isomorphism from Za = L2
a ×H

1/2
a

to (L2
a)

2 when a > 0. (Note the symbol S(k + ia) does not vanish at k = 0 in this case). Second,

the map η1 7→ η2 from (6.1) is clearly an isomorphism on L2
a (and on H1

a). For example,

‖η1‖2a =

∫ ∞

−∞
e2as|η1 ◦ ζ(s)ζ ′(s)|2e2a(ζ(s)−s) ds

ζ ′(s)
= (1 +O(ǫ2))‖η2‖2a,

since pointwise |ζ ′−1|+αǫ|ζ(s)−s| = O(ǫ2) uniformly, due to Theorem 5.1. Next, the composition

map ζ# is an isomorphism on Hs for s = 0, 1 and 2, hence also for s = 1
2 and 3

2 by interpolation

(see [4], particularly Theorems 3.1.2 and 6.4.4). Therefore the map

φ1 7→ φ2 = e−axe−a(ζ(x)−x)ζ#e
axφ1

is an isomorphism on Hs
a. (Note that the multipliers e±a(ζ(x)−x) = I + O(ǫ2) on Hs for s = 0, 1

and 2, as is easy to check using Theorem 5.1.)

Finally, we claim that the transformation steps (6.1), (6.9) and (6.13) map the space of pairs

(η1, φ1) satisfying condition (3.7) of Theorem 3.2 isomorphically to the space of pairs (η4, φ4) ∈
L2 × L2. The first step to show this is to see that (η4, φ4) ∈ L2 × L2 is equivalent to finiteness of

the linearized energy: ∫ ∞

−∞
φ1(−∂xHη)φ1 + γη21 dx <∞. (6.24)

The key point here is that since φ2 = ζ#φ1 and Hη = ζ−1
# H0ζ#, due to (4.8) the change of variables

x = ζ(x), dx = ζ ′(x)dx yields
∫ ∞

−∞
φ1(−∂xHη)φ1 dx =

∫ ∞

−∞
(ζ#φ1)(−ζ#∂xHηφ1)ζ

′dx =

∫ ∞

−∞
φ2(D tanhD)φ2 dx = ‖φ3‖2L2 .

The second step is to demonstrate an equivalence of norms. We claim
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Lemma 6.4 For some positive constants c− and c+ independent of φ1,

c−

∫ ∞

−∞
φ1(D tanhD)φ1 dx ≤

∫ ∞

−∞
φ1(−∂xHη)φ1 dx ≤ c+

∫ ∞

−∞
φ1(D tanhD)φ1 dx. (6.25)

For the proof, it is enough to consider φ1 smooth and rapidly decaying on R. Let φ and φ be

functions that are harmonic in the fluid domain Ωη and the flat strip Ω0 respectively, and satisfy

the boundary conditions

φ1(x) = φ(x, η(x)) = φ(x, 0), 0 = φy(x,−1) = φ
y
(x,−1). (6.26)

Then ∫ ∞

−∞
φ1(−∂xHη)φ1 dx =

∫ ∞

−∞

∫ η(x)

−1
|∇φ|2 dy dx, (6.27)

∫ ∞

−∞
φ1(D tanhD)φ1 dx =

∫ ∞

−∞

∫ 0

−1
|∇φ|2 dy dx. (6.28)

Moreover, the function φ (resp. φ) minimizes the double integral in (6.27) (resp. (6.28)) among

functions satisfying the same Dirichlet boundary conditions. Let X : Ω0 → Ωη be a smooth (but

non-conformal) change of variables of the form X(x, y) = (x, ỹ(x, y)), such that X(x, 0) = (x, η(x)).

The function φ̃ = φ ◦ X is smooth on Ω0 and satisfies φ̃(x, 0) = φ(x, η(x)) = φ1(x). Using

the minimizing property of φ, then changing variables and using that the gradient and (inverse)

Jacobian of X are uniformly bounded, we find

∫ ∞

−∞

∫ 0

−1
|∇φ|2 dy dx ≤

∫ ∞

−∞

∫ 0

−1
|∇φ̃|2 dy dx ≤ 1

c−

∫ ∞

−∞

∫ η(x)

−1
|∇φ|2 dy dx.

This establishes the first inequality in the Lemma. The other one is similar.

7 Estimates on commutators and junk

In order to bound the junk terms, we need to bound commutators of S with the multipliers p, q and

ρ, or equivalently with up, uq, and uρ, since [S, 1] = 0. The functions up, uq, uρ all have the scaled

form ǫ2G(ǫx), where G depends on ǫ but remains bounded in H2. The following result provides a

general estimate for the commutator of a Fourier multiplier and a multiplier with this scaled form.

Write 〈k〉s = (1 + k2)s/2, 〈D〉s = (1 +D2)s/2.

Proposition 7.1 Let P, Q and R be Fourier multipliers with symbols P , Q and R respectively,

and let s ≥ 0. Let g(x) = ǫ2G(ǫx) where G : R → R is smooth and exponentially decaying, and let

f : R → R be smooth with compact support. Then

‖P[Q, g]Rf‖L2 ≤ C∗CG‖f‖L2 ,

where

C∗ = sup
k,k̂∈R

ǫ2
P (ǫk)|Q(ǫk) −Q(ǫk̂)|R(ǫk̂)

〈k − k̂〉s
, CG =

∫ ∞

−∞
〈k〉s|Ĝ(k)| dk

2π
.



18 Asymptotic linear stability of solitary water waves

Proof. Using the Fourier transform and Young’s inequality, since ĝ(k) = ǫĜ(k/ǫ), we have

‖P[Q, g]Rf‖2L2 =

∫ ∞

−∞

∣∣∣∣∣

∫ ∞

−∞
P (k)(Q(k) −Q(k̂))ǫĜ

(
k − k̂

ǫ

)
R(k̂)f̂(k̂)

dk̂

2π

∣∣∣∣∣

2
dk

2π

≤ C2
∗

∫ ∞

−∞

(∫ ∞

−∞

〈
k − k̂

ǫ

〉s ∣∣∣∣∣Ĝ
(
k − k̂

ǫ

)∣∣∣∣∣ |f̂(k̂)|
dk̂

2πǫ

)2
dk

2π

≤ C2
∗C

2
G‖f‖2L2 .

Corollary 7.2 Suppose 0 ≤ a < π/4. With g = up, uq or uρ, there exists K > 0 such that for all

small enough ǫ > 0, we have the L2
a operator norm estimates

‖[S, g]S−1∂‖a ≤ Kǫ3, (7.1)

‖J11‖a + ‖J12‖a + ‖J21‖a + ‖J22‖a ≤ Kǫ3. (7.2)

Proof. Observe that for each of the indicated choices for g, we have that G is uniformly bounded

in H2 as a consequence of Lemma 6.1. So, using s = 2− 2
3 we have

CG ≤
(∫ ∞

−∞
〈k〉−4/3dk

)1/2(∫ ∞

−∞
〈k〉4|Ĝ(k)|2dk

)1/2

≤ K (7.3)

independent of ǫ. And, the operator 〈D〉−1/2S−1∂ is uniformly bounded on L2
a since its weight-

transformed symbol is 〈ξ〉−1/2iξ/
√−γξ tanh ξ, which is uniformly bounded. Hence it suffices to

show that with the choices P (k) = 1, Q(k) =
√−ξ tanh ξ, R(k) = 〈ξ〉1/2 (ξ = k + ia), we have

C∗ ≤ Kǫ3. (7.4)

To prove this estimate the idea is to show that with ξ = k + ia, ξ̂ = k̂ + ia,

|Q(k)−Q(k̂)| =
∣∣∣∣∣
ξ tanh ξ − ξ̂ tanh ξ̂

Q(k) +Q(k̂)

∣∣∣∣∣ ≤
K|k − k̂|

max(1, |ξ̂|1/2)
≤ K|k − k̂|

〈ξ̂〉1/2
, (7.5)

and conclude through scaling by ǫ.

To prove (7.5), first note that |Q(k) −Q(k̂)| ≤ K|k − k̂|, since Q′(k) is uniformly bounded, as

is easy to show. Suppose now that k̂ > 1, without loss. If k < 0 then

|Q(k)−Q(k̂)| ≤ |Q(k)−Q(0)| + |Q(0)−Q(k̂)| ≤ K(|k|+ |k̂|) = K|k − k̂|.

If k > 0, then one computes explicitly that

−ξ tanh ξ = −(k + ia)
sinh 2k + i sin 2a

cosh 2k + cos 2a
,
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and finds that Q(k) lies in the fourth quadrant of the complex plane together with Q(k̂), and so

|Q(k) +Q(k̂)| ≥ |Q(k̂)| ≥ 〈ξ̂〉1/2/K,

since tanh ξ̂ is bounded away from zero. As the map k 7→ −ξ tanh ξ is uniformly Lipschitz, the

estimate (7.5) follows. This proves the commutator estimate (7.1). Using this together with (6.6)

and the fact that S∂−1 is bounded, the remaining estimates in (7.2) follow directly.

8 Symbol expansions and estimates

Here we develop basic approximations and key estimates that concern the Fourier multiplier A+.

8.1 Low-frequency expansion and KdV scaling

The Taylor expansion of tanh at zero,

tanh ξ = ξ − 1
3ξ

3 +O(ξ5),

and the fact that for ξ with positive imaginary part one has
√

−ξ2 = −iξ, yields
√

−ξ tanh ξ = −iξ + 1
6 iξ

3 +O(ξ5). (8.1)

We note that if k ∈ R and |k| is sufficiently small,

√
tanh k

k
≤ 1− 1

9k
2. (8.2)

In the KdV long-wave scaling, one replaces ξ in (8.1) by ǫξ, and λ by ǫ3λ̃. We find (recall γ = 1−ǫ2)

A+(ǫξ) = iǫξ +
√

−γǫξ tanh ǫξ = ǫ3(12 iξγ1 +
1
6 iξ

3γ + ξ3O(ǫ2ξ2)), (8.3)

where

γ1 = 2ǫ−2(1−
√

1− ǫ2) = 1 +O(ǫ2).

The KdV-scaled weight-transformed symbol of −λ+A+ with ξ = k+ iα, λ = ǫ3λ̃ = ǫ3(λ̃r + iλ̃i) is

ǫ−3(−ǫ3λ̃+ iǫξ +
√

−γǫξ tanh ǫξ) = −λ̃+ 1
2 iξγ1 +

1
6 iξ

3γ + ξ3O(ǫ2ξ2)

= (−λ̃r − 1
2αγ1 +

1
6(α

3 − 3αk2)γ) + i(−λ̃i + 1
2kγ1 +

1
6(k

3 − 3kα2)γ) + ξ3O(ǫ2ξ2). (8.4)

This corresponds to the purely formal KdV approximation (writing A+ = A+(D))

−λ+A+(ǫD) ∼ ǫ3(−λ̃+ 1
2∂ − 1

6∂
3).
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8.2 High-frequency estimates

Lemma 8.1 If z ∈ C, a > 0, then Re
√
z ≤ a if and only if 1

2(|z|+Re z) ≤ a2.

Proof. Write
√
z = u+ iv where u ≥ 0. The result follows from

|z| = |u+ iv|2 = u2 + v2, Re z = u2 − v2.

Lemma 8.2 Suppose ξ = k + ia with k ∈ R and 0 < a < π/4. Then

0 < Re
√

−ξ tanh ξ ≤ a√
cos 2a

√
tanh k

k
. (8.5)

Proof. By the previous lemma, if β > 0 and w =
√
−ξ tanh ξ, then Rew ≤ β if and only if

|ξ|| tanh ξ| − Re(ξ tanh ξ) ≤ 2β2. (8.6)

We may write

tanh ξ =
eξ − e−ξ

eξ + e−ξ
=

sinh 2k + i sin 2a

cosh 2k + cos 2a
=
u+ iv

D0

with u = sinh 2k, v = sin 2a, D0 = cosh 2k + cos 2a. Then (8.6) is equivalent to

(k2 + a2)1/2(u2 + v2)1/2 − (ku− av) ≤ 2β2D0,

or (taking k > 0 without loss)

(
1 +

a2

k2

)1/2(
1 +

v2

u2

)1/2

− 1 +
av

ku
≤ 2β2

D0

ku
. (8.7)

Note that
v

u
=

sin 2a

sinh 2k
≤ a

k
.

Using this bound on the left-hand side of (8.7), we find that (8.7) is implied by the bound

a2

k2
≤ β2

D0

ku
. (8.8)

Since D0 ≥ (cosh 2k + 1) cos 2a = 2cosh2 k cos 2a and u = 2cosh k sinh k, (8.8) is implied by

a2

cos 2a

tanh k

k
= β2. (8.9)

This yields (8.5) as claimed.
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Corollary 8.3 Take γ = 1− ǫ2, a = ǫα with 0 < α ≤ 1
2 . For ǫ > 0 sufficiently small, we have that

for all real k, with ξ = k + ia,

Re
√

−γξ tanh ξ ≤ ǫα(1− 1
4ǫ

2)

√
tanh k

k
,

ReA+(ξ) = Re(iξ +
√

−γξ tanh ξ) ≤ ǫα

(
−1 + (1 − 1

4ǫ
2)

√
tanh k

k

)
≤ −1

4
ǫ3α.

Moreover, uniformly for Reλ ≥ −1
6ǫ

3α, the L2
a operator norm of the resolvent of A+ satisfies

‖(λ−A+)
−1‖a ≤ 12

αǫ3
. (8.10)

The first inequality follows since

γ

cos 2a
≤ 1− ǫ2

1− 2ǫ2α2
≤ 1− 1

2ǫ
2 ≤ (1− 1

4ǫ
2)2,

and the resolvent bound follows since |λ−A+(ξ)| ≥ Re(λ−A+(ξ)) ≥ 1
12ǫ

3α for all k.

For later reference, we note that for ξ = k + ia with |a| < π/8, k ∈ R,

| tanh ξ| ≤ | sinh 2k|+ | sin 2a|
cosh 2k + cos 2a

≤ 1. (8.11)

9 Semigroup generation and scalar reduction by elimination

To start our analysis of the linearized dynamics governed by A, we use energy estimates to es-

tablish resolvent bounds for the symmetrized operators B± that dominate the diagonal of A. By

consequence, we show in this section that A generates a C0 semigroup in (L2
a)

2, with a = ǫα for

α ∈ [0, 12 ]. Also we will show that if α ∈ (0, 12 ], λ−A22 in (6.21) is uniformly invertible on L2
a for

all λ satisfying Reλ ≥ −1
2ǫα. This allows us to eliminate φ4 in the eigenvalue problem (6.21) and

reduce to a scalar, nonlinear eigenvalue equation for η4 in the form

(λ−A11 − J12(λ−A22)
−1J21)η4 = 0. (9.1)

Lemma 9.1 For some constant K independent of ǫ, α and λ, if α ∈ [0, 12 ], ǫ > 0 is sufficiently

small, and Reλ > −ǫα(1−Kǫ2), then λ is in the resolvent set of B−, with

‖(λ− B−)
−1‖a ≤ 1

Reλ+ αǫ(1 −Kǫ2)
, (9.2)

and if Reλ > Kαǫ3 then λ is in the resolvent set of B+, with

‖(λ− B+)
−1‖a ≤ 1

Reλ−Kαǫ3
. (9.3)
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Proof. The main step in the proof is to perform energy estimates for each term. Let z be

smooth with compact support, and let za = eaxz. Write ∂a = eax∂e−ax = ∂ − a, and recall a = αǫ.

We compute (using the fact that p ≥ 1−Kǫ2 in the last step)

Re〈−√
p∂

√
p z, z〉a = −Re

∫ ∞

−∞
(
√
p∂

√
p z)z̄ e2axdx = −Re

∫ ∞

−∞
(∂a

√
p za)

√
pza dx

= a

∫ ∞

−∞
p|za|2 dx ≥ αǫ(1 −Kǫ2)‖z‖2a. (9.4)

Due to (6.17) above, with ξ = k + ia,

Re〈√qS√q z, z〉a = Re

∫ ∞

−∞
(
√
qS√qza)z̄ae2ax dx = Re

∫ ∞

−∞

√
−γξ tanh ξ|F√

q za|2
dk

2π
. (9.5)

By Corollary 8.3 we find 0 ≤ Re〈√qS√q z, z〉a ≤ ǫα‖qz‖2a ≤ ǫα(1+Kǫ2)‖z‖2a. Hence it follows that
for all smooth z with compact support

Re〈(λ− B−)z, z〉a
‖z‖2a

≥ Reλ+ αǫ(1 −Kǫ2), (9.6)

Re〈(λ− B+)z, z〉a
‖z‖2a

≥ Reλ−Kαǫ3. (9.7)

When the right-hand side is positive, this proves λ − A± is uniformly invertible on its range,

satisfying the respective estimates in (9.2) and (9.3).

To prove that λ is in the resolvent set of B−, what remains to prove is that the range of λ−B± is

all of L2
a. To accomplish this, we use a perturbation estimate to establish that a fixed value λ = 1 is

in the resolvent set for small enough ǫ, then invoke an analytic continuation property of resolvents.

For λ = 1 > 0 fixed, if ǫ is small then we will show 1 − B± is a small relative perturbation of the

Fourier multiplier 1−A± from (6.18), with

‖(1 −A±)
−1(B± −A±)‖a ≤ Kǫ2 < 1. (9.8)

By perturbation it follows 1 is in the resolvent set of operator B± and the range of λ−B± is all of

L2
a for λ = 1. Using the Neumann series for the resolvent, we see that the resolvent of any closed

operator can be analytically continued to any set where the resolvent has a uniform apriori bound

(see Theorem III.6.7 of [24]). By consequence, the resolvent set of B− (resp. B+) contains the

entire right half-plane where the right-hand side of (9.6) (resp. (9.7)) is positive.

We proceed to prove (9.8). We compute that

B± −A± = ∂up − 1
2p

′ ± Suq ± [ρ,S]ρ.

Since S∂−1 is bounded, Corollary 7.2 and (6.6) imply

|up|+ |uq|+ |p′|+ ‖[S, ρ]ρ‖a ≤ Kǫ2. (9.9)
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We claim that for some constant K independent of ǫ and α,

‖(1 −A±)
−1∂j‖a ≤ K for j = 0 and 1. (9.10)

The symbol of the weight-transformed operator −e−ax(1 −A±)−1∂jeax is

mj(ξ) =
(iξ)j

1− iξ ∓
√
−γξ tanh ξ , ξ = k + ia, (9.11)

for j = 0 or 1. Since −iξ = −ik + a, the real part of the denominator is always greater than 1, by

Corollary 8.3. Hence |m0(ξ)| ≤ 1 for all k ∈ R, so (9.10) holds for j = 0. For j = 1, we have that

|m1(ξ)| ≤ 9 for |ξ| ≤ 9, while for |ξ| > 9 the denominator is bounded below by

|1− iξ| − |ξ|1/2 ≥ |ξ|(1− |ξ|−1/2) ≥ 2
3 |ξ|,

because | tanh ξ| ≤ 1 by (8.11). Thus |m1(ξ)| ≤ 3
2 for |ξ| ≥ 9. Hence (9.10) holds also for j = 1.

The bound in (9.8) follows by combining (9.10) with (9.9). This completes the proof of the Lemma.

Proposition 9.2 For ǫ > 0 sufficiently small, A is the generator of a C0 semigroup on (L2
a)

2.

Proof. By the Lemma just proved and the Hille-Yosida theorem, the operator

A∗ =

(
B+ 0
0 B−

)

is the generator of a C0 semigroup on (L2
a)

2. But A−A∗ is bounded, so the result follows from a

standard perturbation theorem (see Theorem IX.2.1 of [24]).

Lemma 9.3 For some constant K independent of ǫ, α and λ and for α ∈ (0, 12 ], if ǫ > 0 is

sufficiently small then λ is in the resolvent set of A22 whenever Reλ ≥ −1
2ǫα, with

‖(λ−A22)
−1‖a ≤ K

ǫα
. (9.12)

Proof. Due to the bound on J22 from Corollary 7.2, this result follows directly from the results

in Lemma 9.1 concerning the resolvent of B−.

10 Resolvent bounds for |λ| not too small

For the remainder of this paper we fix α satisfying 0 < α ≤ 1
2 and write a = ǫα. Here we

demonstrate a bound on the resolvent of the operator A from (6.21) that is uniform in λ, for λ in

the right half-plane with |λ| not too small. This bound, in combination with the Gearhart-Prüss

spectral mapping theorem and our proof that the only eigenvalue of A in the right half-plane is

λ = 0 with algebraic multiplicity 2, will allow us to obtain linear asymptotic stability in L2
a for the

semigroup eAt, conditional for perturbations containing no neutral-mode components.
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Proposition 10.1 Let 0 < ν < ν̂ < 1. For ǫ > 0 sufficiently small, all λ satisfying

|λ| ≥ ǫν and Reλ ≥ − 1
12αǫ

1+2ν̂ (10.1)

belong to the resolvent set of A, with ‖(λ − A)−1‖a ≤ K/ǫ1+2ν̂ , for some constant K independent

of ǫ and λ.

In the analysis we will make use of sharp Fourier cutoffs (Fourier filters) defined as follows.

We specify a wavenumber threshold chosen to be κ̂ = ǫν̂ , where we require ν < ν̂ < 1. Define

projection operators πo (low-pass), πi (high-pass) on L2
a as follows. First, on L2, define low and

high-pass filters by

π0o = F−11[−κ̂,κ̂]F , π0i = I − π0o. (10.2)

These operators are orthogonal projections on L2. Now in L2
a, define orthogonal projections by

πo = e−axπ0oe
ax, πi = I − πo. (10.3)

10.1 Resolvent bounds for A11 for λ not small

Crucial for our estimate of (λ−A)−1 is to demonstrate uniform invertibility of the operator

λ− ∂p− Sq = λ−A11 − J11

which appears as the dominant part of the operator in the (1, 1) slot of (6.21). The aim here is to

establish uniform invertibility of the operator above with respect to the weighted norm with weight

a = αǫ. The estimate on the inverse will have the form

‖(λ− ∂p− Sq)−1‖a ≤ K

ǫ1+2ν̂
(10.4)

and be valid for λ satisfying (10.1), provided ǫ > 0 is smaller than some fixed positive constant.

(Here and below, K is a generic constant independent of ǫ whose value may change from case to

case.) Since we know ‖J11‖a = O(ǫ3) by Corollary 7.2, we infer that under conditions of the same

form on λ and ǫ, λ−A11 is invertible with

‖(λ−A11)
−1‖a ≤ K

ǫ1+2ν̂
. (10.5)

To prove the bound (10.4) we study the equation

(λ− ∂p− Sq)z = g

decomposing this equation in terms of zo = πoz, zi = πiz, go = πog, and gi = πig. Apply πo
and note πozi = 0, and the low-pass filter (nontrivially) commutes with derivatives and Fourier

multipliers. We get (
Aoo Aoi

Aio Aii

)(
zo
zi

)
=

(
go
gi

)
, (10.6)
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Aoo = λ− πo(∂p + Sq)πo, Aoi = −πo(∂up + Suq)πi,

Aio = −πi(∂up + Suq)πo, Aii = λ− πi(∂p + Sq)πi.

Here recall up = p− 1, uq = q− 1 satisfy the pointwise bounds in (6.6). The low-pass Fourier filter

satisfies ‖πo∂‖a ≤ |κ̂ + ia| ≤ 2ǫν̂ and ‖πoS‖a ≤ K0ǫ
ν̂ since |ξ tanh ξ|1/2 = |ξ|| tanh ξ/ξ|1/2 ≤ K0ǫ

ν̂

for ξ = k + ia with |k| ≤ κ̂, with some constant K0 independent of ǫ. Also ‖pπo‖a + ‖qπo‖a ≤ K0.

Now clearly, if |λ| ≥ ǫν and ǫ is small enough so ǫν > 2K1ǫ
ν̂ with K1 = 2K0 +K2

0 (we use ν < ν̂

here), then Aoo is invertible and

‖A−1
oo ‖a ≤ 1

|λ| −K1ǫν̂
≤ 2

ǫν
. (10.7)

Since ∂ũπo = (ũ′ + ũ∂)πo for ũ = up and uq, we also find (since ν̂ ≤ 1)

‖Aoi‖a ≤ Kǫ2+ν̂ , ‖Aio‖a ≤ Kǫ2+ν̂ . (10.8)

In order to establish the estimate (10.5), it suffices to show that whenever λ satisfies (10.1), Aii

is invertible on L2
a with

‖A−1
ii ‖a ≤ K

ǫ1+2ν̂
(10.9)

This is because, after elimination of z0, (10.6) reduces to

(I −A−1
ii AioA−1

oo Aoi)zi = A−1
ii (gi −AioA−1

oo go). (10.10)

Since

‖A−1
ii AioA−1

oo Aoi‖a ≤ K

ǫ1+2ν̂
(Kǫ2+ν̂)2

K

ǫν
≤ Kǫ3−ν ,

the desired estimate (10.4) then follows for sufficiently small ǫ and large |λ| from

‖zo + zi‖a ≤ ‖zo‖a + ‖zi‖a ≤ K

ǫ1+2ν̂
(‖gi‖a + ‖go‖a) ≤

2K

ǫ1+2ν̂
‖g‖a.

10.2 Uniform invertibility of Aii by energy estimates

To prove the invertibility of Aii with the estimate (10.9), since z = zo + zi, the main step is to

prove the energy estimate

− Re〈πi(∂p + Sq)πiz, z〉a ≥ 1
10ǫ

1+2ν̂α‖zi‖2a (10.11)

for all smooth z with compact support. Given such z, let za = eaxz. Recall ∂a = eax∂e−ax = ∂−a.
Then π0iza is in Hm for all m since

∫

|k|>κ̂
(1 + |k|2)m|ẑa|2 dk <∞.
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1. Recall ∂p =
√
p∂

√
p+ 1

2p
′ and |p′| ≤ Kǫ3. Similarly as for B± which we treated before,

− Re〈πi
√
p∂

√
pπiz, z〉a = −Re

∫ ∞

−∞
(πi

√
p∂

√
pπiz)z̄ e

2axdx

= −Re

∫ ∞

−∞
(∂a

√
pπ0iza)

√
pπ0iza dx

= a

∫ ∞

−∞
p|π0iza|2 dx ≥ ǫα(1 −Kǫ2)‖πiz‖2a. (10.12)

The last inequality holds since a = ǫα and p ≥ 1−Kǫ2.

2. Now write ρ =
√
q (as before) and compute

πiSqπiz = ρπiSρzi + Cρiρzi, (10.13)

where, with uρ = ρ− 1 (= O(ǫ2)), we can write Cρi = Cρ − Cρo with

Cρ = [S, ρ] = Suρ − uρS, Cρo = πoSuρ − uρπoS, (10.14)

Now, since ‖πoS‖a ≤ Kǫν̂ , evidently ‖Cρo‖a ≤ Kǫ2+ν̂ , and Corollary 7.2 implies ‖Cρ‖a ≤ Kǫ3.

Recall that the weight-transformed operator eaxSe−ax is a Fourier multiplier with symbol given by

(6.17). For this we will use the high-frequency dispersion estimate in Corollary 8.3. Note that for

|k| ≥ κ̂ = ǫν̂ , if ǫ is small enough then by (8.2),

1− 1
9ǫ

2ν̂ >

√
tanh κ̂

κ̂
≥
√

tanh k

k
. (10.15)

Using this with Corollary 8.3, we find

− Re〈ρπiSρzi, zi〉a = −Re

∫ ∞

−∞
(ρπiSρzi)z̄i e2axdx

= −Re

∫

|k|>κ̂

√
−γξ tanh ξ|Fρzia|2

dk

2π

≥ −ǫα(̂1− 1
9ǫ

2ν̂)(1 +Kǫ2)‖zi‖2a. (10.16)

3. Combining (10.12) with (10.16) and |p′|+ ‖Cρiρ‖a ≤ Kǫ3 yields (10.11), since for small ǫ,

−Re〈πi(∂p + Sq)πiz, z〉a
‖zi‖2a

≥ ǫα
(
1−Kǫ2 − (1− 1

9ǫ
2ν̂)(1 +Kǫ2)

)
−Kǫ3 ≥ 1

10ǫ
1+2ν̂α.

Since Aii = λπo + Aiiπi, it follows that if λ satisfies (10.1), then Aii has bounded inverse on its

range with bound given by (10.9)

4. To prove that the range of Aii is all of L2
a, we use the same continuation approach as

previously given for B±. We can write

Aii = λ− (∂ + S)πi − πi(∂up + Suq)πi.
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For λ = 1 fixed, the ǫ-independent bound

‖(1 − (∂ + S)πi)−1∂πi‖a ≤ K (10.17)

follows by restricting the proof of (9.10) to frequencies |k| ≥ κ̂. Then we obtain

‖(1 − (∂ + S)πi)−1πi(∂up + Suq)‖a ≤ Kǫ2 < 1

for small enough ǫ, and the invertibility of Aii whenever Reλ ≥ 0 and |λ| ≥ ǫ/K now follows as

before for B±, by continuation based on the energy estimate in step 3.

10.3 Bound on the resolvent of A
Now we complete the proof of Proposition 10.1. We solve the resolvent equation

(λ−A)

(
η4
φ4

)
=

(
g1
g2

)

by simple elimination, writing

φ4 = (λ−A22)
−1(g2 + J21η4),

η4 = W∗(λ)
−1(λ−A11)

−1(g1 + J12(λ−A22)
−1g2),

W∗(λ) = I − (λ−A11)
−1J12(λ−A22)

−1J21,

This is justified based on the estimates (9.12), (10.5), and the estimate

‖J12(λ−A22)
−1J21‖a ≤ Kǫ5 (10.18)

that follows from Corollary 7.2 together with (9.12) for Reλ ≥ −1
2ǫα. For the solution of the

system, one obtains the estimates

‖η4‖a ≤ K

ǫ1+2ν̂

(
‖g1‖a +Kǫ2‖g2‖a

)
, ‖φ4‖a ≤ K

ǫ

(
‖g2‖a +Kǫ2−2ν̂‖g1‖a

)
,

whence the estimate ‖(λ−A)−1‖a ≤ K/ǫ1+2ν̂ follows.

11 KdV scaling and bundle limit

It remains to study the eigenvalue problem when |λ| is small. satisfying |λ| ≤ ǫν . At this point we

have shown that the eigenvalue system (6.21) can be reduced to the nonlinear eigenvalue equation

(9.1) whenever Reλ ≥ −1
2ǫα. For Reλ ≥ −1

6ǫ
3α, we may further apply the Fourier multiplier

(λ − A+)
−1 to (9.1), by Corollary 8.3. This reduces the eigenvalue problem to the nonlinear

eigenvalue equation

W (λ)η4 := (I − (λ−A+)
−1U − J∗)η4 = 0, (11.1)
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where

J∗ = (λ−A+)
−1(J11 + J12(λ−A22)

−1J21).

The operator J∗ will be shown to be negligible.

As we shall see, the bundle W (λ) becomes singular at λ = 0 due to the fact that zero is an

eigenvalue of the operator A. To determine the multiplicity of this eigenvalue and establish the

invertibility ofW (λ) for nonzero λ, we make use of the KdV long-wave scaling. We introduce scaled

variables with tildes via

x̃ = ǫx, λ = ǫ3λ̃. (11.2)

Then ∂ = ǫ∂̃, and in purely formal terms we have the following leading behavior (see (8.3) and

note
√
−D tanhD ∼ −∂):

λ−A+ ∼ ǫ3(λ̃− 1
2 ∂̃ + 1

6 ∂̃
3), U = ∂up + Suq ∼ ǫ3∂̃(−2Θ)− ǫ3∂̃(−1

2Θ).

Thus we expect W (λ) ∼W0(λ̃) where (with tildes omitted on derivatives)

W0(λ̃) = I + (λ̃− 1
2∂ + 1

6∂
3)−1∂

(
3
2Θ
)
. (11.3)

This bundle W0(λ̃) is associated with the eigenvalue problem for the KdV equation scaled as

∂tf − 1
2∂xf + 3

2f∂xf + 1
6∂

3
xf = 0,

linearized about the soliton profile f = Θ = sech2(
√
3x/2).

To be clear, what we are really doing when changing variables is using a similarity transform

in terms of the dilation operator τǫ defined by

(τǫf)(x) = f(x/ǫ)/
√
ǫ (11.4)

which maps L2
a isometrically onto L2

α since a = αǫ:
∫ ∞

−∞
|f(x)|2e2ax dx =

∫ ∞

−∞
|τǫf(y)|2e2αy dy, y = ǫx.

(Note that similarity transform does not change operator norms, but τǫ∂τ
−1
ǫ = ǫ∂.)

The formal discussion above involves uncontrolled approximations in terms of derivatives. But

this motivates the following rigorous statement in terms of convergence of bundles. Based on this

result, the scaled operator bundle will be studied using the Gohberg-Sigal-Rouché perturbation

theorem [19].

Proposition 11.1 Define the scaled bundle W̃ (λ̃) = τǫW (ǫ3λ̃)τ−1
ǫ , and let

Ω̃ǫ := {λ̃ ∈ C : |ǫ3λ̃| ≤ 1, Re λ̃ ≥ −1
6α}. (11.5)

Then in operator norm on L2
α, we have

sup
λ̃∈Ω̃ǫ

‖W̃ (λ̃)−W0(λ̃)‖α → 0 as ǫ→ 0. (11.6)
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We prove this proposition by studying pieces of the scaled bundle W̃ (λ̃). Writing τǫSτ−1
ǫ =√

−γǫD tanh ǫD = ǫS̃, τǫA+τ
−1
ǫ = ǫ3Ã+, and

up(x) = ǫ2ũp(ǫx), uq(x) = ǫ2ũq(ǫx), τǫJ∗τ
−1
ǫ = J̃∗,

the scaled bundle is written in the form

W̃ (λ̃) = I − (λ̃− Ã+)
−1(∂ũp + S̃ũq)− J̃∗. (11.7)

The proposition is implied by following convergence results in operator norm on L2
α, to hold as

ǫ→ 0, uniformly for λ̃ ∈ Ω̃ǫ:

‖(λ̃− Ã+)
−1B − (λ̃− 1

2∂ + 1
6∂

3)−1∂‖α → 0 for both B = ∂ and S̃, (11.8)

‖ũp + 2Θ‖α → 0, ‖ũq + 1
2Θ‖α → 0, (11.9)

‖J∗‖a → 0. (11.10)

In subsection 11.1, we will prove the first limit (11.8) by studying the corresponding weight-

transformed symbols. The third limit (11.10) is treated in subsection 11.2. The limits in (11.9) are

a simple consequence of the fact that ũp + 2Θ and ũq +
1
2Θ are pointwise multipliers, so the L2

α

operator norm is equal to the L∞ norm as a function, and this is bounded by the H1 norm, which

tends to zero by Lemma 6.1.

11.1 KdV limit for symbols

Here we establish the main limit (11.8) needed to prove the operator limit in Theorem 11.1. Namely,

we prove appropriate limits for the scaled, weight-transformed symbol of the operator Mǫ(λ̃,D) =

(λ̃− Ã+)
−1∂. This symbol takes the form

Mǫ(λ̃, ξ) =
ǫ3iξ

−ǫ3λ̃+ iǫξ +
√
−γǫξ tanh ǫξ

, ξ = k + iα. (11.11)

The corresponding symbol for the limiting operator M0(λ̃,D) = (λ̃− 1
2∂ + 1

6∂
3)−1∂ is written

M0(λ̃, ξ) =
iξ

−λ̃+ 1
2 iξ +

1
6 iξ

3
. (11.12)

The symbol limits that we need to prove both limits in (11.8) are:

|Mǫ(λ̃, ξ)−M0(λ̃, ξ)| → 0 as ǫ→ 0, (11.13)

∣∣∣∣∣Mǫ(λ̃, ξ)

√
γ tanh ǫξ

ǫξ
−M0(λ̃, ξ)

∣∣∣∣∣→ 0 as ǫ → 0. (11.14)

These limits need to be established uniformly for ξ ∈ R + iα and λ̃ ∈ Ω̃ǫ. (The second limit will

follow easily once we establish the first.)
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1. First we provide simple, preliminary bounds on the limiting symbol M0. As one sees from

(8.4), for λ̃ = λ̃r + iλ̃i and ξ = k + iα, the real part of the denominator of M0 is negative, with

magnitude bounded below by

λ̃r +
1
2α(1 − 1

3α
2) + 1

2αk
2 ≥ λ̃r +

1
3α+ 1

2αk
2 ≥ 1

6α(1 + k2) ≥ 1
6α|ξ|

2, (11.15)

provided α ∈ (0, 1) and λ̃r ≥ −1
6α. Consequently we find

|M0(λ̃, ξ)| ≤
6

α|ξ| , ξ ∈ R+ iα, Re λ̃ ≥ −1
6α. (11.16)

In particular, since |ξ| ≥ α, the left-hand side of (11.15) is uniformly bounded away from zero, and

M0 is uniformly bounded.

2. (Low frequencies) Now we carefully identify a long-wave regime where the result of Taylor

expansion in (8.4) yields the limits (11.13) and (11.14). Fix ν0 ∈ (13 ,
1
2) and let

I0 = {ξ ∈ R+ iα : |ǫξ| ≤ ǫν0}. (11.17)

Put D0 = M0(λ̃, ξ)
−1, E = Mǫ(λ̃, ξ)

−1−D0. Then by (8.4), E = ξ2O(ǫ2ξ2) and since |D0| ≥ 1
6α|ξ|

we find that uniformly for ξ ∈ I0, λ̃ ∈ Ω̃ǫ we have

|M0(λ̃, ξ)−Mǫ(λ̃, ξ)| =
∣∣∣∣

E

D0(D0 + E)

∣∣∣∣ ≤
(
6

α

)2 K|ǫξ|2
1− |ξ|K|ǫξ|2 ≤ K̂ǫ2ν0 (11.18)

for small enough ǫ, since ǫ2|ξ|3 ≤ ǫ3ν0−1 = o(1). Moreover, for ξ ∈ I0 one has

∣∣∣∣∣

√
γ tanh ǫξ

ǫξ
− 1

∣∣∣∣∣ ≤ Kǫ2ν0 .

It follows that (11.14) holds uniformly in this regime, as well.

3. For high frequencies the KdV limit is not relevant. In this regime, the symbols Mǫ and M0

must be shown separately to be small. Let us consider M0 first. When ξ ∈ Ic0 := R + iα \ I0 we

have |ξ| ≥ ǫν0−1, and from the estimate (11.16) it is clear that

sup
ξ∈Ic

0
, λ̃∈Ω̃ǫ

|M0(λ̃, ξ)| ≤
6ǫ1−ν0

α
, (11.19)

and this tends to zero as ǫ→ 0.

What remains to show is that

sup
ξ∈Ic

0
, λ̃∈Ω̃ǫ

|Mǫ(λ̃, ξ)| → 0 as ǫ → 0. (11.20)

Since the square-root factor in (11.14) is bounded, the proof of both (11.13) and (11.14) will be

complete once (11.20) is established. This estimate is the most subtle of the symbol estimates. It
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has nothing to do with the KdV limit, but rather expresses a uniform stability property that holds

at high frequency over moderately long time scales. Its proof breaks into two further regimes for

|ξ| and involves using Corollary 8.3 to interpolate between low frequencies and high.

4. (High frequencies) Here we consider the set

I∞ = {ξ ∈ R+ iα : |ǫξ| ≥ K2}. (11.21)

where K2 is large. In this regime, the denominator of Mǫ is estimated from below by

|ǫξ| − |γǫξ tanh ǫξ|1/2 − |ǫ3λ̃| ≥ |ǫξ| − |ǫξ|1/2 − 1 ≥ 1
2 |ǫξ|,

and consequently

sup
ξ∈I∞, λ̃∈Ω̃ǫ

|Mǫ(λ̃, ξ)| ≤ 2ǫ2. (11.22)

5. (Transition frequencies) Fix ν1 with ν0 < ν1 <
1
2 and let

I1 = {ξ = k + iα : 3ǫν1 ≤ |ǫk| ≤ K2}. (11.23)

Recalling a = ǫα and γ < 1 − a2, we apply Corollary 8.3 together with the bound (8.2) valid for

|κ| small. Then we find that ǫ small enough, with ξ = k + iα ∈ I1 and −λ̃r < 1, the real part of

the denominator of Mǫ(λ̃, ξ) is negative and bounded (away from zero) by

Re(−ǫ3λ̃+ iǫξ +
√
−γǫξ tanh ǫξ) ≤ −ǫ3 + ǫα(−1 + 1− ǫ2ν1) ≤ −1

2ǫ
1+2ν1 .

By consequence we find that

sup
ξ∈I1, λ̃∈Ω̃ǫ

|Mǫ(λ̃, ξ)| ≤ 2K2ǫ
2−1−2ν1 , (11.24)

and this tends to zero since ν1 <
1
2 .

Now R + iα = I0 ∪ I1 ∪ I∞, and the outstanding estimate (11.20) is established. This finishes

the proof of the limits (11.13)-(11.14).

Remark. The analysis of symbol limits in this section is simpler than the one carried out for

lattice solitary waves in [17]. Partly this is due to the simple way that λ̃ appears in the denominator

of Mǫ here. But partly it is due to the fact that here we must study the regime |ǫ3λ̃| ≥ K̂ by

other means, since the symbol Mǫ in (11.11) is not bounded on the whole set where Re λ̃ ≥ 0 and

ξ ∈ R+ iα.

11.2 Limit of junk terms

To complete the proof of Theorem 11.1 it suffices to prove (11.10), i.e., show that ‖J∗‖a = o(1) in

operator norm on L2
a, uniformly for λ ∈ Ωǫ where

Ωǫ = ǫ3Ω̃ǫ = {λ ∈ C : |λ| ≤ 1, Reλ ≥ −1
6αǫ

3}. (11.25)
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By the bound (10.18) and the resolvent estimate for A+ in Corollary 8.3, we have

‖(λ−A+)
−1J12(λ−A22)

−1J21‖a ≤ Kǫ2. (11.26)

Further, Corollaries 8.3 and 7.2 imply ‖(λ−A+)
−1J11‖a ≤ K, hence

‖J∗‖a ≤ K (11.27)

uniformly for Reλ ≥ −1
6αǫ

3. It remains to prove that uniformly for λ ∈ Ωǫ,

‖(λ−A+)
−1J11‖a → 0 as ǫ → 0. (11.28)

Then ‖J∗‖a = o(1) will follow. (We remark that it appears this may not be true uniformly for all

λ satisfying Reλ ≥ 0, however.)

Because of the estimates (11.26) and (8.10) and the expression for J11 in (6.22), it suffices to

prove that the operators

J0 = (λ−A+)
−1(u′q

√
γ + [S, uq]), (11.29)

J1 = (λ−A+)
−1(u′p − [S, up]S−1∂), (11.30)

are o(1) in L2
a operator norm uniformly for λ ∈ Ωǫ — note that |q′pq−1 −√

γu′q| = O(ǫ5).

In order to bound J0 it would suffice to note u′q = [∂, uq] and apply Proposition 7.1 with g = uq
and with appropriate symbols. However, the form of J1 is slightly different, so what we do instead

is observe that the weight-transformed operators J̃j = e−axJje
ax (j = 0, 1) act on a given smooth

f with compact support via

(F J̃jf)(k) =
√
γ1−j

∫ ∞

−∞
P (k)

(
i(k − k̂) + (Q(k)−Q(k̂))R(k̂)j

)
ĝ(k − k̂)f̂(k̂)

dk̂

2π
(11.31)

for j = 0 and 1, with

P (k) =
1

−λ+ iξ +
√−γξ tanh ξ , Q(k) =

√
−ξ tanh ξ, R(k) =

√
ξ

tanh ξ
.

Here ξ = k + ia, and g = up or uq has the form g(x) = ǫ2G(ǫx) with G bounded in H2 as in

section 7. By almost the same short proof as that of Proposition 7.1, we find that

‖Jjf‖a ≤ C∗CG‖f‖a (11.32)

where CG is as in Proposition 7.1 (and is uniformly bounded), and

C∗ = sup
k,k̂∈R

ǫ2
|P (ǫk)||iǫ(k − k̂) + (Q(ǫk)−Q(ǫk̂))R(ǫk̂)j |

〈k − k̂〉s

= sup
k,k̂∈R

ǫ3|P (ǫk)|
∣∣∣∣∣1 +

Q(ǫk)−Q(ǫk̂)

i(ǫk − ǫk̂)
R(ǫk̂)j

∣∣∣∣∣
|k − k̂|
〈k − k̂〉s

. (11.33)
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Here we take s = 4
3 as previously. This implies that the last factor in (11.33) is bounded. To bound

the other factors we consider the case |ǫξ| ≤ ǫν̂ and its opposite, for any ν̂ ∈ (0, 1) fixed.

In the first case, |ǫξ| ≤ ǫν̂ , the factor |P (ǫk)|ǫ3 ≤ K uniformly since by Corollary 8.3, the real

part of the denominator of P (ǫk) is bounded away from zero, satisfying ReP (ǫk)−1 ≤ −1
4ǫ

3α. The

middle factor is O(ǫν̂) and tends to zero uniformly, since the symbols Q and R are analytic near

ξ = 0 and Q′(k) → −i and R(k) → 1 as ξ = k + ia→ 0.

In the other case, |ǫξ| ≥ ǫν̂ , we note that the middle factor is uniformly bounded due to the

estimate (7.5). Due to Corollary 8.3,

ReP (ǫk)−1 ≤ −Reλ+ ǫα

(
−1 +

√
tanh ǫν̂

ǫν̂

)
≤ αǫ3 − 1

9αǫ
1+2ν̂ .

Hence |P (ǫk)|ǫ3 ≤ Kǫ2−2ν̂ for small ǫ, and we conclude that

C∗ ≤ K(ǫ1+2ν̂ + ǫν̂) (11.34)

which tends to zero uniformly for λ ∈ Ωǫ.

12 Analysis of the bundle limit

For the remainder of the proof of our asymptotic linear stability theorem, there are two approaches

possible. One is to proceed in a fashion similar to the treatment of FPU lattice waves in the

KdV limit in [17]. In that approach, one notes that any eigenfunction of A corresponding to a

nonzero eigenvalue is orthogonal to two particular elements of the generalized kernel of the adjoint

A∗. (In [17] this was expressed in terms of symplectic orthogonality, using Hamiltonian structure.)

This yields reduced orthogonality conditions that are necessary for elements of the kernel of the

scalar bundle W (λ). After an appropriate scaling, one proves convergence of these conditions to

corresponding ones for the KdV bundleW0(λ̃), in a dual space. Then uniform invertibility of W (λ)

on the codimension-2 subspace satisfying the orthogonality conditions follows by a straightforward

perturbation argument.

We prefer to emphasize, however, that the required spectral properties follow from the bundle

convergence theorem 11.1 by ‘soft’ arguments based on the GSR perturbation theorem, and does

not require further convergence analysis of adjoint zero modes. There are essentially only two

‘hard’ points left. Namely, we need to show that (i) the bundle W (λ) is Fredholm of index zero

for relevant values of λ, and (ii) the solitary-wave degrees of freedom (translational shift and wave

speed) naturally provide two independent elements in the generalized kernel of A. In comparing

the need for point (i) with the alternative approach, we observe that if one knows λ−A has empty

kernel, one would likely need to prove a Fredholm property anyway to conclude that λ − A is

surjective and λ is in the resolvent set of A.

In this section we will establish point (i), and invoke Gohberg-Sigal-Rouché perturbation theory

to characterize the null multiplicity of characteristic values of the bundle W (λ). This is related to

the algebraic multiplicity of eigenvalues of A in the following section. Point (ii) is dealt with in

Appendix B.
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12.1 Fredholm property of the bundle

Lemma 12.1 For ǫ > 0 sufficiently small, W (λ) is Fredholm with index 0 for all λ ∈ Ωǫ.

Proof. It suffices to show that we may write

W (λ) =Wi +Wc (12.1)

where Wi is invertible and Wc is compact. To demonstrate this, we use Fourier filters πo and πi
as defined in (10.2)-(10.3). It is convenient however to use a soft wavenumber cutoff in the range

[κ̂, 2κ̂] with κ̂ = ǫν where 0 < ν < 3
5 (see (11.17)). More precisely, fix φ(k) = 1 (|k| ≤ 1), 2 − |k|

(1 ≤ |k| ≤ 2), 0 (|k| ≥ 2) and set φǫ(k) = φ(k/ǫν) and in place of (10.2)-(10.3) define

π0o = F−1φǫF πo = e−axπ0oe
ax, πi = I − πo. (12.2)

We then define

Wi = I − πi(λ−A+)
−1U − J∗, Wc = −πo(λ−A+)

−1U . (12.3)

The operator Wi is uniformly invertible for λ ∈ Ωǫ. This is so since ‖J∗‖a is uniformly small and so

is the middle term, for we have ‖∂−1U‖a ≤ Kǫ2, while e−axπi(λ−A+)
−1∂eax is a Fourier multiplier

with symbol dominated by Mǫ, with

‖ǫ2πi(λ−A+)
−1∂‖a ≤ sup

ξ∈Ic
0
, λ̃∈Ωǫ

|Mǫ(λ̃, ξ)| → 0 (12.4)

as ǫ→ 0 due to (11.20). Then, if ǫ is small enough, Wi is invertible for all λ ∈ Ωǫ.

On the other hand, the operator Wc on L2
a is equivalent to the weight-transformed e−axWce

ax

on L2. The latter operator is compact by the convenient compactness criterion of [34]—It is the

sum of two terms of the form F−1φ1Fφ2, where φ1 and φ2 are multipliers by bounded continuous

functions on R that approach zero at infinity. This finishes the proof of the Lemma.

Remark. We note that in the decomposition (12.1), both terms Wc and Wi are analytic

functions of λ for λ ∈ Ωǫ. (This fact will be used in studying the full resolvent of A.)

12.2 Characteristic values and the Gohberg-Sigal-Rouché theorem

We first recall some relevant basic information from [19]. (We change some terminology slightly

for clarity. An alternative source is [18].) Let X be a Hilbert space, and suppose a function

λ 7→ W(λ) is analytic on a complex domain Ω0 ⊂ C, taking values in the space of bounded linear

operators on X, and all its values are Fredholm of index zero. A point λ0 is a characteristic value

of W if W(λ0) has a nontrivial kernel. A root vector is an analytic function z(λ) with values in X

satisfying W(λ0)z(λ0) = 0 with z(λ0) 6= 0. The order of a root vector at λ0 is the order of λ0 as a

zero of W(λ)z(λ). The null multiplicity of a characteristic value is a positive integer whose precise

definition in general need not concern us here. The null multiplicity of λ0 is always at least as large

as the maximum order of any root vector. Furthermore, the null multiplicity equals this maximum

order if and only if the kernel of W(λ0) is one-dimensional.
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Suppose Ω is a subdomain of Ω0, with boundary Γ that is a simple closed rectifiable contour

in Ω0, and suppose W(λ) is invertible for all λ ∈ Γ. The sum of all null multiplicities for all

characteristic values in Ω is denoted n(W,Ω) and is called the total multiplicity of W in Ω. A

simple corollary of a far-reaching generalization of Rouché’s theorem proved by Gohberg and Sigal

[19, 18] is the following.

Theorem 12.2 Assume that for j = 1 and 2, Wj(λ) is analytic and Fredholm of index zero in

Ω ∪ Γ. Assume that for all λ ∈ Γ, W1(λ) is invertible and the operator norm

‖W1(λ)
−1(W1(λ)−W2(λ)‖X < 1.

Then W2(λ) is invertible on Γ, and the total multiplicity n(W2,Ω) = n(W1,Ω).

We apply this abstract result with W1 = W0 as defined in (11.3), and W2 = W̃ as defined in

Proposition 11.1. We take X = (L2
a)

2, and the contour Γ as the boundary of the set Ω = Ω̃ǫ. As

a consequence of Proposition 11.1, for ǫ > 0 sufficiently small, the null multiplicity n(W̃ , Ω̃ǫ) =

n(W0, Ω̃ǫ). But the latter number is 2, as a consequence of the following result.

Proposition 12.3 Suppose 0 < α <
√
3 and β = 1

2α(1 − 1
3α

2). In L2
α, the only characteristic

value of W0(λ̃) with Re λ̃ > −β is λ̃ = 0, and this value has null multiplicity 2.

This Proposition mainly follows from known facts concerning the eigenvalue problem for the KdV

soliton. We provide a self-contained proof in Appendix C for the reader’s convenience.

Corollary 12.4 For ǫ > 0 sufficiently small, W (λ) is invertible for all λ on the boundary of

Ωǫ = ǫ3Ω̃ǫ, and the total multiplicity of W in Ωǫ is 2.

13 Analysis of resolvent and eigenvalues

It remains to complete the proof that for ǫ > 0 sufficiently small, the operator A has no eigenvalue

with Reλ ≥ −1
6αǫ

3 other than λ = 0, which is a discrete eigenvalue with algebraic multiplicity 2.

Conditional asymptotic stability will then follow directly from the Gearhart-Prüss theorem.

13.1 Resolvent and spectral projection

To begin, we note that by simple elimination, whenever λ ∈ Ωǫ, the resolvent equation

(λ−A)

(
f1
f2

)
=

(
g1
g2

)
(13.1)

is equivalent to

W (λ)f1 = (λ−A+)
−1(g1 + J12(λ−A22)

−1g2), (13.2)

f2 = (λ−A22)
−1(J21f1 + g2). (13.3)
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Then clearly, λ is in the resolvent set of A if W (λ) is invertible, so any point of the spectrum of

A inside Ωǫ must be a characteristic value of W (λ). (The converse is not so easy to argue, since a

root vector in L2
a need not be in H1

a . We finesse this point in the following argument.)

For ǫ > 0 small, as a consequence of Corollary 12.4, there are at most 2 points of Ωǫ in the

spectrum of A. We claim that each such spectral point λ0 is a discrete eigenvalue of A, which

means that the associated spectral projection,

P0 =
1

2πi

∫

Γ0

(λ−A)−1 dλ, (13.4)

has finite rank. Here Γ0 is a small enough circle about λ0 enclosing no other point of the spectrum.

To prove this, note that from the decomposition formula (12.1), we can write

W (λ)−1 =W−1
i −W (λ)−1WcW

−1
i , (13.5)

from which we easily deduce from (13.2)-(13.3) that we can write (λ−A)−1 = Ri +Rc where Ri

is analytic in Ωǫ and Rc is compact. Then the integral
∫
Γ0

Ri dλ = 0 and it follows that P0 is

compact. Since P0 is a projection, it has finite rank, and it follows that its range consists entirely

of generalized eigenvectors of A.

13.2 Algebraic multiplicity of eigenvalues

It remains to relate the algebraic multiplicity of an eigenvalue λ0 of A to the null multiplicity of

λ0 as a characteristic value of W (λ). These quantities are in fact equal, but for present purposes

it suffices to be brief and prove a simpler, weaker result.

Proposition 13.1 For ǫ > 0 sufficiently small, if λ0 ∈ Ωǫ is an eigenvalue of A, then λ0 is a

characteristic value of W . Furthermore, if a Jordan chain z1, . . . , zk is a Jordan chain of elements

in (H1
a)

2 satisfying

(A− λ0)zj = zj−1 for j = 1, . . . , k, with z0 = 0,

then a root vector η(λ) of order at least k exists for W at λ0.

Proof. Supposing z1, . . . , zk is a Jordan chain for A of length k, let f(λ) =
∑k

j=1(λ−λ0)j−1zj . Then

f(λ) is analytic with values in (H1
a)

2 (the domain of A) and (λ − A)f(λ) = (λ − λ0)
kzk =: g(λ).

By elimination, (13.2)-(13.3) hold, and consequently W (λ)f1(λ) = O(|λ − λ0|k). Thus there is a

root vector η(λ) = f1(λ) of order at least k, and λ0 is a characteristic value of W .

13.3 Proof of asymptotic stability

Recall α ∈ (0, 12 ] is fixed, and take ǫ > 0 sufficiently small. As a consequence of the last Proposition

and the fact from Appendix B that λ = 0 has algebraic multiplicity at least 2 for A, we conclude

that the null multiplicity of the characteristic value λ = 0 for the bundle W is at least 2. Since

the total multiplicity of the bundle W in Ωǫ is 2, we deduce that (i) there are no nonzero points of
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the spectrum of A in Ωǫ, and (ii) the algebraic multiplicity of λ = 0 is exactly 2. In particular, the

kernel of A is simple (and the same is true for W (0)).

Consequently, the spectral projection P0 for λ = 0 has rank 2, and restricted to the complemen-

tary invariant subspace Ȳa = (I −P0)(L
2
a)

2 = kerP0, the resolvent (λ−A)−1 is bounded uniformly

for λ ∈ Ωǫ. By consequence of Proposition 10.1, this restricted resolvent is bounded uniformly for

all λ ∈ C with Reλ ≥ −1
6αǫ

3. It follows automatically that the restricted resolvent is bounded

uniformly in a slightly larger half-plane Reλ ≥ −β for some β > 1
6αǫ

3. Using the Gearhart-Prüss

asymptotic stability criterion (see Corollary 4 in [37]) gives us the conditional linear asymptotic

stability result claimed in Theorem 6.2.

14 Spectral stability without weight

In this section we prove Theorem 6.3, showing that in the unweighted space (L2)2, the spectrum

of the operator A is the imaginary axis, if ǫ > 0 is sufficiently small. The proof breaks into four

steps. For Reλ > 0, we show that (i) either λ is in the resolvent set or λ is an eigenvalue, and (ii)

if λ is an eigenvalue in (L2)2, then it is an eigenvalue in (L2
a)

2. Since by Theorem 3.1 there are no

such eigenvalues, this proves that A has no spectrum in the right half-plane. Next we show that

(iii) A has no spectrum in the left half-plane due to a symmetry under space and time reversal.

Finally, we show (iv) each point of the imaginary axis does belong to the spectrum of A, by a fairly

standard construction of a sequence of approximate eigenfunctions.

1. Suppose Reλ > 0. To accomplish the first step, as in section 9 we write

A = A∗ +R∗, A∗ =

(
B+ 0
0 B−

)
, R∗ =

(
J̃11 J12
J21 J22

)
.

By applying Lemma 9.1 with α = 0, we infer that λ belongs to the resolvent set of A∗ and

λ−A = (I −R∗(λ−A∗)
−1)(λ−A∗)

We claim that R∗(λ −A∗)−1 is compact, whence it follows that either λ is in the resolvent set of

A or it is an eigenvalue. To prove the claim, it suffices to show that each entry is a sum of terms

each of which is a product of bounded operators, at least one of which is compact. Let L = I + ∂

and note that since the domain of B± is H1, the operators L(λ−B±)−1 are bounded on L2. Thus

it suffices to show that R∗L−1 is compact. By the criterion of [34], an operator of the form gQ or

Qg is compact on L2 provided that g is a pointwise multiplier by a continuous function satisfying

g(x) → 0 as |x| → ∞, and Q is a Fourier multiplier with continuous symbol satisfying Q̂(k) → 0

as |k| → ∞.

We now deal with the various terms in R∗L−1 from (6.22)-(6.23). With the notation of section

6, note q′ = u′q decays as |x| → ∞, and L−1 has symbol (1+ ik)−1 tending to 0 as |k| → ∞. Hence

the operator R1L
−1 = pq−1q′L−1 is compact. Similarly p′L−1 is compact.

To treat terms involving commutators, we consider first the worst term, [p,S]S−1∂L−1. Note

that the operator S−1∂L−1 is a Fourier multiplier with bounded continuous symbol
√
k/ tanh k/(1+
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ik), hence is bounded. (The symbol decays, but we do not use this fact.) We now claim that

[p,S] is compact. (14.1)

We will show, in fact, that [p,S] is the uniform-norm limit of a sequence [p,Sn], where Sn is a

Fourier multiplier with continuous symbol of compact support. Let φ : R → [0, 1] be a smooth

cutoff function, taking the value 1 on [−1, 1] and 0 on R \ [−2, 2] and let ψ = 1− φ. Let Sn be the

Fourier multiplier with symbol φ(k/n)
√−γk tanh k. Then upSn and Snup are each compact. As in

the proof of Corollary 7.2, using Proposition 7.1, the L2 operator norm of [p,S]−[p,Sn] = [up,S−Sn]

is bounded by ǫ3CnCG, where CG is bounded and

Cn = sup
k,k̂∈R

|Q(k)ψ(k/n) −Q(k̂)ψ(k̂/n)|
〈k − k̂〉4/3

, Q(k) =
√
k tanh k

Since Q is increasing and Q′ decreasing for large k, we have the uniform derivative estimate

|(Q(k)ψ(k/n))′ | = |Q′(k)ψ(k/n) +Q(k)ψ′(k/n)/n| ≤ |Q′(n)|+K|Q(2n)/n| ≤ K/
√
n.

Then it easily follows Cn ≤ K/
√
n→ 0 as n→ ∞. Hence [p,S] is compact on L2.

Similarly the commutators [S, q] and [S, ρ] are compact, and it follows directly that R∗L−1 is

compact. This finishes the first step.

2. For the second step, suppose λ is an eigenvalue with Reλ > 0 and with eigenfunction

(η4, φ4) ∈ (H1)2, the domain of A. We then can write (from (6.14))

(
λ−A+ 0

0 λ−A−

)(
η4
φ4

)
=

(
g1
g2

)
,

with
(
g1
g2

)
= −1

2

(
−∂up − Suq − uqS +R1 +R2 −Suq + uqS +R1 −R2

Suq − uqS +R1 −R2 −∂up + Suq + uqS +R1 +R2

)(
η4
φ4

)
.

We claim that g1 and g2 lie in L2
a as well as L2. This is not difficult to check, since e−axup and

e−axuq are in H2. Since Reλ > 0, the Fourier multipliers (λ − A±)−1 are bounded on L2 and on

L2
a. Indeed, they map the subspace L2∩L2

a of L2 into H1∩H1
a (as one can check by approximation

using smooth test functions and analyticity of the Fourier transform for 0 < Im ξ < a). It follows

that (η4, φ4) ∈ (H1
a)

2, and that λ is an eigenvalue of A in the space (L2
a)

2. But there is no such

eigenvalue for ǫ > 0 sufficiently small, by Theorem 3.1. This concludes the proof of spectral stability

for A in (L2)2.

3. The resolvent equation for A has a symmetry under space and time reversal inherited from

the original water wave equations. For present purposes, this is most easily studied in terms of the

variables used in (6.10), for which the resolvent equation may be written (in L2 × L2)

(
λ− q∂pq−1 qS

Sq λ− Sp∂S−1

)(
η3
φ3

)
=

(
f1
f2

)
. (14.2)
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Recall that p and q are even functions. Let C be the space reversal operator, Cf(x) = f(−x). Now,
S preserves parity (since its symbol is even) while ∂ reverses it. Applying space reversal to (14.2)

the problem is seen to be of the same type after the replacements

λ 7→ −λ,
(
η3
φ3

)
7→
(
−Cη3
Cφ3

)
.

Thus λ is in the resolvent set if and only if −λ is. It follows at this point that the L2 spectrum of

A is contained in the imaginary axis.

4. Suppose Reλ = 0. Then there exists k̂ ∈ R such that λ = A+(k̂) = ik̂ + i

√
γk̂ tanh k̂.

Formally, (λ−A+)e
ik̂x = 0. We construct a sequence of approximate eigenfunctions for A in (L2)2

by a cutoff and translation argument. Fix a smooth function ψ with compact support, and consider

pairs (η4, φ4) of the form

η4 = eik̂(x+τ)ψ(ν(x+ τ))
√
ν, φ4 = 0.

The L2 norm of η4 is independent of ν and τ . We claim that taking ν = 1/n, we can choose τ

depending on n such that ‖(λ−A)(η4, 0)‖L2 → 0 as n→ ∞. Due to the structure of A in (6.21) it

suffices to show that as n → ∞. in L2 we have (a) (λ −A+)η4 → 0, and (b) (∂up + Suq + J11)η4
and J21η4 → 0.

To prove (a), we simply note that the Fourier transform

F((λ−A+)η4)(k) = eikτ (A+(k̂)−A+(k))ψ̂

(
k − k̂

ν

)
1√
ν
,

and this tends to 0 in L2 as ν → 0 uniformly in τ .

To prove (b), it is convenient to note that for any fixed ν > 0, eaxη4 → 0 in H2 as τ → ∞.

Moreover, upe
−ax and uqe

−ax are bounded in H1. Then it follows, for example, that upη4 and

uqη4 → 0 in H1 as τ → ∞, and

R2η4 =
(
∂(upe

−ax)− S(upe−ax)(eax∂SL−1e−ax)
)
(eaxη4) → 0

in L2 as τ → ∞, since the weight-transformed operator eax∂SL−1e−ax has bounded symbol and is

bounded on H1. (L = 1+∂ as above.) Similarly it follows [S, uq]η4 and R1η4 → 0 in L2 as τ → ∞.

Choosing τ appropriately depending on ν, this finishes the proof of (b). Thus each point of the

imaginary axis belongs to the L2 spectrum of A.

A Rigorous asymptotics for solitary wave profiles

Here we provide simple proofs of the estimates on the solitary wave profile needed for our analysis

of the eigenvalue problem and resolvent. For a sharper treatment of solitary water waves in the

limit ǫ→ 0 see Beale’s work [1].
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We work with the scaled form of (5.5), written in terms of θ defined through

ω(x) = ǫ2θ(ǫx). (A.1)

In terms of θ, we can write the fixed point equation (5.5) in the form

θ = F (θ) = QN(θ), (A.2)

with Fourier multiplier Q and nonlinearity N defined by

Q = ǫ2
(
1− γ

tanh ǫD

ǫD

)−1

, N(θ) =

3

2
θ2 + ǫθ3 +

1

2
(tanh ǫD θ)2

(
1− 2γǫ

tanh ǫD

ǫD
θ

)

(1 + ǫθ)2
. (A.3)

We study this equation in a weighted Sobolev space of even functions. For α > 0 fixed, let

Xm = {f : R → R : eαxf ∈ Hm, f even}, Ym = {f : R → R : eαxf ∈ Hm, f odd}, (A.4)

with the same norm (recall 〈k〉 = (1 + k2)1/2)

‖f‖Xm
= ‖f‖Ym

= ‖eαxf‖Hm =

(
1

2π

∫ ∞

−∞
|〈k〉mf̂(k + iα)|2 dk

)1/2

.

One has f ∈ Xm (resp. Ym) if and only if f is even (resp. odd) and coshαx∂jf ∈ L2(R) for

j = 0, ...,m. For m ≥ 1, the space Xm is a Banach algebra, while the bilinear product map

(f, g) 7→ fg is continuous from Ym × Ym to Xm. The intersection of exponentially weighted Hm

spaces is the direct sum of Xm and Ym:

Hm
α ∩Hm

−α = Xm ⊕ Ym.

Due to the Taylor expansion of tanh, the symbol of Q has the expansion

Q̂(ξ) =
1

1 + 1
3γξ

2 + ξ2O(ǫ2ξ2)
, ξ = k + iα. (A.5)

Formally, the limit of the fixed point equation (A.2) is

θ = Q0N0(θ), Q0 = (1− 1
3∂

2)−1, N0(θ) =
3
2θ

2. (A.6)

Provided 0 < α <
√
3, this fixed-point equation is satisfied by the KdV traveling-wave profile

Θ(x) = sech2(
√
3x/2). (A.7)

This fixed point is nondegenerate in the space Xm. Indeed, the linearized map θ 7→ θ − Q0(3Θθ)

has bounded inverse on Xm, for the following reason. It is straightforward to show that the map

Q0Θ is compact on Hm
α ∩ Hm

−α (using [34]). So if θ 7→ θ − Q0(3Θθ) is not an isomorphism on

Xm, then it vanishes for some nontrivial θ. By a simple bootstrapping argument, this θ must be a

smooth function satisfying (I− 1
3∂

2+3Θ)θ = 0 with eαxθ ∈ L2. But only constant multiples of the

odd function θ = Θ′ have this property; from standard results for asymptotic behavior in ordinary

differential equations, any independent solution θ grows like e
√
3|x| as x→ ±∞.
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Theorem A.1 Fix m ≥ 2, α ∈ (0,
√
3), and ν ∈ (0, 1). Then for ǫ > 0 sufficiently small, equation

(A.2) has a unique fixed point that belongs to Xm and satisfies ‖θ−Θ‖Xm
< ǫν. This fixed point θ

depends smoothly on ǫ.

To prove this result, we will invoke a standard fixed-point lemma in the simple quantitative

form from the appendix of [14]. To make the estimates needed, we single out one difficult nonlinear

term and let

N1(θ) = (tanh ǫD θ)2. (A.8)

Note tanh ǫD θ is odd if θ is even, and tanh ǫD maps Xm to Ym continuously. Then we write

Q = Q0 +Q1, N = N0 +N1 +N2, F = F0 + F1 + F2 + F3, (A.9)

with

F0 = Q0N0, F1 = Q0N1, F2 = Q0N2, F3 = Q1N.

We will prove that for each j = 0, 1, 2, 3, Fj is a smooth map on Xm, and will prove that for

δ = ǫν > 0 small (ν ∈ (0, 1) fixed) and Bδ a δ-ball about Θ in Xm,

‖Fj(Θ)‖Xm
≤ δ, sup

θ∈Bδ

‖F ′
j(θ)‖L(Xm) ≤ δ, j = 1, 2, 3. (A.10)

(Here ‖ · ‖L(Xm) denotes the operator norm on Xm.) The estimates in Theorem A.1 follow directly

from Lemma A.1 of [14] by these estimates and the fact that F0 is smooth and I − F ′
0(Θ) has

bounded inverse.

We proceed to prove the estimates in (A.10). It is clear that each Nj (j = 0, 1, 2, 3) is smooth

in Bδ. Also it is not hard to see that for some constant independent of ǫ, the remainder term in

the nonlinearity satisfies

‖N2(Θ)‖Xm
+ sup

θ∈Bδ

‖N ′
2(θ)‖L(Xm) ≤ Kǫ (A.11)

Since Q0 is bounded on Xm, the estimates (A.10) hold for F2 with δ = Kǫ. We now need one more

symbol estimate.

Lemma A.2 Let ν ∈ (0, 12 ). Then there exists K such that for ǫ sufficiently small,

‖Q1‖L(Xm) = sup
k∈R

|Q̂1(k + iα)| ≤ Kǫ2ν .

Proof. We fix ν ∈ (0, 12 ) and consider separately the low-frequency case |ǫξ| < 3ǫν and its high-

frequency complement, with ξ = k + iα.

1. Consider first the regime |ǫξ| < 3ǫν . Let

D0 = Q̂0(ξ)
−1 = 1 + 1

3ξ
2, E(ξ) = Q̂0(ξ)

−1 − Q̂(ξ)−1 = ξ2O(ǫ2ξ2),

so that

Q̂1(ξ) = Q̂(ξ)− Q̂0(ξ) =
1

D0

E/D0

1− E/D0
.
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From the Taylor expansion used in (A.5) we infer that

|Q̂1(ξ)| ≤ K

∣∣∣∣
E

D0

∣∣∣∣ ≤
Kǫ2ν |ξ|2
|D0|

≤ Kǫ2ν .

2. In the regime |ǫξ| > 3ǫν , we estimate Q̂0 and Q̂ separately. First, for ǫ < 1 we have |ξ|2 > 9 and

consequently |Q̂0(ξ)| is handled by the estimate

|Q̂0(ξ)| ≤
6

|ξ|2 ≤ 2ǫ2−2ν . (A.12)

It remains to bound |Q̂(ξ)|. We calculate that for ξ = k + iα with ǫ small,

Re
tanh ǫξ

ǫξ
=

k sinh 2ǫk + α sin 2ǫα

cosh 2ǫk + cos 2ǫα

ǫ−1

k2 + α2

≤ sec ǫα

ǫk

sinh 2ǫk

cosh 2ǫk + 1
+

2α2

|ξ|2

= sec ǫα
tanh ǫk

ǫk
+

2α2

|ξ|2 ≤ (1 + ǫ2α2)(1− ǫ2ν) + ǫ2−2ν . (A.13)

This implies that

Re Q̂(ξ)−1 ≥ ǫ−2γ(1− (1 + ǫ2α2)(1− ǫ2ν)− ǫ2−2ν) ≥ 1
2ǫ

2ν−2

for small enough ǫ (since 2ν < 2− 2ν), and hence

|Q̂(ξ)| ≤ 2ǫ2−2ν . (A.14)

This finishes the proof of the Lemma.

From this Lemma, the estimates (A.10) for F3 clearly follow with δ = Kǫ2ν .

It remains to prove (A.10) for F1, with δ = Kǫ2. To do this it is convenient to note that the

operator Q0 gains regularity—it is a bounded map from Xm−1 to Xm. Since N1 is quadratic, it

then suffices to prove that for some constant K independent of ǫ, we have

‖(tanh ǫD θ1)(tanh ǫD θ2)‖Xm−1
≤ Kǫ2‖θ1‖Xm

‖θ2‖Xm
(A.15)

for all θ1, θ2 ∈ Xm. But this follows easily since the bilinear product map is continuous from

Ym−1 × Ym−1 to Xm−1, and

sup
k∈R

| tanh ǫ(k + iα)|
〈k〉 ≤ ǫ sup

k∈R

| tanh ǫ(k + iα)|
〈ǫk〉 ≤ Kǫ (A.16)

which implies that for all θ ∈ Xm,

‖(tanh ǫD θ)‖Ym−1
≤ Kǫ‖θ‖Xm

.

This finishes the proof of the estimates in (A.10).

That the fixed point is a smooth function of ǫ is a standard consequence of the easily verified

fact that the map (ǫ, θ) 7→ F (θ) is smooth.



R. L. Pego and S.-M. Sun 43

B Neutral modes and adjoints

Here we verify that the translational and wave-speed solitary-wave degrees of freedom naturally

yield two independent elements of the generalized kernel of A in L2
a, and we demonstrate that the

symplectic orthogonality conditions (3.6) transform precisely to the condition that the initial data

for the linearized equations lie in the spectral complement to this generalized kernel.

1. Recall that by Theorem 5.1, we have a smooth family of solitary waves (η, U) that are

solutions of the equations (5.1). We exploit invariance with respect to translation by differentiating

in x to obtain an eigenfunction of (2.21) corresponding to λ = 0. This is slightly tricky due to the

meaning of the variable φ1 in (2.21). We claim that the eigenfunction has the form

z1 =

(
η1
φ1

)
=

(
ηx
φx

)
, (B.1)

where φx = Φx − vηx = u is evaluated on the surface (x, η(x)). To justify this statement, we note

that

(1− u)ηx = Hηu = −v. (B.2)

To see this, recall from (5.2) that η = Ψ = HηΦ, and this equation continues to hold for translated

wave profiles. Differentiating with respect to the translation parameter we have η̇ = ηx = Ψ̇ and

Φ̇ = Φx = φx + vηx. Then (B.2) follows from the linearization formula (2.18).

Using (B.2) together with direct differentiation of (5.1) (as in (2.20), noting V = ηx) yields

(
−∂x(1− u) ∂xHη

γ − (1− u)v′ −(1− u)∂x

)(
ηx
φx

)
= 0. (B.3)

Thus Aηz1 = 0. Carrying out the transformations (6.1), (6.9), (6.13) that lead to (6.21), we let

z4 =

(
1 −1
1 1

)(
γqζ∗ 0
0 Sζ#

)(
ηx
φx

)
=

(
1 −1
1 1

)(
γq(i tanhD)ω

Sζ#u

)
. (B.4)

Due to the regularity from Theorem A.1 and the formulae (5.8) and (6.4), z4 ∈ (H1
a ∩H1

−a)
2 with

Az4 = 0.

2. Next we exploit wave-speed variation to find a generalized eigenfunction in L2
a for λ = 0.

To calculate this, it is convenient to unscale the wave speed and keep γ at a fixed value γ̂ when

computing variations. For some fixed ĉ >
√
gh set

γ̂ =
gh

ĉ2
, c̃ =

c

ĉ
=

√
γ̂

γ
, η∗(x; c̃) = η(x; γ), U∗(x; c̃) = c̃U(x; γ), (B.5)

Φ+
∗ (x; c̃) = c̃Φ+(x; γ) = ∂−1

x U∗ = c̃

∫ ζ−1(x)

+∞
ω(s; γ) ds. (B.6)
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Then the unscaled solitary-wave profile (η∗,Φ+
∗ ) is a smooth function of c̃ that takes values in

H1
a ×H

3/2
a and satisfies

− c̃η∗ +Hη∗Φ
+
∗ = 0, −c̃U∗ + γ̂η∗ +

1

2
(U∗, V∗)M(η∗)

−1(U∗, V∗)
T = 0, (B.7)

where V∗ = ∂xHη∗Φ
+
∗ = c̃∂xη∗. For c̃ = 1 this simply corresponds to (5.1)-(5.2) with γ = γ̂.

We differentiate with respect to c̃, then set c̃ = 1 and drop the star subscripts. Denoting the

c̃-derivative by the subscript c, using the linearization formula (2.18) we find Vc = ∂xη + ∂xηc and

−η − ηc +Hη(Φ
+
c − vηc) + uηc = 0,

−U − Uc + γηc + uUc + v(∂xη + ∂xηc)− uv∂xηc = 0.

Since U − ηxv = u = φx, this yields
(

−∂x(1− u) ∂xHη

γ − (1− u)v′ −(1− u)∂x

)(
ηc
φ+c

)
=

(
ηx
φx

)
, φ+c = Φ+

c − vηc. (B.8)

With

y1 =

(
ηc
φ+c

)
, y4 =

(
1 −1
1 1

)(
γqζ∗ 0
0 Sζ#

)
y1, (B.9)

we have −Aηy1 = z1, and find that y4 ∈ (H1
a)

2 with

−Ay4 = z4. (B.10)

Adjoint modes. It is a standard fact of operator theory that the space Ȳa, the kernel of the

spectral projection P0 in (13.4), is the subspace annihilated by the generalized kernel of the adjoint

A∗. This generalized kernel is two-dimensional (since the generalized kernel of A is), and we aim to

show that the annihilation conditions correspond to the symplectic orthogonality conditions (3.6).

We will work with the Banach space dual L2
−a of L2

a, and note that for the Fourier multiplier

S =
√−γD tanhD, the adjoint is given formally by S∗ = S acting in L2

−a. To see this, take smooth

test functions f and g and write fa = eaxf , g−a = e−axg, and Sa = eaxSe−ax. Then since the

symbol of S satisfies S(k + ia) = S(k − ia) we have
∫ ∞

−∞
(Sf)g dx =

∫ ∞

−∞
Safag−a dx =

∫ ∞

−∞
S(k + ia)f̂a(k)ĝ−a(k)

dk

2π

=

∫ ∞

−∞
faS−ag−a dx =

∫ ∞

−∞
fSg dx.

To describe the generalized kernel of the adjoint A∗, first note that with the definition

Φ−
∗ (x; c̃) = c̃Φ−(x; γ) = c̃

∫ ζ−1(x)

−∞
ω(s; γ) ds, (B.11)

we can repeat the arguments leading up to (B.8) with Φ− and Hs
−a replacing Φ+ and Hs

a. Then

(B.8) holds with φ−c = Φ−
c − vηc replacing φ+c .
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Next, it is convenient to work with the variables used in (6.9)-(6.10) and note that

A∗ =

(
1 −1
1 1

)
A3

(
1 1
−1 1

)
1

2
, A3 =

(
q∂pq−1 −qS
−Sq Sp∂S−1

)
.

The operator A3 acts in (L2
a)

2. As can be found by transformation from the original canonical

Hamiltonian structure, this operator admits the factorization

A3 = JL, J =

(
0 qS

−Sq 0

)
, L =

(
1 −q−1p∂S−1

S−1∂pq−1 −1

)
. (B.12)

The adjoints are given by J ∗ = −J , L∗ = L, and A∗
3 = −LJ , acting in (L2

−a)
2. Then with

z3 =

(
γqζ∗ 0
0 Sζ#

)(
ηx
φx

)
, y3 =

(
γqζ∗ 0
0 Sζ#

)(
ηc
φ−c

)
, (B.13)

z∗3 = γ−1J−1z3 =

(
−(γq)−1ζ#φx

S−1ζ∗ηx

)
, y∗3 = γ−1J −1y3 =

(
−(γq)−1ζ#φ

−
c

S−1ζ∗ηc

)
, (B.14)

one can check directly that z∗3 , y
∗
3 ∈ (H1

−a)
2 and

A∗
3z

∗
3 =

(
−q−1p∂q −qS
−Sq −S−1∂pS

)(
−(γq)−1ζ#φx

S−1ζ∗ηx

)

=

(
(γq)−1 0

0 S−1

)(
−p∂ γq2

D tanhD ∂p

)(
ζ#φx
ζ∗ηx

)
= 0,

and similarly −A∗
3y

∗
3 = z∗3 . Thus the generalized kernel of A∗

3 is the span of z∗3 and y∗3.

Now, corresponding to an arbitrary element ż1 = (η̇, φ̇) ∈ Za = L2
a×H

1/2
a is ż3 = (γqζ∗η̇,Sζ#φ̇) ∈

(L2
a)

2. Then the conditions that z∗3 and y∗3 annihilate ż3 transform as follows:

0 = −〈ż3, z∗3〉 =
∫ ∞

−∞
(γqζ∗η̇)(γq)−1ζ#φx − (Sζ#φ̇)S−1ζ∗ηx dx =

∫ ∞

−∞
η̇φx − φ̇ηx dx, (B.15)

0 = −〈ż3, y∗3〉 =
∫ ∞

−∞
(γqζ∗η̇)(γq)−1ζ#φ

−
c − (Sζ#φ̇)S−1ζ∗ηc dx =

∫ ∞

−∞
η̇φ−c − φ̇ηc dx. (B.16)

This shows that the symplectic orthogonality conditions (3.6) transform to the precise condition

that the initial data for the semigroup eAt lie in the space Ȳa = kerP0 that is the spectral comple-

ment of the generalized kernel of A.

C Characteristic values for the KdV bundle

Here we provide the proof of Proposition 12.3 concerning the characteristic values of the bundle

W0(λ) = I + (λ− 1
2∂ + 1

6∂
3)−1∂(32Θ), Θ = sech2(

√
3x/2).
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(In this section we will drop the tilde on λ for convenience.) For Reλ > β = 1
2α(1 − 1

3α
2), the

weight-transformed operator

eαx(I −W0(λ))e
−αx = (−λ+ 1

2(∂ − α) + 1
6 (∂ − α)3)−1(∂ − α)(32Θ)

is compact on L2 and has range inH1, due to estimates similar to (11.15)-(11.16). On L2
α, therefore,

W0(λ) is Fredholm of index zero. If W0(λ)f = 0 for some nonzero f ∈ L2
α, then e

αxf ∈ Hm for all

m by an easy bootstrapping argument, and f satisfies the ordinary differential equation

(λ− 1
2∂ + 1

6∂
3)f + ∂

(
3
2Θf

)
= 0. (C.1)

By standard results, such an equation has a solution f ∼ eµx as x→ ∞ for each µ that satisfies

λ− 1
2µ+ 1

6µ
3 = 0. (C.2)

For λ > 0 large, this equation has one root with Reµ < −α and two with µ with Reµ > −α. With

µ = −α+ it (t ∈ R), the curve

t 7→ µ− 1
3µ

3 = −α+ 1
3α

3 − αt2 + i(t+ 1
3t

3 − α2t)

has increasing imaginary part and real part less than −α + 1
3α

3 = −2β. For Reλ > −β, then,
(C.2) has a unique and simple root satisfying Reµ < −α, hence (C.1) has a unique solution (up

to a constant factor) satisfying eαxf → 0 as x → ∞. In particular, one may check explicitly (and

easily by computer) that

f = ∂x

(
eµx((

√
3 + µ)2 − (

√
3 + µ+ µe

√
3x)

√
3 sech2(

√
3x/2))

)
. (C.3)

Since Reµ < −α, clearly eαxf ∈ L2 is impossible unless
√
3 + µ = 0, meaning λ = 0 and f = ∂xΘ.

From the analysis so far, we see that the kernel of W0(0) in L2
α is one-dimensional. To finish

the proof, we need to show that there is a root vector at 0 with order 2, and no root vector of order

3. Any root vector f(λ) at λ = 0 may be taken in the form f(λ) = f0 + λf1 + λ2f2 +O(λ3) with

f0 = ∂xΘ. And W0(λ) =W0 +W ′
0λ+ 1

2W
′′
0 λ

2 +O(λ3) where W0 =W0(0) and

W ′
0 = −(−1

2∂ + 1
6∂

3)−2∂(32Θ), 1
2W

′′
0 = (−1

2∂ + 1
6∂

3)−3∂(32Θ).

To find a root vector of order 2, it suffices to find f1 ∈ L2
α such that W0f1 +W ′

0f0 = 0. Since

W0f0 = 0 we have

W ′
0f0 = (−1

2∂ + 1
6∂

3)−1f0,

so it suffices to find f1 such that

(−1
2∂ + 1

6∂
3)f1 + ∂(32Θf1) + f0 = 0.

Such a function can be found by differentiating the equation satisfied by the KdV wave profile with

respect to wave speed. The function ϕb(x) = b sech2
√
3bx/2 satisfies ϕ1 = Θ and

(−1
2b∂x +

1
6∂

3
x)ϕb + ∂x(

3
4ϕ

2
b) = 0.
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Differentiating with respect to b and setting b = 1, we find that

(−1
2∂x +

1
6∂

3
x +

3
2∂xΘ)∂bϕ1 − 1

2∂xϕ1 = 0.

From this we see that the choice f1 = −1
2∂bϕ1 works and yields a root vector of order 2. This

choice is unique up to adding a scalar multiple of f0.

To show that there is no root vector of order greater than 2, it suffices to show that with f1 as

above, there is no f2 ∈ L2
α such that

W0f2 +W ′
0f1 +

1
2W

′′
0 f0 = 0. (C.4)

If such an f2 exists, then a bootstrapping argument involving the decay estimate (11.16) shows

that eαxf2 ∈ Hm for all m. Because of the equations satisfied by f1 and f0, we find that

W ′
0f1 +

1
2W

′′
0 f0 = (−1

2∂x +
1
6∂

3
x)

−1f1.

Therefore f2 must be a smooth solution of

(−1
2∂x +

1
6∂

3
x +

3
2∂xΘ)f2 + f1 = 0. (C.5)

Now, the function ϕ1 = Θ has e−αxϕ1 in Hm for all m and satisfies

(−1
2∂x +

1
6∂

3
x +

3
2Θ∂x)ϕ1 = 0.

Multiplying (C.5) by ϕ1 and integrating by parts, we find that the terms involving f2 vanish. Thus,

for f2 to exist, it is necessary that
∫∞
−∞ ϕ1∂bϕ1 = 0. But

∫ ∞

−∞
ϕ1∂bϕ1 dx =

d

db

∫ ∞

−∞

1

2
ϕ2
b dx =

d

db
b3/2

∫ ∞

−∞
ϕ2
1 dx > 0.

Hence, f2 cannot exist as required, and this proves that the characteristic value λ = 0 has null

multiplicity 2.

Acknowledgments

RLP is grateful for discussions regarding this work with Michael Weinstein, and for partial support

during the completion of this work by the Oxford Centre for Nonlinear PDE. This material is

based upon work supported by the National Science Foundation under grant nos. DMS 06-04420,

09-05723, and 08-07597, and by the Center for Nonlinear Analysis under NSF grant DMS 06-35983.

References

[1] J. T. Beale, The existence of solitary water waves, Comm. Pure Appl. Math., 30 (1977),
pp. 373–389.



48 Asymptotic linear stability of solitary water waves

[2] , Exact solitary water waves with capillary ripples at infinity, Comm. Pure Appl. Math.,
44 (1991), pp. 211–257.

[3] T. B. Benjamin, The stability of solitary waves, Proc. Roy. Soc. (London) Ser. A, 328 (1972),
pp. 153–183.
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