EXACTNESS OF THE FOCK SPACE REPRESENTATION OF THE q-COMMUTATION RELATIONS

MATTHEW KENNEDY AND ALEXANDRU NICA

Abstract

We show that for all q in the interval $(-1,1)$, the Fock representation of the q-commutation relations can be unitarily embedded into the Fock representation of the extended Cuntz algebra. In particular, this implies that the C^{*}-algebra generated by the Fock representation of the q-commutation relations is exact. An immediate consequence is that the q-Gaussian von Neumann algebra is weakly exact for all q in the interval $(-1,1)$.

1. Introduction

The q-commutation relations provide a q-analogue of the bosonic $(q=1)$ and the fermionic $(q=-1)$ commutation relations from quantum mechanics. These relations have a natural representation on a deformed Fock space which was introduced by Bozejko and Speicher in [1] , and was subsequently studied by a number of authors (see e.g. [2], [5, [6, [7, [9, [10]).

For the entirety of this paper, we fix an integer $d \geq 2$. Consider the usual full Fock space \mathcal{F} over \mathbb{C}^{d},

$$
\begin{equation*}
\mathcal{F}=\oplus_{n=0}^{\infty} \mathcal{F}_{n} \quad \text { (orthogonal direct sum) } \tag{1.1}
\end{equation*}
$$

where $\mathcal{F}_{0}=\mathbb{C} \Omega$ and $\mathcal{F}_{n}=\left(\mathbb{C}^{d}\right)^{\otimes n}$ for $n \geq 1$.
Corresponding to the vectors in the standard orthonormal basis of \mathbb{C}^{d}, one has left creation operators $L_{1}, \ldots, L_{d} \in B(\mathcal{F})$. Define the C ${ }^{*}$-algebra \mathcal{C} by

$$
\begin{equation*}
\mathcal{C}:=C^{*}\left(L_{1}, \ldots, L_{d}\right) \subseteq B(\mathcal{F}) . \tag{1.2}
\end{equation*}
$$

It is well known that \mathcal{C} is isomorphic to the extended Cuntz algebra. (Although it is customary to denote the extended Cuntz algebra by \mathcal{E}, we use \mathcal{C} here to emphasize that we are working with a concrete C^{*}-algebra of operators.)

Now let $q \in(-1,1)$ be a deformation parameter. We consider the q deformation $\mathcal{F}^{(q)}$ of \mathcal{F} as defined in [1]. Thus

$$
\begin{equation*}
\mathcal{F}^{(q)}=\oplus_{n=0}^{\infty} \mathcal{F}_{n}^{(q)} \quad \text { (orthogonal direct sum) }, \tag{1.3}
\end{equation*}
$$

[^0]where every $\mathcal{F}_{n}^{(q)}$ is obtained by placing a certain deformed inner product on $\left(\mathbb{C}^{d}\right)^{\otimes n}$. (The precise definition will be reviewed in Subsection 2.1 below.) For $q=0$, one obtains the usual non-deformed Fock space \mathcal{F} from above.

In this deformed setting, one also has natural left creation operators $L_{1}^{(q)}, \ldots, L_{d}^{(q)} \in B\left(\mathcal{F}^{(q)}\right)$, which satisfy the q-commutation relations

$$
L_{i}^{(q)}\left(L_{j}^{(q)}\right)^{*}=\delta_{i j} I+q\left(L_{j}^{(q)}\right)^{*} L_{i}^{(q)}, \quad 1 \leq i, j \leq d .
$$

Define the C^{*}-algebra $\mathcal{C}^{(q)}$ by

$$
\begin{equation*}
\mathcal{C}^{(q)}:=C^{*}\left(L_{1}^{(q)}, \ldots, L_{d}^{(q)}\right) \subseteq B\left(\mathcal{F}^{(q)}\right) \tag{1.4}
\end{equation*}
$$

For $q=0$, this construction yields the extended Cuntz algebra \mathcal{C} from above.
It is widely believed that the algebra \mathcal{C} and the deformed algebra $\mathcal{C}^{(q)}$ are actually unitarily equivalent. In fact, this is known for sufficiently small q. In [5], a unitary $U: \mathcal{F}^{(q)} \rightarrow \mathcal{F}$ was constructed which embeds \mathcal{C} into $\mathcal{C}^{(q)}$ for all $q \in(-1,1)$, i.e. $\mathcal{C} \subseteq U \mathcal{C}^{(q)} U^{*}$, and it was shown that for $|q|<0.44$ this embedding is actually surjective, i.e. $\mathcal{C}=U \mathcal{C}^{(q)} U^{*}$.

The main purpose of the present paper is to show that it is possible to unitarily embed $\mathcal{C}^{(q)}$ into \mathcal{C} for all $q \in(-1,1)$. Specifically, we construct a unitary operator $U_{\text {opp }}: \mathcal{F}^{(q)} \rightarrow \mathcal{F}$ such that $U_{\text {opp }} \mathcal{C}^{(q)} U_{\text {opp }}^{*} \subseteq \mathcal{C}$. The unitary $U_{\text {opp }}$ is closely related to the unitary U from [5], as we will now see.

Definition 1.1. Let $J: \mathcal{F} \rightarrow \mathcal{F}$ be the unitary conjugation operator which reverses the order of the components in a tensor in $\left(\mathbb{C}^{d}\right)^{\otimes n}$, i.e.

$$
\begin{equation*}
J\left(\eta_{1} \otimes \cdots \otimes \eta_{n}\right)=\eta_{n} \otimes \cdots \otimes \eta_{1}, \quad \forall \eta_{1}, \ldots, \eta_{n} \in \mathbb{C}^{d} . \tag{1.5}
\end{equation*}
$$

Note that for $n=0$, Equation (1.5) says that $J(\Omega)=\Omega$.
Let $J^{(q)}: \mathcal{F}^{(q)} \rightarrow \mathcal{F}^{(q)}$ be the operator which acts as in Equation (1.5), where the tensor is now viewed as an element of the space $\mathcal{F}_{n}^{(q)}$. It is known that $J^{(q)}$ is also unitary operator (see the review in Subsection 2.1).

Definition 1.2. Let $q \in(-1,1)$ be a deformation parameter and let U : $\mathcal{F}^{(q)} \rightarrow \mathcal{F}$ be the unitary defined in [5]. Define a new unitary $U_{\text {opp }}: \mathcal{F}^{(q)} \rightarrow \mathcal{F}$ by

$$
U_{o p p}=J U J^{(q)} .
$$

The following theorem is the main result of this paper.
Theorem 1.3. For every $q \in(-1,1)$ the unitary $U_{\text {opp }}$ from Definition 1.2 satisfies

$$
U_{o p p} \mathcal{C}^{(q)} U_{o p p}^{*} \subseteq \mathcal{C}
$$

The following corollary follows immediately from Theorem 1.3.
Corollary 1.4. For every $q \in(-1,1)$ the C^{*}-algebra $\mathcal{C}^{(q)}$ is exact.
To prove Theorem 1.3, we first consider the more general question of how to verify that an operator $T \in B(\mathcal{F})$ belongs to the algebra \mathcal{C}. It is well
known that a necessary condition for T to be in \mathcal{C} is that it commutes modulo the compact operators with the C^{*}-algebra generated by right creation operators on \mathcal{F}. Unfortunately, this condition isn't sufficient (and wouldn't be sufficient even if we were to set d equal to 1 , cf. [4]). Nonetheless, by restricting our attention to a $*$-subalgebra of "band-limited operators" on \mathcal{F} and considering commutators modulo a suitable ideal of compact operators in this algebra, we do obtain a sufficient condition for T to belong to \mathcal{C}. This bicommutant-type result is strong enough to help in the proof of Theorem 1.3

In addition to this introduction, the paper has four other sections. In Section 2, we provide a brief review of the requisite background material. In Section 3, we prove the above-mentioned bicommutant-type result, Theorem 3.8. In Section 4, we establish the main results, Theorem 1.3 and Corollary 1.4. In Section 5, we apply these results to the family of q-Gaussian von Neumann algebras, showing in Theorem 5.11 that these algebras are weakly exact for every $q \in(-1,1)$.

2. Review of background

2.1. Basic facts about the q-deformed Fock space. As explained in the introduction, there is a fairly large body of research devoted to the q deformed Fock framework and its generalizations. Here we provide only a brief review of the terminology and facts which will be needed in Section 4 ,
2.1.1. The q-deformed inner product. As mentioned above, the integer $d \geq 2$ will remain fixed throughout this paper. Also fixed throughout this paper will be an orthonormal basis ξ_{1}, \ldots, ξ_{d} for \mathbb{C}^{d}. For every $n \geq 1$ this gives us a preferred basis for $\left(\mathbb{C}^{d}\right)^{\otimes n}$, namely

$$
\begin{equation*}
\left\{\xi_{i_{1}} \otimes \cdots \otimes \xi_{i_{n}} \mid 1 \leq i_{1}, \ldots, i_{n} \leq d\right\} \tag{2.1}
\end{equation*}
$$

This basis is orthonormal with respect to the usual inner product on $\left(\mathbb{C}^{d}\right)^{\otimes n}$ (obtained by tensoring n copies of the standard inner product on \mathbb{C}^{d}). As in the introduction, we will use \mathcal{F}_{n} to denote the Hilbert space $\left(\mathbb{C}^{d}\right)^{\otimes n}$ endowed with this inner product. The full Fock space over \mathbb{C}^{d} is then the Hilbert space \mathcal{F} from Equation (1.1), with the convention that $\mathcal{F}_{0}=\mathbb{C} \Omega$ for a distinguished unit vector Ω, referred to as the "vacuum vector".

Now let $q \in(-1,1)$ be a deformation parameter. It was shown in [1] that there exists a positive definite inner product $\langle\cdot, \cdot\rangle_{q}$ on $\left(\mathbb{C}^{d}\right)^{\otimes n}$, uniquely determined by the requirement that for vectors in the natural basis (2.1), one has the formula

$$
\begin{equation*}
\left\langle\xi_{i_{1}} \otimes \cdots \otimes \xi_{i_{n}}, \xi_{j_{1}} \otimes \cdots \otimes \xi_{j_{n}}\right\rangle_{q}=\sum_{\sigma} q^{\operatorname{inv}(\sigma)} \delta_{i_{1}, \sigma\left(j_{1}\right)} \cdots \delta_{i_{n}, \sigma\left(j_{n}\right)} \tag{2.2}
\end{equation*}
$$

The sum on the right-hand side of Equation (2.2) is taken over all permutations σ of $\{1, \ldots, n\}$, and $\operatorname{inv}(\sigma)$ denotes the number of inversions of σ, i.e.

$$
\operatorname{inv}(\sigma):=|\{(i, j) \mid 1 \leq i<j \leq n, \sigma(i)>\sigma(j)\}| .
$$

Note that under this new inner product, the natural basis (2.1) will typically no longer be orthogonal.

We will use $\mathcal{F}_{n}^{(q)}$ to denote the Hilbert space $\left(\mathbb{C}^{d}\right)^{\otimes n}$ endowed with this deformed inner product. In addition, we will use the convention that $\mathcal{F}_{0}^{(q)}$ is the same as \mathcal{F}_{0}, i.e. it is spanned by the same vacuum vector Ω. The q-deformed Fock space over \mathbb{C}^{d} is then the Hilbert space $\mathcal{F}^{(q)}$ from Equation (1.3). For $q=0$, the construction of $\mathcal{F}^{(q)}$ yields the usual non-deformed Fock space \mathcal{F} from Equation (1.1).
2.1.2. The deformed creation and annihilation operators. For every $1 \leq j \leq$ d, one has deformed left creation operators $L_{j}^{(q)} \in \mathcal{B}\left(\mathcal{F}^{(q)}\right)$ and deformed right creation operators $R_{j}^{(q)} \in \mathcal{B}\left(\mathcal{F}^{(q)}\right)$, which act on the natural basis of $\mathcal{F}_{n}^{(q)}$ by $L_{j}^{(q)}(\Omega)=R_{j}^{(q)}(\Omega)=\xi_{j}$ and

$$
\left\{\begin{array}{l}
L_{j}^{(q)}\left(\xi_{i_{1}} \otimes \cdots \otimes \xi_{i_{n}}\right)=\xi_{j} \otimes \xi_{i_{1}} \otimes \cdots \otimes \xi_{i_{n}}, \tag{2.3}\\
R_{j}^{(q)}\left(\xi_{i_{1}} \otimes \cdots \otimes \xi_{i_{n}}\right)=\xi_{i_{1}} \otimes \cdots \otimes \xi_{i_{n}} \otimes \xi_{j} .
\end{array}\right.
$$

Their adjoints are the deformed left annihilation operators $\left(L_{j}^{(q)}\right)^{*}$ and the deformed right annihilation operators $\left(R_{j}^{(q)}\right)^{*}$, which act on the natural basis of $\mathcal{F}_{n}^{(q)}$ by

$$
\left\{\begin{array}{l}
\left(L_{j}^{(q)}\right)^{*}\left(\xi_{i_{1}} \otimes \cdots \otimes \xi_{i_{n}}\right) \tag{2.4}\\
\quad=\sum_{m=1}^{n} q^{m-1} \delta_{j, i_{m}} \xi_{i_{1}} \otimes \cdots \otimes \widehat{\xi_{i_{m}}} \otimes \cdots \otimes \xi_{i_{n}} \\
\left(R_{j}^{(q)}\right)^{*}\left(\xi_{i_{1}} \otimes \cdots \otimes \xi_{i_{n}}\right) \\
\quad=\sum_{m=1}^{n} q^{n-m} \delta_{i_{m}, j} \xi_{i_{1}} \otimes \cdots \otimes \widehat{\xi_{i_{m}}} \otimes \cdots \otimes \xi_{i_{n}},
\end{array}\right.
$$

where the "hat" symbol over the component $\xi_{i_{m}}$ means that it is deleted from the tensor (e.g. $\xi_{i_{1}} \otimes \widehat{\xi_{2}} \otimes \xi_{i_{3}}=\xi_{i_{1}} \otimes \xi_{i_{3}}$).

It's clear from these formulas that the left creation (left annihilation) operators commute with the right creation (right annihilation) operators. For the commutator of a left annihilation operator and a right creation operator, a direct calculation (see also Lemma 3.1 from [10]) gives the formula

$$
\begin{equation*}
\left.\left[\left(L_{i}^{(q)}\right)^{*}, R_{j}^{(q)}\right]\right|_{\mathcal{F}_{n}^{(q)}}=\delta_{i j} q^{n} I_{\mathcal{F}_{n}^{(q)}}, \quad \forall n \geq 1 . \tag{2.5}
\end{equation*}
$$

Taking adjoints gives the formula for the commutator of a left creation operator and a right annihilation operator.

When we are working on the non-deformed Fock space \mathcal{F} corresponding to the case when $q=0$, it will be convenient to suppress the superscripts and write L_{j} and R_{j} for the left and right creation operators respectively.

Note that in this case, Equation (2.3) and Equation (2.4) imply that

$$
\begin{equation*}
\sum_{j=1}^{d} L_{j} L_{j}^{*}=\sum_{j=1}^{d} R_{j} R_{j}^{*}=1-P_{0} \tag{2.6}
\end{equation*}
$$

where P_{0} is the orthogonal projection onto \mathcal{F}_{0}.
2.1.3. The unitary conjugation operator. For every $n \geq 1$, let $J_{n}^{(q)}: \mathcal{F}_{n}^{(q)} \rightarrow$ $\mathcal{F}_{n}^{(q)}$ be the operator which reverses the order of the components in a tensor in $\left(\mathbb{C}^{d}\right)^{\otimes n}$, i.e, $J_{n}^{(q)}$ acts by the formula in Equation (1.5) of the Introduction. A consequence of Equation (2.2), which defines the inner product $\langle\cdot, \cdot\rangle_{q}$, is that $J_{n}^{(q)}$ is a unitary operator in $B\left(\mathcal{F}_{n}^{(q)}\right)$. Indeed, this is easily seen to follow from Equation (2.2) and the following basic fact about inversions of permutations: if θ denotes the special permutation which reverses the order on $\{1, \ldots, n\}$, then one has $\operatorname{inv}(\theta \tau \theta)=\operatorname{inv}(\tau)$ for every permutation τ of $\{1, \ldots, n\}$.

Therefore, we can speak of the unitary operator $J^{(q)} \in B\left(\mathcal{F}^{(q)}\right)$ from Definition 1.1, which is obtained as $J^{(q)}:=\oplus_{n=0}^{\infty} J_{n}^{(q)}$. Note that $J^{(q)}$ is an involution, i.e. $\left(J^{(q)}\right)^{2}=I_{\mathcal{F}^{(q)}}$, and that it intertwines the left and right creation operators, i.e.

$$
\begin{equation*}
R_{j}^{(q)}=J^{(q)} L_{j}^{(q)} J^{(q)}, \quad 1 \leq j \leq d \tag{2.7}
\end{equation*}
$$

2.2. The original unitary operator. In this subsection, we review the construction of the unitary $U: \mathcal{F}^{(q)} \rightarrow \mathcal{F}$ from [5], which appears in Definition 1.2. An important role in the construction of this unitary is played by the positive operator

$$
M^{(q)}:=\sum_{j=1}^{d} L_{j}^{(q)}\left(L_{j}^{(q)}\right)^{*} \in B\left(\mathcal{F}^{(q)}\right)
$$

Clearly $M^{(q)}$ can be written as a direct sum $M^{(q)}=\oplus_{n=0}^{\infty} M_{n}^{(q)}$, where $M_{n}^{(q)}$ is a positive operator on $\mathcal{F}_{n}^{(q)}$, for every $n \geq 0$. Using Equation (2.3) and Equation (2.4), one can show that $M_{n}^{(q)}$ acts on the natural basis of $\mathcal{F}_{n}^{(q)}$ by

$$
\begin{equation*}
M_{n}^{(q)}\left(\xi_{i_{1}} \otimes \cdots \otimes \xi_{i_{n}}\right)=\sum_{m=1}^{n} q^{m-1} \xi_{i_{m}} \otimes \xi_{i_{1}} \otimes \cdots \otimes \widehat{\xi_{i_{m}}} \otimes \cdots \otimes \xi_{i_{n}} . \tag{2.8}
\end{equation*}
$$

(Recall that the "hat" symbol over the component $\xi_{i_{m}}$ means that it is deleted from the tensor.)

With the exception of $M_{0}^{(q)}$ (which is zero), the operators $M_{n}^{(q)}$ are invertible. This is implied by Lemma 4.1 of [5], which also gives the estimate

$$
\begin{equation*}
\left\|\left(M_{n}^{(q)}\right)^{-1}\right\| \leq(1-|q|) \prod_{k=1}^{\infty} \frac{1+|q|^{k}}{1-|q|^{k}}<\infty, \quad \forall n \geq 1 \tag{2.9}
\end{equation*}
$$

An important thing to note about Equation (2.9) is that the upper bound on the right-hand side is independent of n.

The unitary operator U is defined as a direct sum, $U:=\oplus_{n=0}^{\infty} U_{n}$, where the unitaries $U_{n}: \mathcal{F}_{n}^{(q)} \rightarrow \mathcal{F}_{n}$ are defined recursively as follows: we first define U_{0} by $U_{0}(\Omega)=\Omega$, and for every $n \geq 1$ we define U_{n} by

$$
\begin{equation*}
U_{n}:=\left(I \otimes U_{n-1}\right)\left(M_{n}^{(q)}\right)^{1 / 2} . \tag{2.10}
\end{equation*}
$$

In Proposition 3.2 of $\left[5\right.$ it was shown that U_{n} as defined in Equation (2.10) is actually a unitary operator, and hence that U is a unitary operator. Moreover, in Section 4 of [5] it was shown that $\mathcal{C} \subseteq U \mathcal{C}^{(q)} U^{*}$ for every $q \in(-1,1)$.
2.3. Summable band-limited operators. Throughout this section, we fix a Hilbert space \mathcal{H}, and in addition we fix an orthogonal direct sum decomposition of \mathcal{H} as

$$
\begin{equation*}
\mathcal{H}=\oplus_{n=0}^{\infty} \mathcal{H}_{n} . \tag{2.11}
\end{equation*}
$$

We will study certain properties an operator $T \in B(\mathcal{H})$ can have with respect to this decomposition of \mathcal{H}. We would like to emphasize that the concepts considered here depend not only on \mathcal{H}, but also on the orthogonal decomposition for \mathcal{H} in Equation (2.11).

Definition 2.1. Let T be an operator in $B(\mathcal{H})$. If there exists a nonnegative integer b such that

$$
\begin{equation*}
T\left(\mathcal{H}_{n}\right) \subseteq \bigoplus_{\substack{m \geq 0 \\|m-n| \leq b}} \mathcal{H}_{m}, \quad \forall n \geq 0 \tag{2.12}
\end{equation*}
$$

then we will say that T is band-limited. A number b as in Equation (2.12) will be called a band limit for T. The set of all band-limited operators in $B(\mathcal{H})$ will be denoted by \mathcal{B}.
Definition 2.2. Let T be an operator in \mathcal{B}. We will say that T is summable when it has the property that

$$
\sum_{n=0}^{\infty}\left\|\left.T\right|_{\mathcal{H}_{n}}\right\|<\infty,
$$

where we have used $\left.T\right|_{\mathcal{H}_{n}} \in B\left(\mathcal{H}_{n}, \mathcal{H}\right)$ to denote the restriction of T to \mathcal{H}_{n}. The set of all summable band-limited operators in $B(\mathcal{H})$ will be denoted by \mathcal{S}.

Proposition 2.3. With respect to the preceding definitions,
(1) \mathcal{B} is a unital $*$-subalgebra of $B(\mathcal{H})$ and
(2) \mathcal{S} is a two-sided ideal of \mathcal{B} which is closed under taking adjoints.

Proof. The proof of (1) is left as an easy exercise for the reader. To verify (2), we first show that \mathcal{S} is closed under taking adjoints. Suppose $T \in \mathcal{S}$, and let b be a band limit for T. By examining the matrix representations of
T and of T^{*} with respect to the orthogonal decomposition (2.11), it is easily verified that

$$
\left\|\left.T^{*}\right|_{\mathcal{H}_{n}}\right\| \leq \sum_{\substack{m \geq 0 \\|m-n| \leq b}}\left\|\left.T\right|_{\mathcal{H}_{m}}\right\|, \quad \forall n \geq 0
$$

This implies that

$$
\sum_{n=0}^{\infty}\left\|\left.T^{*}\right|_{\mathcal{H}_{n}}\right\| \leq(2 b+1) \sum_{m=0}^{\infty}\left\|\left.T\right|_{\mathcal{H}_{m}}\right\|<\infty
$$

which gives $T^{*} \in \mathcal{S}$. Next, we show that \mathcal{S} is a two-sided ideal of \mathcal{B}. Since \mathcal{S} was proved to be self-adjoint, it will suffice to show that it is a left ideal. It is clear that \mathcal{S} is closed under linear combinations. The fact that \mathcal{S} is a left ideal now follows from the simple observation that for $T \in \mathcal{B}$ and $S \in \mathcal{S}$ we have

$$
\sum_{n=0}^{\infty}\left\|\left.T S\right|_{\mathcal{H}_{n}}\right\| \leq\|T\| \sum_{n=0}^{\infty}\left\|S \mid \mathcal{H}_{n}\right\|,<\infty
$$

which implies $T S \in \mathcal{S}$.
In the following definition, we identify some special types of band-limited operators.

Definition 2.4. Let T be an operator in \mathcal{B}.
(1) If T satisfies $T\left(\mathcal{H}_{n}\right) \subseteq \mathcal{H}_{n}$ for all $n \geq 0$, then we will say that T is block-diagonal.
(2) If there is $k \geq 0$ such that T satisfies $T\left(\mathcal{H}_{n}\right) \subseteq \mathcal{H}_{n+k}$ for $n \geq 0$, then we will say that T is k-raising.
(3) If there is $k \geq 0$ such that T satisfies $T\left(\mathcal{H}_{n}\right) \subseteq \mathcal{H}_{n-k}$ for $n \geq k$ and $T\left(\mathcal{H}_{n}\right)=\{0\}$ for $n<k$, then we will say that T is k-lowering.

Note that a block-diagonal operator is both 0-raising and 0-lowering.
The following proposition gives a Fourier-type decomposition for bandlimited operators.

Proposition 2.5. Let T be an operator in \mathcal{B} with a band-limit $b \geq 0$, as in Definition 2.1. Then we can decompose T as

$$
\begin{equation*}
T=\sum_{k=0}^{b} X_{k}+\sum_{k=1}^{b} Y_{k}, \tag{2.13}
\end{equation*}
$$

where each X_{k} is a k-raising operator for $0 \leq k \leq b$, and each Y_{k} is a k lowering operator for $1 \leq k \leq b$. This decomposition is unique. Moreover, if T is summable in the sense of Definition [2.2, then each of the X_{k} and Y_{k} are summable.

Proof. First, fix an integer k satisfying $0 \leq k \leq b$. For each $n \geq 0$, consider the linear operator $\left.P_{n+k} T\right|_{\mathcal{H}_{n}} \in B\left(\mathcal{H}_{n}, \mathcal{H}_{n+k}\right)$ which results from composing the orthogonal projection P_{n+k} onto \mathcal{H}_{n+k} with the restriction
$\left.T\right|_{\mathcal{H}_{n}}$. Clearly $\left\|\left.P_{n+k} T\right|_{\mathcal{H}_{n}}\right\| \leq\|T\|$. This allows us to define an operator $X_{k} \in B(\mathcal{H})$ which acts on \mathcal{H}_{n} by

$$
\begin{equation*}
X_{k} \xi=P_{n+k} T \xi, \quad \forall \xi \in \mathcal{H}_{n} \tag{2.14}
\end{equation*}
$$

It follows from this definition that X_{k} is a k-raising operator.
Similarly, for an integer k satisfying $1 \leq k \leq b$, we can define a k-lowering operator $Y_{k} \in B(\mathcal{H})$ which acts on $\xi \in \mathcal{H}_{n}$ by

$$
Y_{k} \xi= \begin{cases}P_{n-k} T \xi & \text { if } k \leq n \tag{2.15}\\ 0 & \text { if } k>n\end{cases}
$$

It's clear that Equation (2.13) holds with each X_{k} and Y_{k} defined as above. Conversely, if Equation (2.13) holds, then it's clear that each X_{k} and Y_{k} is completely determined as in Equation (2.14) and Equation (2.15) respectively. This implies the uniqueness of this decomposition.

Finally, suppose T is summable. The fact that each X_{k} and Y_{k} is summable then follows from the observation that Equation (2.14) and Equation (2.15) imply $\left\|\left.X_{k}\right|_{\mathcal{H}_{n}}\right\| \leq\left\|\left.T\right|_{\mathcal{H}_{n}}\right\|$ and $\left\|\left.Y_{k}\right|_{\mathcal{H}_{n}}\right\| \leq\left\|\left.T\right|_{\mathcal{H}_{n}}\right\|$ for every $n \geq 0$.

The following result about commutators will be needed in Section 4 ,
Proposition 2.6. Let $T \in \mathcal{B}$ be a positive block-diagonal operator, and let $V \in \mathcal{B}$ be a 1-raising operator. Suppose that the commutator $[T, V]$ satisfies

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left\|[T, V] \mid \mathcal{H}_{n}\right\|^{1 / 2}<\infty \tag{2.16}
\end{equation*}
$$

Then the commutator $\left[T^{1 / 2}, V\right]$ is a summable 1-raising operator.
Proof. For every $n \geq 0$, let $T_{n}=\left.T\right|_{\mathcal{H}_{n}} \in B\left(\mathcal{H}_{n}\right)$ and let $V_{n}=\left.V\right|_{\mathcal{H}_{n} \in}$ $B\left(\mathcal{H}_{n}, \mathcal{H}_{n+1}\right)$. Since T is block-diagonal and V is 1-raising, it's clear that $[T, V]$ and $\left[T^{1 / 2}, V\right]$ are 1-raising operators which satisfy

$$
[T, V] \mid \mathcal{H}_{n}=T_{n+1} V_{n}-V_{n} T_{n}, \quad \forall n \geq 0
$$

and

$$
\left.\left[T^{1 / 2}, V\right]\right|_{\mathcal{H}_{n}}=T_{n+1}^{1 / 2} V_{n}-V_{n} T_{n}^{1 / 2}, \quad \forall n \geq 0 .
$$

It follows that the hypothesis (2.16) can be rewritten as

$$
\sum_{n=0}^{\infty}\left\|T_{n+1} V_{n}-V_{n} T_{n}\right\|^{1 / 2}<\infty
$$

while the required conclusion that $\left[T^{1 / 2}, V\right] \in \mathcal{S}$ is equivalent to

$$
\sum_{n=0}^{\infty}\left\|T_{n+1}^{1 / 2} V_{n}-V_{n} T_{n}^{1 / 2}\right\|<\infty
$$

We will prove that this holds by showing that for every $n \geq 0$,

$$
\begin{equation*}
\left\|T_{n+1}^{1 / 2} V_{n}-V_{n} T_{n}^{1 / 2}\right\| \leq \frac{5}{4}\|V\|^{1 / 2}\left\|T_{n+1} V_{n}-V_{n} T_{n}\right\|^{1 / 2} \tag{2.17}
\end{equation*}
$$

For the rest of the proof, fix $n \geq 0$. Consider the operators $A, B \in$ $B\left(\mathcal{H}_{n} \oplus \mathcal{H}_{n+1}\right)$ which, written as 2×2 matrices, are given by

$$
A:=\left[\begin{array}{cc}
T_{n} & 0 \\
0 & T_{n+1}
\end{array}\right], \quad B:=\left[\begin{array}{cc}
0 & V_{n}^{*} \\
V_{n} & 0
\end{array}\right] .
$$

Since T is positive, it follows that A is positive, with

$$
A^{1 / 2}=\left[\begin{array}{cc}
T_{n}^{1 / 2} & 0 \\
0 & T_{n+1}^{1 / 2}
\end{array}\right] .
$$

A well-known commutator inequality (see e.g. [8]) gives

$$
\begin{equation*}
\left\|\left[A^{1 / 2}, B\right]\right\| \leq \frac{5}{4}\|B\|^{1 / 2}\|[A, B]\|^{1 / 2} . \tag{2.18}
\end{equation*}
$$

From the definitions of A and B, we compute

$$
[A, B]=\left[\begin{array}{cc}
0 & \left(T_{n+1} V_{n}-V_{n} T_{n}\right)^{*} \\
T_{n+1} V_{n}-V_{n} T_{n} & 0
\end{array}\right],
$$

and this implies $\|[A, B]\|=\left\|T_{n+1} V_{n}-V_{n} T_{n}\right\|$. Similarly, $\left\|\left[A^{1 / 2}, B\right]\right\|=$ $\left\|T_{n+1}^{1 / 2} V_{n}-V_{n} T_{n}^{1 / 2}\right\|$, and it's clear that $\|B\|=\left\|V_{n}\right\|$. By substituting these equalities into (2.18) we obtain

$$
\left\|T_{n+1}^{1 / 2} V_{n}-V_{n} T_{n}^{1 / 2}\right\| \leq \frac{5}{4}\left\|V_{n}\right\|^{1 / 2}\left\|T_{n+1} V_{n}-V_{n} T_{n}\right\|^{1 / 2}
$$

Since $\left\|V_{n}\right\| \leq\|V\|$, this clearly implies that (2.17) holds.

3. An inclusion criterion

In this section, we work exclusively in the framework of the (non-deformed) extended Cuntz algebra \mathcal{C}. We will use the terminology of Subsection 2.3 with respect to the natural decomposition $\mathcal{F}=\oplus_{n=0}^{\infty} \mathcal{F}_{n}$. In particular, we will refer to the unital $*$-subalgebra $\mathcal{B} \subseteq B(\mathcal{F})$ which consists of bandlimited operators as in Definition [2.1, and to the ideal \mathcal{S} of \mathcal{B} which consists of summable band-limited operators as in Definition [2.2,

The main result of this section is Theorem 3.8. This is an analogue in the C^{*}-framework of the bicommutant theorem from von Neumann algebra theory, where we restrict our attention to the $*$-algebra \mathcal{B} and consider commutators modulo the ideal \mathcal{S}. In this framework, the role of "commutant" is played by the C^{*}-algebra generated by right creation operators on \mathcal{F}.

For clarity, we will first consider the special case of a block-diagonal operator.

Definition 3.1. Let $T \in \mathcal{B}$ be a block-diagonal operator. The sequence of \mathcal{C}-approximants for T is the sequence $\left(A_{n}\right)_{n=0}^{\infty}$ of block-diagonal elements of \mathcal{C} defined recursively as follows: we first define A_{0} by $A_{0}=\langle T(\Omega), \Omega\rangle I_{\mathcal{F}}$,
and for every $n \geq 0$ we define A_{n+1} by
(3.1)

$$
A_{n+1}:=A_{n}+\sum_{\substack{1 \leq i_{1}, \ldots, i_{n+1} \leq d \\ 1 \leq j_{1}, \ldots, j_{n+1} \leq d}} c_{i_{1}, \ldots, i_{n+1} ; j_{1}, \ldots, j_{n+1}}\left(L_{i_{1}} \cdots L_{i_{n+1}}\right)\left(L_{j_{1}} \cdots L_{j_{n+1}}\right)^{*}
$$

where the coefficients $c_{i_{1}, \ldots, i_{n+1} ; j_{1}, \ldots, j_{n+1}}$ are defined by

$$
\begin{align*}
c_{i_{1}, \ldots, i_{n+1} ; j_{1}, \ldots, j_{n+1}}:= & \left\langle T\left(\xi_{j_{1}} \otimes \cdots \otimes \xi_{j_{n+1}}\right), \xi_{i_{1}} \otimes \cdots \otimes \xi_{i_{+1 n}}\right\rangle \tag{3.2}\\
& -\delta_{i_{n+1}, j_{n+1}} \cdot\left\langle T\left(\xi_{j_{1}} \otimes \cdots \xi_{j_{n}}\right), \xi_{i_{1}} \otimes \cdots \otimes \xi_{i_{n}}\right\rangle .
\end{align*}
$$

The main property of the approximant A_{n} is that it agrees with the operator T on each subspace \mathcal{F}_{m} for $m \leq n$. More precisely, we have the following lemma.
Lemma 3.2. Let $T \in \mathcal{B}$ be a block-diagonal operator, and let $\left(A_{n}\right)_{n=0}^{\infty}$ be the sequence of \mathcal{C}-approximants for T, as in Definition 3.1. Then for every $m \geq 0$,

$$
A_{n} \left\lvert\, \mathcal{F}_{m}= \begin{cases}T \mid \mathcal{F}_{m} & \text { if } m \leq n, \tag{3.3}\\ \left(T \mid \mathcal{F}_{n}\right) \otimes I_{m-n} & \text { if } m>n .\end{cases}\right.
$$

Proof. We will show that for every fixed $n \geq 0$, Equation (3.3) holds for all $m \geq 0$. The proof of this statment will proceed by induction on n. The base case $n=0$ is left as an easy exercise for the reader. The remainder of the proof is devoted to the induction step. Fix $n \geq 0$ and assume that Equation (3.3) holds for this n and for all $m \geq 0$. We will prove the analogous statement for $n+1$.

From Equation (3.1), it is immediate that

$$
\left.A_{n+1}\right|_{\mathcal{F}_{m}}=\left.A_{n}\right|_{\mathcal{F}_{m}}=\left.T\right|_{\mathcal{F}_{m}}, \quad \forall m \leq n .
$$

Thus it remains to fix $m \geq n+1$ and verify that

$$
A_{n+1} \mid \mathcal{F}_{m}=\left(T \mid \mathcal{F}_{n+1}\right) \otimes I_{m-n-1} \in B\left(\mathcal{F}_{m}\right) .
$$

In light of how $\left(T \mid \mathcal{F}_{n+1}\right) \otimes I_{m-n-1}$ acts on the canonical basis of \mathcal{F}_{m}, this amounts to showing that for every $1 \leq k_{1}, \ldots, k_{m}, \ell_{1}, \ldots, \ell_{m} \leq d$, one has

$$
\begin{align*}
& \left\langle A_{n+1}\left(\xi_{\ell_{1}} \otimes \cdots \otimes \xi_{\ell_{m}}\right), \xi_{k_{1}} \otimes \cdots \otimes \xi_{k_{m}}\right\rangle \tag{3.4}\\
& \quad=\delta_{k_{n+2}, \ell_{n+2}} \cdots \delta_{k_{m}, \ell_{m}}\left\langle T\left(\xi_{\ell_{1}} \otimes \cdots \otimes \xi_{\ell_{n+1}}\right), \xi_{k_{1}} \otimes \cdots \otimes \xi_{k_{n+1}}\right\rangle .
\end{align*}
$$

On the left-hand side of Equation (3.4) we substitute for A_{n+1} using the recursive definition given by Equation (3.1). This gives

$$
\begin{align*}
& \left\langle A_{n+1}\left(\xi_{\ell_{1}} \otimes \cdots \otimes \xi_{\ell_{m}}\right), \xi_{k_{1}} \otimes \cdots \otimes \xi_{k_{m}}\right\rangle \tag{3.5}\\
& \left.\quad=\left\langle A_{n} \xi_{l_{1}} \otimes \cdots \otimes \xi_{l_{m}}\right), \xi_{k_{1}} \otimes \cdots \xi_{k_{m}}\right\rangle \\
& \quad+\sum_{\substack{i_{1}, \ldots, i_{n+1} \\
j_{1}, \ldots, j_{n+1}}} c_{i_{1}, \ldots, i_{n+1} ; j_{1}, \ldots, j_{n+1}} \alpha\left(i_{1}, \ldots, i_{n+1} ; j_{1}, \ldots, j_{n+1}\right)
\end{align*}
$$

where for every $1 \leq i_{1}, \ldots i_{n+1}, j_{1}, \ldots, j_{n+1} \leq d$, we have written

$$
\begin{aligned}
& \alpha\left(i_{1}, \ldots, i_{n+1} ; j_{1}, \ldots, j_{n+1}\right) \\
& \quad=\left\langle\left(L_{i_{1}} \cdots L_{i_{n+1}}\right)\left(L_{j_{1}} \cdots L_{j_{n+1}}\right)^{*}\left(\xi_{\ell_{1}} \otimes \cdots \otimes \xi_{\ell_{m}}\right),\left(\xi_{k_{1}} \otimes \cdots \otimes \xi_{k_{m}}\right)\right\rangle
\end{aligned}
$$

It is clear that an inner product like the one just written simplifies as follows:

$$
\begin{aligned}
& \left\langle\left(L_{i_{1}} \cdots L_{i_{n+1}}\right)\left(L_{j_{1}} \cdots L_{j_{n+1}}\right)^{*}\left(\xi_{\ell_{1}} \otimes \cdots \otimes \xi_{\ell_{m}}\right),\left(\xi_{k_{1}} \otimes \cdots \otimes \xi_{k_{m}}\right)\right\rangle \\
& \quad=\left\langle\left(L_{j_{1}} \cdots L_{j_{n+1}}\right)^{*}\left(\xi_{\ell_{1}} \otimes \cdots \otimes \xi_{\ell_{m}}\right),\left(L_{i_{1}} \cdots L_{i_{n+1}}\right)^{*}\left(\xi_{k_{1}} \otimes \cdots \otimes \xi_{k_{m}}\right)\right\rangle \\
& \quad=\delta_{i_{1}, k_{1}} \cdots \delta_{i_{n+1}, k_{n+1}} \delta_{j_{1}, \ell_{1}} \cdots \delta_{j_{n+1}, \ell_{n+1}}\left\langle\xi_{\ell_{n+2}} \otimes \cdots \otimes \xi_{\ell_{m}}, \xi_{k_{n+2}} \otimes \cdots \otimes \xi_{k_{m}}\right\rangle \\
& \quad=\delta_{i_{1}, k_{1}} \cdots \delta_{i_{n+1}, k_{n+1}} \delta_{j_{1}, \ell_{1}} \cdots \delta_{j_{n+1}, \ell_{n+1}} \delta_{\ell_{n+2}, k_{n+2}} \cdots \delta_{\ell_{m}, k_{m}} .
\end{aligned}
$$

Thus in the sum on the right-hand side of Equation (3.5), the only term that survives is the one corresponding to $i_{1}=k_{1}, \ldots, i_{n+1}=k_{n+1}$ and $j_{1}=\ell_{1}, \ldots, j_{n+1}=\ell_{n+1}$, and we obtain that

$$
\begin{align*}
& \left\langle A_{n+1}\left(\xi_{\ell_{1}} \otimes \cdots \otimes \xi_{\ell_{m}}\right), \xi_{k_{1}} \otimes \cdots \otimes \xi_{k_{m}}\right\rangle \tag{3.6}\\
& =\left\langle A_{n}\left(\xi_{\ell_{1}} \otimes \cdots \otimes \xi_{\ell_{m}}\right), \xi_{k_{1}} \otimes \cdots \otimes \xi_{k_{m}}\right\rangle \\
& \quad+\delta_{\ell_{n+2}, k_{n+2}} \cdots \delta_{\ell_{m}, k_{m}} c_{k_{1}, \ldots, k_{n+1} ; \ell_{1}, \ldots, \ell_{n+1}} .
\end{align*}
$$

Finally, we remember our induction hypothesis, which gives

$$
\begin{align*}
& \left\langle A_{n}\left(\xi_{\ell_{1}} \otimes \cdots \otimes \xi_{\ell_{m}}\right), \xi_{k_{1}} \otimes \cdots \otimes \xi_{k_{m}}\right\rangle \tag{3.7}\\
& \quad=\delta_{k_{n+1}, \ell_{n+1}} \cdots \delta_{k_{m}, \ell_{m}}\left\langle T\left(\xi_{\ell_{1}} \otimes \cdots \otimes \xi_{\ell_{n}}\right), \xi_{k_{1}} \otimes \cdots \otimes \xi_{k_{n}}\right\rangle .
\end{align*}
$$

A straightforward calculation shows that if we substitute Equation (3.7) into Equation (3.6) and use Formula (3.2) which defines the coefficient $c_{k_{1}, \ldots, k_{n+1} ; \ell_{1}, \ldots, \ell_{n+1}}$, then we arrive at the right-hand side of Equation (3.4). This completes the induction argument.

Lemma 3.3. Let $T \in \mathcal{B}$ be a block-diagonal operator, and let $\left(A_{n}\right)_{n=1}^{\infty}$ be the sequence of \mathcal{C}-approximants for T, as in Definition 3.1. Then for every $n \geq 1$,

$$
\begin{equation*}
\left\|A_{n+1}-A_{n}\right\|=\left\|T \mid \mathcal{F}_{n+1}-\left(T \mid \mathcal{F}_{n}\right) \otimes I\right\| . \tag{3.8}
\end{equation*}
$$

Proof. Note that since $A_{n+1}-A_{n}$ is block-diagonal,

$$
\left\|A_{n+1}-A_{n}\right\|=\sup _{m \geq 0}\left\|A_{n+1}\left|\mathcal{F}_{m}-A_{n}\right|_{\mathcal{F}_{m}}\right\| .
$$

To compute this supremum, there are three cases to consider. In each case we apply Lemma 3.2. First, for $m \leq n$,

$$
\left\|\left.A_{n+1}\right|_{\mathcal{F}_{m}}-\left.A_{n}\right|_{\mathcal{F}_{m}}\right\|=0
$$

Next, for $m=n+1$,

$$
\left\|\left.A_{n+1}\right|_{\mathcal{F}_{n+1}}-\left.A_{n}\right|_{\mathcal{F}_{n+1}}\right\|=\left\|\left.T\right|_{\mathcal{F}_{n+1}}-\left(\left.T\right|_{\mathcal{F}_{n}}\right) \otimes I\right\| .
$$

Finally, for $m>n+1$,

$$
\begin{aligned}
\left\|\left.A_{n+1}\right|_{\mathcal{F}_{m}}-\left.A_{n}\right|_{\mathcal{F}_{m}}\right\| & =\left\|\left(\left.T\right|_{\mathcal{F}_{n+1}}\right) \otimes I_{m-n-1}-\left(\left.T\right|_{\mathcal{F}_{n}}\right) \otimes I_{m-n}\right\| \\
& =\left\|\left(\left.T\right|_{\mathcal{F}_{n+1}}-\left(\left.T\right|_{\mathcal{F}_{n}}\right) \otimes I\right) \otimes I_{m-n-1}\right\| \\
& =\left\|\left.T\right|_{\mathcal{F}_{n+1}}-\left(\left.T\right|_{\mathcal{F}_{n}}\right) \otimes I\right\| .
\end{aligned}
$$

This makes it clear that the supremum over all $m \geq 0$ is equal to the right hand side of Equation (3.8), as required.

Lemma 3.4. Let T be a block-diagonal operator. If T satisfies

$$
\sum_{n=1}^{\infty}\left\|\left(\left.T\right|_{\mathcal{F}_{n+1}}\right)-\left(\left.T\right|_{\mathcal{F}_{n}}\right) \otimes I\right\|<\infty
$$

then $T \in \mathcal{C}$.
Proof. Let $\left(A_{n}\right)_{n=1}^{\infty}$ be the sequence of \mathcal{C}-approximants for T, as in Definition 3.1. In view of Lemma 3.3, the hypothesis of the present lemma implies that the sum $\sum_{n=1}^{\infty}\left\|A_{n+1}-A_{n}\right\|$ is finite. This in turn implies that the sequence $\left(A_{n}\right)_{n=1}^{\infty}$ converges in norm to an operator A. Since each A_{n} belongs to \mathcal{C}, it follows that A belongs to \mathcal{C}. But we must have $A=T$, as Lemma 3.2 implies that

$$
\left.A\right|_{\mathcal{F}_{m}}=\left.\lim _{n \rightarrow \infty} A_{n}\right|_{\mathcal{F}_{m}}=\left.T\right|_{\mathcal{F}_{m}}, \quad \forall m \geq 0 .
$$

Hence $T \in \mathcal{C}$, as required.
Proposition 3.5. Let T be a block-diagonal operator. If the block-diagonal operator $T-\sum_{i=1}^{d} R_{i} T R_{i}^{*}$ belongs to the ideal \mathcal{S}, then $T \in \mathcal{C}$.

Proof. The hypothesis is equivalent to

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left\|\left.\left(T-\sum_{i=1}^{d} R_{i} T R_{i}^{*}\right)\right|_{\mathcal{F}_{n}}\right\|<\infty . \tag{3.9}
\end{equation*}
$$

It's easy to verify that for $n \geq 1$,

$$
\left.\left(\sum_{i=1}^{d} R_{i} T R_{i}^{*}\right)\right|_{\mathcal{F}_{n}}=\left(\left.T\right|_{\mathcal{F}_{n-1}}\right) \otimes I
$$

which gives

$$
\left\|\left.\left(T-\sum_{i=1}^{d} R_{i} T R_{i}^{*}\right)\right|_{\mathcal{F}_{n}}\right\|=\left\|\left.T\right|_{\mathcal{F}_{n}}-\left(\left.T\right|_{\mathcal{F}_{n-1}}\right) \otimes I\right\| .
$$

Therefore, (3.9) implies that the hypothesis of Lemma 3.4 holds, and the result follows by applying the said lemma.

Corollary 3.6. Let $T \in \mathcal{B}$ be a block-diagonal operator such that $\left[T, R_{i}^{*}\right] \in \mathcal{S}$ for $1 \leq i \leq d$. Then $T \in \mathcal{C}$.

Proof. By Proposition [3.5, it suffices to show that $T-\sum_{i=1}^{d} R_{i} T R_{i}^{*} \in \mathcal{S}$. We can write

$$
\begin{aligned}
T-\sum_{i=1}^{d} R_{i} T R_{i}^{*} & =\left(P_{0}+\sum_{i=1}^{d} R_{i} R_{i}^{*}\right) T-\sum_{i=1}^{d} R_{i} T R_{i}^{*} \\
& =P_{0} T-\sum_{i=1}^{d} R_{i}\left[T, R_{i}^{*}\right],
\end{aligned}
$$

where P_{0} is the orthogonal projection onto \mathcal{F}_{0}, and where we have used Equation (2.6). Since P_{0} and $\left[T, R_{i}^{*}\right]$ belong to \mathcal{S}, and since T and R_{i} belong to \mathcal{B}, the result follows from the fact that \mathcal{S} is a two-sided ideal of \mathcal{B}.

We now apply the above results on block-diagonal operators in order to bootstrap the case of general band-limited operators. It is convenient to first consider the case of k-raising/lowering operators, which were introduced in Definition 2.4 .

Proposition 3.7. Let $T \in \mathcal{B}$ be a k-raising or k-lowering operator for some $k \geq 0$. If T satisfies $\left[T, R_{j}^{*}\right] \in \mathcal{S}$ for $1 \leq j \leq d$, then $T \in \mathcal{S}$.

Proof. First, suppose that T is k-raising. For every $1 \leq i_{1}, \ldots, i_{k} \leq d$, the fact that the left and right annihilation operators commute implies that

$$
\left[\left(L_{i_{1}} \ldots L_{i_{k}}\right)^{*} T, R_{j}^{*}\right]=\left(L_{i_{1}} \ldots L_{i_{k}}\right)^{*}\left[T, R_{j}^{*}\right], \quad \forall 1 \leq j \leq d
$$

Since $\left[T, R_{j}^{*}\right] \in \mathcal{S}$ by hypothesis, and since \mathcal{S} is a two-sided ideal of \mathcal{B}, it follows that $\left[\left(L_{i_{1}} \ldots L_{i_{k}}\right)^{*} T, R_{j}^{*}\right] \in \mathcal{S}$. The operator $\left(L_{i_{1}} \ldots L_{i_{k}}\right)^{*} T$ is blockdiagonal, hence Corollary 3.6 gives $\left(L_{i_{1}} \ldots L_{i_{k}}\right) * T \in \mathcal{C}$.

Since T is k-raising, the range of T is orthogonal to the subspace \mathcal{F}_{ℓ} whenever $\ell<k$. This implies that

$$
\left(I-\sum_{1 \leq i_{1}, \ldots, i_{k} \leq d} L_{i_{1}} \cdots L_{i_{k}}\left(L_{i_{1}} \cdots L_{i_{k}}\right)^{*}\right) T=0 .
$$

Hence

$$
T=\sum_{1 \leq i_{1}, \ldots, i_{k} \leq d} L_{i_{1}} \cdots L_{i_{k}}\left(\left(L_{i_{1}} \cdots L_{i_{k}}\right)^{*} T\right),
$$

and it follows that $T \in \mathcal{C}$.
The case when T is k-lowering is handled in a similar way by considering the operators $T L_{i_{1}} \ldots L_{i_{k}}$ for every $1 \leq i_{1}, \ldots, i_{k} \leq d$.

Theorem 3.8. Let $T \in \mathcal{B}$ be an operator such that either $\left[T, R_{j}^{*}\right] \in \mathcal{S}$ for all $1 \leq j \leq d$, or $\left[T, R_{j}\right] \in \mathcal{S}$ for all $1 \leq j \leq d$. Then $T \in \mathcal{C}$.

Proof. First, suppose that T satisfies $\left[T, R_{j}^{*}\right] \in \mathcal{S}$ for every $1 \leq j \leq d$. Let $b \geq 0$ be a band-limit for T. By Proposition 2.5, we can decompose T as

$$
T=\sum_{k=0}^{b} X_{k}+\sum_{k=1}^{b} Y_{k},
$$

where each X_{k} is a k-raising operator, and each Y_{k} is a k-lowering operator. We will prove that each $X_{k} \in \mathcal{C}$ and each $Y_{k} \in \mathcal{C}$.

Fix for the moment $1 \leq j \leq d$. We have

$$
\begin{align*}
{\left[T, R_{j}^{*}\right] } & =\sum_{k=0}^{b}\left[X_{k}, R_{j}^{*}\right]+\sum_{k=1}^{b}\left[Y_{k}, R_{j}^{*}\right] \\
& =\sum_{k=0}^{b+1} X_{k}^{\prime}+\sum_{k=0}^{b+1} Y_{k}^{\prime} \tag{3.10}
\end{align*}
$$

where

$$
X_{k}^{\prime}= \begin{cases}{\left[X_{k+1}, R_{j}^{*}\right]} & \text { if } 0 \leq k \leq b-1 \\ 0 & \text { if } k=b \text { or } k=b+1,\end{cases}
$$

and

$$
Y_{k}^{\prime}= \begin{cases}{\left[X_{0}, R_{j}^{*}\right]} & \text { if } k=1, \\ {\left[Y_{k-1}, R_{j}^{*}\right]} & \text { if } 2 \leq k \leq b+1 .\end{cases}
$$

It is clear that each X_{k}^{\prime} is a k-raising operator, and that each Y_{k}^{\prime} is a k lowering operator. Hence Equation (3.10) provides the (unique) Fouriertype decomposition for $\left[T, R_{j}^{*}\right]$, as in Proposition [2.5. Since it is given that $\left[T, R_{j}^{*}\right] \in \mathcal{S}$, Proposition [2.5 implies that each $X_{k}^{\prime} \in \mathcal{S}$ and each $Y_{k}^{\prime} \in \mathcal{S}$. This in turn implies that $\left[X_{k}, R_{j}^{*}\right] \in \mathcal{S}$ for every $0 \leq k \leq b$, and that $\left[Y_{k}, R_{j}^{*}\right] \in \mathcal{S}$ for every $1 \leq k \leq b$.

Now let us unfix the index j from the preceding paragraph. For every $0 \leq k \leq b$, we have proved that $\left[X_{k}, R_{j}^{*}\right] \in \mathcal{S}$ for all $1 \leq j \leq d$, hence Proposition 3.7 implies that $X_{k} \in \mathcal{C}$. The fact that $Y_{k} \in \mathcal{C}$ for every $1 \leq k \leq$ b is obtained in the same way. This concludes the proof in the case when the hypothesis on T is that $\left[T, R_{j}^{*}\right] \in \mathcal{S}$ for all $1 \leq j \leq d$.

If T satisfies $\left[T, R_{j}\right] \in \mathcal{S}$ for all $1 \leq j \leq d$, then since the ideal \mathcal{S} is closed under taking adjoints, it follows that $\left[T^{*}, R_{j}^{*}\right] \in \mathcal{S}$ for all $1 \leq j \leq d$. The above arguments therefore apply to T^{*}, and lead to the conclusion that $T^{*} \in \mathcal{C}$, which gives $T \in \mathcal{C}$.

4. Construction of the embedding

In this section we fix a deformation parameter $q \in(-1,1)$ and consider the C^{*}-algebra $\mathcal{C}^{(q)}=C^{*}\left(L_{1}^{(q)}, \ldots, L_{d}^{(q)}\right) \subseteq B\left(\mathcal{F}^{(q)}\right)$ from Equation (1.4). The main result of this section (and also this paper), Theorem 1.3, shows that it is possible to unitarily embed $\mathcal{C}^{(q)}$ into the C^{*}-algebra $\mathcal{C}=\mathrm{C}^{*}\left(L_{1}, \ldots, L_{d}\right) \subseteq$ $B(\mathcal{F})$ from Equation 1.2,

We will once again utilize the terminology of Subsection 2.3 with respect to the natural decomposition $\mathcal{F}=\oplus_{n=0}^{\infty} \mathcal{F}_{n}$. In particular, we will refer to the unital $*$-algebra $\mathcal{B} \subseteq B(\mathcal{F})$ consisting of band-limited operators, and to the ideal \mathcal{S} of \mathcal{B} consisting of summable band-limited operators.

The deformed Fock space $\mathcal{F}^{(q)}$ also has a natural decomposition $\mathcal{F}^{(q)}=$ $\oplus_{n=0}^{\infty} \mathcal{F}_{n}^{(q)}$, and we will also need to utilize the terminology of Subsection 2.3 with respect to this decomposition. We will let $\mathcal{B}^{(q)} \subseteq B\left(\mathcal{F}^{(q)}\right)$ denote the
unital $*$-algebra consisting of band-limited operators, and we will let $\mathcal{S}^{(q)}$ denote the ideal of $\mathcal{B}^{(q)}$ which consists of summable band-limited operators.

Remark 4.1. Recall the positive block-diagonal operator $M^{(q)}=\oplus_{n=0}^{\infty} M_{n}^{(q)} \in$ $\mathcal{B}^{(q)}$, which was reviewed in Subsection 2.2. It was recorded there that for $n \geq 1, M_{n}^{(q)}$ is an invertible operator on $\mathcal{F}_{n}^{(q)}$. Moreover, for every $n \geq 1$, one has the upper bound (2.9) for the norm $\left\|\left(M_{n}^{(q)}\right)^{-1}\right\|$, and this upper bound is independent of n.

Therefore, the only obstruction to the operator $M^{(q)}$ being invertible on $\mathcal{F}^{(q)}$ is the fact that $M_{0}^{(q)}=0$. We can overcome this obstruction by working instead with the operator $\widehat{M}^{(q)}$ defined by

$$
\begin{equation*}
\widehat{M}^{(q)}:=P_{0}^{(q)}+M^{(q)} \tag{4.1}
\end{equation*}
$$

where $P_{0}^{(q)} \in B\left(\mathcal{F}^{(q)}\right)$ is the orthogonal projection onto the subspace $\mathcal{F}_{0}^{(q)}$. It's clear that $\widehat{M}^{(q)}$ is invertible, and that the bound from (2.9) applies to $\left\|\left(\widehat{M}^{(q)}\right)^{-1}\right\|$.
Lemma 4.2. The operator $\widehat{M}^{(q)}$ satisfies $\left[\left(\widehat{M}^{(q)}\right)^{-1 / 2}, R_{j}^{(q)}\right] \in \mathcal{S}^{(q)}$ for all $1 \leq j \leq d$.

Proof. First, we will show that $\widehat{M}^{(q)}$ and $R^{(q)}$ satisfy the hypotheses of Proposition 2.6. It's clear that $\widehat{M}^{(q)}$ is block-diagonal and that $R^{(q)}$ is 1raising, but it will require a bit of work to check that

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left\|\left.\left[\widehat{M}^{(q)}, R_{j}^{(q)}\right]\right|_{\mathcal{F}_{n}^{(q)}}\right\|^{1 / 2}<\infty, \quad \forall 1 \leq j \leq d \tag{4.2}
\end{equation*}
$$

In order to show that (4.2) holds, fix $1 \leq j \leq d$. Using Equation (4.1), which defines $\widehat{M}^{(q)}$, we can write

$$
\begin{aligned}
{\left[\widehat{M}^{(q)}, R_{j}^{(q)}\right] } & =\left[P_{0}^{(q)}, R^{(q)}\right]+\sum_{i=1}^{d}\left[L_{i}^{(q)}\left(L_{i}^{(q)}\right)^{*}, R_{j}^{(q)}\right] \\
& =\left[P_{0}^{(q)}, R^{(q)}\right]+\sum_{i=1}^{d} L_{i}^{(q)}\left[\left(L_{i}^{(q)}\right)^{*}, R_{j}^{(q)}\right]
\end{aligned}
$$

where the last equality follows from the fact that $L_{i}^{(q)}$ and $R_{j}^{(q)}$ commute. The sum in this equation has only a single non-zero term. Indeed, as a consequence of Equation (2.5), we have $\left[\left(L_{i}^{(q)}\right)^{*}, R_{j}^{(q)}\right]=0$ whenever $i \neq j$. Thus we arrive at the following formula:

$$
\begin{equation*}
\left[\widehat{M}^{(q)}, R_{j}^{(q)}\right]=\left[P_{0}^{(q)}, R^{(q)}\right]+L_{j}^{(q)}\left[\left(L_{j}^{(q)}\right)^{*}, R_{j}^{(q)}\right] \tag{4.3}
\end{equation*}
$$

We next restrict the operators on both sides of (4.3) to a subspace $\mathcal{F}_{n}^{(q)}$, for $n \geq 1$. Noting that $\left[P_{0}^{(q)}, R_{j}^{(q)}\right]=-R_{j}^{(q)} P_{0}^{(q)}$ vanishes on $\mathcal{F}_{n}^{(q)}$, we obtain
that

$$
\begin{equation*}
\left.\left[\widehat{M}^{(q)}, R_{j}^{(q)}\right]\right|_{\mathcal{F}_{n}^{(q)}}=\left.L_{j}^{(q)}\left[\left(L_{j}^{(q)}\right)^{*}, R_{j}^{(q)}\right]\right|_{\mathcal{F}_{n}^{(q)}}, \quad \forall n \geq 1 \tag{4.4}
\end{equation*}
$$

Finally, we take norms in Equation (4.4) and invoke Equation (2.5) once more to obtain that

$$
\left\|\left.\left[\widehat{M}^{(q)}, R_{j}^{(q)}\right]\right|_{\mathcal{F}_{n}^{(q)}}\right\| \leq|q|^{n}\left\|L_{j}^{(q)}\right\|, \quad \forall n \geq 1
$$

The conclusion that (4.2) holds follows from here, since $\sum_{n=1}^{\infty}|q|^{n / 2}<\infty$.
Therefore, we can apply Proposition 2.6 to $\widehat{M}^{(q)}$ and $R_{j}^{(q)}$, and conclude that $\left[\left(\widehat{M}^{(q)}\right)^{1 / 2}, R_{j}^{(q)}\right] \in \mathcal{S}^{(q)}$. Note that the operator $\left(\widehat{M}^{(q)}\right)^{-1 / 2}$ is bounded and block-diagonal, meaning in particular that it belongs to the $*$-algebra $\mathcal{B}^{(q)}$. The desired result now follows from the obvious identity

$$
\left[\left(\widehat{M}^{(q)}\right)^{-1 / 2}, R_{j}^{(q)}\right]=-\left(\widehat{M}^{(q)}\right)^{-1 / 2}\left[\left(\widehat{M}^{(q)}\right)^{1 / 2}, R_{j}^{(q)}\right]\left(\widehat{M}^{(q)}\right)^{-1 / 2}
$$

and the fact that $\mathcal{S}^{(q)}$ is a two-sided ideal of $\mathcal{B}^{(q)}$.
Lemma 4.3. For $1 \leq j \leq d$, the unitary $U=\oplus_{n=0}^{\infty} U_{n}$ from Subsection 2.2 satisfies

$$
\begin{equation*}
U_{n-1}^{*} L_{j}^{*} U_{n}=\left(L_{j}^{(q)}\right)^{*}\left(M_{n}^{(q)}\right)^{-1 / 2}, \quad \forall n \geq 1 . \tag{4.5}
\end{equation*}
$$

(Note that on the left-hand side of Equation 4.5), we view L_{j}^{*} as an operator in $B\left(\mathcal{F}_{n}, \mathcal{F}_{n-1}\right)$. On the right-hand side of Equation (4.5), we view $\left(L_{j}^{(q)}\right)^{*}$ as an operator in $B\left(\mathcal{F}_{n}^{(q)}, \mathcal{F}_{n-1}^{(q)}\right)$.)
Proof. Consider the operator $A_{j}^{(q)}: \mathcal{F}_{n}^{(q)} \rightarrow \mathcal{F}_{n-1}^{(q)}$ which acts on the natural basis of $\mathcal{F}_{n}^{(q)}$ by

$$
A_{j}^{(q)}\left(\xi_{i_{1}} \otimes \cdots \otimes \xi_{i_{n}}\right)=\delta_{j, i_{1}} \xi_{i_{2}} \otimes \cdots \otimes \xi_{i_{n}}, \quad \forall 1 \leq i_{1}, \ldots, i_{n} \leq d
$$

We claim that $A_{j}^{(q)}$ satisfies

$$
\begin{equation*}
A_{j}^{(q)}=\left(L_{j}^{(q)}\right)^{*}\left(M_{n}^{(q)}\right)^{-1} \tag{4.6}
\end{equation*}
$$

To see this, note that for $1 \leq i_{1}, \ldots, i_{n} \leq d$,

$$
\begin{aligned}
A_{j}^{(q)} M_{n}^{(q)}\left(\xi_{i_{1}} \otimes \cdots \otimes \xi_{i_{n}}\right) & =A_{j}^{(q)} \sum_{m=1}^{n} q^{m-1} \xi_{i_{m}} \otimes \xi_{i_{1}} \otimes \cdots \otimes \widehat{\xi_{i_{m}}} \otimes \cdots \otimes \xi_{i_{n}} \\
& =\sum_{m=1}^{n-1} q^{m-1} \delta_{j, i_{m}} \xi_{i_{1}} \otimes \cdots \otimes \widehat{\xi_{i_{m}}} \otimes \cdots \otimes \xi_{i_{n}} \\
& =\left(L_{j}^{(q)}\right)^{*}\left(\xi_{i_{1}} \otimes \cdots \otimes \xi_{i_{n}}\right),
\end{aligned}
$$

where the first and last equalities follow from Equation (2.8) and Equation (2.4) respectively. Hence $A_{j}^{(q)} M_{n}^{(q)}=\left.\left(L_{j}^{(q)}\right)^{*}\right|_{\mathcal{F}_{n}^{(q)}}$, so multiplying on the right by $\left(M_{n}^{(q)}\right)^{-1}$ establishes the claim.

Now, from Equation (2.10), which defines U_{n}, we see that

$$
U_{n-1}^{*} L_{j}^{*} U_{n}=U_{n-1}^{*} L_{j}^{*}\left(I \otimes U_{n-1}\right)\left(M_{n}^{(q)}\right)^{1 / 2}
$$

and from the definition of $A_{j}^{(q)}$ it's immediate that

$$
L_{j}^{*}\left(I \otimes U_{n-1}\right)=U_{n-1} A_{j}^{(q)} .
$$

Together, this allows us to write

$$
\begin{aligned}
U_{n-1}^{*} L_{j}^{*} U_{n} & =U_{n-1}^{*} U_{n-1} A_{j}^{(q)}\left(M_{n}^{(q)}\right)^{1 / 2} \\
& =A_{j}^{(q)}\left(M_{n}^{(q)}\right)^{1 / 2}
\end{aligned}
$$

Applying Equation (4.6) now gives Equation (4.5), as required.
Proposition 4.4. For $1 \leq i, j \leq d$, the unitary U from Subsection 2.2 satisfies $\left[U^{*} L_{j}^{*} U, R_{i}^{(q)}\right] \in \mathcal{S}^{(q)}$.

Proof. Fix i and j and let C denote the commutator $C=\left[U^{*} L_{j}^{*} U, R_{i}^{(q)}\right]$. It's clear that C is a block-diagonal operator on $\mathcal{F}^{(q)}$. In order to show that $C \in \mathcal{S}^{(q)}$, we will need to estimate the norm of its diagonal blocks.

For $n \geq 1$, Lemma 4.3 gives

$$
\begin{aligned}
\left.C\right|_{\mathcal{F}_{n}^{(q)}}= & U_{n}^{*} L_{j}^{*} U_{n+1} R_{i}^{(q)}-R_{i}^{(q)} U_{n-1}^{*} L_{j}^{*} U_{n} \\
= & \left(L_{j}^{(q)}\right)^{*}\left(M_{n+1}^{(q)}\right)^{-1 / 2} R_{i}^{(q)}-R_{i}^{(q)}\left(L_{j}^{(q)}\right)^{*}\left(M_{n}^{(q)}\right)^{-1 / 2} \\
= & \left(L_{j}^{(q)}\right)^{*}\left(\left(\left(M_{n+1}^{(q)}\right)^{-1 / 2} R_{i}^{(q)}-R_{i}^{(q)}\left(M_{n}^{(q)}\right)^{-1 / 2}\right)\right. \\
& +\left(\left(L_{j}^{(q)}\right)^{*} R_{i}^{(q)}-R_{i}^{(q)}\left(L_{j}^{(q)}\right)^{*}\right)\left(M_{n}^{(q)}\right)^{-1 / 2} .
\end{aligned}
$$

Since C is block-diagonal, this gives

$$
C=\left(L_{j}^{(q)}\right)^{*}\left[\left(\widehat{M}^{(q)}\right)^{-1 / 2}, R_{i}^{(q)}\right]+\left[\left(L_{j}^{(q)}\right)^{*}, R_{i}^{(q)}\right]\left(\widehat{M}^{(q)}\right)^{-1 / 2}
$$

Now, $\left[\left(\widehat{M}^{(q)}\right)^{-1 / 2}, R_{i}^{(q)}\right] \in \mathcal{S}^{(q)}$ by Lemma 4.2, By Equation (2.5),

$$
\left.\left[\left(L_{j}^{(q)}\right)^{*}, R_{i}^{(q)}\right]\right|_{\mathcal{F}_{n}^{(q)}}=\delta_{i j} q^{n} I_{\mathcal{F}_{n}^{(q)}}
$$

and since the operator $\left[\left(L_{j}^{(q)}\right)^{*}, R_{i}^{(q)}\right]$ is block-diagonal, this implies that it also belongs to $\mathcal{S}^{(q)}$. Since $\left(L_{j}^{(q)}\right)^{*}$ and $\left(\widehat{M}^{(q)}\right)^{-1 / 2}$ both belong to $\mathcal{B}^{(q)}$, and since $\mathcal{S}^{(q)}$ is a two-sided ideal of $\mathcal{B}^{(q)}$, it follows that $C \in \mathcal{S}^{(q)}$.

We are now able to complete the proof of the embedding theorem.
Proof of Theorem 1.3. It suffices to show that $U_{\text {opp }} L_{i}^{(q)} U_{\text {opp }}^{*} \in \mathcal{C}$, for $1 \leq i \leq$ d. Since $U_{\text {opp }} L_{i}^{(q)} U_{\text {opp }}^{*}$ belongs to the algebra \mathcal{B} of all band-limited operators, by Theorem 3.8 it will actually be sufficient to verify that

$$
\left[U_{o p p} L_{i}^{(q)} U_{o p p}^{*}, R_{j}^{*}\right] \in \mathcal{S}, \quad \forall 1 \leq i, j \leq d
$$

By Definition 1.1, we can write

$$
\begin{aligned}
U_{o p p} L_{i}^{(q)} U_{o p p}^{*} & =J U J^{(q)} L_{i}^{(q)} J^{(q)} U^{*} J \\
& =J U R_{i}^{(q)} U^{*} J
\end{aligned}
$$

where the last equality follows from Equation (2.7). This gives

$$
\begin{aligned}
{\left[U_{o p p} L_{i}^{(q)} U_{o p p}^{*}, R_{j}^{*}\right] } & =\left[J U R_{i}^{(q)} U^{*} J, R_{j}^{*}\right] \\
& =J U\left[R_{i}^{(q)}, U^{*} J R_{j}^{*} J U\right] U^{*} J \\
& =J U\left[R_{i}^{(q)}, U^{*} L_{j}^{*} U\right](J U)^{*}
\end{aligned}
$$

and we know from Proposition 4.4 that $\left[R_{i}^{(q)}, U^{*} L_{j}^{*} U\right] \in \mathcal{S}^{(q)}$. It is clear that conjugation by the unitary $J U$ takes $\mathcal{S}^{(q)}$ onto \mathcal{S}, so this gives the desired result.

The proof that $\mathcal{C}^{(q)}$ is exact now follows from some simple observations about nuclear and exact C^{*}-algebras (see e.g. [3]).

Proof of Corollary 1.4. The extended Cuntz algebra \mathcal{C} is (isomorphic to) an extension of the Cuntz algebra. Since the Cuntz algebra is nuclear, this implies that \mathcal{C} is nuclear, and in particular that \mathcal{C} is exact. Since exactness is inherited by subalgebras (see e.g. Chapter 2 of [3]), it follows from Theorem 1.3 that $U_{o p p} \mathcal{C}^{(q)} U_{o p p}^{*}$ is exact, and hence that $\mathcal{C}^{(q)}$ is exact.

Remark 4.5. Since Theorem 1.3 holds for all $q \in(-1,1)$, a natural thought is that the methods used above could also be applied to establish the inclusion $U \mathcal{C}^{(q)} U^{*} \subseteq \mathcal{C}$ for all $q \in(-1,1)$, and hence (since the opposite inclusion was shown in [5] that $U \mathcal{C}^{(q)} U^{*}=\mathcal{C}$. To do this, it would be necessary to establish that

$$
\begin{equation*}
\left[U L^{(q)} U^{*}, R_{j}^{*}\right] \in \mathcal{S}, \quad \forall 1 \leq i, j \leq d \tag{4.7}
\end{equation*}
$$

This condition looks superficially similar to the condition from Proposition 4.4, but this is deceptive. We believe that establishing (4.7) will require a deeper understanding of the combinatorics which underlie the q commutation relations.

The algebra $\mathcal{C}^{(q)}$ arises as a representation of the the univeral algebra $\mathcal{E}^{(q)}$ corresponding to the q-commutation relations. It was shown in [6] that for $|q|<\sqrt{2}-1, \mathcal{C}^{(q)}$ and $\mathcal{E}^{(q)}$ are isomorphic (and in particular that they are both isomorphic to the extended Cuntz algebra). It is believed that this is the case for all $q \in(-1,1)$.

5. An application to the q-Gaussian von Neumann algebras

The q-Gaussian von Neumann algebra $\mathcal{M}^{(q)}$ is the von Neumann algebra generated by $\left\{L_{i}^{(q)}+\left(L_{i}^{(q)}\right)^{*} \mid 1 \leq i \leq d\right\}$. This algebra can be considered as a type of deformation of $L\left(\mathbb{F}_{d}\right)$, the von Neumann algebra of the free group on d generators. Indeed, for $q=0$, a basic result in free probability states
that $\mathcal{M}^{(q)}$ is precisely the realization of $L\left(\mathbb{F}_{d}\right)$ as the von Neumann algebra generated by a free semicircular family (see e.g. Section 2.6 of [11] for the details).

For general $q \in(-1,1)$ it is known that $\mathcal{M}^{(q)}$ is a von Neumann algebra in standard form, with Ω being a cyclic and separating trace-vector. The commutant of $\mathcal{M}^{(q)}$ is the von Neumann algebra generated by $\left\{R_{i}^{(q)}+\left(R_{i}^{(q)}\right)^{*} \mid\right.$ $1 \leq i \leq d\}$ (see Section 2 of [2]).

Not much is known about the isomorphism class of the algebras $\mathcal{M}^{(q)}$ for $q \neq 0$. The major open problem is to determine the extent to which they behave like $L\left(\mathbb{F}_{d}\right)$. The best results to date show that $\mathcal{M}^{(q)}$ does share certain properties with $L\left(\mathbb{F}_{d}\right)$. Nou showed in [7] that $\mathcal{M}^{(q)}$ is non-injective, and Ricard showed in 9 that it is a $I I_{1}$ factor. Shlyakhtenko showed in 10 that if we assume $|q|<0.44$, then the results in 6] and [5] can be used to obtain that $\mathcal{M}^{(q)}$ is solid in the sense of Ozawa.

Based on the results in Section 4, we show here that $\mathcal{M}^{(q)}$ is weakly exact. For more details on weak exactness, we refer the reader to Chapter 14 of [3].

Theorem 5.1. For every q in the interval $(-1,1)$, the q-Gaussian von Neumann algebra $\mathcal{M}^{(q)}$ is weakly exact.

Proof. It is known that a von Neumann algebra is weakly exact if it contains a weakly dense C^{*}-algebra which is exact (see e.g. Theorem 14.1.2 of [3]). Consider the C^{*}-algebra $\mathcal{A}^{(q)}$ generated by $\left\{L_{i}^{(q)}+\left(L_{i}^{(q)}\right)^{*} \mid 1 \leq i \leq d\right\}$. It is clear that $\mathcal{A}^{(q)}$ is weakly dense in $\mathcal{M}^{(q)}$, while on the other hand, we have $\mathcal{A}^{(q)} \subseteq \mathcal{C}^{(q)}$. Therefore, the exactness of $\mathcal{A}^{(q)}$ follows from Corollary 1.4, combined with the fact that exactness is inherited by subalgebras.

References

[1] M. Bozejko, R. Speicher. An example of a generalized Brownian motion, Communications in Mathematical Physics 137 (1991), 519-531.
[2] M. Bozejko, B. Kummerer, R. Speicher. q-Gaussian processes: Non-commutative and classical aspects, Communications in Mathematical Physics 185 (1997), 129-154.
[3] N. Brown, N. Ozawa. C*-algebras and finite dimensional approximations, Graduate Studies in Mathematics, vol. 88, American Mathematical Society (2008).
[4] K. Davidson. On operators commuting with Toeplitz operators modulo the compact operators, Journal of Functional Analysis 24 (1977), 291-302.
[5] K. Dykema, A. Nica. On the Fock representation of the q-commutation relations, Journal fur Reine und Angewandte Mathematik 440 (1993), 201-212.
[6] P.E.T. Jorgensen, L.M. Schmitt, R.F. Werner. q-canonical commutation relations and stability of the Cuntz algebra, Pacific Journal of Mathematics 165 (1994), 131-151.
[7] A. Nou. Non-injectivity of the q-deformed von Neumann algebras, Mathematische Annalen 330 (2004) 17-38.
[8] G.K. Pedersen. A commutator inequality, Operator Algebras, Mathematical Physics and Low-Dimensional Topology (Istanbul 1991), Research Notes in Mathematics 5, AK Peters, Wellesley, MA (1993), 233-235.
[9] E. Ricard. Factoriality of q-gaussian von Neumann algebras, Communications in Mathematical Physics 257 (2005), 659-665.
[10] D. Shlyakhtenko. Some estimates for non-microstates free dimension, with applications to q-semicircular families, International Math Research Notices 51 (2004), 2757-2772.
[11] D. Voiculescu, K. Dykema, A. Nica. Free random variables, CRM Monograph Series, vol. 1, American Mathematical Society, Providence, RI (1992).

Matthew Kennedy, Pure Mathematics Department, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

E-mail address: m3kennedy@uwaterloo.ca
Alexandru Nica, Pure Mathematics Department, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

E-mail address: anica@math.uwaterloo.ca

[^0]: 2000 Mathematics Subject Classification. Primary 46L05; Secondary 46L10, 46L54.
 Research supported by a CGS Scholarship from NSERC Canada (M. Kennedy) and by a Discovery Grant from NSERC Canada (A. Nica).

