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A NASTY FILTERING PROBLEM ∗

BY RAMON VAN HANDEL

Princeton University

We construct a stationary Markov process with trivial tailσ-field and a
nondegenerate observation process such that the corresponding nonlinear fil-
tering process is not uniquely ergodic. This settles in the negative a conjecture
in the ergodic theory of nonlinear filters arising from an erroneous proof in a
classic paper of H. Kunita [J. Multivariate Anal.1 (1971) 365–393].

1. Introduction and main result. LetE andF be Polish spaces, and consider
anE × F -valued stochastic process(Xk, Yk)k∈Z with the following properties:

1. (Xk, Yk)k∈Z is a stationary Markov process.
2. There exist transition kernelsP from E to E andΦ from E to F such that

P[(Xn, Yn) ∈ A|Xn−1, Yn−1] =
∫

1A(x, y)P (Xn−1, dx)Φ(x, dy).

Such a process is called a stationaryhidden Markov model; its dependence struc-
ture is illustrated schematically in Figure1. In applications,(Xk)k∈Z represents
a “hidden” process which is not directly observable, while the observable process
(Yk)k∈Z represents “noisy observations” of the hidden process [3].

Of fundamental importance in this setting is thenonlinear filter(πk)k≥0, defined
as the regular conditional probability

πn = P[Xn ∈ · |Y1, . . . , Yn].

That is,πn is the conditional distribution of the current state of the hidden process
given the observations to date. It is a basic fact in the theory of hidden Markov
models that the filtering process(πk)k≥0 is itself a Markov process taking values
in the spaceP(E) of probability measures onE, whose transition kernelΠ can be
expressed in terms of the transition kernelsP andΦ that determine the model (this
and other basic facts on nonlinear filters are reviewed in theappendix).

Following Kunita [9], we will be interested in the structure of the space of
Π-invariant probability measures inP(P(E)). It is easily seen that for everyΠ-
invariant measurem ∈ P(P(E)), the barycenterµ ∈ P(E) of m must be invariant
for the transition kernelP of the hidden process. Conversely, for everyP -invariant
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FIG 1. Schematic illustration of the dependence structure of a hidden Markov model.

measureµ ∈ P(E), there exists at least oneΠ-invariant measurem ∈ P(P(E))
whose barycenter isµ. However, the latter need not be unique.

THEOREM 1.1 (Kunita). Let P[X0 ∈ · ] := µ be theP -invariant measure
defined by the stationary hidden Markov model(Xk, Yk)k∈Z as above. If

(1.1)
⋂

n≤0

(

FY
−∞,0 ∨ FX

−∞,n

)

= FY
−∞,0 P-a.s.,

then there exists a uniqueΠ-invariant measure with barycenterµ. The converse
holds if in additionΦ possesses a transition density with respect to someσ-finite
reference measure.[HereFY

−∞,0 := σ{Yk : k ≤ 0}, FX
−∞,n := σ{Xk : k ≤ n}.]

REMARK 1.2. Though the main ideas of the proof are implicitly contained in
[9], this simple and general statement does not appear in the literature without a
variety of additional simplifying assumptions. For completeness, and in order to
make this paper self-contained, we therefore include the proof in the appendix.

Theorem1.1is not actually stated as such by Kunita [9]. Instead, Kunita assumes
that the hidden process(Xk)k∈Z is purely nondeterministic:

DEFINITION 1.3. A stochastic process(Xk)k∈Z is calledpurely nondetermin-
istic if its past tailσ-field

⋂

n≤0 F
X
−∞,n is P-a.s. trivial.

Kunita’s main theorem states1 that if the hidden process(Xk)k∈Z is purely non-
deterministic, then there exists a uniqueΠ-invariant measure with barycenterµ.
Kunita’s proof, however, does not establish this claim. Indeed, at the crucial point
in the proof ([9], top of p. 384), Kunita implicitly takes for granted that the follow-
ing exchange of intersection and supremum is permitted:

(1.2)
⋂

n≤0

(

FY
−∞,0 ∨ FX

−∞,n

) ?
= FY

−∞,0 ∨
⋂

n≤0

FX
−∞,n P-a.s.

1 In fact, Kunita’s paper is written in the context of a continuous time model with a white noise
observation structure. None of these specific features of his model are used in the proofs, however.
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If this exchange were justified, then Kunita’s result would indeed follow immedi-
ately from Theorem1.1. However, in general, such an exchange of intersection and
supremum isnot permitted, as can be seen in simple examples.2

The goal of this paper is to settle, in the negative, a fundamental conjecture on
the validity of the identity (1.2). Before we can describe the conjecture, we must
first review what is known about the validity of (1.2) in the general setting.

1.1. A simple counterexample.The gap in Kunita’s proof was discovered in
[1], where a simple counterexample to (1.2) was given. The following variant of
this example will be helpful in understanding our main result.

Let (ξk)k∈Z be an i.i.d. sequence of (Bernoulli) random variables uniformly dis-
tributed in{0, 1}. LetE = {0, 1}×{0, 1} andF = {0, 1}, and define the stochas-
tic process(Xk, Yk)k∈Z taking values inE × F as follows:

Xn = (ξn−1, ξn), Yn = |ξn − ξn−1|.

It is evident that(Xk, Yk)k∈Z is a stationary hidden Markov model. Now note that:

• Clearlyξ0 = (ξn−1 + Yn + · · ·+ Y0)mod 2 for anyn ≤ 0. Therefore,

ξ0 is
⋂

n≤0

(

FY
−∞,0 ∨ FX

−∞,n

)

-measurable.

• On the other hand, direct computation givesP[ξ0 = 0|FY
−∞,0] = 1/2, so

ξ0 is not FY
−∞,0-measurableP-a.s.

• (Xk)k∈Z is purely nondeterministic by the Kolmogorov zero-one law.

Therefore, evidently the identity (1.2) does not hold in this example.

1.2. A positive result and a conjecture.In view of the counterexample above,
one might expect that the gap in Kunita’s proof cannot be resolved in general. How-
ever, it turns out that such counterexamples are extremely fragile. For example, let
(γk)k∈Z be an i.i.d. sequence of standard Gaussian random variables, and let us
modify the observation model in the above example to

Yn = |ξn − ξn−1|+ εγn.

Then it can be verified that for arbitrarily smallε > 0, the identity (1.2) holds
true. It is only in the degenerate caseε = 0 that (1.2) fails. This suggests that the
presence of some amount of noise, however small, is sufficient in order to ensure
the validity of (1.2). This intuition can be made precise in a surprisingly general
setting, which is established by the following result due tothe author [18]. Here
the notion of nondegeneracy formalizes the presence of observation noise.

2 For another instance of the incorrect application of (1.2) in ergodic theory, see [16], p. 837.
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DEFINITION 1.4. The hidden Markov model(Xk, Yk)k∈Z is said to possess
nondegenerate observationsif there exist aσ-finite reference measureϕ onF and
a strictly positive measurable functiong : E × F → ]0,∞[ such that

Φ(x,A) =

∫

1A(y) g(x, y)ϕ(dy) for all x ∈ E, A ∈ B(F ).

THEOREM 1.5 ([18]). Given a stationary hidden Markov model(Xk, Yk)k∈Z
as defined in this section, withP -invariant measureP[X0 ∈ · ] := µ, assume that:

1. The hidden process(Xk)k∈Z is absolutely regular:

(1.3) E
[

‖P[Xn ∈ · |X0]− µ‖TV

] n→∞
−−−→ 0.

2. The observations are nondegenerate.

Then the identity (1.1) holds true.

This result resolves the validity of (1.1) in many cases of interest. Indeed, the
mixing assumption (1.3) holds in a very broad class of applications, and a well-
established theory provides a powerful set of tools to verify this assumption [14].
Nonetheless, the assumption (1.3) is strictly stronger than the assumption that the
hidden process is purely nondeterministic; the latter is equivalent to

E
[

|P[Xn ∈ A|X0]− µ(A)|
] n→∞
−−−→ 0 for all A ∈ B(E)

(see [17], Proposition 3). If, as one might conjecture, nondegeneracy of the obser-
vations suffices to justify the exchange of intersection andsupremum (1.2), then
Theorem1.5 should already hold when the hidden process is only purely nonde-
terministic: that is, Kunita’s claim would hold true whenever the observations are
nondegenerate. This stronger result was conjectured in [18], pp. 1877–1878.

CONJECTURE1.6. If the hidden process is purely nondeterministic and the
observations are nondegenerate, then (1.1) holds true.

Conjecture1.6 seems tantalizingly close to Theorem1.5, particularly if we
rephrase (1.3) in terms of tailσ-fields. Indeed, letPx be a version of the regu-
lar conditional probabilityPX0 = P[ · |X0]. Then, from the results of [18], for
example, one may read off the following equivalent formulation of (1.3):

There exists a setE0 ∈ B(E), µ(E0) = 1 such that

Px[A] = Py[A] ∈ {0, 1} for all x, y ∈ E0, A ∈
⋂

n≤0 F
X
−∞,n.
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On the other hand, clearly(Xk)k∈Z is purely nondeterministic if and only if

For allA ∈
⋂

n≤0 F
X
−∞,n, there exists a setE0 ∈ B(E), µ(E0) = 1

such thatPx[A] = Py[A] ∈ {0, 1} for all x, y ∈ E0.

Thus the difference between the two assumptions is that in the latter, the excep-
tional setE\E0 may depend onA, while in the formerE0 cannot depend onA.

1.3. Main result. The main result of this paper is that Conjecture1.6 is false.
We establish this by exhibiting a counterexample.

THEOREM1.7. There exists a stationary hidden Markov model(Xk, Yk)k∈Z in
a Polish state spaceE×F such that the hidden process is purely nondeterministic
and the observations are nondegenerate, but nonetheless (1.1) fails to hold.

Moreover, this model may be constructed such that the transition kernelP of
the hidden process is Feller, and such that the observationsare of standard additive
noise typeYn = h(Xn)+εγn whereh : E → R3 is a bounded continuous function,
ε > 0 and(γk)k∈Z are standard Gaussian random variables inR3.

The counterexample to Conjecture1.6, whose existence is guaranteed by this
result, must surely yield a nasty filtering problem! Yet, Theorem1.7 indicates the
model need not even betoo nasty: the example can be chosen to satisfy standard
regularity assumptions and using a perfectly ordinary observation model. It there-
fore seems doubtful that the general result of Theorem1.5 can be substantially
weakened; absolute regularity (1.3) is evidently essential.

Let us briefly explain the intuition behind the counterexample. We aim to mim-
ick the noiseless counterexample in section1.1. The idea is to construct a variant
of that model which has very long memory: we can then hope to average out the
additional observation noise (needed to make the observations nondegenerate), re-
verting essentially to the noiseless case. On the other hand, we cannot give the pro-
cess such long memory that it ceases to be purely nondeterministic. The following
construction strikes a balance between these competing goals. We reconsider the
example of section1.1not as a time series, but as a random scenery. We then con-
struct a stochastic process by running a random walk on the integers, and reporting
at each time the value of the scenery at the current location of the walk. The re-
sulting random walk in random scenery[5, 8] is purely nondeterministic, yet has a
very long memory due to the recurrence of the random walk. Thelatter is exploited
by a remarkablescenery reconstructionresult of Matzinger and Rolles [11] which
allows us to average out the observation noise. Theorem1.7 follows essentially by
combining the scenery reconstruction with the example of section 1.1, except that
we must work in a slightly larger state space for technical reasons.
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REMARK 1.8. Random walks in random scenery are closely related to the
T, T−1-process, which was conjectured by Weiss ([22], p. 682) and later proved by
Kalikow [7] to be a natural example of aK-process which is not aB-process. In the
language of ergodic theory, the time reversal of a purely nondeterministic process
is aK-process (e.g., [6]) while a process whose time reversal satisfies (1.1) is a
FY
0,∞-relativeK-process (e.g., [15]). Our example may therefore be interpreted

as aK-process which is notK relative to a nondegenerate observation process.
Absolute regularity (1.3) is equivalent to the weak Bernoulli property (cf. [20]).

We end this section with a brief discussion of the practical implications of The-
orem 1.7. The mixing assumption (1.3) required by Theorem1.5 states that the
law of the hidden process converges in the sense of total variation to the invari-
ant measureµ for almost every initial condition. This occurs in a wide variety of
applications [14], as long as the hidden state spaceE is finite dimensional. In in-
finite dimensions, however, most probability measures are mutually singular and
total variation convergence is rare. When the hidden process is defined by the so-
lution of a stochastic partial differential equation, for example, typically the best
we can hope for is weak convergence to the invariant measure.In this case (1.3)
fails, though the process is still purely nondeterministic. Our main result indicates
that nice ergodic properties of the nonlinear filter cannot be taken for granted in
the infinite dimensional setting. This is unfortunate, as infinite dimensional filter-
ing problems appear naturally in important applications such as weather prediction
and geophysical or oceanographic data assimilation (see, e.g., [10]), while ergodic-
ity of the nonlinear filter is essential to reliable performance of filtering algorithms
[19]. The current state of knowledge on the ergodic theory of infinite dimensional
filtering problems appears to be essentially nonexistent.

The remainder of this paper is organized as follows. In section 2 we introduce
the various stochastic processes needed to construct our counterexample. Sections
3 and4 are devoted to the proof of Theorem1.7. Finally, the appendix reviews the
ergodic theory of nonlinear filters (including a proof of Theorem1.1).

2. Construction. In the following, we will work on the canonical probability
space(Ω,F,P) which supports the following independent random variables.

• (ηk)k∈Z andξ0 are i.i.d. random variables, uniformly distributed in{0, 1, 2}.
• (δk)k∈Z are i.i.d. random variables, uniformly distributed in{−1, 1}.
• (γk)k∈Z are i.i.d. standard Gaussian random variables inR3.

Denote by{e(0), e(1), e(2)} ⊂ R3 the canonical basis inR3.
We now proceed to define various stochastic processes. Definerecursively

ξn =

{

(ξn−1 + ηn)mod 3 for n > 0,
(ξn+1 − ηn+1)mod 3 for n < 0.
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Note that(ξk)k∈Z is an i.i.d. sequence uniformly distributed in{0, 1, 2}, and that

ηn = (ξn − ξn−1)mod 3.

Next, we define the simple random walk(Nk)k∈Z onZ as

Nn =

{ ∑n
k=1 δk for n ≥ 0,

−
∑0

k=n+1 δk for n < 0.

We can now define the random walk in random scenery(Zk)k∈Z which takes values
in the set{−1, 1} × {0, 1, 2} × {0, 1, 2} := I as follows:

Zn = (Zn,0, Zn,1, Zn,2) = (δn+1, ξNn−1, ξNn).

It is not difficult to see that(Zn)n∈Z is a stationary process. We finally make the
process Markovian by defining theIZ+-valued process(Xn)n∈Z as

Xn = (Zk)k≥n (that is,Xn,k = Zn+k for k ∈ Z+),

and we define theR3-valued observation process(Yk)k∈Z as

Yn = h(Xn) + εγn = e(ηNn) + εγn,

whereε > 0 is a fixed constant andh : IZ+ → R3 is defined as

h(x) = e((x0,2 − x0,1)mod 3).

It is evident that the pair(Xn, Yn)n∈Z defines a stationary hidden Markov model
taking values in the Polish spaceIZ+ × R3 and with nondegenerate observations.

Let us define theσ-fields

FX
m,n = σ{Xk : k ∈ [m,n]}, FY

m,n = σ{Yk : k ∈ [m,n]},

for m,n ∈ Z, m ≤ n. Theσ-fieldsFX
−∞,n, FX

m,∞, etc., are defined in the usual
fashion (for example,FX

−∞,n =
∨

m≤n F
X
m,n). Our main result is now as follows.

THEOREM 2.1. For the hidden Markov model(Xk, Yk)k∈Z with nondegener-
ate observations, as defined in this section, the following hold:

1. The future tailσ-field

T :=
⋂

n≥0

FX
n,∞ isP-a.s. trivial.
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2. We have the strict inclusion
⋂

n≥0

(FY
0,∞ ∨ FX

n,∞) ) FY
0,∞ P-a.s.,

provided thatε > 0 is chosen sufficiently small.

The proof of this result, given in section3 below, is based on mixing and recon-
struction results for random walks in random scenery [12, 11].

The model of Theorem2.1is time-reversed from the counterexample to be pro-
vided by Theorem1.7. It is immediate from the Markov property, however, that the
time reversal of a stationary hidden Markov model yields again a stationary hidden
Markov model. Therefore, the following corollary is immediate:

COROLLARY 2.2. For ε > 0 sufficiently small, the time-reversed model

(X̃k, Ỹk)k∈Z := (X−k, Y−k)k∈Z

is purely nondeterministic and has nondegenerate observations, but (1.1) fails.

This establishes the first part of Theorem1.7 and settles Conjecture1.6. How-
ever, when constructed in this manner, the transition kernel of (X̃k)k∈Z cannot
be chosen to satisfy the Feller property onIZ+ . Some further effort is therefore
required to complete the proof of Theorem1.7, which we postpone to section4.

3. Proof of Theorem2.1.

3.1. First part. Consider the stochastic processξ̃n := (ξn−1, ξn). It is easily
seen that this is a stationary, irreducible and aperiodic Markov chain taking values
in the space{0, 1, 2} × {0, 1, 2}. In particular, this is a totally ergodic process.
The triviality of T now follows from the Corollary in [12], p. 269 (see [6] for the
definition of aK-automorphism and its relation toT).

3.2. Second part. Consider the modified observation process(Y ′
k)k∈Z taking

values in{0, 1, 2}, defined as follows:

Y ′
n = argmax

i=0,1,2
Yn,i.

That is,Y ′
n is the coordinate index of the largest component of the vector Yn ∈ R3.

By symmetry, it is easily seen that for someδ > 0 depending onε

P[Y ′
n = i|ηNn = j] =

δ

3
∀ i 6= j, P[Y ′

n = i|ηNn = i] = 1−
2δ

3
∀i,
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whereδ ↓ 0 asε ↓ 0. The conditional law ofY ′
n can therefore be generated as

follows: draw a Bernoulli random variable with parameterδ; if it is zero, setY ′
n =

ηNn , otherwise letY ′
n be a random draw from the uniform distribution on{0, 1, 2}.

With this error model, we can apply the scenery reconstruction result from [11].

DEFINITION 3.1. Letx, y ∈ {0, 1, 2}Z . We writex ≈ y if there exista ∈
{−1, 1} and b ∈ Z such thatxn = yan+b for all n ∈ Z (that is,x ≈ y iff the
sequencesx andy agree up to translation and/or reflection).

THEOREM 3.2 ([11]). There is a measurable mapι : {0, 1, 2}Z+ → {0, 1, 2}Z

such thatP[ι((Y ′
k)k≥0) ≈ (ηk)k∈Z] = 1 providedε > 0 is sufficiently small.

From now on, let us fixε > 0 sufficiently small and the mapι as in Theorem
3.2. By the definition of the equivalence relation≈, there existFY

0,∞ ∨ F
η
−∞,∞-

measurable random variablesA andB, taking values in{−1, 1} andZ, respec-
tively, such thatι((Y ′

k)k≥0)n = ηAn+B P-a.s. for alln ∈ Z.

REMARK 3.3. Let us note that, even though by construction(ηAk+B)k∈Z is
a.s.FY

0,∞-measurable, it is not possible for the random variablesA andB to be
FY
0,∞-measurable; see [8], Remark (ii). This will not be a problem for us.

The point of the above construction is the following claim: the random variable
ξB is a.s.

⋂

n(F
Y
0,∞ ∨ FX

n,∞)-measurable, but it is not a.s.FY
0,∞-measurable. This

clearly suffices to prove the result. Therefore, it remains to establish the claim.

LEMMA 3.4. The random variableξB isP-a.s.
⋂

n(F
Y
0,∞∨FX

n,∞)-measurable.

PROOF. Fix n ∈ Z. Define the random variables(τk)k∈Z as

τj = inf

{

k ≥ 0 :

k−1
∑

i=0

Xn,i,0 = j

}

,

and define the random variables(ξ′k)k∈Z as

ξ′j = Xn,τj ,2 1τj<∞.

Then clearly(ξ′k)k∈Z isFX
n,∞-measurable andP[(ξ′k)k∈Z ≈ (ξk)k∈Z] = 1.

We now claim that we can “align”(ξ′k)k∈Z with (ηAk+B)k∈Z. Indeed, note that
for anyb ∈ Z, we can estimate

P [ηk = ηk+b for all k ∈ Z] ≤ P [η0 = ηkb for all k ≥ 1] = 0,
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P [ηk = η−k+b for all k ∈ Z] ≤

∞
∏

k=b

P [ηk = η−k+b] = 0,

where we have used that(ηk)k∈Z are i.i.d. and nondeterministic. Therefore

P [there exista ∈ {−1, 1}, b ∈ Z such thatηk = ηak+b for all k ∈ Z] = 0.

In particular, if we define(η′k)k∈Z as

η′j = (ξ′j − ξ′j−1)mod 3,

it follows that there must existP-a.s. uniqueFY
0,∞ ∨ FX

n,∞-measurable random
variablesA′ andB′, taking values in{−1, 1} andZ, respectively, such that

η′A′j+B′ = ηAj+B for all j ∈ Z P-a.s.

It follows by uniqueness that

ξ′A′j+B′ = ξAj+B for all j ∈ Z P-a.s.

In particular,ξ′B′ = ξB P-a.s. Butξ′B′ isFY
0,∞∨FX

n,∞-measurable by construction.
Therefore, we have shown thatξB isP-a.s.FY

0,∞∨FX
n,∞-measurable. As the choice

of n was arbitrary, the proof is easily completed.

LEMMA 3.5. The random variableξB is notP-a.s.FY
0,∞-measurable.

PROOF. Note thatP-a.s.

P[ξB = i, B = j|Fη
−∞,∞ ∨ Fδ

−∞,∞ ∨ F
γ
−∞,∞]

= 1B=j P[ξj = i|Fη
−∞,∞ ∨ Fδ

−∞,∞ ∨ F
γ
−∞,∞]

= 1B=j {P[ξ0 = i|Fη
−∞,∞ ∨ Fδ

−∞,∞ ∨ F
γ
−∞,∞] ◦Θj}

= 1B=j P[ξ0 = i].

Here we have used thatB is FY
0,∞ ∨ F

η
−∞,∞-measurable for the first equality,

stationarity of the law of(ξk, ηk, δk, γk)k∈Z for the second equality (Θ denotes the
canonical shift), and independence ofξ0 and(ηk, δk, γk)k∈Z for the third equality.
Summing overj, and conditioning onFY

0,∞, we obtain

P[ξB = i|FY
0,∞] = P[ξ0 = i] = 1/3 P-a.s.

Therefore,ξB is notP-a.s.FY
0,∞-measurable.
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REMARK 3.6. The additive noise observation modelYn = h(Xn) + εγn is
inessential to the proof; we could have just as easily started from the{0, 1, 2}-
valued observation modelY ′

n as is done in [11]. The only reason we have chosen
to construct our example with the additive noise model to make the point that there
is nothing special about the choice of observations: one does not have to “cook
up” a complicated observation model to make the counterexample work. All the
unpleasantness arises from the ergodic theory of random walks in random scenery.

4. Proof of Theorem1.7. For anyx ∈ IZ+ , define

τj(x) = inf

{

k ≥ 0 :
k−1
∑

i=0

xi,0 = j

}

.

Now define the space

E :=
{

x ∈ IZ+ : τj(x) < ∞ for all j ∈ Z
}

⊂ IZ+ .

We endowE with the topology of pointwise convergence (inherited fromIZ+).

LEMMA 4.1. E is Polish.

PROOF. Forx, x′ ∈ E, define the metric

d(x, x′) :=
∞
∑

k=0

2−k 1xk 6=x′

k
+

∞
∑

j=−∞

2−|j| {|τj(x)− τj(x
′)| ∧ 1}.

It suffices to prove thatd metrizes the topology of pointwise convergence inE
(which is certainly separable) and that(E, d) is a complete metric space.

We first prove thatd metrizes the topology of pointwise convergence. Clearly
d(xn, x) → 0 asn → ∞ implies thatxn → x pointwise. Conversely, suppose
that xn → x asn → ∞ pointwise. It suffices to show thatτj(xn) → τj(x) as
n → ∞ for all j ∈ Z. But asτj(x) < ∞ by assumption (asx ∈ E), it follows
thatτj(xn) = τj(x) wheneverxn,k = xk for all k ≤ τj(x), which is the case forn
sufficiently large by pointwise convergence. This establishes the claim.

It remains to show that(E, d) is complete. To this end, let(xn)n∈N be a Cauchy
sequence for the metricd. Then it is clearly Cauchy for

d̃(x, x′) :=

∞
∑

k=0

2−k 1xk 6=x′

k
,

which defines a complete metric for the topology of pointwiseconvergence on
IZ+ ⊃ E. Therefore, there existsx ∈ IZ+ such thatxn → x asn → ∞ pointwise.
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It suffices to show thatx ∈ E. Indeed, when this is the case, it follows immedi-
ately thatd(xn, x) → 0 asn → ∞ (as we have shown thatd metrizes pointwise
convergence inE), thus proving completeness of(E, d).

To complete the proof, suppose thatx 6∈ E. Then there existsj ∈ Z such that
τj(x) = ∞. In particular, ifxn,k = xk for all k ≤ N < ∞, thenτj(xn) > N . As
this is the case forn sufficiently large by pointwise convergence, it follows that

sup
m≥n

d(xm, xn) ≥ 2−|j| sup
m≥n

|τj(xm)− τj(xn)| ∧ 1 = 2−|j| for all n ≥ 1.

This contradicts the Cauchy property of(xn)n∈N.

Denote byP[X0 ∈ · ] := µ the invariant measure of theIZ+-valued Markov
process(Xk)k∈Z defined in section2. It is clear thatE is measurable as a subset of
IZ+ and thatµ(E) = 1. We are going to construct a Feller transition kernelP̃ from
E to E with stationary measureµ (restricted toE), such that the corresponding
stationaryE-valued Markov process coincides a.s. with the stationaryIZ+ -valued
Markov process(X̃k)k∈Z defined in section2.

LEMMA 4.2. Define the transition kernel̃P : E ×B(E) → [0, 1] as follows:

P̃ (x, {T1(x)}) = P̃ (x, {T−1(x)}) =
1

2
,

whereTa : E → E, a ∈ {−1, 1} are defined as

Ta(x) = [(a, xτ−a(x),1, xτ−a(x),2), x].

Then the law underP of the process(X̃k)k∈Z defined in section2 is that of a sta-
tionary Markov process taking values inE with transition kernelP̃ and invariant
measureµ. Moreover,P̃ is satisfies the Feller property.

PROOF. It follows along the lines of the proof of Lemma4.1 that the functions
T1 andT−1 are continuous. Therefore, the Feller property ofP̃ is immediate.

To complete the proof, it suffices (as clearlỹXn ∈ E P-a.s. for alln ∈ Z and
as(X̃k)k∈Z is a stationary Markov process) to show that

P[X̃1 ∈ A|X̃0] = P̃ (X̃0, A) P-a.s. for allA ∈ B(E).

To this end, note that

X̃1 = [(δ0, ξ−δ0−1, ξ−δ0), X̃0] = [(δ0, X̃0,τ−δ0
(X̃0),1

, X̃0,τ−δ0
(X̃0),2

), X̃0] P-a.s.

Moreover, asX̃0 isFξ
−∞,∞∨Fδ

1,∞-measurable, it follows from the construction in

section2 thatδ0 is independent of̃X0. The result follows directly.
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PROOF OFTHEOREM 1.7. Construct the canonicalE × R3-valued stationary
hidden Markov model(X ′

k, Y
′
k)k∈Z such that the hidden process(X ′

k)k∈Z has tran-
sition kernelP̃ and invariant measureX ′

0 ∼ µ, and with the observation model
Y ′
n = h(X ′

n) + εγn where(γk)k∈Z is an i.i.d. sequence of standard Gaussian ran-
dom variables inR3 independent of(X ′

k)k∈Z. Clearly E andR3 are Polish by
Lemma4.1, the observations are nondegenerate,h : E → R3 (defined in section
2) is bounded and continuous, and̃P is Feller by Lemma4.2. Moreover, the law of
the model(X ′

k, Y
′
k)k∈Z coincides with that of(X̃k, Ỹk)k∈Z as defined in section2.

Therefore, by Corollary2.2, (X ′
k)k∈Z is purely nondeterministic but (1.1) fails for

this model whenε > 0 is chosen sufficiently small. This establishes the result.

APPENDIX A: ERGODIC THEORY OF NONLINEAR FILTERS

The goal of the appendix is to collect a few basic results on the ergodic theory of
nonlinear filters. Similar results appear in various forms in the literature, see, for ex-
ample, [2, 4] and the references therein. However, all known proofs require various
simplifying assumptions, such as the Feller property or irreducibility of the hid-
den process, nondegenerate observations, etc. As a generalresult does not appear
to be readily available in the literature, we provide here a largely self-contained
treatment culminating in the proof of Theorem1.1.

Let us note that analogous results can be obtained in the continuous time setting,
either by direct arguments (cf. [23]) or by reduction to discrete time (as in [18]).

A.1. Markov property of the filter. As in the introduction, we letE andF be
Polish spaces, letP : E ×B(E) → [0, 1] andΦ : E ×B(F ) → [0, 1] be the tran-
sition kernels, and letµ : B(E) → [0, 1] be theP -invariant measure defining the
law of the stationary hidden Markov model(Xk, Yk)k∈Z. We denote byP(G) the
space of probability measures on the Polish spaceG, endowed with the topology
of weak convergence of probability measures (so thatP(G) is also Polish).

LEMMA A.1 ([13], Lemma 1). For ν ∈ P(E), define the probability measure

Pν(A) =

∫

1A(x, y) ν(dx
′)P (x′, dx)Φ(x, dy) for all A ∈ B(E × F ).

Denote byX : E×F → E andY : E×F → F the canonical projections. There
exists a measurable mapΠ : P(E)× F → P(E) such thatΠ(ν, Y ) is a version of
the regular conditional probabilityPν(X ∈ · |Y ) for everyν ∈ P(E).

We now define the transition kernelΠ : P(E)×B(P(E)) → [0, 1] as follows:

Π(ν,A) =

∫

1A(Π(ν, y)) ν(dx
′)P (x′, dx)Φ(x, dy).
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We claim that the nonlinear filter(πk)k≥0 is aP(E)-valued Markov process with
transition kernelΠ. To prove this we will need the following result on conditioning
under a regular conditional probability due to von Weizsäcker.

LEMMA A.2 ([21]). LetG,G′ andH be Polish spaces, and denote byg, g′ and
h the canonical projections fromG×G′ ×H onG, G′ andH, respectively. LetQ
be a probability measure onG×G′×H, and letq·,· : G×G′×B(H) → [0, 1] and
q· : G × B(G′ ×H) → [0, 1] be versions of the regular conditional probabilities
Q[h ∈ · |g, g′] andQ[(g′, h) ∈ · |g], respectively. Then forQ-a.e.x ∈ G, the
kernelqx,g′ [ · ] is a version of the regular conditional probabilityqx[h ∈ · |g′].

PROPOSITIONA.3. For n ≥ 0, let the nonlinear filterπn be a version of the
regular conditional probabilityP[Xn ∈ · |Y1, . . . , Yn]. Then(πk)k≥0 is aP(E)-
valued Markov process with transition kernelΠ and initial measureπ0 ∼ δµ.

PROOF. Fix n ≥ 1. It is easily seen that for anyB ∈ B(E × F )

P[(Xn, Yn) ∈ B|Y1, . . . , Yn−1] =

∫

1A(x, y)πn−1(dx
′)P (x′, dx)Φ(x, dy).

Using LemmasA.2 andA.1, and the uniqueness of regular conditional probabili-
ties, we find the recursive formulaπn = Π(πn−1, Yn) P-a.s. It follows easily that

P[πn ∈ A|Y1, . . . , Yn−1] = Π(πn−1, A) P-a.s. for allA ∈ B(P(E)),

completing the proof.

We now establish the two elementary facts stated in the introduction.

LEMMA A.4. Letm ∈ P(P(E)) be anyΠ-invariant probability measure. Then
the barycenter ofm is aP -invariant probability measure.

PROOF. Letm ∈ P(E) be the barycenter ofm. By definition,

m(A) =

∫

ν(A)m(dν) =

∫

ν(A)Π(ν ′, dν)m(dν ′) for A ∈ B(E).

But note that
∫

ν(A)Π(ν ′, dν) = EPν′
[Pν′(X ∈ A|Y )] =

∫

P (x,A) ν ′(dx) by
the definition ofΠ. It follows directly thatmP = m, that is,m is P -invariant.

LEMMA A.5. There is at least oneΠ-invariant measure with barycenterµ.
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PROOF. Forn ∈ Z, let π̃n be a version of the regular conditional probability
P[Xn ∈ · |FY

−∞,n]. Proceeding exactly as in the proof of PropositionA.3, we find
that(π̃k)k∈Z is aP(E)-valued Markov process with transition kernelΠ. But as the
underlying hidden Markov model(Xk, Yk)k∈Z is stationary, clearly(π̃k)k∈Z is also
stationary. Therefore, the law ofπ̃0 is aΠ-invariant measure, and the barycenter of
this law isµ by the tower property of the conditional expectation.

A.2. Proof of Theorem1.1: sufficiency. The proof is essentially contained in
Kunita [9], though we are careful here not to exploit any unnecessary assumptions.
The idea is to introduce a suitable randomization, which is most conveniently done
in the setting of a canonical probability model. To this end,define the Polish space
Ω0 = P(E)×E× (E×F )N with the canonical projectionsm0 : Ω0 → P(E) and
(with a slight abuse of notation)X0 : Ω0 → E, (Xk, Yk)k≥1 : Ω0 → (E × F )N.
Givenm ∈ P(P(E)), we define by the usual Kolmogorov extension argument a
probability measurePm onΩ0 with the finite dimensional distributions

Pm((m0,X0, . . . ,Xn, Y1, . . . , Yn) ∈ A) =
∫

1A(ν, x0, . . . , xn, y1, . . . , yn) ν(dx0)P (x0, dx1)Φ(x1, dy1) · · ·

P (xn−1, dxn)Φ(xn, dyn)m(dν).

We now define forn ≥ 0 three distinguished nonlinear filters:

πmin
n := Pm[Xn ∈ · |Y1, . . . , Yn],

πm

n := Pm[Xn ∈ · |m0, Y1, . . . , Yn],
πmax
n := Pm[Xn ∈ · |m0,X0, Y1, . . . , Yn].

We now have the following easy result. Hereδµ, εµ ∈ P(P(E)) are defined by
δµ(A) = 1µ∈A (as usual) andεµ(A) =

∫

1δx∈A µ(dx).

LEMMA A.6. Letm ∈ P(P(E)) be any probability measure with barycenter
µ. Then(πmin

n )n≥0, (πm

n )n≥0, and(πmax
n )n≥0 areP(E)-valued Markov processes

underPm with transition kernelΠ and initial measuresδµ, m andεµ, respectively.

PROOF. The proof is identical to that of PropositionA.3.

The following result completes the proof of sufficiency.

PROPOSITION A.7. Let p ∈ N, let fi : E → R, i = 1, . . . , p be bounded
measurable functions, and letκ : Rp → R be convex. Define the bounded measur-
able functionF : P(E) → R asF (ν) = κ

(∫

f1(x) ν(dx), . . . ,
∫

fp(x) ν(dx)
)

.
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Finally, letm ∈ P(P(E)) be anyΠ-invariant measure with barycenterµ. Then

E
[

κ
(

E[f1(X0)|F
Y
−∞,0], . . . ,E[fp(X0)|F

Y
−∞,0]

)]

≤

∫

F (ν)m(dν)

≤ E
[

κ
(

E[f1(X0)|G−∞,0], . . . ,E[fp(X0)|G−∞,0]
)]

,

whereG−∞,0 :=
⋂

n(F
Y
−∞,0 ∨ FX

−∞,n). In particular, if (1.1) holds,m coincides
with the distinguishedΠ-invariant measure defined in the proof of LemmaA.5.

PROOF. Note that asκ is convex, it is continuous, henceF is bounded and
measurable. It is an immediate consequence of Jensen’s inequality that

Em[F (πmin
n )] ≤ Em[F (πm

n )] =

∫

F (ν)m(dν) ≤ Em[F (πmax
n )]

for everyn ≥ 0, where we have used LemmaA.6 and theΠ-invariance ofm to
obtain the middle equality. Using LemmaA.6 and the stationarity of(Xk, Yk)k∈Z
underP, it is also easily seen that the laws ofπmin

n (f) andπmax
n (f) underPm coin-

cide with the laws ofE[f(X0)|Y−n+1, . . . , Y0] andE[f(X0)|X−n, Y−n+1, . . . , Y0]
underP, respectively. We therefore have for everyn ≥ 0

E
[

κ
(

E[f1(X0)|F
Y
−n+1,0], . . . ,E[fp(X0)|F

Y
−n+1,0]

)]

≤

∫

F (ν)m(dν)

≤ E
[

κ
(

E[f1(X0)|G−n,0], . . . ,E[fp(X0)|G−n,0]
)]

,

whereG−n,0 := FY
−∞,0 ∨ FX

−∞,−n and we have used the fact that

E[f(X0)|X−n, Y−n+1, . . . , Y0] = E[f(X0)|G−n,0] P-a.s.

asFX
−n+1,0 ∨FY

−n+1,0 is conditionally independent ofFX
−∞,−n−1 ∨FY

−∞,−n given
X−n. But asκ is continuous, the equation display in the statement of the result
follows by lettingn → ∞ using the martingale convergence theorem.

Now suppose that (1.1) holds, and denote bym0 be the distinguishedΠ-invariant
measure obtained in the proof of LemmaA.5. Then we have evidently shown
that

∫

F (ν)m(dν) =
∫

F (ν)m0(dν) for all functionsF of the formF (ν) =
κ
(∫

f1(x) ν(dx), . . . ,
∫

fp(x) ν(dx)
)

for any p, bounded measurablef1, . . . , fp
and convexκ. We claim that this class of functions is measure-determining, so we
can conclude thatm = m0. To establish the claim, first note that by the Stone-
Weierstrass theorem, any continuous function onRp can be approximated uni-
formly on any compact set by the difference of convex functions. Asf1, . . . , fp
are bounded (hence take values in a compact subset ofRp), it therefore suffices
to assume thatκ is continuous rather than convex. Next, note that the indicator
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function 1A of any open subsetA of Rp can be obtained as the increasing limit
of nonnegative continuous functions. It therefore sufficesto assume thatκ is the
indicator of an open subset ofRp. But any probability measure on a Polish space
is regular, so it suffices to assume thatκ is the indicator function of a Borel subset
of Rp. The proof is completed by an application of the Dynkin system lemma.

A.3. Proof of Theorem1.1: necessity. We will in fact prove necessity under
a weaker assumption than is stated in the theorem: the key assumption is that

(A.1)
⋂

n≤0

(

FY
−∞,k∨FX

−∞,n

)

= FY
1,k∨

⋂

n≤0

(

FY
−∞,0∨FX

−∞,n

)

P-a.s. ∀ k ∈ N.

The assumption in the theorem thatΦ possesses a transition density only enters
the proof inasmuch as it guarantees the validity (A.1). Let us note that the assump-
tion of the theorem is itself weaker than nondegeneracy of the observations, as the
transition density is not required to be strictly positive here.

LEMMA A.8. Suppose there exists aσ-finite reference measureϕ onF and a
transition densityg : E×F → [0,∞[ such thatΦ(x,A) =

∫

1A(y) g(x, y)ϕ(dy)
for all x ∈ E, A ∈ B(F ). Then the identity (A.1) holds true.

PROOF. It is easily seen that the assumption guarantees the existence of a prob-
ability measureQ such thatP ≪ Q andFY

1,k is independent ofFX
−∞,0 ∨ FY

−∞,0

underQ. Thus the identity in (A.1) holdsQ-a.s., and thereforeP-a.s.

The proof is based on the following result.

LEMMA A.9. Suppose that there exists a uniqueΠ-invariant measure and that
the assumption (A.1) holds. Then we have for everyA ∈ B(E)

P
[

X0 ∈ A
∣

∣

⋂

n

(

FY
−∞,0 ∨ FX

−∞,n

)]

= P
[

X0 ∈ A
∣

∣FY
−∞,0

]

P-a.s.

PROOF. Define the regular conditional probabilitiesπ0
k = P[Xk ∈ · |FY

−∞,k]

andπ1
k = P[Xk ∈ · |

⋂

n(F
Y
−∞,k ∨ FX

−∞,n)], and denote bym0,m1 ∈ P(P(E))

the laws ofπ0
0 andπ1

0, respectively. Thenm0 is theΠ-invariant measure defined in
the proof of LemmaA.5. We claim thatm1 is alsoΠ-invariant. Indeed, this follows
as a variant of LemmaA.2 (pp. 95–96 in [21]) and the assumption (A.1) imply
thatπ1

k = Π(π1
k−1, Yk) P-a.s., so that(π1

k)k∈Z is Markov with transition kernelΠ,
while (π1

k)k∈Z is easily seen to be a stationary process.
Now suppose the result does not hold. Then there existsA ∈ B(E) such that

E[(π1
k(A))

2]−E[(π0
k(A))

2] = E[(π1
k(A)− π0

k(A))
2] > 0.
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In particular,m0(F ) 6= m1(F ) for F : ν 7→ (ν(A))2. But clearlym0 andm1 both
have barycenterµ, so by assumptionm0 = m1. Thus we have a contradiction.

To complete the proof, we require the following easy variantof LemmaA.1.

LEMMA A.10. For ν ∈ P(E) andk ∈ N, define the probability measure

P k
ν (A) =

∫

1A(x0, y1, . . . , yk) ν(dx0)P (x0, dx1)Φ(x1, dy1) · · ·

P (xk−1, dxk)Φ(xk, dyk) for A ∈ B(E × F k).

Denote byX : E × F k → E andY k : E × F k → F k the canonical projections.
There exists a measurable mapΣk : P(E)×F k → P(E) such thatΣk(ν, Y k) is a
version of the regular conditional probabilityP k

ν (X ∈ · |Y k) for everyν ∈ P(E).

We now complete the proof.

PROPOSITIONA.11. Suppose that there exists a uniqueΠ-invariant measure
and that the assumption (A.1) holds. Then (1.1) holds true.

PROOF. As
⋃

k≤0 L
1(FX

k,0 ∨ FY
k,0,P) is dense inL1(FX

−∞,0 ∨ FY
−∞,0,P), it

suffices to show that for everyk ≤ 0 andZ ∈ L1(FX
k,0 ∨ FY

k,0,P)

E
[

Z
∣

∣

⋂

n

(

FY
−∞,0 ∨ FX

−∞,n

)]

= E
[

Z
∣

∣FY
−∞,0

]

P-a.s.

However, forZ ∈ L1(FX
k,0 ∨ FY

k,0,P), we have by the Markov property

E
[

Z
∣

∣

⋂

n

(

FY
−∞,0 ∨ FX

−∞,n

)]

= E
[

E[Z|σ{Xk} ∨ FY
k,0]

∣

∣

⋂

n

(

FY
−∞,0 ∨ FX

−∞,n

)]

.

It therefore suffices to considerZ ∈ L1(σ{Xk} ∨ FY
k,0,P). But note that the class

of random variables{ZXZY : ZX ∈ L∞(σ{Xk},P), ZY ∈ L∞(FY
k,0,P)} is

total inL1(σ{Xk} ∨ FY
k,0,P). Therefore, it suffices to show that

P
[

Xk ∈ A
∣

∣

⋂

n

(

FY
−∞,0 ∨ FX

−∞,n

)]

= P
[

Xk ∈ A
∣

∣FY
−∞,0

]

P-a.s.

for all k ≤ 0 andA ∈ B(E). Fork = 0, this follows directly from LemmaA.9.
For k < 0, we proceed as follows. Defineπ0

k andπ1
k as in the proof of Lemma

A.9. It is easily established using LemmaA.2 that

P
[

Xk ∈ ·
∣

∣FY
−∞,0

]

= Σk(π0
k, Yk+1, . . . , Y0) P-a.s.

Similarly, a variant of LemmaA.2 (pp. 95–96 in [21]) and assumption (A.1) imply

P
[

Xk ∈ ·
∣

∣

⋂

n

(

FY
−∞,0 ∨ FX

−∞,n

)]

= Σk(π1
k, Yk+1, . . . , Y0) P-a.s.

But by LemmaA.9, applying the Dynkin system lemma with a countable generat-
ing system, and using stationarity,π0

k = π1
k P-a.s. This completes the proof.
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(Première partie, Univ. Strasbourg, Strasbourg, année universitaire 1974/1975). Springer, Berlin,
86–103. Lecture Notes in Math., Vol. 511.

[14] MEYN, S. AND TWEEDIE, R. L. (2009). Markov chains and stochastic stability, Second ed.
Cambridge University Press, Cambridge.

[15] RAHE, M. (1978). Relatively finitely determined implies relatively very weak Bernoulli.
Canad. J. Math.30, 3, 531–548.

[16] SINAI , Y. G. (1989). Kolmogorov’s work on ergodic theory.Ann. Probab.17, 3, 833–839.

[17] TOTOKI, H. (1970). On a class of special flows.Z. Wahrscheinlichkeitstheorie und Verw.
Gebiete 15, 157–167.

[18] VAN HANDEL , R. (2009a). The stability of conditional Markov processesand Markov chains
in random environments.Ann. Probab.37, 5, 1876–1925.

[19] VAN HANDEL , R. (2009b). Uniform time average consistency of Monte Carlo particle filters.
Stochastic Process. Appl.119, 11, 3835–3861.

[20] VOLKONSKII , V. A. AND ROZANOV, Y. A. (1959). Some limit theorems for random functions.
I. Theor. Probability Appl. 4, 178–197.
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