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On the coalescence time of reversible random walks
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Abstract

Consider a system of coalescing random walks where each individual performs ran-

dom walk over a finite graphG, or (more generally) evolves according to some reversible

Markov chain generator Q. Let C be the first time at which all walkers have coalesced

into a single cluster. C is closely related to the consensus time of the voter model for

this G or Q.

We prove that the expected value of C is at most a constant multiple of the largest

hitting time of an element in the state space. This solves a problem posed by Aldous and

Fill and gives sharp bounds in many examples, including all vertex-transitive graphs.

We also obtain results on the expected time until only k ≥ 2 clusters remain. Our proof

tools include a new exponential inequality for the meeting time of a reversible Markov

chain and a deterministic trajectory, which we believe to be of independent interest.

Keywords: coalescing random walks, voter model, hitting time.

MSC 2010 Classification: 60J27, 60K35 (primary), 60C05 (secondary).

1 Introduction

Consider a system of continuous-time random walks on a finite connected graph G, with a

walker starting from each vertex of G. Let the walkers evolve independently, except that

any two that occupy the same vertex of G at a given time coalesce into one (this is made

precise in Section 3.2).
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As time goes by, larger and larger coalesced clusters emerge, until at a certain random

time C only one cluster remains. The question we address here is: how large can C be in

terms of other parameters of G? This is a natural question which has implications for the

so-called voter model on G, discussed in Section 1.1 below.

It is instructive to consider what happens in the simple case of G = Kn, the complete

graph on n vertices. An explicit calculation [2, Chapter 14, Sec. 3.3] shows that:

C

n
≈

+∞
∑

i=1

Zi

i(i + 1)
, with {Zi}i≥1 i.i.d. exponential random variables with mean 1. (1)

In particular, E [C] ∼ n as n → +∞. What is remarkable about this is that any two

of the walkers will take an expected time ∼ n/2 to meet and coalesce; the fact that we

are dealing with an unbounded number of particles only increases the expected time by a

constant factor.

It is natural to ask what happens in more general graphs. This is closely related to the

following problem, which was posed by Aldous and Fill in the mid-nineties.

Problem 1 (Open problem 13, Chapter 14 of [2]) Prove that there exists a universal

constant K > 0 such that the expected value of C satisfies

E [C] ≤ K TG

hit

irrespective of initial conditions, where TG

hit is the maximum expected hitting time of a vertex

in G.

To see how this relates to our previous discussion, consider a vertex-transitive graph

G. Proposition 5 in [2, Chapter 14] implies that the maximum expected meeting time of

two walkers on G, denoted by TG
meet, actually equals TG

hit/2. This implies that, if Problem

1 has a positive solution, all vertex-transitive graphs are like Kn in that E [C] is at most a

universal constant factor away from TG
meet. A similar conclusion holds for the many other

families of graphs where TG
meet = Θ

(

TG

hit

)

(eg. all regular graphs with TG

hit = O (n)). For

more general graphs it is still true that TG
meet ≤ TG

hit, as proven in the aforementioned

Proposition (see also [1]), and the Problem may be viewed as an strengthening of this fact1.

1There are graphs such as stars where TG

hit is much larger than TG

meet or E [C].
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To the best of our knowledge, Problem 1 has remained open up to now. The best known

bound of this sort has an extra ln |V| factor; see Proposition 11 in [2, Chapter 14]. Our

main goal in this paper is to give a solution of Problem 1 in the more general setting of

reversible Markov chains.

Assume that Q is the generator of a reversible, irreducible, continuous-time Markov

chain over a finite set V. Given v ∈ V, let Hv be the hitting time of v, ie. the first time at

which a trajectory of Q hits v. We define the following parameter of the chain:

TQ
hit ≡ max

v,w∈V
Ew [Hv] = largest expected hitting time for Q. (2)

Define a system of coalescing random walks as in the case of graphs, with the difference

that each walker now evolves over V according to Q. The following Theorem solves Problem

1.

Theorem 1.1 There exists a universal constant K > 0 such that, with Q as above, for any

n ∈ N\{0} and for any x(n) = (x(1), . . . x(n)) ∈ Vn:

Ex(n) [C] ≤ K TQ
hit.

Remark 1 Here x(n) is an initial condition, with n arbitrary. In particular, there may be

more or less than one walker at each site v ∈ V in the beginning of the process. Allowing

for arbitrary initial conditions is convenient for our proofs, but does not really change the

results.

We also prove a stronger result. Let Ck denote the first time at which there are at most k

clusters of coalesced walkers (k ≥ 1). Notice that C1 = C with this definition.

Theorem 1.2 There exists a universal constant K1 > 0 such that, in the same setting of

Theorem 1.1:

∀k ∈ N\{0}, Ex(n) [Ck] ≤ K1

(

TQ
hit

k
+TQ

mix

)

,

where TQ
mix is the mixing time of Q (see Section 2.2 for a definition).

The dependence on k in this Theorem is essentially best possible, as Ex(n) [Ck] ∼ TQ
hit/k

for large complete graphs. The case k = 1 gives back Theorem 1.1, as TQ
mix ≤ cTQ

hit for

3



some universal c > 0 [2, Chapter 4]. We will nevertheless prove Theorem 1.1 first and then

show how its proof can be modified to obtain Theorem 1.2.

One justification for proving this second result is that it is helpful in approximating the

distribution of C. We are in the process of writing a paper where we show that, if Q is

transitive and TQ
mix ≪ TQ

hit, then

Law of
C

TQ
hit

≈
+∞
∑

i=1

Zi

i(i+ 1)
, as for the complete graph (cf. (1)).

In particular, E [C] ∼ TQ
hit. This was previously known only for discrete tori Zd

L with L ≫ 1

in d ≥ 2 dimensions, due to Cox’s paper [4]2. An important step in both our proof and

Cox’s argument is that E [Ck] ≪ TQ
hit if k ≫ 1. Cox proves this in [4, Section 4] via a

simple renormalization argument which is very specific for discrete tori, whereas we use

Theorem 1.2 for the same purpose.

1.1 Application to the voter model

We now sketch the connection between our results and the voter model [6, 2] on a graph G

(this could be generalized to an arbitrary generator Q, but we will not do this here). The

state of the process at a given time t is a function:

ηt : V (G) → O

where V (G) is the vertex set of G and O is a fixed set of possible opinions. The evolution

of the process is as follows. Each vertex v ∈ V (G) “wakes up” at rate 1; when that happens

at a time t > 0, v chooses one of its neighbors w uniformly at random and updates its value

of ηt(v) to w’s opinion ηt−(w); all other opinions stay the same.

A classical duality result (see eg. [6, Chapter 5] or [2, Chapter 14]) relates the state of

the process at a given time to a system of coalescing random walks on G moving backwards

in time. In particular, the consensus time for the voter model – ie. the least time at which

all vertices of G have the same opinion – is dominated by the coalescence time C from the

initial state with all vertices occupied. This implies the following Corollary of Theorem 1.1.

2Transitivity can be dropped at the cost of making stronger assumptions on Q and using a different
normalization factor.
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Corollary 1.1 There exists a universal constant K > 0 such that, for any graph G and

any set O, the expected value of the consensus time of the voter model defined in terms of

G and O, started from an arbitrary initial state, is bounded by K TG

hit.

Proposition 5 in [2, Chapter 14] shows that the Corollary is tight up to the value of K

for vertex-transitive G, at least when the initial conditions are iid uniform over {−1,+1}
(say); we omit the details.

1.2 Main proof ideas

Let us give an outline of the (elementary) proof of Theorem 1.1; the proof of Theorem 1.2

is quite similar. For clarity, we first present an oversimplified account, and then explain

how one can avoid the oversimplifications.

We label the n walkers (Xt(a))t≥0 with numbers a = 1, . . . , n. Instead of having walkers

coalesce, we will assume that a walker #b will kill any walker #a with a > b that happens

to be in the same state as itself (this is made precise in Section 3.3). The number of walkers

that are alive at time t in this process is precisely the number of clusters in the coalescing

random walks process, and C is the first time at which only walker #1 is still alive. This

implies that:

P (C > t) ≤
n
∑

a=2

P (walker # a alive at time t) .

We now make the following oversimplification:

Oversimplification #1: walker #a dies at the first time when Xt(a) = Xt(b)

for some b < a.

The reason why this is an oversimplification is that a walker #b may have died before

meeting walker #a. For the moment, we ignore this and write:

P (walker # a alive at time t) ≤ P

(

a−1
⋂

b=1

{∀0 ≤ s ≤ t, Xs(a) 6= Xs(b)}
)

.

In order to simplify the RHS, we notice that the trajectories (Xt(u))t≥0 of walkers #u,

1 ≤ u ≤ a, are independent realizations of Q. Conditioning on Xs(a) = hs, s ≥ 0, makes
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the events in the RHS independent, and we deduce:

P (walker # a alive at time t | (Xs(a))s≥0 = (hs)s≥0) ≤
a−1
∏

b=1

P (∀0 ≤ s ≤ t, Xs(b) 6= hs) .

We now make another oversimplification.

Oversimplification #2: (Xt(b))t≥0 is started from the stationary distribution

for all b.

This allows us to use the following Lemma, which we believe to be new (and of inde-

pendent interest).

Lemma 1.1 (Meeting time Lemma; proven in Section 5.2) Let (Xt)t≥0 be a real-

ization of Q starting from the stationary distribution π. Then there exist v ∈ V and

a quasistationary distribution qv for V\{v} such that for any deterministic path h ∈
D([0,+∞),V), we have:

∀t ≥ 0, Pπ (∀0 ≤ s ≤ t, Xt 6= ht) ≤ Pqv (Hv > t) = exp

(

− t

Eqv [Hv]

)

.

Remark 2 The proof of Lemma 1.1 shows that we may take v ∈ h([0,+∞)). This is a

well-known result if h ≡ v [2, Chapter 3, Section 6.5]. An application of this Lemma to

so-called cat-and-mouse games is sketched in the final section.

Notice that Eqv [Hv] ≤ TQ
hit, so:

P (walker # a alive at time t | (Xs(i))s≥0 = (hs)s≥0) ≤ e
−

(a−1)t

T
Q
hit .

This shows that:

P (C > t) ≤
n
∑

a=2

e
− (a−1)t

T
Q
hit .

If one takes t = (ln 2 + c)TQ
hit, the RHS becomes:

P

(

C > (ln 2 + c)TQ
hit

)

≤
n
∑

a=2

2−a+1e−(a−1)c ≤ e−c,
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and this gives E [C] ≤ (ln 2 + 2)TQ
hit.

Of course, this is not a proof of Theorem 1.1 because of the oversimplifications. Our

way out of this is to introduce a process where at any given time there is a list of allowed

killings. At any time t there will be a set At, so that walker #b may kill walker #a at time

t only if b < a and (b, a) ∈ At (cf. Section 3.4). The salient characteristics of this process

are:

1. For any choice of A = (At)t≥0, the set of alive walkers in the process defined via A
dominates the corresponding set in the process without A (see Proposition 3.2).

2. A judicious choice of A will ensure that for each a, there will be a large enough time

interval where a large number of walkers will be available to kill walker #a. Moreover,

many of these will be stationary.

Item 1 allows us to consider the process with a list of allowed killings instead of the

original process in order to obtain upper bounds. Item 2 will mean that we may apply

the Meeting Time Lemma to at least some of the walkers with indices b < a, in some

time intervals. These two ingredients will allow us to “fix” the oversimplified proof just

presented.

1.3 Organization

The remainder of the paper is organized as follows. Section 2 introduces our notation and

recalls some basic concepts. Section 3 defines the main processes we consider in the paper.

Section 4 presents the proofs of the two Theorems, and Section 5 presents the proof of

Lemma 1.1. Some final comments are presented in the last Section.

2 Preliminaries

In what follows we recall some basic material while also fixing notation.

2.1 Basic notation

N is the set of non-negative integers. Given n ∈ N\{0}, we set [n] ≡ {1, 2, . . . , n}.
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We will often speak of universal constants. These are numbers that are independent of

any other object or parameter under consideration, be it a Markov chain, the initial state

of a process under consideration or anything else.

The cardinality of a finite set S is denoted by |S|, and 2S represents the power set of

S (ie. the set whose elements are the subsets of S). The set of all probability measures

over S will be denoted by M1(S). R
S denotes the space of all functions f : S → R, or

equivalently of all (column) vectors with entries indexed by S. Linear operators acting

on R
S correspond to matrices with rows and columns indexed by the elements of S. If A

is some matrix of this sort, ‖A‖op is the operator norm of A. If A is symmetric, we let

λmin(A), λmax(A) denote the minimum and maximum eigenvalues of A (respectively).

Given a finite set F 6= ∅, a function ω : [0,+∞) → F is said to be càdlàg if there exist

t0 = 0 < t1 < t2 < · · · < tn < · · · ր +∞ with ω constant over each interval [ti−1, ti).

D([0,+∞), F ) is the set of all such càdlàg functions, with the σ-field generated by the

projections “ω 7→ ω(t)” (t ≥ 0).

2.2 Markov chain basics

Let V be a finite, non-empty set. A matrix Q (with rows and columns labelled by V) which

acts on R
V in the following way:

Q : f(·) ∈ R
V 7→

∑

x∈V,x 6=·

q(·, x)(f(·) − f(x)), with q(·, ··) ≥ 0

defines a unique continuous-time Markov chain on V. More precisely, there exists a

unique family of measures {Px}x∈V over D([0,+∞),V) (with the σ-field generated by

finite-dimensional projections) such that, letting

Xt : ω ∈ D([0,+∞),V) 7→ Xt(ω) ≡ ω(t) ∈ V

and Ft ≡ σ(Xs : s ≤ t), we have Px (X0 = x) = 1 and

Px (Xt+s = y | Fs) = the entry of e−tQ labelled by (Xt, y) (t, s ≥ 0, y ∈ V). (3)

Q is said to be the generator of the Markov chain and the numbers q(x, y) (x, y ∈ V, x 6= y)

are the transition rates. We let Ex [·] denote expectation with respect to Px.
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We also define

Pµ =
∑

x∈V

µ(x)Px, (µ ∈ M1(V))

which we interpret in the customary way, as describing the law of the chain given by Q

from a random initial state with law µ. Eµ [·] is the corresponding expectation symbol.

We will always assume that Q is irreducible, meaning that for all A ⊂ V with A,V\A 6=
∅ there exist a ∈ A and b ∈ V\A with q(a, b) 6= 0. In this case there exists a unique

probability measure π ∈ M1(V) which is stationary in the sense that Pπ (Xt = ·) = π(·) for
all t ≥ 0. Moreover, we have that:

∀x, y ∈ V, lim
t→+∞

Px (Xt = y) = π(y).

The mixing time of Q measures the speed of this convergence:

TQ
mix ≡ inf

{

t ≥ 0 : ∀x ∈ V, max
S⊂V

|Px (Xt ∈ S)− π(S)| ≤ 1/4

}

.

Finally, we will also assume that Q is reversible with respect to π, which means that

π(x)q(x, y) = π(y)q(y, x) for all distinct x, y ∈ V. This is the same as requiring that the

matrix Π1/2 QΠ−1/2 is symmetric, where Π is diagonal and has the values π(v), v ∈ V on

the diagonal.

3 Processes with multiple random walks

We define here the main processes that we will be concerned with, all of which involve n

random walkers for some integer n ∈ N\{0, 1}. We will assume that Q and {Px}x∈V are as

defined in Section 2.2.

3.1 Independent random walks

We first define a processes made out of n independent realizations of the Markov chain with

generator Q. More specifically, given

x(n) = (x(1), x(2), . . . , x(n)) ∈ Vn,
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we let Px(n) denote the distribution on D([0,+∞),Vn) corresponding to n independent

trajectories of Q,

(X
(n)
t )t≥0 ≡ (Xt(a) : a ∈ [n])t≥0, (4)

with each (Xt(a))t≥0 started from x(a). That is, the joint law of {(Xt(a))t≥0}a∈[n] is the

product measure:

Px(1) × Px(2) × · · · × Px(n).

Notice that our notation Px(n) does not refer explicitly to the fact that this is a process on

Vn, as opposed to the process over V defined in the previous subsection. This distinction

should be clear from context and from the fact that we write all x(n) ∈ Vn with a “(n)”

superscript. The independent random walks process is also a Markov chain: for x(n) =

(x(1), . . . , x(n)) and y(n) = (y(1), . . . , y(n)) distinct, the transition rate from x(n) to y(n) is:

q(n)(x(n), y(n)) ≡
{

q(x(i), y(i)) if x(i) 6= y(i) and x(j) = y(j) for all j ∈ [n]\{i};
0 otherwise.

(5)

3.2 Coalescing random walks

For our purposes, it is convenient to define this process, denoted by

(Co
(n)
t )t≥0 ≡ (Cot(a) : a ∈ [n])t≥0

as a deterministic function of the independent random walks process. The idea is that,

once a walker meets another walker with smaller index, it starts following the trajectory of

the latter. That is, consider a realization of Px(n) as in (4). First define:

Cot(1) ≡ Xt(1) (t ≥ 0).

Given a ∈ [n]\{1}, assume inductively that (Cot(b))t≥0 has been defined for 1 ≤ b < a.

Since Q is irreducible, there a.s. is a first time τa at which Xt(a) = Cot(b) for some

b ∈ [a− 1]. More precisely, define:

τa ≡ inf{t ≥ 0 : ∃1 ≤ b < a, Xt(a) = Cot(b)}

10



and

Ba ≡ min{b ∈ [a− 1] : Xτa(a) = Xτa(b)}

and then set:

Cot(a) ≡
{

Xt(a), 0 ≤ t < τa;

Cot(Ba), t ≥ τa;
for each t ≥ 0.

One can show that the law of (Co
(n)
t )t≥0 is invariant under permutations of the x(i). We

also define the set:

St ≡ {v ∈ V : ∃a ∈ [n], Cot(a) = v} (6)

as the set of occupied sites in this process. Our definition of (St)t≥0 coincides with the more

traditional coalescing random walks process defined in eg. [4]. We also set:

Ck ≡ inf{t ≥ 0 : |St| ≤ k} (k ∈ N\{0})

and C ≡ Ck.

Remark 3 We note that this process makes sense even if x(n) contains repeats, ie. if there

exist i 6= j with x(i) = x(j).

3.3 Random walks with killings

Let ∂ 6∈ V be a “coffin state”. We define a new process

(Y
(n)
t )t≥0 ≡ (Yt(a) : a ∈ [n])t≥0.

The new idea is that a walker with index a will be killed by a walker of index b < a

occupying the same site. More precisely, we first define:

Yt(1) ≡ Xt(1) (t ≥ 0).

Given a ∈ [n]\{1}, assume inductively that (Yt(b))t≥0 has been defined for 1 ≤ b < a.

Define:

τa ≡ inf{t ≥ 0 : ∃1 ≤ b < a, Xt(a) = Yt(b)}

11



and set:

Yt(a) ≡
{

Xt(a), 0 ≤ t < τa;

∂, t ≥ τa;
for each t ≥ 0.

Although our new definition of τa different from the previous one, it is easy to show that

the two definitions coincide, and that in fact:

Proposition 3.1 (Proof omitted) Let St be as (6). Then for all t ≥ 0,

St = {v ∈ V : ∃a ∈ [n], Yt(v) = a}

and

|St| = |{a ∈ [n] : Yt(a) 6= ∂}|.

Therefore, for all k ∈ N\{0},

Px(n) (Ck > t) = Px(n) (|St| ≥ k + 1) = Px(n) (|{a ∈ [n] : Yt(a) 6= ∂}| ≥ k + 1) .

Remark 4 As in Remark 3, we may allow x(n) where x(i) = x(j) for some pair i 6= j.

Notice, however, that Y
(n)
0 6= x(n) in this case.

3.4 Random walks with a list of allowed killings

Now assume that we have a deterministic càdlàg trajectory:

A : t ≥ 0 7→ 2[n]
2
.

We define yet another process:

((Y A
t )(n))t≥0 ≡ (Y A

t (a) : a ∈ [n])t≥0

where a walker with index a may be killed by a walker with index b only if they occupy the

same site at some time t and (b, a) ∈ At. Intuitively, this means that b is allowed to kill a

only at times t with (b, a) ∈ At.

For a formal definition, we first set:

Y A
t (1) ≡ Xt(1) (t ≥ 0).

12



Given a ∈ [n]\{1}, assume inductively that (Y A
t (b))t≥0 has been defined for 1 ≤ b < a.

Define:

τAa ≡ inf{t ≥ 0 : ∃1 ≤ b < a, (b, a) ∈ At and Xt(a) = Y A
t (b)}

and set:

Y A
t (a) ≡

{

Xt(a), 0 ≤ t < τAa ;

∂, t ≥ τAa ;
for each t ≥ 0.

The following Proposition shows that the process with a list of allowed killings can be used

to upper bound Ex(n) [Ck].

Proposition 3.2 Define:

SA
t ≡ {Y A

t (a) : a ∈ [n]}.

For any choice of A as above and of initial state x(n), one can couple (St)t≥0 and (SA
t )t≥0

such that (almost surely) St ⊂ SA
t for all t ≥ 0. In particular, for all k ∈ N\{0},

Px(n) (Ck > t) = Px(n) (|St| ≥ k + 1) ≤ Px(n)

(

|SA
t | ≥ k + 1

)

.

We omit the proof of this rather intuitive Proposition. The key idea here is this: suppose

we do not kill a walker a at a given time t0. The only way this could make St “smaller”

is if Xt(a) were to meet a walker Xt(c) with c > a at some later time t ≥ t0. But if this

happens, we may pretend that Xs(a) follows the trajectory of Xs(c) for s ≥ t; this follows

from the Markov property coupled with the fact that Xt(a) = Xt(c). This shows that in

fact St does not become smaller.

Remark 5 Similarly to Remark 4, we note that we may allow x(n) with x(i) = x(j) for

some pair i 6= j, but then (Y A
0 )(n) 6= x(n).

4 Proofs of the main Theorems

We prove Theorems 1.1 and 1.2 in this Section. For simplicity, we first focus on the proof

of Theorem 1.1, and then show how it can be modified to prove the second Theorem. We

will take the notation and definitions in Sections 2.2 and 3 for granted.
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4.1 Preliminaries for the proof of Theorem 1.1

We first note that Theorem 1.1 follows from a seemingly different statement.

Proposition 4.1 Let c, γ > 0 be given universal constants. Suppose we can show that there

exists some choice of A = (At)t≥0 as in Section 3.4 and of 0 ≤ t0 ≤ c (TQ
mix +TQ

hit) with

∀n ∈ N\{0}, ∀x(n) ∈ Vn, Px(n)

(

|SA
t0 | ≥ 2

)

≤ 1− γ.

Then

∀n ∈ N\{0}, ∀x(n) ∈ Vn, Ex(n) [C] ≤ K TQ
hit

where K > 0 is universal.

Proof: Given s ≥ 0, denote:

E(s) ≡ {C > s} = {|Ss| ≥ 2} =
⋃

a∈[n]\{1}

{τa > s}. (7)

Combining the assumption of the Proposition with Proposition 3.2 gives:

∀n ∈ N\{1}, ∀x(n) ∈ Vn, Px(n) (E(t0)) ≤ Px(n)

(

|SA
t0 | ≥ 2

)

≤ 1− γ (8)

We now consider E(ℓt0) where ℓ > 1 is an integer. Let (Θs)s≥0 denote the time-shift

operators for the independent random walks process and let (F (n)
s )s≥0 denote the filtration

generated by this process.

Px(n) (E(kt0)) ≤ Px(n)

(

E((ℓ − 1)t0) ∩
(

∪n
a=2{τa ◦Θ(ℓ−1)t0 > t0}

))

= Px(n)

(

E((ℓ− 1)t0) ∩Θ−1
(ℓ−1)t0

(E(t0))
)

(E((ℓ − 1)t0) ∈ F (n)
(ℓ−1)t0

) ≤ Ex(n)

[

IE((ℓ−1)t0)Px(n)

(

Θ−1
(ℓ−1)t0

(E(t0)) | F (n)
(ℓ−1)t0

)]

(Markov property) = Ex(n)

[

IE((ℓ−1)t0)PX
(n)
(ℓ−1)t0

(E(t0))

]

(inequality (8)) ≤ Ex(n)

[

IE((ℓ−1)t0) (1− γ)
]

= Px(n) (E((ℓ− 1)t0)) (1− γ)

(induction on k) ≤ (1− γ)ℓ.
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Recalling the definition of E(s), we deduce that:

∀n ∈ N\{1}, ∀x(n) ∈ Vn, Ex(n) [C] ≤
∑

ℓ∈N

(1− γ)ℓt0 =
t0
γ

≤ c (TQ
mix +TQ

hit)

γ
.

The Proposition follows from this because TQ
mix ≤ c0 T

Q
hit for some universal c0 > 0 [2,

Chapter 3] and both c and γ are universal. 2

4.2 Construction of A

Notational convention 1 From now on, we fix some x(n) and write P instead of Px(n).

We will now design a specific trajectory A = (At)t≥0 which will allow for a simple analysis

of SA
t . Let m ∈ N be the smallest non-negative number with n ≤∑m

i=0 2
i. Define sets

A0 = {1};

Aj ≡
[

j
∑

i=0

2i

]

\
[

j−1
∑

i=0

2i

]

(1 ≤ j ≤ m− 1);

and Am ≡ [n]\
[

m−1
∑

i=0

2i

]

.

We will consider different epochs, numbered backwards in time. It is convenient to have

the following notation.

tm ≡ 2TQ
mix;

tj = tj+1 + (ln 5) 24−j TQ
hit, j = m− 1,m− 2, . . . , 0.

(9)

1. Epoch #∞ is the time interval [0, tm). We set At ≡ ∅ for all t in this interval, ie. no

killings are allowed up to time 2TQ
mix.

2. Epochs #m through #1 correspond to time intervals Ij = [tj , tj−1) as j decreases from

m to 1. For each such j we set:

At ≡ Aj−1 × ∪m
p=jAj , t ∈ Ij .
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That is, the only killings allowed are between walkers with labels in Aj−1 and Ap with

p ≥ j.

3. Epoch #0 corresponds to the time interval,

I0 ≡ [t0,+∞) ,

(the remaining time), where we set At ≡ [n]2.

We note for later convenience that:

t0 ≤ 2TQ
mix + (ln 5)

∑

j≥0

24−j TQ
hit ≤ c (TQ

mix +TQ
hit) (10)

with c > 0 universal, since
∑

j 2
−j < +∞. We will use this in our application of Proposi-

tion 4.1.

4.3 Abundance of good walkers

We have the following simple proposition about the epoch #∞. Intuitively, it says that,

at the end of this epoch, a positive proportion of the random walkers are “good”, in that

they have converged to stationarity.

Proposition 4.2 One can construct a (random) subset R ⊂ [n] such that:

1. R is H(n)
tm -measurable, where H(n)

tm is the sigma-field generated by (X
(n)
s )s≤tm and by

some additional independent random variable U .

2. Each r ∈ [n] belongs to R with probability 1/4, independently of all other r′ ∈ [n].

3. Conditionally on R and on (Xtm(i))i∈[n]\R, the vector (Xtm(r))r∈R has iid coordinates,

each with distribution π.

Proof: Consider a single a ∈ [n]. Since Q is reversible, Lemma 7 in [2, Chapter 4] shows

that:

∀a ∈ [n], ∀v ∈ V : P
(

X
2TQ

mix
(a) = v

)

≥ π(v)

4
;

16



in other words, for each a there exists some νa ∈ M1(V) such that:

P

(

X
2TQ

mix
(a) = ·

)

=
1

4
π(·) + 3

4
νa(·).

Since the random variables (Xtm(a))a∈[n] are independent, we may assume that they sam-

pled as follows:

1. Let (I(a))a∈[n]\Am
be iid with P (I(a) = 1) = 1− P (I(a) = 0) = 1/4.

2. For each a with I(a) = 1, let Xtm(a) be a sample from π, independent of everything

else.

3. For each b with I(b) = 0, let Xtm(b) be a sample from νb, independent of everything

else.

One may check that R ≡ {a ∈ [n]\Am : I(a) = 1} has the desired properties. 2

The next proposition means that, with positive probability, there is a constant propor-

tion of good walkers within each Ai with i ≤ m− 1.

Proposition 4.3 Let G be the event:

G ≡
m−1
⋂

i=0

{|R ∩Ai| ≥ 2i−3}.

Then P (G) ≥ α > 0, where

α ≡
+∞
∏

i=0

(1− e−2i−7
) > 0

is universal.

Proof: Let Bin(m,x) denote a binomial random variable with parameters m and x, so that:

P (Bin(m,x) = k) =

(

m

k

)

xk(1− x)m−k (k ∈ [m] ∪ {0}).

The random variables Ni = |R ∩Ai|, 0 ≤ i ≤ m− 1 are independent, and each Ni has the

law of Bin(2i, 1/4). Chernoff bounds [3, Appendix A.1] imply:

P
(

|R ∩Ai| < 2i−3
)

= P
(

Bin(2i, 1/4) < E
[

Bin(2i, 1/4)
]

− 2i−3
)

≤ e−
(2i−3)2

2 . 2i = e−2i−7
.

17



We deduce:

P (G) ≥
m−1
∏

i=0

P
(

Bin(2i, 1/4) < 2i−3
)

≥ α.

The positivity of α follows from 0 < e−2i−7
< 1 for all i and

∑

i e
−2i−7

< +∞. 2

4.4 The probability of being alive

Let E(a, t) denote the event:

E(a, t) ≡ {Y A
t (a) 6= ∂} = {τAa > t}.

Notice that:

{|SA
t | ≥ 2} ⊂

n
⋃

a=2

E(a, t). (11)

We will now compute estimate the conditional probability of E(a, t) given G.

Proposition 4.4 Let a ∈ Ai for some 1 ≤ i ≤ m. Then for all 1 ≤ j < i:

P (E(a, tj) | G) ≤ 5j−i.

Proof: We will prove a stronger statement: that for almost all R0 ⊂ [n] and (ht)t∈[ti,tj):

P

(

E(a, tj) | R = R0, (Xt(a))t∈[ti,tj) = (ht)t∈[ti,tj)

)

≤ 5−
∑i−1

r=j
|R0∩Ar|

2r−4 . (12)

This implies the proposition because the occurrence of G implies |R ∩ Ar| ≥ 2r−4 for all

1 ≤ r < m− 1.

To prove (12) we first observe that the event E(a, tj) satisfies:

Claim 4.1 Suppose b ∈ Ar with j ≤ r < i. Then:

E(a, tj) ⊂ {∀t ∈ [tr+1, tr), Xt(a) 6= Xt(b)}.

Proof: [of the Claim] If the event in the RHS does not hold, there exists a t ∈ [tr, tr−1)

with Xt(a) = Xt(b). We now argue that τAa ≤ t in this case. Indeed, this follows from the

definition of τAa and the following observations:

18



1. Xt(a) = Y A
t (b): this follows from Xt(b) = Y A

t (b), which is a consequence of the fact

that (b, c) 6∈ As for any c > b and s ≤ tr (ie. b cannot be killed before time tr).

2. (b, a) ∈ At: this follows from t ∈ [tr+1, tr) = Ir+1.

2

The Claim implies:

P
(

E(a, tj) | R = R0, (Xt(a))t∈[ti ,ti−1) = (ht)t∈[ti,ti−1)

)

≤ P





i−1
⋂

r=j

⋂

b∈Ar

{∀t ∈ [tr, tr−1), Xt(a) 6= Xt(b)} | R = R0, (Xt(a))t∈[ti,tj) = (ht)t∈[ti,tj)





≤ P





i−1
⋂

r=j

⋂

b∈Ar∩R0

{∀t ∈ [tr+1, tr), Xt(a) 6= Xt(b)} | R = R0, (Xt(a))t∈[ti,tj) = (ht)t∈[ti,tj)



 .

Now observe that we are conditioning on R = R0 and on the trajectory of (Xs(a))s∈[ti,ti−1).

Since a 6∈ Ai−1, Proposition 4.2 implies that:

Under the conditioning, (Xtm(b) : b ∈ R0 ∩
(

∪i−1
r=jAr

)

) are iid with common law π.

Since R is H(n)
tm -measurable, the Markov property for the independent random walks process

implies that

Under the conditioning, (Xt+tm(b) : b ∈ R0 ∩
(

∪i−1
r=jAr

)

)t≥0 are iid realizations of Pπ.

We deduce:

P

(

E(a, tj) | R = R0, (Xt(a))t∈[ti,tj) = (ht)t∈[ti,tj)

)

=

i−1
∏

r=j

∏

b∈R0∩Ar

Pπ (∀t ∈ [tr+1, tr), Xt 6= ht)

(Pπ is stationary) =
i−1
∏

r=j

Pπ (∀t ∈ [0, tr − tr+1), Xt(b) 6= ht+tr )
|R0∩Ar | .

19



We apply the Meeting Time Lemma (Lemma 1.1 above) to each term in the product and

deduce that, for some choice of (v, qv) as in the Lemma,

P
(

E(a, ti−1) | R = R0, (Xt(a))t∈[ti,ti−1) = (ht)t∈[ti,ti−1)

)

≤
i−1
∏

r=j

{

exp

(

−(tr − tr+1)|R0 ∩Ar|
Eqv [Hv]

)}

.

The proof of (12) finishes once we realize that tr−tr+1 = 24−r(ln 5)TQ
hit and TQ

hit ≥ Eqv [Hv].

2

4.5 End of proof of Theorem 1.1

We now complete the proof of Theorem 1.1. By Proposition 4.1, it suffices to show that:

Px(n)

(

|SA
t0 | ≥ 2

)

≤ 1− γ

for some universal γ > 0, with t0 as in (10). To see this, we will use (11) and recall our

convention of omitting x(n) from the notation (cf. Notational convention 1).

P
(

|SA
t0 | ≥ 2

)

= P

(

n
⋃

a=2

E(a, t0)

)

(G as in Prop. 4.3) ≤ 1− P (G) + P

(

G ∩
n
⋃

a=2

E(a, t0)

)

(union bound) ≤ 1− P (G) +
n
∑

a=2

P (G ∩E(a, t0))

([n]\{1} = ∪m
i=1Ai) ≤ 1− P (G) + P (G)

m
∑

i=1

∑

a∈Ai

P (E(a, t0) | G)

(Prop. 4.4 + |Ai| ≤ 2i) ≤ 1− P (G) + P (G)
+∞
∑

i=1

(

2

5

)i

= 1− P (G)
3

.
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Since P (G) ≥ α for some universal α > 0 (cf. Proposition 4.3), we deduce:

Px(n)

(

|SA
t0 | ≥ 2

)

≤ 1− γ with γ ≡ α

3
universal.

This finishes the proof.

4.6 Proof of Theorem 1.2

We now present the modifications of the previous proof that are necessary to prove The-

orem 1.2. We keep the definitions from previous subsections. We will also assume that

k > 4, so that there exists some j ∈ [m] with:

h ≡ 2j+1 − 1 = 1 + 2 + · · ·+ 2j < k/2;

in fact, we will assume that j is the largest number satisfying this, so that 2j+2 ≥ k/2.

(The case of k ≤ 4 follows from Theorem 1.1, with an increase in the universal constant if

necessary. If m is too small to allow for this choice of j, we may increase n – and thus m –

at the cost of having more walkers in the beginning of the process.)

We first need an analogue of Proposition 4.1.

Proposition 4.5 (Proof omitted) Suppose that there exists a universal γ > 0 such that

for all k as above, all n ∈ N and all x(n) ∈ Vn,

Px(n)

(

|SA
tj | ≥ k + 1

)

≤ 1− γ. (13)

Then there exists a universal K1 > 0 with:

Ex(n) [Ck] ≤ K1

(

TQ
hit

k
+TQ

mix

)

.

We omit the proof of this, which follows that of Proposition 4.1 quite closely. The key

point is to notice that:

tj = 2TQ
mix +

m
∑

i=j

24−i (ln 5)TQ
hit ≤ 2TQ

mix + c1 2
−j−1TQ

hit ≤ 2TQ
mix + c2

TQ
hit

k
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with c1, c2 > 1 universal (here we used 2j+2 ≥ k/2).

We will now bound Px(n)

(

|SA
tj | ≥ k + 1

)

in terms of h and k. Using Notational conven-

tion 1, we first observe that, since h < k:

P

(

|SA
tj | ≥ k + 1

)

= P

(

m
∑

a=1

IE(a,tj) ≥ k + 1

)

≤ P

(

m
∑

a=h+1

IE(a,tj) ≥ k − h+ 1

)

.

Now follow the long chain of inequalities in the previous subsection to deduce:

P

(

|SA
tj | ≥ k + 1

)

≤ 1− P (G) + P (G) P
(

m
∑

a=h+1

IE(a,tj) ≥ k − h+ 1 | G
)

(Markov ineq.) ≤ 1− P (G) + P (G)
E

[

∑m
a=h+1 IE(a,tj)

]

k − h = 1

([n]\[h] = ∪m
i=j+1Ai) ≤ 1− P (G) + P (G)

E

[

∑m
i=j+1

∑

a∈Ai
IE(a,tj)

]

k − h

= 1− P (G) + P (G)
m
∑

i=j+1

∑

a∈Ai

P (E(a, tj))

k − h+ 1

(Prop. 4.4 + |Ai| ≤ 2i) ≤ 1− P (G) + P (G)
+∞
∑

i=j+1

2j
(

2
5

)j−i

k − h+ 1

= 1− P (G) + P (G) 2j+1

3(k − h+ 1)

(2j+1 = h+ 1) ≤ 1− P (G) + P (G) h+ 1

3(k − h+ 1)

(h < k/2) ≤ = 1− P (G) + P (G) k + 2

6(k − k/2)

= 1− P (G) + P (G) k + 2

3k

(k > 4) ≤ 1− 8

15
P (G) .

To finish, we note that P (G) ≥ α > 0 with α universal (Proposition 4.3), hence we may

take γ = 8α/15 in Proposition 4.5.
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5 On the Meeting Time Lemma

5.1 Preliminaries on quasistationary distributions

In this section we review some facts about quasistationary distributions that will be needed

in the proof of Lemma 1.1. We will use the definitions of Section 2.2 throughout the section.

Given any v ∈ V, we let qv be a quasistationary distribution for V\{v}: that is,

qv ∈ M1(V) satisfies

∀b ∈ V, qv(b) = Pqv (Xt = b | Hv > t) .

All quasistationary distributions qv corespond to eigenvalues of restricition of Π1/2QΠ−1/2

to a subspace R
V
−v of RV defined below. Here is the recipe.

1. Consider the subspace:

R
V

−v ≡ {u ∈ R
V : u(v) = 0}

and let P−v : RV → R
V
−v denote the standard projection onto R

V
−v.

Q−v ≡ P−vΠ
1/2QΠ−1/2P−v

is a symmetric linear operator from R
V
−v to itself with identical diagonal entries and

non-positive off-diagonal entries in the “obvious” basis for that space, ie. the one

given by the canonical basis vectors eb, b ∈ V\{v}.

2. By Perron-Frobenius, each irreducible block of the matrix Q−v has a unique eigenvec-

tor wv ∈ RV
−v\{0} with non-negative entries which achieves the smallest eigenvalue

λ(wv) corresponding to that block.

3. A simple calculation shows that the vector:

qv ≡ Π1/2wv
∑

b∈V π1/2(b)wv(b)

defines a probability distribution over V with:

Pqv (Xt = b,Hv > t) = q†v e
−tP−vQP−veb = e−λ(wv)tqv(b),

which in particular implies that qv is a quasistationary distribution associated with

23



v. In particular, Eqv [Hv] = 1/λ(wv) > 0. Notice moreover that qv(v) = 0.

The following proposition – an immediate consequence of the third item above – will

be all we need.

Proposition 5.1 Let Q−v be defined as above and let λ(v) denote the smallest eigenvalue

of Q−v. Then there exists a quasistationary distribution qv for V\{v} such that λ(v) =

1/Eqv [Hv] and:

Pqv (Hv > t) = e−λ(v)t.

Proof: This smallest eigenvalue is the smallest eigenvalue of some block of Q−v, and

thus equals some wv. The rest follows from item 3. and from summing the formula for

Pqv (Xt = b,Hv > t) over b. 2

5.2 Proof of the Meeting Time Lemma

Proof: [of Lemma 1.1] Fix n ∈ N\{0}, 0 < ∆ < n. We note that:

Pπ (∀0 ≤ s ≤ t, Xs 6= hs) ≤ Pπ (∩n
i=1{X(it/n) 6= h(it/n)})

≤ Eπ

[

n
∏

i=1

(

1− ∆

n
I{X(it/n)=h(it/n)}

)

]

.

For a given v ∈ V, let Dv be the matrix with a 1 in position (v, v) and 0s elsewhere. A

calculation reveals that the RHS above can be rewritten as:

(Π1)†
{

e−
tQ
n

(

I − ∆Dh(t/n)

n

)} {

e−
tQ
n

(

I − ∆Dh(2t/n)

n

)}

. . .

{

e−
tQ
n

(

I − ∆Dh(t)

n

)}

1

where 1 is the all-ones vector and Π = diag(π(v))v∈V was introduced in Section 5.1. Since

Π commutes with all Dv , we can rewrite the above expression as:

(Π1/21)†







∗
∏

1≤i≤n

e−
tΠ1/2QΠ−1/2

n

(

I −
∆Dh(it/n)

n

)







Π1/21

where the
∏∗ symbol means that the order of the terms in the product is from left to right.

24



The vector Π1/21 has norm |Π1/21|2 =
∑

v π(v) = 1. This implies that the above

expression is at most the operator norm of the product of matrices. It follows that:

Pπ (∀0 ≤ s ≤ t, Xs 6= hs) ≤

∥

∥

∥

∥

∥

∥







∗
∏

1≤i≤n

e−
tΠ1/2QΠ−1/2

n

(

I −
∆Dh(it/n)

n

)







∥

∥

∥

∥

∥

∥

op

Since the operator norm is submultiplicative, we obtain:

Pπ (∀0 ≤ s ≤ t, Xs 6= hs) ≤
n
∏

i=1

∥

∥

∥

∥

{

e−
tΠ1/2QΠ−1/2

n

(

I − ∆Dh(it/n)

n

)}∥

∥

∥

∥

op

≤
(

max
v∈V

∥

∥

∥

∥

e−
tΠ1/2QΠ−1/2

n

(

I − ∆Dv

n

)∥

∥

∥

∥

op

)n

. (14)

We now consider the terms of which we take the maximum in the RHS, for large n ∈ N.

For a given v ∈ V, we have:

∥

∥

∥

∥

e−
tΠ1/2QΠ−1/2

n

(

I − ∆Dv

n

)

− e−
tΠ1/2QΠ−1/2−∆Dv

n

∥

∥

∥

∥

op

= O
(

n−2
)

,

where the constant implicit in the O
(

n−2
)

term depends only on ∆, t and Q (and not on

a, say). Letting n → +∞ while keeping ∆ fixed, we get:

lim
n→+∞

(

max
v∈V

∥

∥

∥

∥

e−
tΠ1/2QΠ−1/2

n

(

I − ∆Dv

n

)∥

∥

∥

∥

op

)n

= lim
n→+∞

(

max
v∈V

∥

∥

∥

∥

e−
tΠ1/2QΠ−1/2−∆Dv

n

∥

∥

∥

∥

op

)n

= max
v∈V

∥

∥

∥e−tΠ1/2QΠ−1/2−∆Dv

∥

∥

∥

op
. (15)

Indeed, last the line follows from the self-adjointness of the exponential and from the fact

that ‖Bk‖op = ‖B‖kop for self-adjoint matrices B. We now use the positive-definiteness of

matrix exponentials, together with the spectral mapping property, to deduce:

∀v ∈ V, ‖e−tΠ1/2QΠ−1/2−∆Dv‖op = λmax(e
−tΠ1/2QΠ−1/2−∆Dv) = e−λmin(tΠ

1/2QΠ−1/2+∆Dv).
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This implies:

Pπ (∀0 ≤ s ≤ t, Xs 6= hs) ≤ exp

(

− min
v∈V,∆>0

λmin(tΠ
1/2QΠ−1/2 +∆Dv)

)

.

We now make the following Claim.

Claim 5.1 As ∆ ր +∞,

λmin(tΠ
1/2QΠ−1/2 +∆Dv) → tλmin(Q−v)

where Q−v is defined as in Section 5.1.

This result is probably well-known; for instance, it is a weaker variant of Lemma 3.1 in [5].

We will prove it below for completeness, but first we deduce from it that:

Pπ (∀0 ≤ s ≤ t, Xs 6= hs) ≤ exp

(

−tmin
v∈V

λmin(Q−v)

)

= e
− t

Eqv [Hv ] = Pqv (Hv > t)

via Proposition 5.1, where qv is some quasistationary distribution associated with v.

We now prove the Claim. Recall the definition of P−v in Section 5.1 and notice that

Dv = I − P−v. This shows that Daw = 0 for all w ∈ R
V
−v and therefore:

λmin(tΠ
1/2QΠ−1/2 +∆Dv) = inf

w∈RV, |w|=1
w†(tΠ1/2QΠ−1/2 +∆Dv)

≤ inf
w∈RV

−v, |w|=1
w†(tΠ1/2QΠ−1/2 +∆Dv)w

= inf
w∈RV

−v, |w|=1
w†(tΠ1/2QΠ−1/2)w

(use P−vw = w) = t inf
w∈RV

−v, |w|=1
w†(P−vΠ

1/2QΠ−1/2P−v)w

= tλmin(Q−a). (16)

To get an opposite inequality, we set A = tΠ1/2QΠ−1/2 for convenience. We first show that

there exists some c > 0 such that for all large enough ∆ > 0,

A+∆Dv � P−vAP−v −
cP−v

∆
+

∆

2
Dv, (17)

where for symmetric matrices B1, B2 with the same size, B1 � B2 means that B2 − B1 is
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positive semidefinite. To see this, we use P−v +Dv = I several times and notice that for

any x ∈ R
V,

x†(A+∆Dv)x = x†P−vAP−vx+ x†DvADvx+ 2x†(P−vADv)x

+∆(x†Dvx)

(Cauchy-Schwartz) ≥ x†P−vAP−vx+ x†
∆Dv

2
x+ |Dvx|2

(

∆

2
− ‖A‖op

)

−2‖A‖op |P−vx|||Dvx|

(assume ∆ > 4‖A‖op) ≥ x†
(

P−vAP−v +
∆Dv

2

)

x

+

(√
∆|Dvx|
2

− 2‖A‖op|P−vx|√
∆

)2

− 4‖A‖op|P−vx|2
∆

(set c ≡ 4‖A‖op) ≥ x†
(

P−vAP−v −
cP−v

∆
+

∆Dv

2

)

x.

This proves (17), which implies:

λmin(A+∆Dv) ≥ λmin

(

P−vAP−v −
cP−v

∆
+

∆

2
Dv,

)

. (18)

Notice that the matrix in the RHS has R
V
−v as an invarant subspace, which implies that

all of its eigenvectors lie in R
V
−v or in its orthogonal complement. It is easy to see that the

all vectors in the latter space are eigenvectors with eigenvalue ∆/2; therefore, for all large

enough ∆ the minimal eigenvalue corresponds to a vector in R
V
−v. We deduce that for all

large ∆ > 0,

λmin

(

P−vAP−v −
cP−v

∆
+

∆

4
Dv,

)

= min
w∈RV

−v,|w|=1
w†

(

P−vAP−v −
cP−v

∆

)

w = tλmin(Q−v)−
2c

∆

because w†P−vAP−vw = tw†Q−vw for all w as above. Together with (16) and (18), this

shows that:

For large enough ∆ > 0, tλmin(Q−v)−
c

∆
≤ λmin(tΠ

1/2QΠ−1/2 +∆Dv) ≤ tλmin(Q−v),
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and the Claim follows when we let ∆ ր +∞. 2

6 Final remarks

• Let TQ
meet denote the maximum expected meeting time of two independent realizations

of Q. In light of the discussion in the Introduction, it would be natural to expect that

E [C] ≤ K2T
Q
meet for some universal K2 > 0 and all Q. Is this actually true? A more

modest question is whether the constants in the two Theorems can be improved.

• The Meeting Time Lemma (Lemma 1.1) can be used in the study of a cat-and-mouse

game proposed in [2, Chapter 4, page 17]. In this game a cat moves according to a

reversible Markov chain Q. A mouse chooses a trajectory (hs)s≥0 for itself and an

initial distribution for the cat. Aldous and Fill asked if staying put at some carefully

chosen state gives an optimal strategy for the mouse in terms of maximizing E [M ],

where M is the meeting time of cat and mouse. One can use Lemma 1.1 to prove that

if TQ
mix ≪ maxv Eπ [Hv] (a natural condition in many examples), then the strategy

where the mouse stays at v and chooses qv as the initial distribution nearly maximizes

P (M > t) simultaneously for all t ≥ 0. We expect to comment on this and related

results in a upcoming note.
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