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A NASTY FILTERING PROBLEM *

By RAMON VAN HANDEL

Princeton University

We construct a stationary Markov process with trivial taifield and a
nondegenerate observation process such that the cordésgaronlinear fil-
tering process is not uniquely ergodic. This settles in #gative a conjecture
in the ergodic theory of nonlinear filters arising from aroeeous proof in a
classic paper of H. Kunital[ Multivariate Anal.1 (1971) 365-393].

1. Introduction and mainresult. Let E andF be Polish spaces, and consider
anE x F-valued stochastic procesX, Yi)rcz With the following properties:

1. (X%, Yr)kez is a stationary Markov process.
2. There exist transition kernel8 from £ to £ and® from £ to I’ such that
P[(Xna Yn) S A|Xn—17 Yn—l] = f ].A(l’, y) P(Xn—b dl’) q>(3:7 dy)

Such a process is called a stationhigden Markov modeits dependence struc-
ture is illustrated schematically in Figufe In applications,(Xx)xcz represents
a “hidden” process which is not directly observable, while bbservable process
(Yx)rez represents “noisy observations” of the hidden proc8ps [

Of fundamental importance in this setting is tranlinear filter (7, ) >0, defined
as the regular conditional probability

T =P[X, € -|Yi,....Y,].

That is,, is the conditional distribution of the current state of thidden process
given the observations to date. It is a basic fact in the thebhidden Markov
models that the filtering proce$s;);>o is itself a Markov process taking values
in the spaceéP(E) of probability measures oft, whose transition kernél can be
expressed in terms of the transition kernBland® that determine the model (this
and other basic facts on nonlinear filters are reviewed imfpendix).

Following Kunita PB], we will be interested in the structure of the space of
M-invariant probability measures A(P(E)). It is easily seen that for everfy-
invariant measuren € P(P(E)), the barycenter, € P(E) of m must be invariant
for the transition kerneP of the hidden process. Conversely, for evéynvariant
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FiG 1. Schematic illustration of the dependence structure ofiddm Markov model.

measureu € P(E), there exists at least oré-invariant measuren € P(P(E))
whose barycenter ig. However, the latter need not be unique.

THEOREM 1.1 (Kunita). LetP[X, € -] := p be theP-invariant measure
defined by the stationary hidden Markov modg},, Y;)xcz as above. If
(1.1) ) (F oV FrL,) =7, P-as,
n<0

then there exists a unigueé-invariant measure with barycentgr. The converse
holds if in addition® possesses a transition density with respect to setfirite
reference measurédere 5 ;:= o{Y; : k <0}, FX_ = o{ X : k < n}]

REMARK 1.2. Though the main ideas of the proof are implicitly coméai in
[9], this simple and general statement does not appear intdratlire without a
variety of additional simplifying assumptions. For comntpleess, and in order to
make this paper self-contained, we therefore include thefpn the appendix.

Theoreml.lis not actually stated as such by Kuni@ [Instead, Kunita assumes
that the hidden procegsX; )rcz is purely nondeterministic:

DEFINITION 1.3. A stochastic proce$(«)xcz is calledpurely nondetermin-
istic if its past tailo-field (1, <, Cr”i(mm is P-a.s. trivial.

Kunita’s main theorem statkshat if the hidden processY}, )iz is purely non-
deterministic, then there exists a unigudnvariant measure with barycentgr
Kunita’s proof, however, does not establish this claimeled], at the crucial point
in the proof (P], top of p. 384), Kunita implicitly takes for granted thaetfollow-
ing exchange of intersection and supremum is permitted:

(1.2) N (Yoo VTn) = 5oV () ¥, P-as.

— —o0,n
n<0 n<0

LIn fact, Kunita’s paper is written in the context of a contiig time model with a white noise
observation structure. None of these specific featuressaflodel are used in the proofs, however.
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If this exchange were justified, then Kunita’s result wouideéed follow immedi-
ately from Theoreni.1l However, in general, such an exchange of intersection and
supremum isiot permitted, as can be seen in simple examples.

The goal of this paper is to settle, in the negative, a fungaaheonjecture on
the validity of the identity 1.2). Before we can describe the conjecture, we must
first review what is known about the validity of.@) in the general setting.

1.1. A simple counterexample.The gap in Kunita's proof was discovered in
[1], where a simple counterexample tb.2) was given. The following variant of
this example will be helpful in understanding our main resul

Let (¢ )kez be ani.i.d. sequence of (Bernoulli) random variables unifg dis-
tributed in{0,1}. Let E = {0,1} x {0,1} andF' = {0, 1}, and define the stochas-
tic process Xy, Yi ) ez taking values inE x I as follows:

Xn = (fn—lafn)a Yn = ’fn - fn—l’-
Itis evident that Xy, Yi)rcz IS a stationary hidden Markov model. Now note that:

e Clearlyéy = (&1 + Y + -+ - + Yy) mod 2 for anyn < 0. Therefore,

& is [ (FoV F¥,,,)-measurable
n<0

e On the other hand, direct computation giieg, = 0]&"5_/0070] =1/2,s0
& isnot FY_ ,-measurabl®-a.s.

e (X%)rez is purely nondeterministic by the Kolmogorov zero-one law.

Therefore, evidently the identityl (2) does not hold in this example.

1.2. A positive result and a conjectureln view of the counterexample above,
one might expect that the gap in Kunita’s proof cannot belvesian general. How-
ever, it turns out that such counterexamples are extremadjlé. For example, let
(vk)kez be an i.i.d. sequence of standard Gaussian random vari@vddet us
modify the observation model in the above example to

Yn - ‘gn - gn—l‘ + €Yn.

Then it can be verified that for arbitrarily small > 0, the identity (.2) holds
true. It is only in the degenerate case- 0 that (1.2) fails. This suggests that the
presence of some amount of noise, however small, is suffimierrder to ensure
the validity of (L.2). This intuition can be made precise in a surprisingly gaher
setting, which is established by the following result dudhte author 18]. Here
the notion of nondegeneracy formalizes the presence ofvdigan noise.

2 For another instance of the incorrect applicationlof)in ergodic theory, seelf], p. 837.
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DEFINITION 1.4. The hidden Markov modé€lXy, Y} )rcz is said to possess
nondegenerate observatiorishere exist ar-finite reference measurgeon F' and
a strictly positive measurable functign £ x F' — ]0, co[ such that

O(z,A) = /lA(y) g(z,y)p(dy) forallz € E, Ac B(F).

THEOREM 1.5 ([18]). Given a stationary hidden Markov modeXy, Y )rez
as defined in this section, wifR-invariant measurd®[X, € -] := u, assume that:

1. The hidden procegs\y)xcz is absolutely regular:

n—oo

(1.3) E[|[P[X, € -|Xo] — pflrv] — 0.

2. The observations are nondegenerate.

Then the identityX.1) holds true.

This result resolves the validity ofL(1) in many cases of interest. Indeed, the
mixing assumptionX.3) holds in a very broad class of applications, and a well-
established theory provides a powerful set of tools to yetifs assumption1{4].
Nonetheless, the assumptidhJ) is strictly stronger than the assumption that the
hidden process is purely nondeterministic; the latter isv@dent to

n— o0

E[|P[X, € A|Xo] — u(4)]] == 0 forall A€ B(E)

(see [L7], Proposition 3). If, as one might conjecture, nondegeredd the obser-
vations suffices to justify the exchange of intersection suokremum 1.2), then
Theorem1.5 should already hold when the hidden process is only purehdeo
terministic: that is, Kunita’s claim would hold true whemethe observations are
nondegenerate. This stronger result was conjecturetBingp. 1877-1878.

CONJECTUREL.6. If the hidden process is purely nondeterministic and the
observations are nondegenerate, th&ri) holds true.

Conjecturel.6 seems tantalizingly close to Theoreh®b, particularly if we
rephrase 1.3) in terms of tailo-fields. Indeed, lelP* be a version of the regu-
lar conditional probabilityPXc = P[-|X,]. Then, from the results oflp], for
example, one may read off the following equivalent formiolabf (1.3):

There exists a sdfy € B(E), u(Ep) = 1 such that
P?[A] = PY[A] € {0,1} forall z,y € Ey, A € ,c0F -
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On the other hand, clearlyX})xcz is purely nondeterministic if and only if
ForallA € (<, F* ., there exists a sefy € B(E), u(Eoy) = 1

—o0,n?

such thatP®[A] = PY[A] € {0,1} forall z,y € Ey.

Thus the difference between the two assumptions is thateiridtter, the excep-
tional sett'\ Ey may depend o, while in the formerE, cannot depend oA.

1.3. Main result. The main result of this paper is that Conjectaréis false.
We establish this by exhibiting a counterexample.

THEOREML1.7. There exists a stationary hidden Markov modg},, Y% )xcz in
a Polish state spac® x F' such that the hidden process is purely nondeterministic
and the observations are nondegenerate, but nonetheleBd4ils to hold.

Moreover, this model may be constructed such that the tiianskernel P of
the hidden process is Feller, and such that the observaaomsf standard additive
noise type’,, = h(X,,)+¢cv, whereh : E — R?is abounded continuous function,
e > 0 and (y;) ez are standard Gaussian random variablesRn.

The counterexample to Conjectutes, whose existence is guaranteed by this
result, must surely yield a nasty filtering problem! Yet, ®rem 1.7 indicates the
model need not even leo nasty: the example can be chosen to satisfy standard
regularity assumptions and using a perfectly ordinary nlag®n model. It there-
fore seems doubtful that the general result of Theolebncan be substantially
weakened; absolute regularity. ) is evidently essential.

Let us briefly explain the intuition behind the counterexs&mjVe aim to mim-
ick the noiseless counterexample in sectioh The idea is to construct a variant
of that model which has very long memory: we can then hope ¢oae out the
additional observation noise (needed to make the obsengationdegenerate), re-
verting essentially to the noiseless case. On the other, adannot give the pro-
cess such long memory that it ceases to be purely nondeistiifThe following
construction strikes a balance between these competirig. gbla reconsider the
example of sectiod.1not as a time series, but as a random scenery. We then con-
struct a stochastic process by running a random walk on tegers, and reporting
at each time the value of the scenery at the current locafisheowalk. The re-
sultingrandom walk in random scenef$, 8] is purely nondeterministic, yet has a
very long memory due to the recurrence of the random walk |dtter is exploited
by a remarkablecenery reconstructioresult of Matzinger and Rolle4d 1] which
allows us to average out the observation noise. Thedr&rollows essentially by
combining the scenery reconstruction with the example ctiGe 1.1, except that
we must work in a slightly larger state space for technicasoas.
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REMARK 1.8. Random walks in random scenery are closely relatedeo th
T, T~'-process, which was conjectured by Wei?[[p. 682) and later proved by
Kalikow [7] to be a natural example off/d-process which is not B-process. In the
language of ergodic theory, the time reversal of a purelydetgrministic process
is a K-process (e.g..§]) while a process whose time reversal satisfieq)(is a
fﬂ{oo—relative K-process (e.g.,1b]). Our example may therefore be interpreted
as aK-process which is nok relative to a nondegenerate observation process.
Absolute regularity 1.3) is equivalent to the weak Bernoulli property (20]).

We end this section with a brief discussion of the practicgllications of The-
orem1.7. The mixing assumptionl(3) required by Theoreni.5 states that the
law of the hidden process converges in the sense of totati@rito the invari-
ant measure; for almost every initial condition. This occurs in a wide iedy of
applications 14], as long as the hidden state spdcés finite dimensional. In in-
finite dimensions, however, most probability measures araftly singular and
total variation convergence is rare. When the hidden pmisedefined by the so-
lution of a stochastic partial differential equation, foeple, typically the best
we can hope for is weak convergence to the invariant meabuthis case 1.3)
fails, though the process is still purely nondeterminigbar main result indicates
that nice ergodic properties of the nonlinear filter canmotaken for granted in
the infinite dimensional setting. This is unfortunate, dmite dimensional filter-
ing problems appear naturally in important applicationshsas weather prediction
and geophysical or oceanographic data assimilation (sge[1€]), while ergodic-
ity of the nonlinear filter is essential to reliable performa of filtering algorithms
[19]. The current state of knowledge on the ergodic theory ohitdidimensional
filtering problems appears to be essentially nonexistent.

The remainder of this paper is organized as follows. In ee@iwe introduce
the various stochastic processes needed to construct onirecexample. Sections
3 and4 are devoted to the proof of Theorehv. Finally, the appendix reviews the
ergodic theory of nonlinear filters (including a proof of Dnem1.1).

2. Construction. In the following, we will work on the canonical probability
space((2, F, P) which supports the following independent random variables

o (nx)rez andgy are i.i.d. random variables, uniformly distributed{in 1, 2}.
e (0x)rez are i.i.d. random variables, uniformly distributed{ir 1, 1}.
o (Vi)rez are i.i.d. standard Gaussian random variablé&3n

Denote by{e(0),e(1),e(2)} C R3 the canonical basis iR?>.
We now proceed to define various stochastic processes. Definssively

£, = (&n—1 + M) mod 3 forn > 0,
" ($n41 — 1) mod 3 forn < 0.
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Note that(¢y )rcz is an i.i.d. sequence uniformly distributed{if, 1,2}, and that

h = (gn - gn—l) mod 3.

Next, we define the simple random wdlK}, )<z onZ as

N — ZZ:l Ok forn >0,
"l - 0 forn <.

We can now define the random walk in random sce&}y .z Which takes values
inthe set{—1,1} x {0,1,2} x {0,1,2} := I as follows:

Zn = (Znos Znjy Zn2) = (0n+1,EN,—1,EN,,)-

It is not difficult to see thatZ,,),cz is a stationary process. We finally make the
process Markovian by defining thé+-valued proces§X,, ), cz as

X0 = (Zi)k>n (thatis, X, = Zn4i for k € Z),
and we define th&3-valued observation procegs; )<z as
Y = h(Xn) + &7 = e(nn,,) + e7m;
wheres > 0 is a fixed constant andd : 72+ — R? is defined as
h(xz) = e((xo,2 — xo,1) mod 3).

It is evident that the paifX,,, Y}, ).cz defines a stationary hidden Markov model
taking values in the Polish spaéé+ x R? and with nondegenerate observations.
Let us define the-fields

gern,n = U{Xk k€ [m7n]}7 i-Tr'r}r/L,n = J{Yk ke [m7n]}7

for m,n € Z, m < n. Theo-fields FX FX _ etc., are defined in the usual

—oo,n’ ¥ m,00’?

fashion (for exampleﬁFfoom =V,<n ?ﬁ,n). Our main result is now as follows.

THEOREM 2.1. For the hidden Markov modélXy, Y} )rcz with nondegener-
ate observations, as defined in this section, the followilg:h

1. The future taib-field

T:=()FY, isP-as.trivial
n>0
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2. We have the strict inclusion

ﬂ (3%/,00 N 377)500) 2 3‘(}]/,00 P-a.s,
n>0

provided that > 0 is chosen sufficiently small.

The proof of this result, given in secti@below, is based on mixing and recon-
struction results for random walks in random scené; 11].

The model of Theorerg.1is time-reversed from the counterexample to be pro-
vided by Theoreni..7. It is immediate from the Markov property, however, that the
time reversal of a stationary hidden Markov model yielddrmgastationary hidden
Markov model. Therefore, the following corollary is immats:

COROLLARY 2.2. For e > 0 sufficiently small, the time-reversed model

(X Viehkez = (X—p, Yop)kez
is purely nondeterministic and has nondegenerate obsengtbut (.1) fails.

This establishes the first part of Theordn7 and settles Conjecturk6. How-
ever, when constructed in this manner, the transition Iteurhéf(k)kez cannot
be chosen to satisfy the Feller property Br. Some further effort is therefore
required to complete the proof of Theordn?, which we postpone to sectiagh

3. Proof of Theorem?2.1

3.1. First part. Consider the stochastic process:= (£,_1,&,). It is easily
seen that this is a stationary, irreducible and aperiodickblachain taking values
in the space{0,1,2} x {0,1,2}. In particular, this is a totally ergodic process.
The triviality of 7 now follows from the Corollary in12], p. 269 (see ] for the
definition of ai -automorphism and its relation 9.

3.2. Second part. Consider the modified observation proc€$$).cz taking
values in{0, 1, 2}, defined as follows:

Y,; = argmax Yy, ;.
i=0,1,2

Thatis,Y; is the coordinate index of the largest component of the véciae R3.
By symmetry, it is easily seen that for some- 0 depending o
20

P[YrZZZWNn:J]:g Vi#J, P[YAZZWN”:Z]:I—? Vi,
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whered | 0 ase | 0. The conditional law ofY, can therefore be generated as
follows: draw a Bernoulli random variable with parameigif it is zero, setY, =
7, , otherwise let’ be a random draw from the uniform distribution fin 1, 2}.
With this error model, we can apply the scenery reconswoatesult from [L1].

DEFINITION 3.1. Letxz,y € {0,1,2}%*. We writex ~ y if there exista ¢
{—1,1} andb € Z such thatr,, = yunp for all n € Z (that is,z ~ y iff the
sequences andy agree up to translation and/or reflection).

THEOREM3.2 ([11]). There is a measurable map {0, 1,2}>+ — {0,1,2}*
such thatP[.((Y})r>0) = (mk)kez] = 1 providede > 0 is sufficiently small.

From now on, let us fix > 0 sufficiently small and the mapas in Theorem
3.2 By the definition of the equivalence relaties, there existTafoo v F!

—00,00"

measurable random variablelsand B, taking values i{—1,1} andZ, respec-
tively, such that((Y})x>0)n = nan+ 5 P-a.s. for alln € Z.

REMARK 3.3. Let us note that, even though by constructigny g)rez is
a.s.&"(’]foo—measurable, it is not possible for the random variableand B to be
&"({oo—measurable; se@], Remark (ii). This will not be a problem for us.

The point of the above construction is the following claifme random variable
¢pis a.s.),(F) o V Fio)-measurable, but it is not a8y, -measurable. This
clearly suffices to prove the result. Therefore, it remainsdtablish the claim.

LEMMA 3.4. The random variabl¢ is P-a.s.),, (5] . V7 o, )-Measurable.
PROOF. Fixn € Z. Define the random variablés )z as
k—1
Tj = mf{k‘ >0: ZXn,i,O :j} s
i=0
and define the random variabl€s, )<z as
g; = Xn,Tj,2 1Tj<00'

Then clearly(¢},)vez is F; . .-measurable anB[(&] ) ez ~ (Sk)kez] = 1.
We now claim that we can “align(¢;.)xez With (n4x+B)rez. INdeed, note that
for anyb € Z, we can estimate

Pnx =nrypforal k € Z) <P ny = forall k > 1] = 0,
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(o]
Plg =0k foralk € Z] < J[Plm = n-rss] =0,
k=b

where we have used thajy, )<z are i.i.d. and nondeterministic. Therefore
P [there existu € {—1,1}, b € Z such thaty, = 74,4 for all k € Z] = 0.
In particular, if we defindn; )zcz as
;= (& — &_1)mod 3,

it follows that there must exisP-a.s. unique{TgfoO v &";’Lfoo—measurable random
variablesA’ and B’, taking values i{—1, 1} andZ, respectively, such that

It follows by uniqueness that
Enjip =Eajep foraljeZ P-as.

In particular,{y;, = {g P-a.s. Butty;, is 3%/,00 Vv ?,ifoo—measurable by construction.
Therefore, we have shown th@s is P—a.s.&"éfoo\/Cr”ﬁfoo—measurable. As the choice
of n was arbitrary, the proof is easily completed. O

LEMMA 3.5. The random variabl&p is notP-a.s.&"(’)foo-measurable.

PROOF. Note thatP-a.s.
Plég =i, B=j1F" oV T 00 VT o .00)
=15 P& =T o VI oo VI o0
=15 {P&0 = i|T" 00 V T 00 V T 0 0] © ©7}
= 1p-; Pl = .
Here we have used thd? is 3"8{00 vV I, -measurable for the first equality,
stationarity of the law of&y, nk, 9k, & ) kez for the second equalityy denotes the

canonical shift), and independenceégfand (1, ok, v« ) ez for the third equality.
Summing overj, and conditioning or‘j%foo, we obtain

Plép =i|F) o] =Pllo =14 =1/3 P-as.

Therefore£ is notP-a.s.J} , -measurable. O
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REMARK 3.6. The additive noise observation modgl = h(X,,) + e, is
inessential to the proof; we could have just as easily stdrem the {0, 1,2}-
valued observation modé{/ as is done in11]. The only reason we have chosen
to construct our example with the additive noise model toerthk point that there
is nothing special about the choice of observations: ones do¢ have to “cook
up” a complicated observation model to make the counterpi@mvork. All the
unpleasantness arises from the ergodic theory of randokswatandom scenery.

4. Proof of Theorem1.7. For anyz € I%+, define

k—1
7 (x) :inf{k‘ >0: me :j}.

=0

Now define the space
E .= {:U € I™ :1j(z) < coforall j € Z} c 1%+,
We endowF with the topology of pointwise convergence (inherited fréf ).
LEMMA 4.1. Eis Polish.

PROOF. Forz,z’ € E, define the metric

da,a) =Y 27 1y 20 + > 270 {|7j() — 75(a)| A 1},
k=0

j=—o00

It suffices to prove thatl metrizes the topology of pointwise convergenceFin
(which is certainly separable) and thd, d) is a complete metric space.

We first prove that! metrizes the topology of pointwise convergence. Clearly
d(zn,x) — 0 asn — oo implies thatx,, — = pointwise. Conversely, suppose
thatz, — x asn — oo pointwise. It suffices to show thatj(z,) — 7;(z) as
n — oo forall j € Z. But as7j(x) < oo by assumption (as € E), it follows
that7;(z,) = 7j(x) wheneverr,, ;, = z;, for all k < 7;(x), which is the case for
sufficiently large by pointwise convergence. This estalelésthe claim.

It remains to show thgte, d) is complete. To this end, |ét,, ),cn be a Cauchy
sequence for the metrit Then it is clearly Cauchy for

0
d(l‘, l’/) = Z 2_k lxk#xza
k=0

which defines a complete metric for the topology of pointwismvergence on
I%+ 5 E. Therefore, there exists € 17+ such thatr,, — = asn — oo pointwise.
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It suffices to show that € E. Indeed, when this is the case, it follows immedi-
ately thatd(z,,z) — 0 asn — oo (as we have shown thatmetrizes pointwise
convergence irE), thus proving completeness @F, d).

To complete the proof, suppose thatz E. Then there existg € Z such that
7j(x) = oo. In particular, ifz, , = xj forall k < N < oo, thent;(z,) > N. As
this is the case for sufficiently large by pointwise convergence, it followsttha

sup d(x,, ,) > 27 sup |7(xm) — m(zn)| A1 =27V forallp > 1.

m>n m>n
This contradicts the Cauchy property(af, ) ,en- O
Denote byP[X, € -] := u the invariant measure of thE*+-valued Markov

procesy Xy )rcz defined in sectio2. It is clear thatF’ is measurable as a subset of
I”+ and thatu(E) = 1. We are going to construct a Feller transition kerRdtom

E to E with stationary measurg (restricted toF), such that the corresponding
stationaryE-valued Markov process coincides a.s. with the statiod&ry:valued
Markov proces$ X}, )<z defined in sectior.

LEMMA 4.2. Define the transition kerndP : E x B(E) — [0, 1] as follows:

)

N |

P(x,{T1(2)}) = P(a {T-1(2)}) =
whereT, : E — E, a € {—1, 1} are defined as
Ta(x) = [(a, Tr_,(x),15 xT,a(m),2)7 .Z]

Then the law undeP of the processst)keZ defined in sectioﬂjs that of a sta-
tionary Markov process taking values mwith transition kernelP” and invariant
measure.. Moreover,P is satisfies the Feller property.

PrROOF. It follows along the lines of the proof of Lemn#al that the functions
T, andT_, are continuous. Therefore, the Feller propertyPaf immediate.

To complete the proof, it suffices (as cleafly, ¢ E P-a.s. for alln € Z and
as(X' k) kez IS @ stationary Markov process) to show that

P[X, € A|Xo] = P(Xy,A) P-as. forallA € B(E).

To this end, note that

Xl = [(507 6—50—17 6—50)7 XO] == [(507 XOJ‘*&Q (XO)717 XO,T,L;O (XO)72)7 XO] P-aS

Moreover, asX|, is 3"5_00700 Y ?‘f’m-measurable, it follows from the construction in
section? thatdy is independent oX. The result follows directly. O
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PROOF OFTHEOREM 1.7. Construct the canonicdl x R3-valued stationary
hidden Markov mode{ X}, Y/)xecz such that the hidden procegk; )<z has tran-
sition kernel P and invariant measur&), ~ p, and with the observation model
Y, = h(X]) + ey, Where(y)kez is an i.i.d. sequence of standard Gaussian ran-
dom variables inR? independent of X/, )xcz. Clearly E andR? are Polish by
Lemma4.1, the observations are nondegenerate, 2 — R? (defined in section
2) is bounded and continuous, afds Feller by Lemmat.2 Moreover, the law of
the model( X}, Y{)xez coincides with that of Xy, Y3 )xcz as defined in sectio®.
Therefore, by Corollarp.2, (X})xcz is purely nondeterministic buil () fails for
this model wher > 0 is chosen sulfficiently small. This establishes the resut.

APPENDIX A: ERGODIC THEORY OF NONLINEAR FILTERS

The goal of the appendix is to collect a few basic results eretgodic theory of
nonlinear filters. Similar results appear in various formthe literature, see, for ex-
ample, B, 4] and the references therein. However, all known proofsirequarious
simplifying assumptions, such as the Feller property @ducibility of the hid-
den process, nondegenerate observations, etc. As a gezmrtkildoes not appear
to be readily available in the literature, we provide herargdly self-contained
treatment culminating in the proof of Theoreni

Let us note that analogous results can be obtained in thenoons time setting,
either by direct arguments (cR3]) or by reduction to discrete time (as ihg]).

A.1l. Markov property of the filter.  Asin the introduction, we leE andF" be
Polish spaces, |e? : E x B(E) — [0,1] and® : E x B(F') — [0, 1] be the tran-
sition kernels, and let : B(E) — [0, 1] be theP-invariant measure defining the
law of the stationary hidden Markov modeXy, Y;)xez. We denote byP(G) the
space of probability measures on the Polish sgacendowed with the topology
of weak convergence of probability measures (so #{at) is also Polish).

LEMMA A1 ([13], Lemmal). Forv € P(FE), define the probability measure
P,(A) = / La(z,y) v(da') P(a, dz) ®(z,dy) forall A € B(E x F).
Denote byX : £ x F — EFandY : E x F' — F the canonical projections. There
exists a measurable mdp: P(E) x F' — P(E) such thatll(v,Y) is a version of

the regular conditional probability?, (X € - |Y) for everyv € P(E).

We now define the transition kernidl: P(E) x B(P(E)) — [0, 1] as follows:

My, A) = /lA(H(y,y)) v(dx") P(2,dz) ®(x,dy).
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We claim that the nonlinear filtery, ) ;>0 is aP(E)-valued Markov process with
transition kernefll. To prove this we will need the following result on conditiog
under a regular conditional probability due to von Weikssic

LEMMA A.2 ([21]). LetG, G’ andH be Polish spaces, and denotedyy’ and
h the canonical projections frof¥ x G’ x H onG, G’ and H, respectively. LeQ
be a probability measure oi x G’ x H, and letq.. : G x G’ x B(H) — [0, 1] and
q.: G x B(G' x H) — [0,1] be versions of the regular conditional probabilities
Qlh € -|g,d] and Q[(¢',h) € -|g|, respectively. Then foQ-a.e.z € G, the
kernelg, ,[-] is a version of the regular conditional probability, (i € - |¢'].

ProPOSITIONA.3. Forn > 0, let the nonlinear filterr,, be a version of the
regular conditional probabilityP[X,, € -|Yi,...,Y,]. Then(my)r>o is aP(E)-
valued Markov process with transition kerriéland initial measurery ~ 6,,.

PROOF. Fixn > 1. Itis easily seen that for ang € B(E x F)
P[(X,,Y,) € B|Yy,...,Y, 4] = /lA(:U,y) Tp—1(da’) P(2, dx) ®(z, dy).

Using LemmasA.2 andA.1, and the uniqueness of regular conditional probabili-
ties, we find the recursive formutg, = II(m,—1,Y,,) P-a.s. It follows easily that

Pr, € AlYy,..., Y1) =N(m,—1,A) P-as. forallA € B(P(E)),
completing the proof. O
We now establish the two elementary facts stated in thedotitoon.

LEMMA A4, Letm € P(P(E)) be anyll-invariant probability measure. Then
the barycenter ofn is a P-invariant probability measure.

PROOF. Letm € P(FE) be the barycenter ofi. By definition,
m(A) = /V(A) m(dv) = /I/(A) N/, dv)m(dv") for A € B(E).

But note thatf v(A)N(v/,dv) = Ep [Py (X € A|Y)] = [ P(z,A) v (dz) by
the definition off1. It follows directly thatm P = m, that is,m is P-invariant. [

LEMMA A.5. There is at least onB-invariant measure with barycenter.
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PrROOF. Forn € Z, let 7,, be a version of the regular conditional probability
P[X, € -|F¥_ ,]. Proceeding exactly as in the proof of Proposith8, we find
that (71 ) xez is aP(E)-valued Markov process with transition kerriglBut as the
underlying hidden Markov modéXy,, Y )xcz IS stationary, clearlyzy )z is also
stationary. Therefore, the law &f) is all-invariant measure, and the barycenter of

this law isy by the tower property of the conditional expectation. O

A.2. Proof of Theorem1.1l sufficiency. The proof is essentially contained in
Kunita [9], though we are careful here not to exploit any unnecessaymaptions.
The idea is to introduce a suitable randomization, whichastreonveniently done
in the setting of a canonical probability model. To this etiefine the Polish space
Qo = P(E) x E x (E x F)N with the canonical projections, : Qo — P(E) and
(with a slight abuse of notationYy : Qo — E, (X, Yi)i>1 : Qo — (E x F)N.
Givenm € P(P(E)), we define by the usual Kolmogorov extension argument a
probability measur®,, on 2y with the finite dimensional distributions

Pm((mo,XQ,...,Xn,Yl,...,Yn) S A) =

/1A(V7x07"'7wn7y17"'7yn) V(d(L'Q)P(xO,de'l)(I)(xl,dyl)“‘
P(xp—1,dxy,) ®(zy, dy,) m(dv).

We now define fomn > 0 three distinguished nonlinear filters:

ﬂ-znin = Pm[Xne "Y17-"7Yn]7
ﬂ-?; = Pm[Xne "m()aer"aYnL

T = Pnl[X, € - mo, Xo, Y1,..., Y]

n

We now have the following easy result. Heig ¢, € P(P(F)) are defined by
6,(A) =1,c4 (asusual) and,(A) = [15,c4 p(dz).

LEMMA A.6. Letm € P(P(E)) be any probability measure with barycenter
w. Then(m2in), <o, (7™),,>0, and (72%),,~( are P(E)-valued Markov processes
underP, with transition kernel'l and initial measureg,,, m ande,, respectively.

PrROOF. The proof is identical to that of Propositién3. O

The following result completes the proof of sufficiency.

PrROPOSITIONA.7. Letp € N,letf; : E — R,7 = 1,...,p be bounded
measurable functions, and let: RP — R be convex. Define the bounded measur-
able functionF : P(E) — RasF(v) = k([ fi(z)v(dz),..., [ fp(z) v(dz)).
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Finally, letm € P(P(F)) be anyll-invariant measure with barycenter. Then

E [ (BLfi (Xo)| 7 ool B (X0) |7 oc])] < / F(v) m(dv)
<E ["i (E[fl(XO)‘g—oo,O]ﬂ s 7E[fP(X0)‘9—oo,0])] )

whereG_ o := ﬂn(&”_/oo,o v IFXL ). In particular, if (1.1) holds, m coincides
with the distinguishedl-invariant measure defined in the proof of Lem#a

PrRoOF. Note that ass is convex, it is continuous, hendeé is bounded and
measurable. It is an immediate consequence of Jensenigalityghat

B [F(x)] < By [F(x)] = / F(v) m(dv) < B [F ()]

for everyn > 0, where we have used Lemmn#a6 and thell-invariance ofm to
obtain the middle equality. Using Lemm#a6 and the stationarity of Xy, Yx)rez
underP, it is also easily seen that the lawsdf™* (f) andr2*( f) underP,, coin-
cide with the laws oE[f (X¢)|Y_n+1, - .., Yo] @andE[f(Xo)| X —n, Y_p+1, ..., Y0]
underP, respectively. We therefore have for every> 0

B [ (BT ool B o)) < [ FO)
<E [fe (ElA(X0)IS .- [fp(X0)|9_nvo])} :
where§_,, o := F¥ v ¥, _, and we have used the fact that
E[f(X0)| X o, Yons,-. ., Yo] = B[f(X0)|no] P-as.

asF=, .,V I, 1, is conditionally independent 6F* v FY _ _ given
X_,. But ask is continuous, the equation display in the statement of d¢iselt
follows by lettingn — oo using the martingale convergence theorem.

Now suppose thatl(1) holds, and denote hyiy be the distinguisheB-invariant
measure obtained in the proof of Lemmab. Then we have evidently shown
that fF(u) = [F(v) mo (dv) for all functions F' of the form F(v) =
& ([ fi(z)v( . | fp(x)v(dz)) for any p, bounded measurablg, ..., f,
and convexs. We claim that this class of functions is measure-detemginso we
can conclude thatn = mg. To establish the claim, first note that by the Stone-
Weierstrass theorem, any continuous function®t¥hcan be approximated uni-
formly on any compact set by the difference of convex fumsioAs f1, ..., f,
are bounded (hence take values in a compact subgir)ofit therefore suffices
to assume that is continuous rather than convex. Next, note that the indica
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function 14 of any open subsetl of RP can be obtained as the increasing limit
of nonnegative continuous functions. It therefore suffiteassume that is the
indicator of an open subset &". But any probability measure on a Polish space
is regular, so it suffices to assume tlkas the indicator function of a Borel subset
of RP. The proof is completed by an application of the Dynkin systemma. [

A.3. Proof of Theorem 1.1 necessity. We will in fact prove necessity under
a weaker assumption than is stated in the theorem: the kaynagisn is that

A1 (& F o) =TV [ (FaoVF,,) P-as. VkeN.
n<0 n<0

The assumption in the theorem thhtpossesses a transition density only enters
the proof inasmuch as it guarantees the validityl]. Let us note that the assump-
tion of the theorem is itself weaker than nondegeneracyebtiservations, as the
transition density is not required to be strictly positivaréa

LEMMA A.8. Suppose there existsoafinite reference measuge onF and a
transition densityy : £ x F' — [0, oo[ such that®(z, 4) = [14(y ) p(dy)
forall x € E, A € B(F). Then the identityA.1) holds true.

PROOF. ltis easily seen that the assumption guarantees the esést# a prob-
ability measureQ such thatP < Q andJ7 1k Is independent off X 00V FY . 0
underQ. Thus the identity inA.1) holdsQ-a.s., and thereforP-a.s. O

The proof is based on the following result.

LEMMA A.9. Suppose that there exists a uniqiiénvariant measure and that
the assumptionA.1) holds. Then we have for evedyc B(E)

P[Xo € AN, (F¥ o VI*)] =P[Xo € A|FY o] P-as.

PrROOF. Define the regular conditional probabiliiey = P[X}; € -|FY ]
andm, = P[X;, € -[N,(F vV FE, )], and denote byng,m, € P(P(E))
the laws ofr{ andn{, respectively. Them is thell-invariant measure defined in
the proof of LemmaA.5. We claim thaim; is alsoll-invariant. Indeed, this follows
as a variant of Lemma.2 (pp. 95-96 in 21]) and the assumptionA(l) imply
thatr} = Il(wi_,,Y;) P-a.s., so thatri)cz is Markov with transition kernelll,
while (w,}:)kez is easily seen to be a stationary process.

Now suppose the result does not hold. Then there eXistsB(E) such that

E[(m(A))*] - B[(m}(A))%] = E[(my(A) — 13(A))*] > 0.
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In particular,mqg(F) # my(F) for F : v+ (v(A))?2. But clearlymy andm; both
have barycentet, so by assumptiomy, = m;. Thus we have a contradiction]

To complete the proof, we require the following easy vari@ritemmaA.1.

LEMMA A.10. Forv € P(E) andk € N, define the probability measure

PE(A) = /1A(x07y17---7yk)V(dwO)P(wOadxl)(I)(wladyl)"'
P(xk_l,dxk) @(mk,dyk) for A € 'B(E X Fk)

Denote byX : E x F¥ — EandY* : E x F¥ — F* the canonical projections.
There exists a measurable m8p : P(F) x F* — P(FE) such thato* (v, Y*) is a
version of the regular conditional probabilit?* (X € -|Y*) for everyv € P(E).

We now complete the proof.

PrOPOSITIONA.11. Suppose that there exists a uniguénvariant measure
and that the assumptioi\(2) holds. ThenZ.1) holds true.

PROOF. As Uy<o L' (F5o V F) o, P) is dense inL!' (FX_ o v F¥  , P), it
suffices to show that for evely < 0 andZ € L' (57, v 5}, P)
E[Z|N, (F o VI un)] =E[Z|FY ] P-as.
However, forZ < Ll(&",fo v &"};0, P), we have by the Markov property

E[Z|N, (¥ a0V F¥n)] = E[BZ|o{Xi} v T ] 1N, (Fra0 vV FEcn)].

—0o0o,Nn
It therefore suffices to consideéf € L' (o{X}} Vv 5} ,, P). But note that the class
of random variableZ*Z¥ : ZX € L*(c{X;},P), Z¥ € L>*(F} . P)} is
total in L' (o { Xy} V F} ,, P). Therefore, it suffices to show that

P[X; € AN, (F oo VI ,)] =P[Xr € A|FY ] P-as.

—0o0,n

forall k <0andA € B(E). Fork = 0, this follows directly from Lemma\.9.
Fork < 0, we proceed as follows. Defing) andr} as in the proof of Lemma
A.9. It is easily established using Lemma2 that

P[Xi € - |F¥ o] = 2F (), Yiyr,.... Yo) P-as.
Similarly, a variant of Lemma&.2 (pp. 95-96 in 21]) and assumptionA.1) imply
P[Xp€ - |My (F¥oVIF¥n)] = SFrL, Vi, ..., V) P-as.

But by LemmaA.9, applying the Dynkin system lemma with a countable generat-
ing system, and using stationarityf, = ;. P-a.s. This completes the proof. [J
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