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Abstract. Round handles are affiliated with smooth 4-manifolds in two major

ways: 5-dimensional round handles appear extensively as the building blocks

in cobordisms between 4-manifolds, whereas 4-dimensional round handles are
the building blocks of broken Lefschetz fibrations on them. The purpose of this

article is to shed more light on these interactions. We prove that if X and X′

are two cobordant closed smooth 4-manifolds with the same euler characteris-
tics, and if one of them is simply-connected, then there is a cobordism between

them which is composed of round 2-handles only, and therefore one can pass
from one to the other via a sequence of generalized logarithmic transforms

along tori. This provides us with a 4-dimensional analogue of the Lickorish-

Wallace theorem for 3-manifolds: Every closed simply-connected 4-manifold
can be produced by a surgery along a disjoint union of tori contained in a

connected sum of copies of CP2, CP2 and S1 × S3. These answer some of the

open problems posted by Ron Stern in [12], while suggesting more constraints
on the cobordisms in consideration. We also use round handles to show that

every infinite family of mutually non-diffeomorphic closed smooth oriented

simply-connected 4-manifolds in the same homeomorphism class constructed
up to date consists of members that become diffeomorphic after one stabiliza-

tion with S2 ×S2 if members are all non-spin, and with S2 ×S2 #CP2 if they
are spin. In particular, we show that simple cobordisms exist between knot

surgered manifolds. We then show that generalized logarithmic transforms can

be seen as standard logarithmic transforms along fiber components of broken
Lefschetz fibrations, and present how changing the smooth structures on a

fixed homeomorphism class of a closed smooth 4-manifold can be realized as

relevant modifications of a broken Lefschetz fibration on it.

1. Introduction

During the past three decades, great advances have been made in the study
of smooth 4-manifolds, demonstrating highly peculiar phenomena in vast fami-
lies of examples, examples which devastated many proposed classification schemes.
Most of these examples involve the “logarithmic transform” operation, which is
the 4-dimensional analogue of the Dehn surgery operation in dimension 3. In
particular, all known constructions of infinite families of smooth structures on a
fixed homeomorphism type involve logarithmic transforms along tori. (See [11]
for an excellent survey on this subject.) Hence, Ron Stern posted the follow-
ing open problems in [12]: (P1) Are any two arbitrary closed smooth oriented
simply-connected 4-manifolds X and X ′ in the same homeomorphism class re-
lated via a sequence of logarithmic transforms along tori? (Problem 12 in [12].)
(P2) Is there a cobordism between X and X ′ which is composed of round 2-handles
only? (Problem 15 in [12].)
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In Section 3, we answer these problems affirmatively. We begin in Section 3.1 by
observing the effect of attaching 5-dimensional round handles to 4-manifolds. We
then prove that between any two cobordant closed smooth 4-manifolds, one of which
is simply-connected, there exists a cobordism with only round 2-handles (Theorem
9). Our result builds up on Asimov’s construction of round handle decompositions
in [1]. It will follow that one can pass from one of these 4-manifolds to the other via
a sequence of generalized logarithmic transforms, and also that all closed simply-
connected 4-manifolds are produced by a sequence of logarithmic transforms on
connected sums of CP2 and CP2, or by performing simultaneous generalized loga-
rithmic transforms along a framed ‘link’ of embedded self-inteserction zero tori in
connected sums of CP2, CP2 and S1 × S3 (Corollaries 11 and 14). These results
are analogous to the Lickorish-Wallace theorem for 3-manifolds, which states that
any closed orientable 3-manifold can be obtained by Dehn surgeries on a framed
link in the 3-sphere. Here we shall note that in the cobordisms we obtain, sta-
bilizations/destabilizations with standard pieces S2 × S2 and S2×̃S2 appear very
often in the intermediate steps, obstructing one’s hope of relating the well-known
smooth invariants of the 4-manifolds on the two ends of the cobordism using stan-
dard gluing arguments. We therefore include a discussion about further constraints
that might be imposed on these cobordisms to avoid this (see Remark 12) and we
discuss different versions of our results under such extra assumptions.

A celebrated theorem of C.T.C. Wall says that any two closed oriented smooth
simply-connected 4-manifolds X and X ′ homeomorphic to each other become dif-
feomorphic after stabilizing with some number of copies of S2 × S2 [8], raising the
question whether X and X ′ become diffeomorphic after only one stabilization or
not. (Problem 14 in [12].) Let {Xm |m : 1, 2, . . .} be a family of mutually non-
diffeomorphic closed smooth oriented simply-connected 4-manifolds in the same
homeomorphism class. If Xm+1 is obtained from Xm by a log transform, then we
show that they become diffeomorphic after one stabilization with either S2×S2 or
S2×̃S2. Consequently, every infinite family of mutually non-diffeomorphic closed
smooth oriented simply-connected non-spin 4-manifolds in the same homeomor-
phism class constructed up to date consists of members that become diffeomorphic
after one stabilization with S2 × S2, and similarly after stabilizing with S2×̃S2

(since X#S2×̃S2 is diffeomorphic to X#S2 × S2 when X is non-spin). If instead
we have a family of spin 4-manifolds, the same holds true after blowing-up all once.
In particular, we obtain a new and simple proof of knot surgered 4-manifolds becom-
ing diffeomorphic after just one stabilization (Corollary 16), a result originally due
to Auckly [3] and independently to Akbulut [2]. We also show that the unknotting
number of a knot K does not give a lower bound on the number of logarithmmic
transforms one needs to pass from a 4-manifold X to a knot sugered manifold XK .

Lastly, in Section 4 we turn to broken Lefschetz fibrations over the 2-sphere,
whose building blocks are 4-dimensional round handles. We show that generalized
logarithmic transforms can be seen as standard logarithmic transforms along fiber
components of broken Lefschetz fibrations (i.e. the logarithmic transform becomes
‘standard’ in a ‘generalized’ fibration), and present how changing the smooth struc-
ture on a fixed homeomorphism class of a closed smooth 4-manifold can be realized
as a modification of a broken Lefschetz fibration on it (Theorem 21).
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2. Preliminaries

2.1. Round handles.

An m-dimensional round k-handle is simply S1 times an (m − 1)-dimensional
k-handle, i.e. an S1 ×Dk ×Dm−k−1 attached along S1 × ∂Dk ×Dm−k−1. An m-
dimensional round k-handleRk decomposes as the attachment of twom-dimensional
handles hk−1 and hk of indices k−1 and k, which intersect algebraically zero times
but geometrically twice. This can be easily visualized by looking at the decomposi-
tion of an annulus into two handles, and one then thickens the cores and cocores to
the desired dimensions. If Rk can be decomposed into hk−1 and hk where one can
isotope these handles so that they are attached independently, i.e. the core of hk
does not intersect the cocore of hk−1, then we will call Rk a trivial round handle.

We will use the following notational conventions throughout this article: For Y
and Y ′ compact oriented manifolds with boundary, Y = Y ′ means that there is
an orientation preserving diffeomorphism between Y and Y ′. If W is an oriented
cobordism from X to X ′ with a given handlebody decomposition,

W = I ×X + Σh1 + . . .+ Σhn ,

such that X = ∂−W and X ′ = ∂+W , by abuse of notation we will write

X ′ = X + Σh1 + . . .+ Σhn .

Similarly, when W has a round handle decomposition

W = I ×X + ΣR1 + . . .+ ΣRn ,

we will write

X ′ = X + ΣR1 + . . .+ ΣRn .

As observed by Asimov [1], any handle pair hk−1 and hk attached to a manifold
X independently can be turned into a trivial round k-handle, i.e.

X ′ = X + hk−1 + hk = X +Rk

under these assumptions. This fact is referred as the “Fundamental Lemma of
Round Handles” in [1]. Lastly, note that if an m-manifold X decomposes into
round handles, then it necessarily has trivial euler characteristic. As shown by
Asimov, this is not only a necessary but also a sufficient condition provided that
m 6= 3 and X is not the Möbius band [1].

2.2. Logarithmic transforms.

Let T be an embedded 2-torus in a 4-manifold X with trivial normal bundle νT .
A framing of νT is the choice of a projection π : νT → D2, which equivalently is a
choice of an orientation-preserving diffeomorphism τ : νT → D2 × T 2, resulting in
an identification

H1(∂(X \ νT )) ∼= H1(T )⊕ Z ,
where the last summand is generated by a positively oriented meridian µT of T . We
can construct a new 4-manifold X ′ = (X \ νT ) ∪φD2×T 2 using a diffeomorphism
φ : ∂(T 2 ×D2)→ ∂νT . This diffeomorphism is uniquely determined up to isotopy
by the homology class

[(τφ(∂D2)] = p[µ] + q[α] ,
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where α is a push-off of a primitive curve in T by the chosen framing τ , which we
will also denote by α. To sum up, the result of the surgery is determined by the
torus T , the framing τ (equivalently π), surgery curve α and the surgery coefficient
p/q ∈ Q ∪ {∞}. We will encode this data in the notation X(T, τ, α, p/q), and call
this operation producing X ′ = X(T, τ, α, p/q) as the generalized logarithmic p/q
transform of X along T with framing π. If q = ±1, we will refer to it as an integral
logarithmic transform, otherwise we call it a rational logarithmic transform. It
shall be clear from the very definitions that a logarithmic ∞ transform gives X
back, and a logarithmic 0 transform usually changes the topology.

The above operation generalizes the standard logarithmic transform performed
on an elliptic surface, or on the total space of a genus one Lefschetz fibration, which
amounts to modifying the 4-manifold along with the fibration on it by replacing a
regular torus fiber with an m-multiple of this fiber. The new fibration conforms to
the local model:

(D2 × T 2)/Zm → D2/Zm ,
where the generator σ of Zm acts on D2 × T 2 by

(1) σ (z, x, y) = (exp(2πi/m) z, x− p/m, y − q/m)

for (z, x, y) ∈ C× R2/Z2 with |z| = 1, gcd(m, p, q) = 1, and acts on D2 by

z 7→ exp(2πi/m)z ,

inducing a fibration coming from the projection of D2×T 2 onto its D2 component.
That is, the standard logarithmic transform is defined for such an (X, f), with
T = f−1(z) for some regular value z of f , where π = f and the surgery coefficient
is always integral (and p, q in the above local model are auxiliary). Below, we
reserve the expression log transform for generalized logarithmic transform and say
standard log transform to indicate this special setting.

2.3. Broken Lefschetz fibrations.

Let X and Σ be closed oriented manifolds of dimension four and two, respec-
tively, and f : X → Σ be a smooth surjective map. The map f is said to have
a Lefschetz singularity at a point x contained in a discrete set C ⊂ X, if around
x and f(x) one can choose orientation preserving charts so that f conforms the
complex local model (u, v) → u2 + v2. The map f is said to have a round sin-
gularity along an embedded 1-manifold Z ⊂ X \ C if around every z ∈ Z, there
are coordinates (t, x1, x2, x3) with t a local coordinate on Z, in terms of which f
is given by (t, x1, x2, x3) → (t, x2

1 − x2
2 − x2

3). A broken Lefschetz fibration is then
defined as a smooth surjective map f : X → Σ which is a submersion everywhere
except for a finite set of points C and a finite collection of circles Z ⊂ X \C, where
it has Lefschetz singularities and round singularities, respectively. These fibrations
are found in abundance, as any generic map from X to S2 can be homotoped to a
broken Lefschetz fibration [13, 4].



ROUND HANDLES, LOGARITHMIC TRANSFORMS, AND SMOOTH 4-MANIFOLDS 5

3. Round cobordisms and logarithmic transforms

3.1. Preliminary results. Many of the new smooth 4-manifolds that have arisen
in the past couple of decades are constructed using similar techniques: They use
logarithmic transforms and fiber sums to produce new smooth structures on a fixed
homeomorphism type of a 4-manifold. Before we discuss the role of round handles
in cobordisms between homeomorphic simply-connected 4-manifolds, let us first
demonstrate how round handles appear in fiber sums.

Proposition 1. Let Σ i be closed orientable surfaces of genus g with trivial normal
bundle in Xi, i = 1, 2, and X be a fiber sum of X1 and X2 along Σ 1 and Σ 2. Then
X is obtained from the disjoint sum of X1 \ νT1 and X2 \ νT2 by attaching round
handles.

Proof. We get X from the disjoint union (X1 \ νT1) t (X2 \ νT2) by attaching an
S1 × I × Σ g to the latter. Here, the basic handle decomposition of

Σ g = h0 + Σ 2g
i=1h

i
1 + h2

yields a decomposition of S1 × I × Σ g into round handles R0, R1
1, . . . R

2g
1 , R2. �

On the other hand, log transforms, which will be of our main focus in this article,
are related to round handles as follows:

Lemma 2. A round 2-handle attachment to a 4-manifold X is equivalent to per-
forming an integral generalized logarithmic transformation on X.

Proof. When one attaches a round 2-handle to X, the effect is to surger out S1 ×
S1 ×D2 and glue back in S1 ×D2 × S1 to obtain a new 4-manifold X ′. Thus, the
attachment of a round 2-handle to X is nothing but a log transform along a torus
T ⊂ X identified with the attaching torus of the round 2-handle. We will show
that any integral logarithmic transform can be realized by such a round handle
attachment.

Let T be an embedded 2-torus in a 4-manifold X with trivial normal bundle νT
framed by π : νT → D2, and let α ⊂ T be the surgery curve. The new manifold
X ′ = X(T, τ, α, p) is obtained by attaching one 2-handle, two 3-handles and a 4-
handle to ∂(X \ νT ), and therefore determined by the framed attaching circle of
the 2-handle. Let ϕ be a self-diffeomorphism of T 2 = S1 × S1 such that {pt} × S1

is mapped to α and S1 × {pt} is mapped to some primitive curve β on T , and
set τ ′ = (ϕ−1 × id) ◦ τ . Hence, X ′ = X(T, τ, α, p) = X(T, τ ′, α′, p), where α′

is the new surgery curve. Using this new framing, we can glue a round 2-handle
R = S1 ×D2 ×D2 to X along νT such that S1 × {pt} × {0} is mapped to β and
{pt} × S1 × {0} is mapped to α′. The attachment of R is given by S1 times a
2-handle attachment, and for each x ∈ S1 we attach {x}×D2×D2 so that it maps
to [{x′}]× [α′]× p[µ] in the homology, where x′ ∈ β. In other words, the gluing
of R has the effect of a family of integral Dehn surgeries parametrized by x′ ∈ β.
We conclude that X ′ = X(T, τ, α, p) = X +R. �

Remark 3. A slight generalization of round handles are “twisted round handles”,
where one attaches S1 ×Dm−1 along a twisted Dk bundle over S1. These appear
naturally in broken Lefschetz fibrations on 4-manifolds. As shown in [5], the twisted
round handles and the regular ones we focus on in this article are the only ones to
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which we can attach a family of k-handles parametrized along S1. It is easy to see
that 5-dimensional twisted round 2-handles are equivalent to Klein bottle surgeries
(see for example [7]) in the same fashion as above.

We will make repeated use of the following: Say W is a cobordism from X to
X ′ with a given handlebody decomposition,

W = I ×X + Σh1 + . . .+ Σhn

or a round handle decomposition

W = ΣR1 + . . .+ ΣRn ,

both given by increasing indices. By looking at the ‘dual’ decomposition of the
handles of W of index greater than i:

W = (I ×X + Σh1 + . . .+ Σhi) ∪ (Σh∗i+1 + Σh∗n + I ×X ′) ,
we see that

Y = ∂+(I ×X + Σh1 + . . .+ Σhi)

and

Y ′ = ∂+(I ×X ′ + Σh∗n + . . .+ Σh∗i+1)

are diffeomorphic. In this case, we will say “Y and Y ′ can be seen to be diffeomor-
phic by looking at the i-th level of W”.

Next couple of lemmas will follow from the correspondence given in Lemma 2:

Lemma 4. If X and X ′ are simply-connected 4-manifolds, and X ′ is the result of
performing an integral log transform on X, then X and X ′ become diffeomorphic
either after stabilizing each with S2×S2 or with S2×̃S2. If in addition X and X ′ are
both non-spin, then both X#S2×S2 = X ′#S2×S2 and X#S2×̃S2 = X ′#S2×̃S2.

Proof. By Lemma 2, manifolds related by an integral log transform are cobordant
by a cobordism W consisting of a single round 2-handle, which in turn decomposes
as a pair of 2- and 3-handles. The lemma will follow from looking at the middle
level of W .

By attaching a 5-dimensional 2-handle to a 4-manifold X, we surger out an
S1 × D3 and glue in a D2 × S2. When X is simply-connected, this amounts to
connect summing X with S2×S2 or S2×̃S2. By looking at the middle level of W , we
see that X and X ′ become diffeomorphic after connect summing each with S2×S2

or S2×̃S2. Note that if X and X ′ are both non-spin, then X#S2×S2 = X#S2×̃S2

and X ′#S2 × S2 = X ′#S2×̃S2, so one can either connect sum both with S2 × S2

or both with S2×̃S2 to obtain the diffeomorphism. If X and X ′ are both spin, then
they can become homeomorphic only after connect summing both with S2 × S2 or
both with S2×̃S2 but not in a mixed way. �

Theorem 5. Let
⊔
M
i=0Ti be a collection of pairwise disjoint embedded tori with self-

intersection zero in a simply-connected 4-manifold X. Let Xm denote the result of
successively performing log transforms on the tori T1, . . . , Tm, with X ′ = XM , and
assume that all Xm simply-connected. If in addition every Xm is non-spin for
m = 1, . . .M , then X#S2×S2 = X ′#S2×S2 and X#S2×̃S2 = X ′#S2×̃S2. If
Xm are not all spin, then, X#S2 × S2#CP2 = X ′#S2 × S2#CP2.
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Proof. Say each Xm is non-spin. Then Xm#S2×S2 = Xm+1#S2×S2 by Lemma
4, for all m = 1, . . .M − 1. By induction, X#S2 × S2 = X ′#S2 × S2. If they
are not all spin, then after blowing-up each Xm, we get a family of homeomorphic
non-spin 4-manifolds and apply the same argument, noting that S2 × S2 #CP2 =
S2×̃S2 #CP2. �

Remark 6. It is possible to generalize this theorem to the case when rational
logarithmic transforms are involved. To see this, one first observes that a rational
log transform can be expressed as a sequence of integral log transforms, obtained
using continued fractions analoguous to the 3-dimensional case, and then replaces
the given cobordism by one composed of integral log transforms. However, we will
not need this generalization for the results that follow.

Lastly, we point out a special situation where one can trade a round 1-handle
with a round 2-handle. (Also see Proposition 13 below.)

Lemma 7. Let W be a cobordism between 4-manifolds X and X ′ given by a round
1-handle which is attached along two oriented loops which are homotopic with the
same orientation. Then there is a cobordism W ′ between X and X ′ which is given
by a round 2-handle.

Proof. Since R1 is attached along two oriented loops that are oriened homotopic,
we can consider them as being attached along S1 × {pt1, pt2} contained in some
S1 × D3 ⊂ X. (We assume the loops S1 × {0} × D3 and S1 × {1} × D3 to be
co-oriented, following a choice of orientation on the first S1 component.) If we
attach a 4-dimensional 1-handle to D3 along two points pt1, pt2 ∈ D3, the result
is (S1 × S2)\D3. Since R1 is just a 4-dimensional 1-handle times S1, the result of
attaching a round 1-handle to S1×D3 along {pt1, pt2}×S1 is an S1×S2\D3 bundle
over S1. There are two such bundles: the trivial bundle, and the mapping torus
constructed using the self-diffeomorphism φ : S1×S2 −→ S1×S2 which is defined to
be the identity on S1 and the antipodal map on S2. We will refer to these manifolds
as S1×(S1×S3\D3) and S1×̃(S1×S3\D3) = [0, 1]×(S1×S2\D3) /(0, z) ∼ (1, φ(z)),
respectively.

We will now see how both of these manifolds can also result from attaching a
round 2-handle to S1 × D3. Notice that if we attach a 4-dimensional 0-framed
2-handle to D3 along an unknot, the result is (S1×S2)\D3. Since a 5-dimensional
round 2-handle is a 4-dimensional 2-handle times S1, we can attach a round
2-handle R2 to S1 × D3, such that the result is S1 × (S1 × S2\D3), the same
as the result of attaching a round 1-handle.

To get S1×̃(S1 × S3 \ D3) after attaching a round 2-handle is slightly more
involved. It is perhaps easier to see the opposite direction: We will see that we
can attach a round 2-handle to S1×̃(S1 × S3 \ D3) in such a way that the result
is S1 × D3. (Note that a round 2-handle upside down is also a round 2-handle.)
In fact, by Lemma 2, it is sufficient to find an integral logarithmic transform that
accomplishes this. Let γ : [0, 1] −→ S2 be an embedding such that γ(0) = {NP}
and γ(1) = {SP}, where {NP} and {SP} stand for the north pole and the south
pole of S2, respectively. Then in S1×̃(S1×S3\D3) we achieve our desired result by
performing a logarithmic transform on the torus which is the image in the mapping
torus of points of the form (x, y, γ(x)) ∈ [0, 1]× (S1 × S2 \D3). �
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3.2. Main results on cobordisms.

We begin by proving a negative result:

Proposition 8. An h-cobordism between two closed smooth 4-manifolds does not
admit a round 2-handle decomposition.

Proof. Suppose W is a cobordism with a round 2-handle decompositon

W = X +

m∑

i=1

Ri2

We claim that W cannot be an h-cobordism. By decomposing each round 2-handle
into a 2- and 3-handle, W is given a regular 2- and 3-handle decomposition,

W = X +

m∑

i=1

(hi2 + hi3) = X + h1
2 + h1

3 +

m∑

i=2

(hi2 + hi3)

Recall that for an h-cobordism, the 3-handles must algebraically cancel with the
2-handles. In this case however, h1

3 does not cancel with h1
2 since together they

form a round 2-handle, which means that the core of h1
3 intersects the co-core of h1

2

algebraically zero times, but geometrically twice. Also h1
3 does not cancel with any

of the other 2-handles since they are attached independently; the other 2-handles
are attached after h1

3 and can be slid off of it. Since h1
3 does not algebraically cancel

with the 2-handles, W cannot be an h-cobordism. �

It follows that the cobordism in question from problem (P2) from the introduc-
tion can never be an h-cobordism. However we do obtain:

Theorem 9. Let X and X ′ be two cobordant closed smooth (oriented) 4-manifolds
with the same euler characteristic. If X is simply-connected, then there exists a
compact smooth (oriented) cobordism between them with round 2-handles only.

Proof. It is a standard argument that one can eliminate all the handles with index
unequal to 2 or 3 in any given cobordism W between X and X ′. Namely, we can
surger out the 1- and 4-handles, replacing them with 3- and 2-handles respectivly.
Take such a simplified handle decomposition of W . The assumption on the euler
characteristics implies that the number of 2- and 3-handles in this cobordism W
are the same. Let N be this number, and note that X = ∂−W , X ′ = ∂+W .

For each 2-handle, check if there is a 3-handle in W that goes over it alge-
braically zero times and geometrically twice. Label the handles so that hi2 and hi3 for
i = M+1, . . . N are such pairs with ∂−h

i
3 disjoint from ∪Nk=i+1∂+h

k
2 . For simplicity,

let us morever assume that ∂−h
i
3 is disjoint from ∪Nk=M+1∂+h

k
2 for i = 1, . . .M − 1

as well, so that we can write

W = ΣM
i=1h

i
2 + ΣM

i=1h
i
3 + ΣN−M

i=1 (hi2 + hi3) .

Letting R̃i2 = hM+i
2 + hM+i

3 be the round 2-handle for i = 1, . . . , N −M , we set:

W1 = I ×X + ΣM
i=1h

i
2 , W2 = I × ∂+W1 + ΣM

i=1h
i
3 ,

and W3 = I × ∂+W2 + ΣN−M
i=1 R̃i2 .

Next, we closely examine Asimov’s proof of his main theorem in [1], which
we will give a sketch of here: We can assume that the attaching spheres of the
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3-handles are tranvserse to the belt spheres of the 2-handles and that attaching
sphere Si of each hi3 hit ∂+X ∪Mi ∂−h

i
2 at some point pi. Then introduce cancelling

handle pairs Hi
1 and Hi

2 away from S2
i yet in a small neighborhood of each pi

contained in ∂+X ∪Mi ∂−h
i
2. With all these assumptions in hand, we can now use

the Fundamental Lemma of Round Handles to pair up Hi
1 with hi2 to create round

1-handles Ri1, and Hi
2 with hi3 to create round 2-handles Ri2, where i = 1, . . . ,M .

We get a new handle decomposition of W1 ∪W2 = W ′1 ∪W ′2 where

W ′1 = I ×X + ΣRi1 and W ′2 = I × ∂+W
′
1 + ΣRi2 .

An important point here is that all Ri1 for i = 1, . . . ,M are attached independently
from each other and therefore can be thought as being attached to I ×X simulta-
neously. (Same holds true for the attachment of Ri2 to I × ∂+W

′
1 for i = 1, . . . ,M .)

Since X is simply-connected, any two (oriented) loops are (oriented) homotopic in

it. Therefore, we can apply Lemma 7 to replace each Ri1 with a round 2-handle R̄i2
for i = 1, . . . ,M to obtain a new cobordism W̄1 from X to ∂+W

′
1 which is composed

of round 2-handles. Hence, we get a new cobordism

W̃ = W̄1 +W ′2 +W3 = I ×X + Σ R̄i2 + ΣRi2 + Σ R̃i2 ,

composed solely of round 2-handles. �

By Lemma 2, we immediately get:

Corollary 10. Let X and X ′ be two cobordant closed smooth (oriented) 4-manifolds
with the same euler characteristic. If X is simply-connected, then X ′ can be ob-
tained from X by a sequence of log transforms along tori.

Hence, we obtain the following:

Corollary 11. If X and X ′ are two closed oriented simply-connected homeomor-
phic 4-manifolds, then X ′ can be obtained from X by a sequence of log transforms
along tori.

Proof. Since X and X ′ are homeomorphic, they have the same signature, and
therefore cobordant. Following the proof of the above theorem and applying the
previous corollary to W we conclude the proof. �

Remark 12. Since these results provide answers to the problems 15 and 12 asked
by Ron Stern in [12], we would like to pause here to closely examine how useful
such cobordisms are (1) to obtain a possible classification scheme for closed oriented
simply-connected smooth 4-manifolds; and (2) to produce new smooth structures.

For (1): Assume for the moment that in our cobordisms the round 2-handles were
attached independently, that is, ∂−Rk could be isotoped away from ∪ i<k ∂+Rk for
all k = 1, . . . N . Then all the tori we performed log transforms along would be
disjointly embedded in X. It would then follow that every closed smooth oriented
4-manifold could be produced from a standard 4-manifold X0 which is a connect
sum of some copies of CP2, CP2, S2 × S2 and K3 by performing a log transform
along a link of tori in X0 (assuming the 11/8 Conjecture). However, our proof of
Theorem 9 does not guarantee this at all. On the contrary, the round handles in W3

are attached along tori that appear only after the attachment of the round handles
in W1.
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For (2): In the proof of Theorem 9, the piece W̄1 we got was composed of trivial
round 2-handles attached to X in a small ball containing D3 × S1 following from
the proof of Lemma 7. Recall that such a round 2-handle consists of a 1-handle
and a 2-handle that could be attached independently. Now, attaching a 2-handle
yields connect summing with S2 × S2 or S2×̃S2 and attaching a 1-handle yields
connect summing sith S1×S3. Thus the effect of attaching a trivial round 2-handle
is the same as connect summing with S2 × S2#S1 × S3 or with S2×̃S2#S1 × S3.
Existence of such summands in the intermediate steps will imply the vanishing of
Gauge theoretic invariants, making it impossible to trace the effect of the sugeries
on these invariants. (To the authors’ knowledge, the only Gauge-theoretic invariant
that seems to be sensitive to such connect sums is the one defined in [14].)

To strike the best possible cobordisms meeting the goals of (1) and (2) above, one
can insist that these cobordisms have the properties: (1′) X ′ is obtained from X by
performing simultaneous log transforms along tori embedded in X; and (2′) None
of the log transforms change the homeomorphism type. We shall note however,
all recent constructions of exotic smooth structures where reverse engineering is
employed involve log transforms which indeed change the homeomorphism type.
Further, we note that by Theorem 5, these assumptions would imply that between
any two simply-connected 4-manifolds there is a cobordism that can be given by
only one pair of 2- and 3-handles. Whether or not this is true is still an open
question.

In fact, our observation above suggest the following, which is comparable to
Asimov’s “Fundamental Lemma of Round Handles”:

Proposition 13. Stabilizing or destabilizing a 4-manifold with S2 × S2#S1 × S3

or with S2×̃S2#S1 × S3 is a log transform.

Proof. Since stabilizations (resp. destabilizations) correspond to connect summing
(resp. removing the connected sum summand) S2×S2#S1×S3 or S2×̃S2#S1×S3,
we can look at this operation locally. The second diagram in the first row of
the handlebody diagrams in Figure 1 shows the effect of a log 0 transform in a
4-ball with sugery curve α parallel to the m-framed 2-handle. After sliding the
‘large’ 0-framed 2-handle twice over the 0-framed 2-handle attached to the 1-handle
on the top, it slides off from the rest of the diagram. We then cancel the same
1-handle against the 0-framed 2-handle, and obtain the third diagram, which rep-
resents S2 × S2#S1 × S3 \ D4 if m is even, and S2×̃S2#S1 × S3 \ D4 if m is
odd.

The second row of the Figure 1 demonstrates the inverse of the above operation.
This time we perform a log 1-transform with surgery curve α linking once with
the 1-handle on the bottom in (S2 × S2#S1 × S3) \ D4 if m is even, and in
(S2×̃S2#S1×S3) \D4 if m is odd. The second figure is the result of this transform,
and the third diagram is obtained after similar handle slides as above. Now it is
easy to see that all the handles cancel, yielding D4. Note that other log transforms
(including the obvious log 0 transform) can be performed to realize this inverse
operation as well.

�
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Figure 1. First row: Log 0 transform in the 4-ball resulting in mani-
folds (S2 × S2#S1 × S3) \D4 for m : even or (S2×̃S2#S1 × S3) \D4

for m : odd. Second row: A log 1-transform in D4 as an inverse opera-

tion.

It is worth mentioning that the second diagram in the first row in Figure 1
union a 4-handle describes a broken Lefschetz fibration on S2 × S2 #S1 × S3 or
on S2×̃S2 #S1 × S3 depending on the parity of m, where there is only one round
singular circle, the higher genus is one, and there exists a section of self-intersection
m. The second diagram on the second row union a 4-handle on the other hand
describes a similar broken Lefschetz fibration on the 4-sphere (no matter what
the parity of m is). (The reader can turn to [5] for explicit descriptions of these
fibrations.) In short, these operations are equivalent to performing standard log
transforms along regular torus fibers of such broken Lefschetz fibrations.

What follows from Proposition 13 is an alternative proof of Corollary 11 in-
voking C.T.C. Wall’s celebrated theorem: X# k S2×S2 = X ′# k S2×S2 for large
enough k, and therefore X# k (S2 × S2 #S1 × S3) = X ′# k (S2 × S2 #S1 × S3).
Proposition 13 shows that X (resp. X’) and X# k (S2 × S2 #S1 × S3) (resp.
X ′# k (S2 × S2 #S1 × S3) are related by k log transforms. Hence one can pass
from X to X ′ by a sequence of 2k log transforms.

Nevertheless, given the lack of any classification scheme for closed oriented
simply-connected smooth 4-manifolds, this rather simple observation gives us:
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Corollary 14. Every closed oriented simply-connected 4-manifold can be produced
by surgery along a link of tori of self-intersection zero contained in a connected sum
of smooth copies of CP2, CP2, and S1 × S3. More precisely, for a given X with
e(X) = a + b + 2, sign(X) = a − b, there is a link of self-intersection zero tori
L = tTi in (a+ k)CP2#(b+ k)CP2#k S1 × S3 for a large enough integer k.

Proof. Let X0 be a connected sum of copies of CP2, CP2 with e(X0) = e(X) and
sign(X0) = sign(X). The latter equality provides us with a cobordism from X0 to
X. Using the former equality and following the proof of Theorem 9 (while skipping

the construction of W3), we can produce a cobordism W̃ = W̄1 + W ′2 between
X0 and X with round 2-handles only. Recall that the round 2-handles R̄i2 of W̄1

for i = 1, . . . , k are attached independently of each other and the attachment of
each one amounts to connect summing the simply-connected 4-manifold X0 with
S2 × S2 #S1 × S3. Then the middle level X̃ of this cobordism at the interface of
W̄1 and W ′2 is a connected sum of copies of CP2, CP2 and S1 × S3. Also recall

that now the round 2-handles Ri2 for i = 1, . . . , k are attached to X̃ = ∂+(W̄1)
independently as well, and thus, we can realize all these round 2-handle attachments
as a simultaneous log transforms along embedded tori in X̃. It follows that X can
be obtained from a connected sum of aCP2#bCP2 with k copies of S2×̃S2#S1×S3,
where e(X) = e(X0) = a+ b+ 2, sign(X) = sign(X0) = a− b. �

If the number k could be determined by the intersection form of X alone, this
would provide us with a standard manifold XQ from which one could obtain X
with QX = Q by a surgery along a framed link of tori in XQ. So it is natural to
ask:

Question 15. Let Q be a fixed intersection form of a closed oriented simply-
connected smooth 4-manifold. Let min(X,Y ) be the minimum number of 2-handles
needed in an h-cobordism between two closed oriented simply-connected smooth
4-manifolds X and Y . Is there an upper bound on {min(X,Y )|QX = QY = Q}?

We continue with some other applications of our results above.

Every construction of an infinite family of mutually non-diffeomorphic closed
smooth oriented simply-connected 4-manifolds in the same homeomorphism class
given to date involve log transforms. Chronologically, the first constructions of such
families were obtained by standard (thus integral) logarithmic transforms along ho-
mologically essential tori in elliptic surfaces, which were then followed by applica-
tions of the knot surgery operation of Fintushel-Stern, and finally by log transforms
along null-homologous tori in an exotic copy of a standard 4-manifold. (See for in-
stance [11].) In all of these cases one obtains an infinite family of non-diffeomorphic
4-manifolds for which the following open problem can be tested: Do all homeomor-
phic simply-connected 4-manifolds become diffeomorphic after connect summing
each with S2 × S2 (or S2×̃S2) once?

If {Xm |m : 1, 2, . . .} is a family of mutually non-diffeomorphic closed smooth
oriented simply-connected 4-manifolds in the same homeomorphism class constructed
using the first or the third approach discussed in the previous paragraph, we see
that each Xm+1 is obtained from Xm by a log ±1 transform. In this case one can
use the Morgan-Mrowka-Szabo gluing formula to compare their Seiberg-Witten in-
variants. On the other hand, the knot surgery operation was defined as follows [10]:
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Let T be a torus with a trivial tubular neighborhood N(T ) in a simply-connected
4-manifold X with simply-connected complement and K be a knot in S3. Then
define XK = X \ N(T ) ∪φ S1 × (S3 \ N(K)), where N(K) is a tubular neighbor-
hood of K in S3 and the boundary diffeomorphism φ is chosen so that the resulting
manifold XK is also simply-connected. The authors, by giving an elegant formula
for the change in Seiberg-Witten invariants in terms of the Alexander polynomial
of the knot K, showed that infinitely many exotic smooth structures can be pro-
duced on any 4-manifolds X with non-trivial Seiberg-Witten invariants and with
such embedded tori T . The important observation built into the proof is that from
any knot surgered 4-manifold XK one can obtain X back by log transforms along
null-homologous tori: Say that K ⊂ S3 can be unknotted by changing n cross-
ings. Then there is a sequence of knots K = K0,K1, . . . ,Kn with Kn the unknot,
and a collection of loops

⊔n
i=1 αi ⊂ S3\N(K) such that by blowing up along these

loops, we progressively unknot K: i.e. if we blow up along
⊔m
i=1 αi then we get

S3\Km. We can consider the S1 × αi as tori in S1 × S3\N(K) and hence as tori
in X\N(T ) ∪ (S1 × S3\N(K)). Performing (±1)-log transforms on the first i tori
in XK , we get the manifold XKi

, thus we get X after performing all the log trans-
forms. Each log transform gives us knot surgery on X, with one more crossing
undone, that is. Furthermore, the assumptions made on the complement of T in
X guarantee that in each step we get a simply-connected 4-manifold. Hence, by
Theorem 16 we have:

Corollary 16. Every infinite family of mutually non-diffeomorphic closed smooth
oriented simply-connected non-spin 4-manifolds in the same homeomorphism class
constructed up to date consists of members that become diffeomorphic after one
stabilization with S2 × S2 or with S2×̃S2. The same holds in the spin case, if one
stabilizes with S2 × S2#CP2.

Remark 17. Using heroic Kirby calculus, Auckly in [3] (for S2×S2) and Akbulut
in [2] (for S2×̃S2) proved the above theorem for knot surgered 4-manifolds. Here
we have obtained a new proof of their result (which is weaker in the spin case).
The assumptions Auckly and Akbulut make in their papers on the boundary dif-
feomorphisms φ and the existence of bounding disks in the complement of the torus
T with certain framings not only guarantee that the result of the sugery is again
simply-connected, but also allow the authors to restrict their attention to connect
sums with only S2 × S2 or with only S2×̃S2, respectively. Our imprecise choice
of S2 × S2 or S2×̃S2 in the above statement is due to us not making any extra
assumptions on such disks (or more precisely, on their relative framings), which in
particular is the reason why we get a weaker result in the case of spin 4-manifolds.

Following Fintushel-Stern’s conjecture that XK = XK′ if and only if K = ±K ′
(the negative sign means the ‘mirror’ of K), one might ask whether the unknotting
number of K gives a lower bound on the number of log transforms required to pass
from XK to X ′K . We see that it does not:

Corollary 18. Let X be a closed oriented simply-connected 4-manifold, T be an
embedded torus in X with trivial normal bundle, and XK be the manifold obtained
by knot surgery in X along T . Then, for any two knots K and K ′, XK and X ′K
are related via two log transforms along tori.
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Proof. As seen in the proof of Corollary 16, there is a cobordism from XK to XK′

with at most one pair of 2- and 3-handles when the manifolds are non-spin. We
can modify this cobordism as in the proof of Theorem 9 by introducing at most one
canceling pair of 1- and 2-handles, and hence getting a round cobordism with at
most two round 2-handles between XK and XK′ . In the spin case, we can realize the
cobordism with at most two log transforms using stabilization with S2×S2#S1×S3

as before. �

Remark 19. The proof of this corollary mutadis mutandis gives that if the answer
to Stern’s Problem 14 were ‘yes’, then any two X and X ′ would be related by at
most two log transforms.

4. Broken Lefschetz fibrations and logarithmic transforms

Since every closed smooth oriented 4-manifold admits a broken Lefschetz fibra-
tion, it is natural to ask whether exotic smooth structures on a fixed homeomor-
phism class of a 4-manifold can be related through modifications of broken Lefschetz
fibrations. One might have various different cobordisms between two homeomorphic
4-manifolds, and thus, there are various possible ways to realize such modifications.
Underlying our preference for the “fibered” operations presented below are the
types of cobordisms discussed in the previous section.

We first show that a generalized logarithmic transform is a standard logarithmic
transform along a torus fiber component of a generalized fibration. Namely:

Lemma 20. Let X be a closed smooth oriented 4-manifold and T1, . . . , Tn be dis-
jointly embedded self-intersection zero tori in it. For any prescribed surgery com-
posed of generalized logarithmic pi-transform along Ti, for i = 1, . . . , n, there exists
a broken Lefschetz fibration f : X → S2 with respect to which the surgery can be
realized as a standard logarithmic pi-transform along elliptic fiber components Ti
for all i = 1, . . . , n simultaneously.

Proof. Let νTi be the normal bundle of the torus Ti with framing πi : νTi → D2

for i = 1, . . . , n. Setting N = tni=1νTi, we have the map π := tni=1πi : N → D2.

Let r : D2 → S2 be the quotient map defined by collapsing ∂D2 to a point.
Assume that r(∂D2) = {NP} and r(0) = {SP}. The composition r◦π is a surjective
map from N to S2, which we can extend to all of X by mapping X \ N to {NP}
so as to get a surjective continuous map g : X → S2, which is smooth away from
g−1({NP}). Letting N0 be the preimage of a smaller disk neighborhood of the
southern hemisphere under g, we can approximate g by a generic map h : X → S2

relative to N0, which can then be modified to have only indefinite singularities
using Saeki’s construction [13]. In turn we obtain a broken Lefschetz fibration
f : X → S2, where the framed tubular neighborhood N0 is the tubular neighborhood
of the fiber f−1({SP}) as shown in [4], containing all Ti as fiber components. Note
that these fiber components can be null-homologous. Hence the prescribed surgery
amounts to performing standard logarithmic transforms along the fiber components
Ti of f : X → S2. �

We are now ready to discuss some instances.
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Theorem 21. Let X and X ′ be two closed smooth oriented 4-manifolds with the
same euler characteristic and signature.

(i) If X and X ′ are simply-connected and equipped with broken Lefschetz fibra-
tions f : X → S2 and f ′ : X → S2 respectively, then the latter can be obtained
from the former via a sequence of modifications of broken Lefschetz fibrations, cor-
responding to logarithmic transforms and homotopies of broken Lefschetz fibrations.

(ii) If X ′ is obtained from X by performing generalized logarithmic pi transforms
along disjointly embedded tori Ti of self-intersection zero in X, for i = 1, . . . ,m,
then there exists a broken Lefschetz fibration f ′ : X ′ → S2 obtained from a broken
Lefschetz fibration f : X → S2 by standard logarithmic pi-transforms along elliptic
fiber components.

Proof. Part (i): The results in the previous section show that there exists a trivial
round cobordism W ∪φW ′ between X and X ′ such that W is a cobordism from X

to X̂ = X#m (S2 × S2#S1 × S3) and W ′, upside down, is a cobordism from X ′

to X̂ ′ = X ′#m (S2 × S2#S1 × S3), where φ : X̂ → X̂ ′ is an orientation-reversing
diffeomorphism. We can take the connected sum of the broken Lefschetz fibration
f : X → S2 with the standard broken Lefschetz fibration on S2 × S2#S1 × S3

repeatedly m-times to get a broken Lefschetz fibration f̂ : X̂ → S2 (see [5] and

Figure 1 above), and similarly we can get a broken Lefschetz fibration f̂ ′ : X̂ ′ → S2.

The latter, precomposed with φ gives a broken Lefschetz fibration φ ◦ f̂ ′ : X̂ → S2.
By William’s theorem from [9], these two fibrations on X̂ are related via a sequence
of moves between broken Lefschetz fibrations, concluding the statement of part (i).

Part (ii) follows from Lemma 20 above. The cobordism from X to X ′ is given by
standard logarithmic pi transforms along Ti, for i = 1, . . . , n, yielding a new broken
Lefschetz fibration f ′ : X ′ → S2 with multiple fiber components Ti. Around each
mutiple torus fiber we can replace the fibration D2 × T 2 → D2 with a multiple
torus fiber over 0 ∈ D2 with a broken Lefschetz fibration. The existence of such
a broken Lefschetz fibration is provided by Gay-Kirby’s result where the authors
show how to extend any circle valued morse function without extrema defined on
the boundary of an arbitrary compact oriented 4-manifold Z to a broken Lefschetz
fibration over D2 on Z. [6] �

Remark 22. Regarding part (i) of the theorem: A simpler cobordism between
X and X ′ could be given by a sequence of m 2− and m 3− handle attachments,
which correspond to connect summing X (resp. X ′) with m copies of S2 × S2

to get the middle manifold X̃ (resp. X̃ ′). If we start with two broken Lefschetz
fibrations f : X → S2 and f ′ : X → S2, then connect summing these fibrations
with the standard fibration on S2 × S2 m-times, and precomposing f ′ with the
diffeomorphism φ : X̃ → X̃ ′ given by the cobordism, we get two broken Lefschetz
fibrations f̃ and φ̃ ◦ f̃ ′ : X̃ → S2 as in the proof of Theorem 21. Now, William’s
result can be applied to relate these two broken Lefschetz fibrations by a sequence
of fibered modifications, and thus giving yet another way to pass from (X, f) to
(X ′, f ′) through modifications of broken Lefschetz fibrations.

Regarding (ii): The assumptions of this theorem are the same as those given in the
proposed extra assumption (1’) on logarithmic transforms discussed in the previous
section.
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Remark 23. Let W = I × X be a trivial cobordism, where X is a closed, not
necessarily simply-connected 4-manifold. Gay and Kirby have recently constructed
indefinite generic maps over I × S2 on W , connecting two prescribed broken Lef-
schetz fibrations (perturbed to indefinite generic maps) over S2 on {0}×X and on
{1} × X. It would be interesting to see whether their arguments can be adapted
to non-trivial round cobordisms we have considered in this article so as to improve
our Theorem 9.
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