On the Semisimplicity of the Action of the Frobenius on Etale Cohomology

Marcelo Gomez Morteo

September 6, 2010

Abstract

I give a proof of the semisimplicity of the action of the geometric frobenius on etale cohomology. The proof is based on [MGM10] and on the Weil Conjectures, ie on the Riemann Hypothesis for non singular projective varieties over finite fields.

Keywords Local Spectra. Algebraic and Topological K Theory l-adic Completion of Spectra.

Introduction:

I am going to work with the abelian category $\mathcal{B}(l)$ See [B83]. In [B83] Bousfield defined an universal functor $\mathcal{U}: Z_{(l)} - modules \mapsto \mathcal{B}(l)$ which will be crucial here. I start with the isomorphism ([T89])

(1)

$$\pi_0([L_{E(1)}K(X_\infty)]^l) \otimes Q \simeq \bigoplus_{i=0}^d H^{2i}_{et}(X_\infty, Q_{(l)}(i))$$

Here $L_{(E(1)}$ is is the Bousfield localization of E(1) where E(1) is such that $\mathcal{K}_{(l)} = \bigvee_{i=1}^{l-2} \Sigma^{2i} E(1)$, where $\mathcal{K}_{(l)}$ is the *l* localized topological K spectrum \mathcal{K} . In (1), $K(X_{\infty})$ is the Quillen's algebraic K theory spectrum on $X_{\infty} = X \otimes F$, where *F* is the algebraic closure of the finite field F_q with $q = p^s$ and $p \neq l$. X is a nonsingular projective variety over F_q with finite dimension and *d* is the dimension of X_{∞} . $L_{E(1)}$ denotes E(1) localization, and $[L_{E(1)}K(X_{\infty})]^l$ denotes the *l*-adic completion of the spectra $L_{E(1)}K(X_{\infty})$.Here $H_{et}^{2i}(X_{\infty}, Q_l(i))$ are the etale cohomology groups with coefficients in Q_l , which are Q_l vector spaces.

I show that $\mathcal{U}(\pi_0([L_{E(1)}K(X_\infty)]^l)\otimes Q)\simeq [E_0(1)(K(X_\infty))]^l\otimes Q$ (2)

where on the right hand side of the equality, $[E_0(1)(K(X_\infty))]^l$ is the *l*-adic completion of the $Z_{(l)}$ -module $E_0(1)(K(X_\infty))$ which is an object in $\mathcal{B}(l)$. This

isomorphism seems to be dependent on highly non trivial facts, such as the fact that $\pi_0 L_{E(1)} K(X_{\infty})$ is an *l*-reduced group, which follows from [MGM10]. $\pi_0 L_{E(1)} K(X_{\infty})$ being *l*-reduced group means:

$$Hom(Q/Z_{(l)}, \pi_0(L_{E(1)}K(X_\infty))) = 0$$

We then obtain the isomorphism: $[(E_0(1)K(X_\infty))]^l \otimes Q \simeq \mathcal{U}(\bigoplus_{i=0}^{2d} H_{et}(X_\infty, Q_{(l)}(i))).$ Therefore the functor \mathcal{U} allows to study the action of the geometric frobenius $\Phi_X : X \mapsto X$ on $\bigoplus_{i=0}^{2d} H_{et}(X_\infty, Q_{(l)}(i))$ through the action of $\mathcal{U}(\Phi_X)$ on $[E_0(1)(K(X_\infty))]^l \otimes Q.$ I prove that $(E_0(1)(K(X_\infty))) \otimes Q$ is dense in $[E_0(1)(K(X_\infty))]^l \otimes Q$ with the *l*-adic topology and show that $\mathcal{U}(\Phi_X \circ \Phi_X^{\dagger})$ where Φ_X^{\dagger} is the complex conjugate to Φ_X is an Adams operation on $[E_0(1)(K(X_\infty))]^l \otimes Q$ because of the Weil Conjectures. Finally I conclude that the action of Φ_X on the etale cohomological spaces $H_{et}^{2i}(X_\infty, Q_{(l)}(i))$ is semisimple.

Remarks 1.

a) We know that $\pi_*(E(1)) \simeq Z_{(l)}(\nu, \nu^{-1})$ and therefore $\pi_0(E(1)) \simeq Z_{(l)}$ Then the functor \mathcal{U} verifies $\mathcal{U}(Z_{(l)}) \simeq \mathcal{U}(\pi_0(E(1))) \simeq E_0 E(1) \simeq Z_{(l)}[t]$ where $Z_{(l)}[t]$ are the polynomials in one variable and coefficients in $Z_{(l)}$

b) Also, $\mathcal{U}(Z_{(l)}) \otimes Q$ = $\mathcal{U}(Z_{(l)}) \otimes Q \simeq Q_{(l)}[t]$, $\mathcal{U}(Z_l) \simeq [E_0 E(1)]^l \simeq Z_l[[t]]$ and $\mathcal{U}(Q_l) \simeq Q_l[[t]]$ where $Z_l[[t]]$ and $Q_l[[t]]$ are the *l*-adic completions of $Z_{(l)}[t]$ and $Z_{(l)}[t] \otimes Q$ respectively.

Proposition 1:

$$\pi_0([L_{E(1)}K(X_\infty)]^l) \otimes Q \simeq [\pi_0(L_{E(1)}K(X_\infty))]^l \otimes Q$$

Proof: Let $G_{\nu} = \pi_0(Y \wedge M(Z/l^{\nu})) = \pi_0(T_{\nu}) = \pi_0(Y/l^{\nu})$, where $Y = L_{E(1)}K(X_{\infty})$. There is an exact sequence ([BK72] Chap 9)

(3)

$$0 \mapsto lim^1(G_{\nu}) \mapsto \pi_0(hom lim T_{\nu}) \mapsto lim(G_{\nu}) \mapsto 0$$

and (4)

$$G_{\nu} = \pi_0(Y \wedge M(Z/l^{\nu})) \simeq (\pi_0(Y) \otimes Z/l^{\nu}) \oplus Tor^1(Z/l^{\nu}, Y)$$

Now $limTor^1(Z/l^{\nu}, Y) = 0$ since the limit is equal to

Marcelo Gomez Morteo

$$\prod_{i=1}^{\infty} \{g_i = l^i - torsion - element \in \pi_0(L_{E(1)}K(X_{\infty}))/lg_{i+1} = g_i\}$$

and each coordinate in this limit is 0, for it belongs to the intersection of all $l^{l}(\pi_{0}L_{E(1)}K(X_{\infty}))$ which is 0 because $\pi_{0}L_{E(1)}K(X_{\infty})$ is reduced. Then by (4), I get:

(5)

$$lim(G_{\nu}) = lim(\pi_0(Y) \otimes Z/l^{\nu}) = [\pi_0(Y)]^{\frac{1}{2}}$$

Obviously (6): $lim^1(\pi_0(Y) \otimes Z/l^{\nu}) = 0$. On the other hand, $lim^1Tor^1(Z/l^{\nu}, Y)$ has bounded *l*-torsion. Let me show why this is so:

Let $M_{\nu} = Tor^1(Z/l^{\nu}, Y)$. The map $M_{\nu+1} \mapsto M_{\nu}$ is the map which goes from the $l^{\nu+1}$ -torsion elements of Y to the l^{ν} -torsion elements of Y given by $x \mapsto lx$. It is in general not surjective, so that it is difficult to prove that $lim^1M_{\nu} = 0$. Anyway, (3) has simplified because of (5) and (6) to

(7)

$$0 \mapsto lim^{1}(Tor^{1}(Z/l^{\nu}, \pi_{0}(Y)) \mapsto \pi_{0}(hom limY \wedge M(Z/l^{\nu})) = \pi_{0}(Y^{l}) \mapsto lim(G_{\nu}) = [\pi_{0}(Y)]^{l} \mapsto 0$$

where $Y = L_{E(1)}K(X_{\infty})$ and $lim(G_{\nu}) = [\pi_0(Y)]^l$ is reduced since it is the projective limit of the reduced groups G_{ν} See [MGM10]. $[\pi_0(Y)]^l$ is also a cotorsion group (see [F1]), since it is the epimorphic image of a cotorsion group in the exact sequence (7): $\pi_0(Y^l)$ is equal to the cotorsion reduced group $Ext^1(Q/Z_{(l)}, Y)$ since(see [B79])

$$Ext^{1}(Q/Z_{(l)}, Y) \mapsto \pi_{0}(Y^{l}) \mapsto Hom(Q/Z_{(l)}, \pi_{-1}(Y))$$

and $Hom(Q/Z_{(l)}, \pi_{-1}(Y)) = 0$ since $\pi_{-1}(Y)$ is *l*-reduced, see ([MGM10]) and therefore, $Ext^1(Q/Z_{(l)}, Y) \simeq \pi_0(Y^l)$ and $Ext^1(Q/Z_{(l)}, Y)$ is a cotorsion group. The torsion group of the cotorsion reduced group $[\pi_0(Y)]^l$ noted $T([\pi_0(Y)]^l)$ is in the terminology of [F2] an *l*-complete torsion group. Now $[\pi_0(Y)]^l$ is a reduced algebraically compact group since it is complete in the terminology of [R08] page 440. It is complete because it is the closure in the *l*-adic topology of the topological Hausdorff group $\pi_0(Y)$] Being reduced and algebraically compact implies it is a direct summand of a direct product of cyclic *l*-groups by [F2] Corollary 38.2 page 161. Henceforth, $T([\pi_0(Y)]^l)$ is contained in a direct product of cyclic *l*-groups, and so the torsion part of $\pi_0(Y)$, noted $T(\pi_0(Y))$ is contained in a direct sum of cyclic *l*-groups. Since $T(\pi_0(Y))$ is reduced, then it has bounded *l*-torsion, ie there exists ν_0 such that $l^{\nu_0}T(\pi_0(Y) = 0$ Then by definition of lim^1 , $lim^1(Tor^1(Z/l^{\nu}, \pi_0(Y)))$ has bounded *l*-torsion, as wanted. Then, tensoring with Q in the exact sequence (7) becomes,

(8)

$$0 \mapsto \pi_0(Y^l) \otimes Q \mapsto [\pi_0(Y)]^l \otimes Q \mapsto 0$$

and therefore Proposition 1 has been proved.

Remark 2: I conjecture that $\pi_0(Y^l)$ and therefore also $[\pi_0(Y)]^l$ are without torsion, in which case by [R08] page 445 $[\pi_0(Y)]^l$, is a direct summand of copies of Z_l . Since tensored by Q, ie $[\pi_0(Y)]^l \otimes Q$, using (1) and the above Proposition 1, is a finite direct sum of copies of Q_l , $[\pi_0(Y)]^l$ has to be a finite direct sum of copies of Z_l .

Theorem 1: $\mathcal{U}([\pi_0(L_{E(1)}K(X_\infty))]^l \otimes Q) \simeq [E(1)_0(K(X_\infty))]^l \otimes Q$ Corollary 2: $\mathcal{U}(\bigoplus_{i=0}^d H^{2i}_{et}(X_\infty, Q_{(l)}(i))) \simeq [E(1)_0(K(X_\infty))]^l \otimes Q.$

Proof: $\mathcal{U}(\oplus_{i=0}^{d} H_{et}^{2i}(X_{\infty}, Q_{(l)}(i))) \simeq [\mathcal{U}(\pi_0(L_{E(1)}K(X_{\infty}))]^l \otimes Q$. This fact follows from Proposition 1 and from (1). Hence, corollary 2 follows immediately from theorem 1.

Proof of theorem 1:

Since $\pi_0(L_{E(1)}K(X_\infty))$ is *l*-reduced the kernel of the *l*-completion $\pi_0(L_{E(1)}K(X_\infty)) \mapsto [\pi_0(L_{E(1)}K(X_\infty))]^l$ is equal to 0 and the completion map is injective. Also the *l*-adic topology in $\pi_0(L_{E(1)}K(X_\infty))$ is Hausdorff and this space is dense in its *l*-completed space. The functor \mathcal{U} is exact and $0 \mapsto \mathcal{U}(\pi_0(L_{E(1)}K(X_\infty))) = E(1)_0K(X_\infty) \mapsto \mathcal{U}([\pi_0(L_{E(1)}K(X_\infty))]^l)$ has dense image. On the other hand since $\pi_0(L_{E(1)}K(X_\infty))$ is *l*-reduced, $\mathcal{U}(\pi_0(L_{E(1)}K(X_\infty))) = E(1)_0K(X_\infty)$ is *l*-reduced.

$$0 \mapsto E(1)_0 K(X_\infty) \mapsto [E(1)_0 K(X_\infty)]^l$$

with dense image. By uniqueness of the *l*-completed space, $(9):\mathcal{U}([\pi_0(L_{E(1)}K(X_\infty))]^l) \simeq [E(1)_0(K(X_\infty))^l]$, and the theorem follows.

Remark 3: If the conjecture stated in remark 2 holds, then by (9), remark 2, and remark 1 b), $[E(1)_0(K(X_\infty)]^l$ is a finite direct sum of copies of $Z_l[[t]]$, a fact which was proved for nonsingular complete curves in [DM95].

Theorem 2: The geometric frobenius Φ_X acts semisimply in $\bigoplus_{i=0}^d H^{2i}_{et}(X_\infty, Q_l(i))$.

Proof: By the Weil Conjectures the eigenvalues of Φ_X acting on $H^i_{et}(X_{\infty}, Q_l)$ are algebraic numbers with absolute value $q^{i/2}$. Then $\mathcal{U}((\Phi_X) \circ (\Phi_X)^{\dagger}) = \mathcal{U}(\Phi_X) \circ \mathcal{U}(\Phi^{\dagger}_X)$ acting on $\mathcal{U}(\oplus^d_{i=0} H^{2i}_{et}(X_{\infty}, Q_l))$ has eigenvalues $q^{2i}, i \in 1, 2, ..., d$ though those eigenvalues do not represent the complete set of its eigenvalues. Hence this composite map can be identified with the Adams operation $\psi^{(q^2)}$ on $[E(1)_0 K(X_{\infty})]^l$ which is an object in $\mathcal{B}(l)$. Therefore the Adams operation is diagonalizable in $\mathcal{U}(\oplus^d_{i=0} H^{2i}_{et}(X_{\infty}, Q_l))$. This fact implies that $\mathcal{U}(\Phi_X)$ is also diagonalizable in $\mathcal{U}(\oplus^d_{i=0} H^{2i}_{et}(X_{\infty}, Q_l))$, which in turn implies that Φ_X is diagonalizable in $\oplus^d_{i=0} H^{2i}_{et}(X_{\infty}, Q_l)$ as wanted.

References

- [1] [B83] A.K.Bousfield. On The Homotopy Theory of K-Local Spectra at an Odd Prime Amer.J.Math 107 pp 895-932.
- [2] [B79] A.K.Bousfield. The Localization of Spectra with Respect to Homotopy Topology 18 pp 257-281.
- [3] [DM95] W.G.Dwyer and S.A.Mitchell. On the K-Theory Spectrum of a Smooth Curve Over a Finite Field Topology 36 pp 899-929.
- [4] [F1] L Fuchs. Infinite Abelian Groups Academic Press Vol 1, 1970.
- [5] [F2] L Fuchs. Infinite Abelian Groups Academic Press Vol 2, 1973.
- [6] [MGM10] M.Gomez Morteo. The Tate Thomason Conjecture ArXiv: 1007.0427 v2.
- [7] [R08]J.J Rotman. An Introduction to Homological Algebra Springer-Verlag, 2008.
- [8] [T89]R.W.Thomason. A Finiteness Condition Equivalent to the Tate Conjecture over Fq Contemporary Mathematics 83 pp 385-392.

E-mail address: valmont8ar@hotmail.com