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Abstract : 
This paper deals with left invertibility problem of implicit hyperbolic systems with delays in infinite 
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to be equivalent to the left invertibility of a subsystem without delays. 

Mathematics Subject Classification:  93C25  

Keywords: Left invertibility, implicit systems, system with delays 

 

1 Introduction 
We shall deal here with left invertibility for a class of implicit systems with delays in Hilbert spaces which 
are either left or right invertible (hereafter called “one side invertible”) and whose state is described by  
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With the output function  
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where 0)0( =z , 0)0(
.

=z  and 0)( ≡tz for all [ [0,ht −∈ , )0( >h , 0≥α , Htztztz ∈)(),(),(
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(the state 
space); Utu ∈)(  (the input space); Yty ∈)(  (the output space). BAAE ,,, 10  and C  are linear operators 
defined as follows: YHCHUBHHAHHAHHE →→→→→ :;:;:;:;: 10 , where U , H  and Y  
are real Hilbert spaces. 
The concept of left invertibility is the problem of determining the conditions under which a zero output 
corresponding to a zero initial state can only be generated by a zero input. 
The left invertibility problem has been investigated within its different versions in detail in the finite 
dimensional case. We cite [1], [3] and [6] whose approaches are generalized in this study. In infinite 
dimension, this notion has been generalized essentially for non implicit systems with delays and for the 
particular case of bounded operators (sees for instance [4]).  
The aim of this paper is to extend this notion in the direction of infinite dimensional linear systems with 
delays and to use this approach for solving left invertibility for implicit hyperbolic systems with delays. The 
motivation for considering this class is given by the article of Bonilla [1] that gave a natural left or right 
inverse for implicit descriptions without delays. 
Our first contribution is to give necessary and sufficient conditions for the system to be left invertible. The 
paper is structured as follows. The first part deals with solvability and invertibility of this class of systems in 
the frequency domain. The second part deals with systems without delays. A criterion will be given for one 
side invertibility in this section.    
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2 Solvability and one side invertibility  
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Then the system )2()1( −  can be written as: 
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As usual, u , w , y~  represent respectively the input, state and output of the system )~(Σ . The setting is very 

general in the sense that E~ is not invertible, 0
~A , 1

~A are unbounded operators, B~  and C~  are restricted to be 
bounded, uniqueness of the solution is not required, and an explicit solution, will even not be demanded. 

By using Laplace transform (this was used in [2]) the system )~(Σ  can be rewritten as follows: 
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where s is the classical Laplace variable. 

 

Definition 1:   The system )ˆ(Σ  is said to be solvable if  ))exp(~~~( 10 shAAEs −−−  is invertible. 

Definition 2:   The system )~(Σ  is left invertible if the following condition is fulfilled  

 .0)(    0)(~ ≡⇒≡ tuty   (5) 

By )(1 sU−  we shall denote all functions that are strictly proper (see [8] for more detail and information). 

This notion may also be expressed in terms of transfer function of the system )~(Σ  as follows. 

 

Lemma 1:   The system )~(Σ  is left invertible if and only if 

 ,0)(ˆ    0)(ˆ))exp(,( ≡⇒≡− susushsT   (6) 

Where )((.)ˆ 1 sUu −∈  and  BshAAEsCshsT ~))exp(~~~(~))exp(,( 1
10

−−−−=−   is the transfer function 

of the system )~(Σ . 

Proof: It directly obtained by using the Laplace transform of input-output relation. 
 
Proposition 1: Under the condition that 
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The system  )~(Σ is left invertible. 

Proof: This can be easily proved using the lemma1. 
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Proposition 2: If the system  )~(Σ  is left invertible, then 
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For some .Cs∈  

Proof: It follows from lemma1. 
 
Note that, in order to simplify the exposition, we just consider here systems having only one delay in the 
state. Our results may easily be extended to systems with several integer delays in the state, in the input and 
in the output. 

3 Classical systems without delays and one side invertibility 
We can associate with the system )~(Σ  the following quadruples of operators )~,~,~,~( kkkk HGFD  representing 

the family of classical (without delays) implicit systems (see for instance [5], [7]), say )~( kΣ : 
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Where  

 

 

Let us denote the transfer function of  )~( kΣ as : 

 kkkkk GFDsHs ~)~~(~)( 1−−=Φ   (10) 

First we shall start by giving a result for invertibility of the operator ).~~( kk FDs −   

Lemma 2:   The operator )~~( kk FDs −  is invertible if and only if )~~( 0AEs −  is invertible. 

Proof:  i) Suppose that )~~( 0AEs −  is invertible. Let T
kxxv ).....( 0= be a vector in the Kernel of )~~( kk FDs − . 

This implies 
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This is equivalent to saying that .0....10 ==== kxxx  

ii) Reciprocally, suppose that )~~( kk FDs −  is invertible and let 0x be an element such that 0)~~( 00 =− xAEs , 
then we have 
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This implies that .00 =x  

The next proposition is the central result of this section. 

Proposition 3: The system )~( kΣ is left invertible if and only if the subsystem )~,~,~,~( 0 CBAE is also invertible. 

Proof:  Let T
kk

T
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operator  )~~( 0AEs −  is invertible, then it is not hard to show that 
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i  Furthermore the transfer function of the system )~( kΣ  is given 
by: 
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According to the proof of lemma 2, we conclude that the system )~( kΣ  is left invertible if and only if the 

subsystem )~,~,~,~( 0 CBAE  is invertible. 

As an easy corollary of this proposition one has the following result. 

Corollary 1: The system  )~( kΣ  is left invertible if the following condition hold: 
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Proof: It immediately results from proposition 3 and proposition 1. 
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