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Abstract—Recently, there has been a growing interest of using 
network coding to support reliable unicast over an error-prone 
channel. However, previous network coding schemes focused 
only on native packets and ignored the role of encoded packets. 
In this paper, we develop an efficient retransmission approach 
with network coding method, namely Encoded packet-Assisted 
Rescue (EAR), which is able to overcome this limitation. Using 
the proposed network coding approach, clients store the 
overheard encoded packets and report to the sender. And then, 
when the sender makes coding decisions, it not only considers 
native packets, but also takes account of encoded packets. In this 
way, more coding opportunities are emerged, i.e. more packets 
can be mixed together, resulting in improving the retransmission 
efficiency. Moreover, theoretical analysis and simulation results 
show that comparing with the existing schemes, our schemes can 
greatly reduce the total number of retransmissions.    
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I.  INTRODUCTION 

It is well-known that wireless networks are error-prone 
because of fading and interference. Many researches have 
revealed that IEEE 802.11-based wireless mesh networks 
suffer from severe packet loss radio in wide conditions [1]. 
Hence, automatic repeat request (ARQ) [2] technique is used 
to make a wireless link reliable and further improve end-to-end 
throughput. However, in traditional ARQ protocols, whenever 
a packet gets erased, the sender simply retransmits it, which 
usually consumes a considerable channel capacity. Then, 
Hybrid ARQ (HARQ) [3] protocols that implement Forward 
Error Coding (FEC) are introduced and have been proven to be 
more efficient than original ARQ protocols or pure FEC 
schemes under wide conditions [4]. 

Recently network coding (NC) [5] has emerged as a 
promising technique to increase the network bandwidth 
efficiency and reliability, since it enables to mix multiple 
incoming packets in a single transmission rather than just 
relaying these incoming packets to output links one by one, 
which breaks with the conventional store-and-forward way. 
Particularly, authors of COPE [6] presented a practical XOR-
based network coding with the concept of opportuneistic 
listening and opportunistic coding for unicast in wireless mesh 
networks. It employed cumulative ACK in its COPE layer to 
provide reliable transmission. However, its performance is 
only sub-optimal in lossy wireless networks. The reason is that 

COPE does not consider the issue of how to effectively 
retransmit lost packets, which could cause its performance 
degradation under the high loss ratio. As an elegant reliable 
retransmission paradigm in one-to-many single-hop wireless 
networks, Nguyen et al. [8] combined network coding 
technique with the traditional ARQ technique, NC-ARQ, 
which can significantly enhance the bandwidth efficiency. 
Rozner et al. [9] modified the retransmission mechanism in 
COPE and proposed an efficient retransmission approach 
(ER). With ER, packets that need to be retransmitted are 
encoded together, such that multiple packet-loss for different 
destinations can be recovered by one retransmission. Since 
then, a lot of network coding based retransmission protocols 
[10-14] have been presented to provide efficient and reliable 
communications in lossy wireless networks. 

Nonetheless, all of these protocols only focal on native 
packets that need to be retransmitted, and none consider the 
role of encoded packets, which contained these loss native 
packets and have been overheard by clients who aren’t their 
destinations. Using the traditional network coding schemes, 
when clients overheard encoded packets, they just discard 
them or simply store them but don’t report these information to 
the sender. Therefore, when the sender makes coding 
decisions, it can’t utilize encoded packets to exploit coding 
opportunities, which is inefficient and expensive. 

Therefore, we study an efficient retransmission approach 
with network coding technique, named Encoded packet-
Assisted Rescue (EAR) in this paper, which is able to exploit 
the coding opportunities of both native and encoded packets. 
Our contribution is summarized as follows: 

 We introduce a system model of the wireless one-to-
many single-hop unicast system and then study the 
theoretical analysis in terms of the number of 
retransmissions of the proposed scheme. 

 We define the weight of packet-loss pattern, which 
helps us to evaluate the EAR’s performance more 
precisely and design a optimum coding algorithm to 
maximize the benefit of coded packets, namely to 
minimize the total number of retransmissions 

The remainder of this paper is organized as follows. In next 
Section, we describe a system model in the context of wireless 
unicast scenario. In Section III, we present some theoretical 



 

 

derivations on the total number of retransmissions with the 
proposed EAR schemes. In Section IV, theory and simulation 
results are illustrated. Finally, conclusion is given in Section 
V. 

II. SYSTEM MODEL AND ASSUMPTIONS 

If multiple flows traverse the same node, we called such 
node central node (unless otherwise stated we simply call it 
node C) and there is the opportunity to apply network coding 
techniques to improve the overall retransmission efficiency for 
each flow crossed it. Consequently, we only consider the 
retransmissions between node C and its neighbors even for the 
wheel scenario in this paper. And we also consider that the 
throughput rate of each flow over the networks has already 
stabilized. Furthermore, we assume node C employs a 
sufficient large retransmission buffer to avoid too early rescue 
process. In particular, each receiver would request a distinct 
set of loss packets, which from node C’s point of view, 
corresponds to supporting different unicast sessions. Similar 
with [10], we make the following assumptions about the 
wireless unicast retransmission models. 

 There are N  (N > 2) receivers Ri (1 6 i 6 N), and 
the central node retransmits lost packets after a fixed 
time slot ¢T . 

 We suppose route of each flow would pass through 
node C to maximize coding opportunities [7]. 

 Node C can always know the current packet-loss states 
of both native and encoded packets at all receivers. 
This can be carried through by using positive and 
negative acknowledgements (ACK/NAKs).  

 To simplify the analysis, we assume all the feedback 
are instantaneous and reliable. 

 Packet lost rates between node C and each receiver are 
mutually independent and follow the Bernoulli 
distribution, where each packet is lost with a fixed 
probability !i  (i  is the receiver’s ID, 1 6 i 6 N ) at 
each receiver. 

Let us consider the unicast topology, which consists of N 
receivers. Thereby, if each client requests K distinct packets, 
then node C needs to successfully deliver a total of K£N  
packets to all of them. To plainly represent the packet-loss 
state, we define packet-loss pattern as follow: 

Definition 1. Packet-loss pattern ½
P

 is a row vector that 
represents the current packet-loss state of packet P at all the 
receivers, thus its dimension is equal to the number of the 
receivers. When packet P is successfully obtained by receiver 
Ri, the ith entry in ½

P
 will be marked 1, or else 0.  

In this paper, the packet-loss pattern relating to the native 
packets is simply called native pattern, and coded pattern 
denotes the one relating to the encoding packets. The follow-
ing definitions play crucial roles in this paper. 

Definition 2. The weight of a packet-loss pattern W (½) is 
the number of non-zero elements in ½ . In particular, W (½) 
< N  for N-receiver scenarios. 

Remark: Note that, if all the intended receivers of packet 
P  correctly receive it, there is no longer a packet-loss pattern 

relevant to packet P , vice versa.  
Furthermore, node C would retransmit P  several times to 

deliver it successfully to its nexthop, for the reason that the 
wireless channel is error-prone. And the packet-error pattern 
½

P
 would be altered after each retransmission of P . The weight 

of the newer loss pattern (if it exists), however, is always no 
lighter than the previous one, in respect that the receivers who 
have overheard P  would reserve it until the end of this 
retransmission process.  

At last, there are no less than one lost packet relating to a 
loss pattern. Thereby, unless otherwise stated, we relate a loss 
pattern to a set of packets which have the same loss state. 
Then, we define P½ as the set of lost packets which have the 
same loss pattern ½  during the rescue process. Thus, in 
retransmission process, if a non-empty set P½ has been already 
transferred to the empty set, i.e. no loss packets relevant to ½, 
we state that the central node has rescued the loss pattern ½ or 
the set P½. As we mentioned above, a packet belonging to P½ 
is eliminated from P½ due to the following two reasons: 

1) The intended receiver of this packet has received it. 
2) The intended receiver is failure to receive it again, yet 

the corresponding loss pattern is changed. 
To sum up, we present the following theorem. 
Theorem 1. The expect number of retransmissions Ð½ 

requested by the central node to rescue loss-pattern ½, whose 
the ithr  (ir 2 N; r = 1; : : : ; N ¡W (½)) entries are equal to 0, 
for N-receiver scenario is  

Ð½ =
jOrj

1¡
Q

!ir

                                (1) 

where Or is the set consisting of the lost packets which have 
the same loss pattern ½  after the original transmission. And 
Ð½!½0  packets in P½  would be transferred to P½0  after the 
central node rescued P½.  

Ð½!½0 = Ð½ £ Prf½0j½g                  (2) 

where Prf½0j½g  denotes the probability that a packet is 
transferred from P½ to P½0.  

Proof: To simplify the analysis, we suppose that node C 
would retransmits P½ round by round, which means node C 
first transmits the entire packets belonging to P½ one by one, 
and collects their receive-state to modify P½ , and then it 
repeats the these steps for the residual packets in P½ again and 
again until these is no longer a packet relating to ½. We define 

P
(k)
½ (k > 0) as the set relevant to ½  after the kth round, and 

P
(0)
½ = Or . Let random variable Yk  (k > 0)  represent the 

cardinality of P (k)
½ , and we have Y0 = jOrj. For the reason 

that the deliveries are i.i.d. and follow the Bernoulli 
distribution, the random variables Yk (k = 0; 1; : : : ) are i.i.d. 
and follow the binomial distribution. Further-more, a packet is 

held in P (k)
½  after the kth round, if and only if the receivers Rir

 
who lost it before are still failure to receive it. Hence, we have 

E[Yk] = E[E[YkjYk¡1]] = Y0 £ (
Y

!ir
)k     (3) 

due to 
Q

!ik
6 1, the series E[Yk] (k > 0) is convergent, the 



 

 

expect number of retransmissions Ð½, that node needs C to 
rescues ½, is 

Ð½ = Y0 +
X1

k=1
E[Yk]

= Y0 ¢ (Prf½g)0 +
X1

k=1
Y0 ¢ (

Y
!ir

)k

= Y0 ¢
X1

k=0
(
Y

!ir
)k =

jOrj

1¡
Q

!ir

      

(4)

 

Now, let random variable Y 0k (k > 0) represent the number 
of packets that are transferred from P½ to P½0, ½ 6=½0, after the 
kth round, particularly, Y 00 = 0. Random variables Y 0k (k > 0) 
are i.i.d as well and follow the binomial distribution. Then, we 
have 

 

E[Y 0k] = E[E[Y 0kjYk¡1]]

= E[Yk¡1]£ Prf½0j½g

= Y0 £ (
Y

!ir
)k¡1 £ Prf½0j½g

        

(5)

 

due to 
Q

!ir
6 1, the series E[Y 0k] (k > 0) is convergent, the 

number of packets that are transferred from P½  to P½0  after 
node C has rescued ½ is  

Ð½!½0 =
X1

k=1
E[Y 0k]

=
X1

k=1
Y0 ¢ (

Y
!ir

)(k¡1) ¢ Prf½0j½g

= Ð½ £ Prf½0j½g

        (6) 

that packets in P½ can be relocated to P½0.                            ■ 
Obviously, this theorem is suitable for both native and 

coded patterns. Finally, we introduce the following concept. 
Definition 3. If n packets respectively belonging to the 

sets P½1
; P½2

; : : : ; P½n
 (2 6 n 6 N) can be coded together, 

we state the sets P½1
; P½2

; : : : ; P½n
 can be encoded together, 

and we also say that the corresponding loss patterns 1,…, n 

can be encoded together. 

III. PERFORMANCE ANALYSIS 

In this section, we first review the available work on 
applying network coding to reliable multi-unicast. Then, we 
study some theoretical analysis in terms of total number of 
retransmissions of the traditional and the proposed EAR 
techniques for both wheel and single-hop scenarios. Before 
delving into details, we refer the reader to the following 
symbols, which be used in the rest of the paper. 

 P j: The set of native packets node Rj requests. 
 ½j: The set of all possible loss patterns relating to the 

native packets node Rj requests. 
 ½j1;:::;jn: The set of all possible coded patterns which 

are in relation to coded lost packets, each of which 
contains n packets nodes Rj1 ; : : : ; Rjn

 requested 
separately, where jk 2 N , 1 6 k 6 n, 2 6 n 6 N . 

 P j
½k

: the set of native lost packets which are reque-sted 

by node Rj and have the loss state ½k = ½
j
k. 

 P j1;:::;jn
½k

: the set of native lost packets have the loss 

state ½k = ½
j1;:::;jn

k . 

!2!1

P 1
1 P 2

1 P 1
2 P 2

2 P 1
3 P 2

3 P 1
4 P 2

4

 
Figure 1.  Example of NC-ARQ. (a) Two receivers uncast scenario. (b) 
Possible retransmission process: P1

1 ©P2
1 , P1

2 ©P2
3 , P2

4  and P2
1 ©P1

2 . 

We also use notation ½Pj to denote the set of loss patterns 
relating to packets in P j. However, when ̄̄ P j

¯̄
 is sufficiently 

large, we have ½Pj = ½j because of the law of large numbers. 
Thus, unless otherwise stated, we also utilize ½j to denote ½Pj. 
And it is the same to ½P j1;:::;jn. 

A. Overview 

The key idea of Nguyen et al. [8] and Rozner et al. [9] 
proposed network coding schemes is to first buffer the lost 
packets in the retransmission buffer during some time, then, 
instead of transmitting them one by one, the source combines 
the maximum number of lost packets with distinct intended 
receivers into one packet and delivers this coded packet in one 
retransmission. 

To illustrate how this coding-base reliable retransmission 
scheme works, we take an example in Fig. 1. In the example, 
node C has transmitted P j

i  (1 6 i 6 4; j = 1; 2) to receivers 
Rj separately. As depicted in Fig 1(b), packets P 1

1 , P 2
1 , P 1

2  and 
P 2

3  have been failure to be received by their respective 
intended receiver but been correctly overheard by the other 
one. Traditionally, each one of P 1

1 , P 2
1 , P 1

2  and P 2
3  is 

retransmitted one by one and each one of them has only one 
intended receiver. With the NC-ARQ scheme, node C can 
combine P 1

1  with P 2
1  to P 1;2

en = P 1
1 ©P 2

1 , which is available 
for both R1 and R2. Similarly, we can do the same operation 
for P 1

2  and P 2
3 . Even so, P 2

4  still has to be sent alone, since 
receiver R1 doesn’t obtain it, i.e. R1 is unable to remove P 2

4  
from the coded packet containing it to extract the intended 
packet. Furthermore, if P 2

1  and P 1
2  are lost again, node C will 

XOR them together for next retransmission. From this 
example we can explicitly see that, by exploring the broadcast 
nature of wireless and mixing lost packets tog-ether, the total 
number of retransmissions can be effectively reduced. 

Authors of [10] evaluated the performance of this method 
for single-hop scenarios, and got the following theorem. 

Theorem 2. Using the NC-ARQ technique, when the 
number of packets to be sent is sufficiently large, the average 
number of retransmissions ¸N

UNC  for the N-receiver unicast 
single-hop scenario is 

 ¸N
UNC =

1

N

NX
i=1

QN
j=i !j

1¡ !i

                           (7) 

where !j is the packet loss ratio between central node and 
receiver Rj, and !i 6 !j if 1 6 i 6 j 6 N . In particular, for 
the 2-receiver scenario, 



 

 

 ¸2
UNC =

1

2

μ
!1!2

1¡ !1

+
!2

1¡ !2

¶
              (8)  

B. EAR performs on the N-reciever unicast scenario 

In this subsection, we evaluate the performance of the 
proposed EAR approach for the unicast topology. We first 
present how to use packet-loss pattern to identify the coding 
opportunities over retransmission process. 

Theorem 3. Let R½i denote the set consisting of node(s) 
which is/are the intended receiver(s) for packets in P½i

. In 
rescue process, the loss packets P1, P2,…,Pn (2 6 n 6 N), 
each of which can be native or coded packet, with respect to 
the patterns ½1; : : : ; ½n can be coded together if and only if 
R½i \R½j = Á; i 6= j and only the ith entry of the jth

k  column 
of matrix F = [ ½T

1 : : : ½T
n ]T  is equal to 0, where Rjk

2R½i, 
i 2 [1; n] and k 2 [1; j

Sn
i=1 R½ij] . 

Proof: First of all, let us assume that there are two loss 
patterns ½i1  and ½i2(i1 6= i2; i1; i2 2 n)  which satisfy R½i1\ 
R½i2 =fRcapg. Suppose Pi1 contains the native packet P cap

1  
and the corresponding packet in Pi2  is P cap

2 . Under these 
assumptions, there would be two possibilities: 1. P cap

1 6=P
cap
2 , 

obviously, Rcap  cannot decode such coded packet; 2. 
P

cap
1 = P

cap
2 , then Rcap  cannot obtain this packet, for the 

reason P cap
1 © P

cap
2 = 0. Neither of them is expected by us. 

Hence, there must be R½i \R½j = Á; i 6= j. 
Without loss of generality, let us consider node Rj1. To 

insure that the node Rj1 get its corresponding packet P1, it 
must have correctly overheard the packets Pi; i = 2; : : : ; n. So 
based on Definition 2, the jth

1  entry in ½i; i = 2; : : : ; n is equal 
to 1, i.e. the jth

1  column of matrix F is only the first entry that 
is equal to 0. It is the same to other receivers. On the other 
hand, if the jth

k  column of matrix F is only the ith entry that is 
equal to 0, where Rjk

2R½i . It means that Rjk
 has already 

obtained the packets Pt; t = 1; : : : ; n; t 6= i, i.e. it enable to 
eliminatePt from the coded packet. Under the assumption, all 
packets except Pi can be removed by Rjk

. Clearly, there are 
the same results for all other receivers. Therefore, based on the 
code rule of COPE [10], all the packets can be mixed together 
to one packet.                                       ■ 

Definition 4. The set  

 CG = f½1; ½2; : : : ; ½kg ; 2 6 k 6 N    (9) 

where error patterns ½1; ½2; : : : ; ½k can be coded together, is 
called the Code Group.  

Particularly, though there are no less than one code group 
interrelating with a error pattern, if all the jth

k  (jk =2
Sn

i=1 

R½i) columns of matrix F  must be zero in Theorem 5, and 
then each combination of loss patterns fulfilling the theorem 3 
is unique, i.e if ½i2CG and ½i2 CG0, then CG = CG0, and 
achieve their maximum coding opportunities. In this way, all 
the code groups we mentioned are limited to this restriction in 
the rest of this paper. 

In last sub-phase, we introduce the NC-ARQ approach. 
However, it only considered the native packets and ignored the 
encoded packets, which contain coding opportunities and have  

P 1
1

P 2
1

P 3
1

P 1
1©P 2

1

P 3
1

 
Figure 2.  Three receivers uncast scenario. 

Let’s take an example in Fig. 2 to illustrate how to utilize them 
to improve the retransmission efficiency. 

In this example, node C has transmitted P j
1  (j = 1; 2; 3) to 

receivers Rj  separately. The receive-state of packets P 1
1 , P 2

1  
and P 3

1  is depicted in Fig 6(a). Due to the assumption, only P 1
1  

and P 2
1  can be XORed together. Therefore, node C mixes them 

together and forwards encoded packet P 1
1 ©P 2

1  to the 
downstream nodes. However, P 1

1 ©P 2
1  would be lost again 

over the noisy channel, if its receive-state is the showed in Fig. 
6(b), then the best coding decision would be to combine 
P 1

1 ©P 2
1  and P 3

1  together, and not to deliver them respectively. 
From this example we can explicitly see that, by considering 
the encoded packets generated in rescue process, the number 
of retransmissions would be effectively reduced.  

Lemma 1. Using the NC-ARQ technique, for N-
receiver scenario, if ½r1

i  and ½r2

j  can be coded together and 
jP r1

½i
j 6 jP r2

½j
j , !r1

6 !r2
 , then the entire packets in P r1

½i
 can 

be XORed with the ones belonging to P r2
½j

 in recovery process, 
and we say that ½r1

i  is dominated by ½r2

j . This relation is 
denoted by ½r1

i Â ½r2

j . In particular, node C need to retransmit 
Ðr1

½i
 times to rescue ½r1

i . And ÐNative native packets would be 
sent alone.  

 Ðr1
½i

=
jP r1

½i
j

1¡ !r1

                            (10) 

 ÐNative = jP r2
½j
j ¡

jP r1
½i
j(1¡ !r2

)

1¡ !r1

              (11) 

potential to enhance the retransmission efficiency as well. We 
use induction method to prove the lemma. Interested readers 
can find details of the proof in the Appendix. 

Theorem 4. Using the EAR method, when the number of 
packets to be sent is sufficiently large, the average number of 
retransmissions ¸E

UNC  for the N-receiver unicast single-hop 
scenario is 

¸E
UNC =

1

N

NX
i=1

QN

j=i !j

1¡
QN

j=i !j

                 (12) 

where !j is the packet loss ratio between central node and 
receiver Rj, and !i 6 !j if 1 6 i 6 j 6 N .  

Proof: First, we consider the 2-receiver scenario. Let ½1
0 

= [0 0], ½1
1 = [0 1], ½2

0 = [0 0] and ½1
1 = [1 0]. Let random 

variable X0, X1, X2 and X3, separately, denote the number of 
lost packets relevant to loss pattern ½1

0, ½1
1, ½2

0 and ½2
1 after K 

transmissions. Xk  (k = 0; 1; 2; 3)  follow the binomial 
distribution. As we mentioned above, node C would rescue ½1

0 
and ½2

0 first. Then based on Theorem 1, we have 



 

 

Ð½1
0

= Ð½2
0

=
K!1!2

1¡ !1!2

                      (13) 

Ð½1
0!½1

1
= Ð½1

0
¢ !1(1¡ !2)                   (14) 

Ð½1
0!½2

1
= Ð½2

0
¢ (1¡ !1)!2                   (15) 

Since Ð½1
0!½1

1
6Ð½2

0!½2
1
 and E[X1]6E[X3], then E[X1]  

+Ð½1
0!½1

1
=m16m2=E[X2]+Ð½2

0!½2
1
. Based on Lemma 1, 

we directly get ½1
1 Â ½2

1, and  

Ð½2
1

=
m2

1¡ !2

                              (16) 

Combining (13) and (16), the expected number of 
retransmissions to successfully deliver K encoded packets to 
R1 and R2 is given by  

Ðall = Ð½1
0
+ Ð½2

0
+ Ð½2

1
=

K!2

1¡ !2

+
K!1!2

1¡ !1!2
     (17) 

The proof for N(>2) receivers scenario will be found in the 
Appendix.                                                                                  ■ 

Remark: Though no encoded packets would be utilized in 
2-receiver unicast scenario, the EAR approach also 
outperforms the NC-ARQ technique as shown in Fig. 3, where 
!1 = !2. The reason is that the EAR approach not only studies 
the potential of encoded packets, but also considers that loss 
packets should synchronously update their loss-state over 
rescue process, which would result in more coding 
opportunities. 
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Figure 3.  The average number of retransmissions on 2-receiver scenario. 

Note that, in proof we suppose each coded packet can be 
divided into several native packets, all of which are the same 
receive-state and would be recovered separately, even the 
receivers cannot decode it. However, this hypothesis does 
clearly not hold in actual applications. As a result, some 
encoded packets are unable to be mixed with any other packet. 
We call them the unwanted packets. We still take the 3-
receiver unicast scenario to illustrate how it happens.  

The zero weight patterns and CG = f½1
3; ½

2
3; ½

3
3g  don’t 

produce undecodabe packets in each node. Consequently, there 
are only three coding combinations that would create 
unwanted packets, meanwhile, though each coded packet has 
six possible loss-state, only three of them as shown in Fig. 4(a) 
would generate undecodable packets in unintended node. 
Based on Theorem 3, the potential coding schemes for these 
patterns are depicted in Fig. 4(b). 
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Figure 4.  Example of the influence of unwanted packets. (a) The effective 
coded patterns. (b) The coding schemes for coded patterns. 

To simplify analysis, we assume !1 = !2 = !3 = ! . In 
the light of Theorem 1, we have 
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Clearly, CG1 =f½1+2

2 ; ½1+3
2 ; ½2+3

3 g  and CG2=f½1+2
3 ; ½1+3

3 ; 

½2+3
2 g would not create unwanted packets, for the reason that 

the expect number of retransmissions requested to rescue each 
error pattern is the same. Moreover, if N1 > N2 , then 

½1+2
1 Â ½3

3 , ½1+3
1 Â ½2

3  and ½2+3
1 Â ½1

3 , and the remaining 
packets in P 3

½3
, P 2

½3
 and P 1

½3
, respectively, are the same size 

based on Lemma 1. Since ½1
3 , ½2

3  and ½3
3  can be XORed 

together, CG3 = f½1+2
1 ;  ½3

3g , CG4 = f½1+3
1 ; ½2

3g  and 

CG5 = f½2+3
1 ; ½1

3g  would not produce unwanted packets 
either. On the contrary, if N1 < N2, then the residual packets 
in P 1+2

½1
, P 1+3

½1
 and P 2+3

½1
 have to be recovered separately. 

However, the packets in P 1+3
½1

 and P 2+3
½1

 are not unwanted 

packets, in respect that they still combine with the packets 
requested by node R3 . Therefore, only the one in P 1+2

½1
 is 

called unwanted packet. The expect number of deliveries to 
recover them is  

Ð =
K!(1¡ !)(!3 + !2 ¡ 1)

(1¡ !3)(1¡ !2)
                    (18) 

where !3 + !2 ¡ 1 > 0. 
Though Theorem 4 only provides the upper bound of the 

performance of the EAR approach on N-receiver single-hop 
unicast scenario, the simulation results indicate that the 
influence of the unwanted packets is small and the 
performance degradation it caused is considered negligible. 



 

 

 
Updating algorithm: 
1: ½

P
= 0 

2: Triumph = 0 
3: Transform = false 
4: for receivers i = 1 to N do 
5:   if Ri has obtained P  correctly then  
6:     if Ri is one of the destination of P  then 
7:       Triumph = Triumph + 1 
8:       if Triumph is equal to NC(P ) then  
9:         delete P  from the retransmission queue P  
10:         if P  is a coded packet then 
11:           delete the corresponding native packets contained in P  
12:         end if 
13:         return 
14:       end if 
15:       set the ith entry of ½P

 equal to 1 
16:     else  
17:        if Ri has gain P  for the first time then 

18:          set the ith entry of ½
P

 equal to 1 
19:        end if 
20:        Transform = true 
21:   end if 
22: end for 
23: if Transform is true and P  is a coded packet then 
24:   delete the corresponding native packets contained in P  
25: end if 

Figure 5.   Updating algorithm for each loss packet 

Eventually, node C must update the receive-state of loss 
packets synchronously to effectively implement EAR. Thus, 
after C has received N  feedback from Ri, i = 1; : : : ;N  for a 
packet P , it will execute the following updating algorithm, 
where NC(P )  denotes the number of the native packets 
contained in P . Notice that when a coded packet is lost by its 
intended receivers and its loss-state is changed, then node C 
would only reserve these packets and discard the correspond-
ing native packets comprising it to save memory. 

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS 

In this section, retransmission gain is used to evaluate the 
retransmission efficiency of different approaches by varying 
the number of receivers and bit error rate (BER) under both 
unicast and wheel topology. The BER at each receiver are 
mutually independent and follow the Bernoulli distribution. 
We define the retransmission gain as the total number of 
retransmissions using a typical retransmission algorithm, 
which is the HARQ or NC-HARQ techniques, divided by the 
total number of retransmissions using our algorithm. A higher 
retransmission gain is preferred since it indicates fewer 
retransmissions. In the following simulate, the packet size is to 
be 1532 bytes and data is encoded with RS (32, 28, 4). We use 
CRC-16 for error detection in all the simulations. We record 
the total number of retransmissions over a mass of 
experiments. In the interest of space and clarity, we only 
present the average retransmission gains in the following 
simulation results. 
First, we compare the performance of proposed EAR approach 
with the NC-HARQ technique and the HARQ technique. Fig. 
6 shows the effect of different BERs on the retransmission 
gain for the 3-receiver unicast scenarios, respectively. BERs 
between the sender and all its receivers are the same, and 

varied from 10¡4  to 3:5£ 10¡3  in 5£ 10¡4  increments. As 
expected, the simulation results support our theoretical 
derivations. Though in large BERs region the unwanted 
packets would bring down the performance of the EAR 
approach as we discussed before, the simulation results for 
unicast scenario show such decline is so small as to be 
neglectable. Furthermore, an interesting phenomenon would 
be observed is that the retransmission gains for unicast 
scenario increase with BER, and are very close to 1 under the 
light BERs. The reason is that the more awful noise the 
channels encounter, the more packets are lost, that is to say the 
more encoded packets would be generated from which the 
EAR protocol enables to explore the coding opportunities, yet 
NC-ARQ cannot. 

Then, we compare the performance of proposed EAR 
approach with the NC-HARQ technique versus the number of 
clients for unicast and wheel topology. In the experiment, 
BERs between the sender and all its receivers are set equal to 
2£ 10¡3 and 3£ 10¡3. Fig. 7 shows the impact of different 
number of receivers, which is varied from 3 to 25, on the 
retransmission gain. As seen, the retransmission gains hardly 
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Figure 6.  retransmission gain versus BER for theory and simulation.  
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Figure 7.  Retransmission gain versus the number of receivers for theory and 
simulation. 
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Figure 8.   The average overhead  

increase with the number of clients on the light BER, whereas 
the gains significantly advanced upon the heavy BER with the 
slowing growth rate. The reason is that the probability that a 
loss packet is successfully received at lease at one client 
increases with the number of the clients, and then more loss 
packets are relate to one node, namely the growth rate of the 
total number of retransmissions is getting slower and slower, 
when the number of receivers goes up.  

Finally, to ensure each intended receiver is able to 
successfully decode a coded packet, node C should add the 
information, which specifies whether it consists of encoded 
packets and which encoded packets are embraced, within the 
NC header. To achieve this goal, there are two schemes. 

Scheme A: node C directly records all the native packets 
that construct the coded packets, regardless whether any one of 
them is or was a loss packet. We utilize a 2-byte hashvalue to 
identify a packet’s source address and sequence number. 
Thereupon, in the worst condition, node C has to use 
2£K £ (!1 + ¢ ¢ ¢+ !N ) bytes to record these packets. 

Scheme B: node C employs “bit map” to register these 
native packets. In this scenario, C has to keep 19-byte for each 
destination, owing to the randomicity of loss-state of each 
packet. Hence, in the worst condition, node C needs to append 
19£N  bytes. 

Fig. 8 shows the average length of header that records 
which packets in the combined packets for both schemes. 
Packet loss rate between the sender and all its receivers are the 
same and equal to 0.1, 0.3 and 0.5, respectively. Through the 
figure, we see that scheme A has much smaller overhead than 
scheme B. And we further notice that the overhead increases 
with the number of receivers, but decreases when BERs rises. 
Even so, comparing to the length of the data packets, the 
overhead associated with scheme A is no more than 5%, which 
can be neglected. 

V. CONCLUTIONS 

In this paper, we addressed the problem of existing NC-
based reliable transmission schemes for wireless multi-unicast 
system such as WiFi and WiMAX networks. In order to 

overcome the disregard for the role of encoded packets, an 
encoded packet-assisted rescue approach (EAR) based on 
XOR network coding has been proposed. The core features of 
the EAR approach are 1) explore the coding opportunities of 
encoded packet; 2) synchronously updating the receive-state of 
loss packets. Under the access point model, some analytical 
results are derived for the retransmission effi-ciency over the 
unicast scenarios. The theoretical and simu-lation results show 
that the proposed EAR approach always outperforms the NC-
HARQ technique in terms of the retran-smission efficiency for 
a typical range of wireless network conditions.  
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APPENDIX 

Proof of lemma 1: We still suppose that the central node 
retransmits P r1

½i
 round by round. We define P r1

½i
(k) and P r2

½j
(k) 

(k > 0) as the loss packets sets relevant to ½r1

i  and ½r2

j  after the 

kth  round and we get P r1
½i

(0) = P r1
½i

, P r2
½j

(0) =  P r2
½j

. Let 

random variable Yk and Zk(k>0) represent the cardinality of 
P r1

½i
(k)  and P r2

½j
(k) , furthermore, we define Y0  = jP r1

½i
j , 



 

 

Z0 = jP r2
½j
j . As the deliveries are i.i.d. and follow the 

Bernoulli distribution, random variables Yk  and Zk  (k = 
0; 1; : : : ) are i.i.d too and follow the Binomial distribution. 
Due to Y0 6 Z0 , the entire packets in P r1

½i
(0) is able to be 

combined with the ones belonging to P r2
½j

(0) in next round. 

After the first round, Y1 =!r1
Y0 and m0 =Z0¡Y0 packets in 

P r2
½j

(0) are not delivered, i.e. Z1 =!r2
Y0+m0 . Because of 

!r1
6 !r2

, we explicitly have Y1 6 Z1 . It means that the 
entire packets within P r1

½i
(1)  can be mixed with the ones 

belonging to P r2
½j

(1) over the next round in the same way. 

Now, we suppose that Yn 6 Zn  (n > 3). Then after the 
nth  round, node R1  is failure to receive Yn+1 = !r1

Yn 
packets, so the central node has to retransmit these packets in 
the next round. Moreover, mn = Zn ¡ Yn packets in P r2

½j
(n) 

are not delivered, i.e. Zn+1=!r2
Yn+mn . Clearly, we have 

Yn+1 6 Zn+1, which indicates that we are able to combine the 
entire packets in P r1

½i
(n + 1)  with the ones belonging to 

P r2
½j

(n + 1). Then we deduce ½1 Â ½2 by induction, and work 

out the expect number of retransmissions required to rescue ½1.  

 Ð0Code =
X1

k=0
Yk =

jP½1
j

1¡ !r1

                 (19) 

In particular, Ð0Native native packets relevant to ½2 would 
be delivered alone. 

Ð0Native = Z1

= Z0 +
X1

k=0
(!r2

¡ 1)Yk

= jP½2
j ¡

jP½1
j (1¡ !r2

)

1¡ !r1

           

(20) 

The lemma has been proved.                                          ■ 

Proof of theorem 7: First, we separate each coded pattern 
into the corresponding native patterns, in respect that a coded 
pattern can be considered as the set consisting of loss 
packet(s) requested by distinct node(s) with the same error-
state. For example, if a encoded packet P  in P r1;r2;r3

½j
 

contains loss packets P r1

i1
 and P r2

i2
, then we put P r1

i1
 and P r2

i2
 

into P r1
½j0

 and P r2
½j00

 respectively, where ½j =½j0 =½j00 . After 

that, we cancel P  from P r1;r2;r3
½j

 and repeat these steps until 

P r1;r2;r3
½j

= Á. In this way, we only consider native packets in 

the following proof. 
Second, let ©i  denote the set that contains the error 

patterns which belong to ½j (j < i) and the ith entry is non-
zero, particularly ©0 = Á . Let ©i  denote the subset of ½i 
consisting of all those error patterns whose the jth  ( j >i) 
entries are zero, specially ©0 =

©
½0
0

ª
, where ½0

0 is zero vector, 

and ©N = ½N . Then the set U i = ©i [ ©i  is called the 
primary set for node Ri ,. Clearly, U i\  U j = Á , i 6= j  and SN

i=1 U i =
SN

i=1 ½i. 

Based on the above concepts and Theorem 5, for any loss 
pattern ½i

k  in ©i , there is a unique code group, CG = f½i
k; 

½i1
k1

; : : : ; ½iw

kw

ª
μ U i , where w = W (½i

k) , ij 2 N  and kj 2 

h
0;

¯̄̄
½

ij

kj

¯̄̄i
. Furthermore, only the  and  entries of vector 

 are equal to 1, and, !ij
6 !i , thereby Pr

©
½i

k

ª
> 

Pr
©
½

ij

kj

ª
. We define the loss packets set P (n)

½  relating to 

½ 2 CG  after the nth  round, and P (0)
½ = P½ . Let random 

variable Yn = jP
(n)
½ j (n>0). Since the deliveries are i.i.d. and 

follow the Bernoulli distribution, random variables Yn 
(n = 0; 1; : : : ) are i.i.d and follow the Binomial distribution. 
Then using the EAR approach, when the intended node(s) 
is/are failure to receive a encoded packet and some client 
overheard it for the first time, these contained native packets 
would be eliminated from their original sets and transferred to 
the matched sets respectively. Therefore, after the nth round, 
Yn+1 = Yn Pr

©
½
¯̄
½
ª

 packets have to be retransmitted in the 
next round. Notice that it differs from the result in Lemma 1. 
This is due to the fact that the NC-ARQ technique is only 
interest in whether the intended nodes have already correctly 
obtains the coded packet, yet the EAR approach not merely 
takes care of it, but also considers how to combine more 
requested packets together whether they are encoded packets 
or not. Then to rescue ½, node C is expected to retransmit Ð½ 
times,   

Ð½ =
X1

k=0
Yn =

KjP½j

1¡ Pr
©
½
¯̄
½
ª               (21) 

and Ð½!½0 packets is transformed from P½ to P½0. 
Ð½!½0 = Ð£ Pr

©
½0j½

ª
                      (22) 

Note that this result is the same as Theorem 1.  
On the other hand, some loss packets relating to ½02 U t 

(t 6 i) would be relocated to P½ (½ 2 CG), if Prf½j½0g > 0. 
And based on the definition of the sets ©i and ©i, there is 

always an error pattern ½i
x2©i = ½

ij

x0 2U t(t<i) and ½i
y 2 ©i 

enables to be combined with ½ij

y0 2©i. Because the ithj  entry of 

½i
x is zero and of ½i

y  is non-zero, then f½i
xg \ f½

i
yg = Á  and 

f½i
xg [ f½

i
yg=©i . Due to ½i

x = ½
ij

x0 , then we have 

Prf½i
xg=Prf½

ij

x0g , Prf½i
xj½

i
zg=Prf½

ij

x0 j½
ij

z0g  ( ½i
z =½

ij

z0 ), 

jP i
½x
j = jP

ij
½x0 j and Prf½i

kj½
i
xg>Prf½

ij

kj
j½

ij

x0g , namely Ð½i
x

= 

Ð
½

ij

x0

 and Ð½i
x!½i

k
> Ð

½
ij

x0!½
ij

kj

. In addition, we also have  

Pr
©
½i

y

ª
=Pr

©
½

ij

y0

ª
Pr

©
½i

kj½
i
y

ª
= Pr

©
½

ij

kj
j½

ij

y0

ª                      (23) 

for the reason ½i
k © ½

ij

kj
= ½i

y © ½
ij

y0.  
Hence, we divide the loss packet set into three parts 

P i
½k

=Ori
½k
[

©S
½i

x
(Ð½i

x!½i
k
)
ª
[
© S

½i
y
(Ð½i

y!½i
k
)
ª

          

P
ij
½kj

=Or
ij
½kj
[
© S

½ij

x0
(Ð

½
ij

x0!½
ij

kj

)
ª
[
© S

½
ij

y0

(Ð
½

ij

y0!½
ij

kj

)
ª

 

Due to jOri
½k
j = K Prf½i

kg > jOr
ij
½kj

j = K Prf½
ij

kj
g, we have ¯̄̄

Ori
½k
[
©S

½i
x
(Ð½i

x!½i
k
)
ª¯̄̄

>

¯̄̄̄
Or

ij
½kj
[

©S
½ij

x0
(Ð

½
ij

x0!½
ij

kj

)
ª¯̄̄̄

. 

Now, we assume W (½i
k) = 1 , then 

©S
½

ij

y0

(Ð
½

ij

y0!½
ij

kj

)
ª

= 



 

 

©S
½i

y
(Ð½i

y!½i
k
)
ª
=Á , thereby jP i

½k
j= max

½2CG
fjP½jg. If W (½i

k) 

= 2 , then jÐ½i
y!½i

k
j 6= 0  unless W (½i

y) = 1 . Based on (21), 

(22) and (23), we get jÐ½i
y!½i

k
j > jÐ

½
ij

y0!½
ij

kj

j for each pair 

(½i
y; ½

ij

y0), so jP i
½k
j=max

½2CG
fjP½jg. Suppose jP i

½k
j=max

½2CG
fjP½jg 

is valid if W (½i
k) = n¡1 (n<i). Then for W (½i

k) = n, there 
are  ©[

½i
x

(Ð½i
x!½i

k
)
ª

=
©[n¡1

w=1
(Ð½i

x!½i
k
(w))

ª
©[

½
ij

y0

(Ð
½

ij

y0!½
ij
kj

)
ª

=
© [n¡1

w=1
(Ð

½
ij

y0!½
ij
kj

(w))
ª         

where Ð½!½0(w)  is the set consisting of all the Ð½!½0  ( 
W (½) = w). Because of the assumption, for each pair (½i

y; 

½
ij

y0), there areW (½i
y) < n, and we have jP i

½y
j > jP

ij
½y0 j, then 

according to (21), (22) and (23), we still get jÐ½i
y!½i

k
j > 

jÐ
½

ij

y0!½
ij

kj

j. It is able to deduce Ð½i
x!½i

k
(w) > Ð

½
ij

y0!½
ij

kj

(w), 

w 2 [1; n¡1]. Therefore, jP i
½k
j=max

½2CG
fjP½jg.   

Then by induction, the equation jP i
½k
j=max

½2CG
fjP½jg  is 

available at all time for each ½i
k2©i, where CG contains ½i

k. 
Based on (21), we have Ð½i

k
> Ð

½
ij

kj

, namely after the central 

node retransmits Ð½i
k
 times, CG has been already rescued, in 

other words CG is dominated by ½i
k. Consequently, U i Á ©i 

and to rescue U i is equivalent to recover loss packets in P½, 
½ 2 ©i.  

Furthermore, we define that when the loss-state of a packet 
in Or½  (½ 2 ©i) is altered, but still belongs to ©i, then this 
packet would be retained in Or½ . Accordingly, rescue Or½ 
means to deliver a packet in Or½  until its loss-state didn’t 
belong to ©i . In this way, to recover P©i  is equivalent to 
rescue Or©i . Now, let us proof that the expect number of 
retransmissions required to rescue Or½  ( ½ 2 ©i ) under the 
above definition is 

Ð0Or½
=

K Prf½g

1¡
QN

j=i !j

                              (24) 

First, let ½1 denote the pattern that ½1 2 ©i and W (½1) = 
i¡ 1, then Eq. (24) is obviously true for ½i¡1. Then Let ½2(t) 
denote the vector the tth entry is zero and W (½2(t)) = i¡2. 
Based on Theorem 1, to rescue loss packets in Or½2(t) relating 
to ½2(t)  (for simply, we also say that to rescue ½2(t)  in 
Or½2(t)), the expect number is 

Ð0½2(t)
=

K Prf½2(t)g

1¡ !t

QN
k=i !k

                               

and to rescue ½1 in Or½2(t), the number is  

Ð0½2(t)!½1
=

Ð0½2(t)
(1¡ !t)

QN
k=i !k

1¡
QN

k=i !k

                  

Since ½2(t) can only be convert to ½1, the number required to 
rescue Or½2(t) is  

Ð0Or½2(t)
= Ð0½2(t)

+ Ð0½2(t)!½1

=
K Prf½2(t)g

1¡
QN

k=i !k

                            

Now, suppose, this thesis is true for any ½n¡1 2 ©i ,  
W (½n¡1)= i¡ n + 1>0 . Then let ½n(T ) 2 ©i , T = ft1 
: : : ; tng, denote the pattern the T th  entries are zero and W  
(½n) = i¡ n. Using Theorem 1, to rescue ½n(T ) in Or½n(T ), 
the number is  

Ð0½n(T ) =
K Prf½n(T )g

1¡
Qn

j=1 !tj

QN
k=i !k

                     

and  
Ð½n(T )!½x(T 0) = Ð0½n(T ) Prf½x(T 0)j½n(T )g         

packets transformed to ½x(T 0)2©i, 1 6 x < n  T 0=ft01; : : : ; 
t0xg. If we operate these packets as well as Or½x(T 0), then in 
the light of assumption, the required number to rescue them is  

  Ð0Or0
½x(T 0)

=
Ð½n(T)!½x(T 0)

1¡
QN

k=i !k

                             

Therefore, we have 

Ð0Or½n(T )
=

X
½x(T 0)2©i

Ð0Or0
½x(T 0)

+ Ð0½n(T)

=
Ð0

½n(T)

1¡
QN

k=i !k

¢
X

½x(T 0)2©i

Prf½xj½ng+ Ð0½n(T )

=
Ð0½n(T )(1¡

Qn
j=1 !tj

)
QN

j=i !j

1¡
QN

k=i !k

+ Ð0½n(T )

=
K Prf½n(T )g

1¡
QN

k=i !k

 

By induction the proposition is proofed. Moreover, 

Ð©i = Ð0Or
©i

=
K

P
½2©i Prf½g

1¡
QN

k=i !k

=
K

QN
k=i !k

1¡
QN

k=i !k

       

then we figure out the expected number of retransmissions 
required to recover the entire loss packets, 

Ðall =

NX
i=1

ÐUi =

NX
i=1

Ð©i =

NX
i=1

K
QN

k=i !k

1¡
QN

j=i !k

    (25) 

Dividing KN , then gives the theorem.                           ■ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


