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Abstract

In the study of the algebra NCSym of symmetric functions in noncommutative

variables, Bergeron and Zabrocki found a free generating set consisting of power

sum symmetric functions indexed by atomic partitions. On the other hand,

Bergeron, Reutenauer, Rosas, and Zabrocki studied another free generating set

of NCSym consisting of monomial symmetric functions indexed by unsplitable

partitions. Can and Sagan raised the question of finding a bijection between

atomic partitions and unsplitable partitions. In this paper, we provide such a

bijection.

1 Introduction

In their study of the algebra NCSym of symmetric functions in noncommutative vari-
ables, Rosas and Sagan [5] introduced a vector space with a basis

{pπ | π is a set partition},

where pπ is the power sum symmetric function in noncommutative variables. Bergeron,
Hohlweg, Rosas, and Zabrocki [1] obtained the following formula

pπ|σ = pπ pσ,

where π|σ denotes the slash product of π and σ. It follows that, as an algebra, NCSym is
freely generated by pπ with π atomic, see Bergeron and Zabrocki [3]. It should be noted
that Wolf [6] showed that NCSym is freely generated by another basis. A combinatorial
characterization of the generating set of Wolf has been found by Bergeron, Reutenauer,
Rosas, and Zabrocki [2]. More precisely, they introduced the notion of unsplitable
partitions and proved that the generating set of Wolf can be described as the set of
monomial symmetric functions in noncommutative variables indexed by unsplitable
partitions.
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Let [n] denote the set {1, 2, . . . , n}. Taking the degree into account, one sees that
the number of atomic partitions of [n] equals the number of unsplitable partitions of
[n]. Recently, Can and Sagan [4] raised the question of finding a combinatorial proof
of this fact. The objective of this paper is to present such a proof.

2 The bijection

In this section we construct a bijection between the set of atomic partitions of [n] and
the set of unsplitable partitions of [n].

Let us begin with an overview of terminology. Let X be an totally ordered set. A
partition π of X is a family {B1, B2, . . . , Bk} of disjoint nonempty subsets of X whose
union is X . The subsets Bi are called blocks of π. Without loss of generality, we
may assume that the blocks of a partition are arranged in the increasing order of their
minimal elements, and that the elements in each block are written in increasing order.

Let π be a partition of X and S ⊆ X . We say that σ is the restriction of π on S,
denoted by σ = πS, if σ is a partition of S such that any two elements lie in the same
block of σ if and only if they are in the same block of π. In other words, πS is obtained
from π by removing all elements that do not belong to S. For two positive integers i
and j with i < j, we use [i, j] to denote the set {i, i+ 1, . . . , j}. For example, if

π =
{

{1, 3, 5, 6}, {2, 7, 9}, {4, 8, 10}
}

, (2.1)

then
π[5,10] =

{

{5, 6}, {7, 9}, {8, 10}
}

. (2.2)

Let Πn be the set of partitions of [n]. Assume that

π = {B1, B2, . . . , Bk} ∈ Πm, σ = {C1, C2, . . . , Cl} ∈ Πn.

The slash product of π and σ, denoted by π|σ, is defined to be the partition obtained
by joining the blocks of π and the blocks of the partition

σ +m = {C1 +m, C2 +m, . . . , Cl +m},

that is,
π|σ = {B1, B2, . . . , Bk, C1 +m, C2 +m, . . . , Cl +m},

where Ci +m denotes the block obtained by adding m to each element in Ci. It can
be seen that π|σ ∈ Πm+n. A partition π is said to be atomic if there are no nonempty
partitions σ and τ such that π = σ|τ . Let An be the set of atomic partitions of [n].
For example, for n = 3 there are two atomic partitions

{

{1, 3}, {2}
}

and
{

{1, 2, 3}
}

.

The split product of π and σ, denoted by π ◦ σ, is given by

π ◦ σ =

{

{B1 ∪ (C1 +m), . . . , Bk ∪ (Ck +m), Ck+1 +m, . . . , Cl +m}, if k ≤ l;

{B1 ∪ (C1 +m), . . . , Bl ∪ (Cl +m), Bl+1, . . . , Bk}, if k > l.
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Clearly, π ◦ σ ∈ Πm+n. A partition is said to be splitable if it is the split product of
two nonempty partitions. Otherwise, it is said to be unsplitable. Denote by USn the
set of unsplitable partitions of [n]. For example, for n = 3 there are two unsplitable
partitions

{

{1}, {2, 3}
}

and
{

{1}, {2}, {3}
}

.

To describe our bijection, we first notice that it is possible for a partition to be
atomic and unsplitable at the same time. For example, the partition

{

{1, 3, 7}, {2, 6}, {4, 5, 8}
}

is both atomic and unsplitable. Our bijection will be concerned with atomic partitions
that are splitable and unsplitable partitions that are not atomic. In other words, we
shall establish a bijection

ϕ : An\USn −→ USn\An.

For the sake of presentation, let us introduce a notation. Let X = {x1, x2, . . . , xn}
under the assumption that x1 < x2 < · · · < xn. Assume that π = {B1, B2, . . . , Bk} is
a partition of X . Let r be the largest integer j such that

Bj ∪ Bj+1 ∪ · · · ∪Bk = {xt, xt+1, . . . , xn}

for some t. The existence of such an integer r is evident. We define

R(π) = {Br, Br+1, . . . , Bk}.

Given the partition π =
{

{1, 3, 5, 6}, {2, 7, 9}, {4, 8, 10}
}

as in (2.1), we have

R(π[5,10]) =
{

{7, 9}, {8, 10}
}

. (2.3)

In the above notation, we see that π is atomic if and only if π = R(π).

We are now ready to present the map ϕ. Suppose that π = {B1, B2, . . . , Bk} ∈
An\USn. It consists of three steps.

Step 1. Let i be the smallest element in B1 such that π = π[i−1] ◦ (π[i, n] − i + 1). The
existence of the element i is guaranteed by the condition that π is splitable.

Step 2. Let j be the smallest element in the underlying set of the partition R(π[i, n]). We
see that 2 ≤ i ≤ j ≤ n and R(π[i, n]) = π[j, n].

Step 3. Set ϕ(π) to be the partition π[j−1]

∣

∣ (π[j, n] − j + 1).

Theorem 2.1 The map ϕ is a bijection from An\USn to USn\An.

Proof. First, we claim that ϕ(π) ∈ USn\An. Since 2 ≤ j ≤ n, both π[j−1] and π[j, n]
are nonempty partitions. This implies that ϕ(π) 6∈ An.
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We next proceed to show that ϕ(π) is unsplitable. To this end, let

π[j−1] = {C1, C2, . . . , Cs}, π[j,n] = {D1, D2, . . . , Dt}.

Then
ϕ(π) = {C1, C2, . . . , Cs, D1, D2, . . . , Dt}.

Suppose to the contrary that ϕ(π) is splitable, namely, there exists an element l ∈ C1

such that
ϕ(π) = ϕ(π)[l−1] ◦ (ϕ(π)[l, n] − l + 1).

Since n belongs to some block Dh, by the definition of the split product, we deduce
that

Cp ∩ [l, n] 6= ∅, for each 1 ≤ p ≤ s. (2.4)

By the choice of i, we find that l ≥ i. Recall that π = {B1, B2, . . . , Bk}. By the
definition of π[j,n], we may assume that the block D1 of π[j,n] is contained in some block
Br of π. If D1 = Br, then the smallest element of Br is j. Therefore all elements in
Br+1, Br+2, . . . , Bk are larger than j. Now, by the choice of j, we deduce that

Br ∪Br+1 ∪ · · · ∪Bk = [j, n].

Consequently,
π = π[j−1]

∣

∣ (π[j, n] − j + 1),

which contradicts the assumption that π is atomic. Hence we have D1 6= Br, and
so Cr = Br\D1 6= ∅. Since D1 is a block of the partition π[i,n], it consists of all the
elements in Br that are larger than or equal to i. In other words, each element in Cr

is less than i. This yields that Cr ∩ [l, n] = ∅, a contradiction to (2.4). Thus we have
proved the claim that ϕ(π) ∈ USn\An.

We now define a map
ψ : USn\An −→ An\USn,

and shall show that ψ is the inverse of ϕ. Let σ = {B1, B2, . . . , Bk} ∈ USn\An.

Step 1. Let j be the smallest element in the underlying set of the partition R(σ).

Step 2. Let Br be the first block in the partition R(σ). We consider two cases.

Case 1. If σ[j−1] is unsplitable, then set

ψ(σ) = σ[j−1] ◦ (σ[j, n] − j + 1).

Case 2. If σ[j−1] is splitable, then choose i to be the smallest element in B1 such that

σ[j−1] = σ[i−1] ◦ (σ[i, j−1] − i+ 1). (2.5)

Let q = min{l |Bl ⊆ [i− 1]}. If 2r − q − 1 ≤ k, then set

ψ(σ) = {B1, . . . , Bq−1, Bq ∪Br, . . . , Br−1 ∪B2r−q−1, B2r−q, . . . , Bk}.

If 2r − q − 1 > k, then set

ψ(σ) = {B1, . . . , Bq−1, Bq ∪Br, . . . , Bq+k−r ∪ Bk, Bq+k−r+1, . . . , Br−1}.
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It remains to show that the map ψ is well-defined and it is indeed the inverse of
the map ϕ.

For any σ ∈ USn\An, we notice that in Step 1 of the above construction of ψ, the
element j always exists since σ is not atomic. Moreover, we observe that j ≥ 2. In
Step 2, by the choice of j, we have

σ[j−1] = {B1, B2, . . . , Br−1},

σ[j, n] = R(σ) = {Br, Br+1, . . . , Bk}.

Since σ is unsplitable, we can always find the element q. Otherwise, if every block
B1, B2, . . . , Bk contains an element in [i, n], by the assumption (2.5), we have Bp ∩
[i, n] 6= ∅ for any 1 ≤ p ≤ k, and

min(B1 ∩ [i, n]) < min(B2 ∩ [i, n]) < · · · < min(Bk ∩ [i, n]).

This implies that
σ = σ[i−1] ◦ (σ[i,n] − i+ 1),

a contradiction to the fact that σ is unsplitable. This confirms the existence of the
element q. At this point, we still need to show that ψ(σ) ∈ An\USn. It is clear from
the above construction that ψ(σ) is splitable. For the case when σ[j−1] is unsplitable, it
is easily seen that ψ(σ) is atomic. When σ[j−1] is splitable, since i ∈ B1 and Bq ⊆ [i−1],
we find that ψ(σ) is atomic. Thus we have shown that ψ(σ) ∈ An\USn. Consequently,
ψ is well-defined.

It is not difficult to verify that ψ is the inverse map of ϕ. The details are omitted.
This completes the proof.

The following example is an illustration of the maps ϕ and ψ. Let

π =
{

{1, 3, 5, 6}, {2, 7, 9}, {4, 8, 10}
}

be the partition as given in (2.1). In Step 1 of the map ϕ, we have i = 5. By (2.3), we
get

ϕ(π) = {{1, 3, 5, 6}, {2}, {4}, {7, 9}, {8, 10}}. (2.6)

Conversely, assume that σ is the partition given in (2.6). Then ψ(σ) is determined
as follows. First, we have R(σ) = {{7, 9}, {8, 10}} and j = 7. Then,

σ[j−1] = {{1, 3, 5, 6}, {2}, {4}} = {B1, B2, B3}

is splitable, and i = 5 is the smallest element in {1, 3, 5, 6} such that

σ[j−1] = σ[i−1] ◦ (σ[i, j−1] − i+ 1).

Since B2 is the first block of σ[j−1] that is contained in [i− 1], we get

ψ(σ) = {{1, 3, 5, 6}, {2, 7, 9}, {4, 8, 10}} = π.
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