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HAMILTON TYPE ESTIMATES FOR HEAT EQUATIONS

ON MANIFOLDS

LI MA

Abstract. In this paper, we study the gradient estimates of Hamilton
type for positive solutions to both drifting heat equation and the simple
nonlinear heat equation problem

ut −∆u = au log u, u > 0

on the compact Riemannian manifold (M, g) of dimension n and with
non-negative (Bakry-Emery)-Ricci curvature. Here a ≤ 0 is a constant.
The latter heat equation is a basic evolution equation which is the neg-
ative gradient heat flow to the functional of Log-Sobolev inequality on
the Riemannian manifold. An open question concerning the Hamilton
type gradient estimate is proposed.
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Keywords: drifting Laplacian, nonlinear heat equation, gradient
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1. Introduction

In this paper we give two gradient estimates of Hamilton type [7] for heat
equations, which have been studied recently by many researchers (see [18],
[6], [17],[2], [8], [12], [4],[3],[19],[5],etc). The equations under consideration
have their deep background from the fundamental gap of the Schrodinger
equation and the Ricci flow (see [9], [15], [21], etc). Interesting gradient esti-
mates of Hamilton type for heat equation associated to Ricci flow have been
obtained in [3], [2], and [22]. We derive the Hamilton type gradient estimate
for the drifting heat equation and the simple nonlinear heat equation from
the view-point of the Bernstein type estimates. This is a new observation.
Our argument is shorter than previous ones.

We first derive the Hamilton type gradient estimate for the drifting heat
equation

(1) ut −∆u = −∇φ · ∇u, u > 0

on the compact Riemannian manifold (M,g) of dimension n. Here φ is a
smooth function on M and ∇φ is the gradient of φ in the metric g. We shall
denote Dφ the hessian matrix of φ.

We have the following gradient estimate.
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Theorem 1. Assume that the compact Riemannian manifold (M,g) has the
non-negative Bakry-Emery-Ricci curvature in the sense that

Rc+D2φ ≥ −K

on M for some constant K ≥ 0. Let u > 0 be a positive smooth solution to
(1). Assume that supM u = 1. Let f = − log u. Then we have, for all t > 0,

t|∇f |2 ≤ (2Kt+ 1)f.

The same estimate is true for (1) on complete Riemannian manifolds when
the maximum principle can be applied.

We also have the following result for (1) on the manifold with smooth
boundary.

Theorem 2. Assume that the compact Riemannian manifold (M,g) with
convex boundary has the curvature condition about the Bakry-Emery-Ricci
tensor that

Rc+D2φ ≥ −K

on M for some constant K ≥ 0. Let u > 0 be a positive smooth solution to
(1) with Neumann boundary condition uν = 0, where ν is the outward unit
normal to the boundary. Assume that supM u = 1. Let f = − log u. Then
we have, for all t > 0,

(2) t|∇f |2 ≤ (2Kt+ 1)f.

Assume that K = 0 and u is any bounded smooth solution to (1). Assume
that A = supM u > 0. Let v = (A − u)/A. Then v is a positive solution to
(1) and the above gradient estimate is

(3) t|∇u|2 ≤ (A− u)2 log
A

A− u
,

which is the usual form of Hamilton type gradient estimate.
The drifting heat equation is closely related to the fundamental gap of

the Schrodinger operator on convex domains (so K = 0). Namely, Let
λ = λ2−λ1 be the fundamental gap of the Laplacian operator −∆ and let fj
be the eigenfunctions corresponding to λj, j = 1, 2. Let u := u(x) := f2/f1.
Then we have ([21])

∆u = −λu− 2(∇u · ∇ log f1).

Set
φ = −2 log f1,

which is convex by the well-known result of Brascamp-Lieb [1]. Let

v(x, t) = exp(−λt)u(x).

Then v satisfies (1) with the Neumann boundary condition.
The other interesting problem to us is to derive the Hamilton type gradi-

ent estimate for the following nonlinear heat equation problem

(4) ut −∆u = au log u, u > 0
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on the compact Riemannian manifold (M,g) of dimension n. Here a ∈ R

is some constant. This heat equation can be considered as the negative
gradient heat flow to W -functional [18], which is closely related to the Log-
Sobolev inequalities on the Riemannian manifold. In [14], we propose the
study of the local gradient estimates for solutions to (4) based on its relation
with Ricci solitons. Soon after, Y.Yang gives a nice answer in [20] and his
result is Li-Yau type [11].

We have the following result for (4).

Theorem 3. Assume that the compact Riemannian manifold (M,g) has the
non-negative Ricci curvature condition, i.e., Rc ≥ 0. Let u > 0 be a positive
smooth solution to (4). Assume that supM u < 1 at the initial time and
a ≤ 0. Let f = − log u. Then we have, for all t > 0, supM u < 1 and

t|∇f |2 ≤ f.

The same estimate is true for (1) on complete Riemannian manifolds when
the maximum principle can be applied.

Similar to Theorem 2, we also have the following result for (4) on the
manifold with smooth boundary.

Theorem 4. Assume that the compact Riemannian manifold (M,g) with
convex boundary has the non-negative Ricci curvature condition. Let u >
0 be a positive smooth solution to (1) with Neumann boundary condition
uν = 0, where ν is the outward unit normal to the boundary. Assume that
supM u < 1 at the initial time and a ≤ 0. Let f = − log u. Then we have,
for all t > 0, supM u < 1 and

(5) t|∇f |2 ≤ f.

It is quite clear that our results to (4) are not satisfied by us because of
the assumption supM u < 1 at the initial time. So we leave it open to derive
the Hamilton type gradient estimate for positive solutions to (4).

The plan of our paper is below. In section 2, we give the proofs of Theo-
rems 1 and 2. In section 3 we study (4).

2. Hamilton type estimate for drifting heat equation

Assume that u > 0 is a positive solution to (1). Let f = − log u. Then

fj = −uj/u, ∆f = −∆u/u+ |∇f |2.

Then we have

(6) (∂t −∆)f +∇φ · ∇f = −|∇f |2.

Let L = ∂t −∆+∇φ·. We compute L|∇f |2.
Note that

(|∇f |2)t = 2 < ∇f,∇ft > .

Recall the Bochner formula that

∆|∇f |2 = 2|D2f |2+ < ∇f,∇∆f > +2Rc(∇f,∇f > .
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Then we have

(7) L|∇f |2 = 2 < ∇f,∇Lf > −2|D2f |2 − 2(Rc+D2φ)(∇f,∇f).

By the Ricci curvature bound assumption, we have

L|∇f |2 ≤ −2|D2f |2 + 2K|∇f |2.

Dropping the term −2|D2f |2 (comment: Hamilton type estimate is not
as sharp as Li-Yau’s estimate ) we have

L|∇f |2 ≤ 2K|∇f |2.

Then we have

(8) L(t|∇f |2) ≤ (1 + 2Kt)|∇f |2.

Using (6), we get from (8) that

(9) L(t|∇f |2 − (2Kt+ 1)f) ≤ −2Kf.

We may re-write (9) as

L(t|∇f |2 − (2Kt+ 1)f) ≤
2K

2K + 1
(t|∇f |2 − (2K + 1)f)−

2K

2K + 1
(t|∇f |2).

Then we have

L(t|∇f |2 − (2Kt+ 1)f) ≤
2K

2K + 1
(t|∇f |2 − (2K + 1)f).

Applying the Maximum principle we obtain that

t|∇f |2 − (2Kt+ 1)f ≤ 0.

This completes the proof of Theorem 1.
We now prove Theorem 2. We need to treat the boundary term. Note

that fν = 0 on the boundary. Then on the boundary,

[t|∇f |2 − (2Kt+ 1)f ]ν = 2tfjfjν = −2II(∇f,∇f) ≤ 0.

Hence by the strong maximum principle we know that the maximum point
of t|∇f |2 − (2Kt + 1)f can not occur at the boundary point and then we
have

t|∇f |2 − (2Kt+ 1)f ≤ 0.

This completes the proof of Theorem 2.

3. Hamilton type estimate for the simple nonlinear heat

equation

As before, we let f = − log u. Then we have

(10) (∂t −∆)f = af − |∇f |2.

Using a ≤ 0 and the maximum principle we know that if infM f > 0 at the
initial time, then it is always positive for t > 0.

Let L := ∂t −∆ in this section. Compute,

(11) L|∇f |2 = 2 < ∇f,∇Lf > −2|D2f |2 − 2Rc(∇f,∇f).
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Then we have

L|∇f |2 = 2a|∇f |2 − 2 < ∇f,∇|∇f |2 > −2|D2f |2 − 2Rc(∇f,∇f).

Using the non-negative Ricci curvature assumption we have

L|∇f |2 ≤ 2a|∇f |2 − 2 < ∇f,∇|∇f |2 > .

Then

L(t|∇f |2) ≤ (2at+ 1)|∇f |2 − 2 < ∇f,∇(t|∇f |2) > .

Using (10) we get that

L(t|∇f |2 − f) ≤ 2at|∇f |2 − af − 2 < ∇f,∇(t|∇f |2 − f) > .

Let H = t|∇f |2 − f . Then f = t|∇f |2 −H. Hence we have

LH ≤ at|∇f |2 + aH − 2 < ∇f,∇H > .

Using the assumption that a ≤ 0, we obtain that

LH ≤ aH − 2 < ∇f,∇H > .

Applying the maximum principle to H we know that H ≤ 0. That is,

t|∇f |2 − f ≤ 0,

which is the desired gradient estimate of Hamilton type. Then we complete
the proof of Theorem 3.

Using the same argument as in the proof of Theorem 2, we can prove
Theorem 4.
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