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ON A SPECTRAL ANALOGUE OF THE STRONG

MULTIPLICITY ONE THEOREM

CHANDRASHEEL BHAGWAT AND C. S. RAJAN

Abstract. We prove spectral analogues of the classical strong multiplicity

one theorem for newforms. Let Γ1 and Γ2 be uniform lattices in a semisim-

ple group G. Suppose all but finitely many irreducible unitary representa-

tions (resp. spherical) of G occur with equal multiplicities in L2(Γ1\G) and

L2(Γ2\G). Then L2(Γ1\G) ∼= L2(Γ2\G) as G - modules (resp. the spherical

spectra of L2(Γ1\G) and L2(Γ2\G) are equal).

1. Introduction

The beginnings of the analogy between the spectrum and arithmetic of Rie-

mannian locally symmetric spaces can be attributed to Maass, who defined

non-analytic modular forms as eigenfunctions of the Laplacian satisfying suit-

able modularity and growth conditions. From the viewpoint of Gelfand, the

theory of Maass forms can be re-interpreted in terms of the representation

theory of PSL(2,R) on L2(Γ\PSL(2,R)) for a lattice Γ in PSL(2,R). Subse-

quently, the analogy between the spectrum and arithmetic has been extended

by the work of A. Selberg, P. Sarnak, M. F. Vigneras and T. Sunada amongst

others.

In this paper, our aim is to establish an analogue in the spectral context of the

classical strong multiplicity one theorem for cusp forms. Suppose f and g are

newforms for some Hecke congruence subgroup Γ0(N) such that the eigenvalues

of the Hecke operator at a prime p are equal for all but finitely many primes

p. Then the strong multiplicity one theorem of Atkin and Lehner states that f

and g are equal (cf. [La, p.125]).

Now, let G be a semisimple Lie group and Γ be a uniform lattice (a discrete

cocompact subgroup) in G. Let RΓ be the right regular representation of G on

L2(Γ\G):
1
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RΓ(g)(φ)(y) = φ(yg) ∀ g, y ∈ G and φ ∈ L2(Γ\G)

This defines a unitary representation of G. It is known ([GGP, p.23]) that

RΓ decomposes discretely as a direct sum of irreducible unitary representations

of G occurring with finite multiplicities. Let Ĝ be the set of equivalence classes

of irreducible unitary representations of G. For π ∈ Ĝ, let m(π,Γ) be the

multiplicity of π in RΓ.

Definition 1.1. Let Γ1 and Γ2 be uniform lattices in G. The lattices Γ1 and

Γ2 are said to be representation equivalent in G if

L2(Γ1\G) ∼= L2(Γ2\G)

as representations of G, i.e. for every π ∈ Ĝ,

m(π,Γ1) = m(π,Γ2)

In this article we prove the following result :

Theorem 1.1. Let Γ1 and Γ2 be uniform lattices in a semisimple Lie group

G. Suppose all but finitely many irreducible unitary representations of G occur

with equal multiplicities in L2(Γ1\G) and L2(Γ2\G). Then the lattices Γ1 and

Γ2 are representation equivalent in G.

The proof of Theorem 1.1 uses the Selberg trace formula and fundamental

results of Harish Chandra on the character distributions of irreducible unitary

representations of G; in particular, we make crucial use of a deep and diffi-

cult result of Harish Chandra that the character distribution of an irreducible

unitary representation of G is given by a locally integrable function on G.

We now consider an analogue of Theorem 1.1 for the spherical spectrum of

uniform lattices. Let K be a maximal compact subgroup of G. An irreducible

unitary representation π of G is said to be spherical if there exists a non-zero

vector v ∈ π such that

π(k)v = v ∀ k ∈ K.

The spherical spectrum Ĝs of G is the subset of Ĝ consisting of equivalence

classes of irreducible unitary spherical representations of G.



SPECTRAL STRONG MULTIPLICITY ONE 3

Theorem 1.2. Let G be a connected, semisimple Lie group. Suppose Γ1, Γ2

are uniform torsion-free lattices in G such that

m(π,Γ1) = m(π,Γ2)

for all but finitely many representations π in Ĝs. Then

m(π,Γ1) = m(π,Γ2)

for all representations π in Ĝs.

The proof of this theorem follows the broad outline of Theorem 1.1, but

requires a more delicate control of K ×K-saturation of a conjugacy class of an

element of Γ (see Proposition 4.2). This is achieved by looking at the behaviour

of the conjugacy classes of elements of Γ in a neighbourhood of identity.

We now relate the spherical spectrum with the spectrum of G-invariant differ-

ential operators on the associated symmetric spaceX = G/K. For a torsion-free

uniform lattice Γ in G, let XΓ = Γ\G/K be the associated compact Riemannian

locally symmetric space. The space of smooth functions on XΓ can be consid-

ered as the space of smooth functions on X invariant under the action of Γ.

Let D(G/K) be the algebra of G-invariant differential operators on X . For a

character λ of D(G/K) (i.e. an algebra homomorphism of D(G/K) into C),

consider the eigenspace of λ,

(1) V (λ,Γ) = {f ∈ C∞(XΓ) : D(f) = λ(D)(f) ∀ D ∈ D(G/K)} .

It is known that the space V (λ,Γ) is of finite dimension (see Section 5).

Definition 1.2. Let Γ1 and Γ2 be torsion-free uniform lattices in G. The locally

symmetric spaces XΓ1
= Γ1\G/K and XΓ2

= Γ2\G/K are said to be compatibly

isospectral if

dim(V (λ,Γ1)) = dim (V (λ,Γ2))

for every character λ of D(G/K).

Remark 1. From the generalized Sunada criterion proved by Berard [Be, p.566]

and DeTurck - Gordon [DG], it can be seen that if two uniform lattices in G

are representation equivalent, then the associated compact locally symmetric

Riemannian spaces XΓ1
and XΓ2

are compatibly isospectral.
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We prove the following result in Section 4 :

Theorem 1.3. Let G be a connected, semisimple Lie group. Suppose Γ1, Γ2

are uniform torsion-free lattices in G. Suppose

dim (V (λ,Γ1)) = dim(V (λ,Γ2))

for all but finitely many characters λ, then XΓ1
and XΓ2

are compatibly isospec-

tral.

If X is of rank one, the algebra D(G/K) is the polynomial algebra in the

Laplace-Beltrami operator ∆ on G/K (see [He, p.397]). Hence the eigenvalues

of ∆ determine the characters of D(G/K). Consequently we get :

Corollary 1. Let X1 and X2 be two locally symmetric Riemannian spaces of

rank one and ∆1, ∆2 be the Laplace-Beltrami operators acting on the space of

smooth functions on X1 and X2 respectively. If all but finitely many eigenvalues

occur with equal multiplicities in the spectra of ∆1 and ∆2, then the spaces are

isospectral with respect to the Laplace-Beltrami operators.

Remark 2. Using an analytic version of the Selberg Trace formula, J. Elstrodt,

F. Grunewald, and J. Mennicke (on a suggestion of M. F. Vigneras) proved

Corollary 1 for G = PSL(2,R) and G = PSL(2,C) ([EGM, Theorem 3.3,

p.203]).

Remark 3. When G = PSL(2,R), it can be seen that the spherical spectrum

of determines the full spectrum L2(Γ\G) ([Pe]). One can raise the question

whether such a result will be true in general. This fits in with the conjectures

linking spectrum and arithmetic in the context of automorphic forms (see [Ra,

Conjecture 3]).

Acknowledgement. We thank S. Kudla for raising the question of proving an

analogue of the strong multiplicity one theorem in the spectral case during the

conference on ‘Modular forms’ held at Schiermonikoog, Netherlands in October

2006. The second author thanks the organizers of the conference for the invi-

tation and warm hospitality.
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2. Preliminaries

2.1. Representations of semisimple groups. We recall some facts about

representations of semisimple groups. Let G be a semisimple Lie group with

a Haar measure µ. Let π be a unitary representation of G on a Hilbert space

V . For a compactly supported smooth function f on G, define the convolution

operator π(f) on V as follows :

π(f)(v) =

∫

G

f(g) π(g)v dµ(g)

This defines a bounded linear operator on V . We recall the following result

from [Kn, Theorem 10.2; p.334] :

Proposition 2.1. Let G be a semisimple group and π be an irreducible unitary

representation of G. Then the convolution operator π(f) is of trace class for

every compactly supported smooth function f on G.

Let π be an irreducible unitary representation of G. Let C∞
c (G) be the

space of compactly supported smooth functions on G. Define the character

distribution χπ by,

χπ(f) = trace (π(f)) ∀f ∈ C∞
c (G).

2.2. Some results of Harish Chandra. We recall some results of Harish

Chandra on the characters of irreducible unitary representations of G.

Theorem 2.2. [Kn, Theorem 10.6; p.336] Let {πi} be a finite collection of

mutually inequivalent irreducible unitary representations of G. Then their char-

acters {χπi
} are linearly independent distributions on C∞

c (G).

Let L1
loc(G) be the space of all complex valued measurable functions f on G

such that ∫

C

|f(g)| dµ(g) < ∞ for all compact subset C of G.

The following deep result of Harish Chandra will be crucially used in the

proof of Theorem 1.1.
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Theorem 2.3. [Kn, Theorem 10.25; p.356] Let π be an irreducible unitary rep-

resentation of G. The distribution character χπ is given by a locally integrable

function h on G. i.e. there exists h ∈ L1
loc(G) such that

χπ(f) =

∫

G

f(g) h(g) dµ(g) ∀f ∈ C∞
c (G).

2.3. Selberg trace formula for compact quotient. We recall the Selberg

trace formula for compact quotient. (For details, see Wallach [Wa, p.171-172]).

Let µ′ be the normalized G-invariant measure on the quotient space Γ\G. For a

compactly supported smooth function f on G, the convolution operator RΓ(f)

on L2(Γ\G) is given by :

RΓ(f)(φ)(y) =

∫

G

f(x) φ(yx) dµ(x) ∀ φ ∈ L2(Γ\G) and y ∈ G.

=

∫

Γ\G

[ ∑

γ ∈ Γ

f(y−1γx)

]
φ(x) dµ′(x).

Since f is a smooth and compactly supported function on G and Γ is uniform

lattice, the sum Kf (y, x) =
∑

γ ∈ Γ

f(y−1γx) is a finite sum, and hence it follows

that the operator RΓ(f) is of Hilbert-Schmidt class. The trace of RΓ(f) is

defined and it is given by integrating the kernel function Kf (y, x),

tr(RΓ(f)) =

∫

Γ\G

[ ∑

γ ∈ Γ

f(x−1γx)

]
dµ′(x)

Let [γ]G (resp. [γ]Γ) be the conjugacy class of γ in G (resp. in Γ). Let

[Γ] (resp. [Γ]G) be the set of conjugacy classes in Γ (resp. the G-conjugacy

classes of elements in Γ). For γ ∈ Γ, let Gγ be the centralizer of γ in G. Put

Γγ = Γ∩Gγ . It can be seen that Γγ is a lattice in Gγ and the quotient Γγ\Gγ is

compact. Since Gγ is unimodular, there exists a G-invariant measure on Gγ\G,

denoted by dγx. After normalizing the measures on Gγ and Gγ\G appropriately

and rearranging the terms on the right hand side of above equation, we get :
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(2) tr(RΓ(f)) =
∑

[γ] ∈ [Γ]

vol(Γγ\Gγ)

∫

Gγ\G

f(x−1γx) dγx

=
∑

[γ] ∈ [Γ]G

a(γ,Γ) Oγ(f)

where Oγ(f) is the orbital integral of f at γ defined by,

Oγ(f) =

∫

Gγ\G

f(x−1γx) dγx.

Here

a(γ,Γ) =
∑

[γ′]Γ ⊆ [γ]G

vol (Γγ′\Gγ′).

If γ is not conjugate to an element in Γ, we define a(γ,Γ) = 0. On the other

hand, the trace of RΓ(f) on the spectral side can be written as an absolutely

convergent series as,

(3) tr(RΓ(f)) =
∑

π ∈ Ĝ

m(π,Γ)χπ(f)

Hence from (2) and (3), we obtain the Selberg trace formula:

(4)
∑

π ∈ Ĝ

m(π,Γ)χπ(f) =
∑

[γ] ∈ [Γ]G

a(γ,Γ) Oγ(f).

3. Proof of Theorem 1.1

3.1. Some preliminary lemmas. We first recall some known results about

the geometry of conjugacy classes in G.

Lemma 3.1. Let Γ be a uniform lattice in G. Let γ ∈ Γ. Then the G-conjugacy

class [γ]G is a closed subset of measure zero in G.

Proof. Let {g−1
n γgn}

∞
n=1 be a sequence of points in [γ]G which converges to h

in G. Since Γ\G is compact, there exists a relatively compact set D of G such

that G = ΓD. Write gn = γn dn where γn ∈ Γ and dn ∈ D. Hence,

g−1
n γ gn = d−1

n γ−1
n γ γn dn.
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Since D is relatively compact, there is a convergent subsequence of {dn}
∞
n=1,

which converges to some element d of G. Hence we get,

lim
n→∞

γ−1
n γ γn = d−1hd.

Since Γ is discrete, for large n,

γ−1
n γ γn = d−1hd.

Hence h ∈ [γ]G. Thus [γ]G is closed in G.

The conjugacy class [γ]G is homeomorphic to the homogeneous space Gγ\G.

Hence there exists a natural structure of a smooth manifold on it such that it

is a submanifold of G. Since Gγ is non trivial (it contains a Cartan subgroup

of G), it is of lower dimension than G and hence of measure zero with respect

to the Haar measure µ on G.

�

Lemma 3.2. Let Ω be a relatively compact subset of G. Then the set

AΩ = { [γ]G : γ ∈ Γ and [γ]G ∩ Ω 6= ∅ }

is finite.

Proof. Let x ∈ G be such that x−1γx ∈ Ω. As in Lemma 3.1, write x = γ1.δ

where γ1 ∈ Γ and δ ∈ D. Hence γ−1
1 γγ1 ∈ DΩD−1 which is relatively compact

in G. Hence γ−1
1 γγ1 ∈ DΩD−1 ∩ Γ which is a finite set. �

Corollary 2. Let E be the union of the conjugacy classes [γ]G such that γ ∈

Γ1 ∪ Γ2. Then E is a closed subset of measure zero in G.

Proof. By using above two lemmas, it follows that E ∩ C is finite for every

compact subset C ⊆ G. Hence E is closed in G. It is of measure zero since it

is a countable union of sets of measure zero. �

3.2. Proof of Theorem 1.1. For π ∈ Ĝ, let tπ = m(π,Γ1) − m(π,Γ2). Let

f ∈ C∞
c (G). Since the series in equation (4) converges absolutely, by comparing

equation (4) for Γ1 and Γ2, we obtain:

∑

π ∈ Ĝ

tπ χπ(f) =
∑

[γ] ∈ [Γ1]G ∪ [Γ2]G

(a(γ,Γ1)− a(γ,Γ2)) Oγ(f).
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By hypothesis, tπ = 0 for all but finitely many π ∈ Ĝ. Hence there exists a

finite subset S of Ĝ such that,

∑

π ∈ S

tπχπ(f) =
∑

[γ] ∈ [Γ1]G ∪ [Γ2]G

(a(γ,Γ1)− a(γ,Γ2)) Oγ(f).(5)

Since S is a finite set, by Harish Chandra’s Theorem 2.3, there exists a function

φ ∈ L1
loc(G) such that

(6)
∑

π ∈ S

tπ.χπ(f) =

∫

G

f(g) φ(g) dµ(g) ∀ f ∈ C∞
c (G).

Let E be as in Corollary 2 above. Let g ∈ G be any point outside E. Since E

is closed in G, there exists a relatively compact neighborhood U of g such that

U ∩ E = ∅. Hence, if f ∈ C∞
c (G) is supported on U , we have

Oγ(f) = 0 ∀ γ ∈ Γ1 ∪ Γ2.

Hence from equations (5) and (6) above, we get :
∫

G

f(g) φ(g) dµ(g) = 0,

for all smooth compactly supported functions f supported in U .

But this means that φ(g) is essentially 0 on U . Since U was a neighborhood

of an arbitrary point g outside E, and E is a closed subset of measure zero, we

conclude that φ(g) is essentially 0 on G. By equation (6) above :
∑

π ∈ S

tπχπ(f) = 0 ∀ f ∈ C∞
c (G).

From the linear independence of characters (Theorem 2.2), we get that tπ = 0

for any π ∈ S. Hence,

m(π,Γ1) = m(π,Γ2) ∀ π ∈ Ĝ.

i.e., the lattices Γ1 and Γ2 are representation equivalent in G.
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4. Proof of Theorem 1.2

In this section we give a proof of Theorem 1.2, following the broad outline

of the proof of Theorem 1.1. Since the analogue of Corollary 2 does not seem

available to us, we need to establish a more delicate proposition concerning

the K × K-saturation KCγK of the conjugacy class of elements γ ∈ Γ. Cor-

responding to use of Harish Chandra’s theorem on the local integrability of

the character of an irreducible unitary representation of G, we instead use the

analyticity of the spherical functions on G.

Definition 4.1. [GV, p.399] A complex valued function φ on G is called a

spherical function if

(1) φ(e) = 1.

(2) φ(k1xk2) = φ(x) ∀ k1, k2 ∈ K and x ∈ G.

(3) φ is a common eigenfunction for all D in the space D(G/K) of G-

invariant differential operators on G/K with eigenvalue λ(D):

Dφ = λ(D)φ ∀ D ∈ D(G/K).

The map D → λ(D) defines a algebra homomorphism of D(G/K) into C.

Denote by C∞
c (G//K) the space of smooth and compactly supported bi-K-

invariant functions on G.

Let π be a spherical unitary representation of G. The space πK of K-fixed

vectors is one dimensional (cf. Helgason [He, p.416]). Let φπ be the associated

elementary spherical function defined by

φπ(x) = 〈 π(x) eπ, eπ 〉 ,

where eπ is a K-fixed vector of the representation space of π such that ‖eπ‖ = 1.

We have the following proposition:

Proposition 4.1. Let π be an irreducible unitary spherical representation of

G. Then the following hold:

(i) The associated elementary spherical functions φπ are analytic on G.
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(ii) The relationship of the elementary spherical function φπ to character χπ

is given by the following equation:

χπ(f) =

∫

G

f(g) φπ(g) dg f ∈ C∞
c (G//K).

(iii) Let {πj : 1 ≤ j ≤ k} be a finite collection of mutually inequivalent irre-

ducible spherical representations of G. The associated elementary spheri-

cal functions
{
φπj

: 1 ≤ j ≤ k
}
are linearly independent.

Proof. (i) Since the algebra D(G/K) contains the Laplace-Beltrami operator

which is an elliptic, essentially self adjoint differential operator, it follows

that the elementary spherical functions φπ are analytic on G.

(ii) Let V be the space underlying the representation π. Given f ∈ C∞
c (G//K),

the image π(f)(V ) of the convolution operator π(f) lands in the space V K

of K-invariants. Hence the trace is given by,

χπ(f) = trace (π(f)) = 〈π(f)eπ, eπ〉 =

∫

G

f(g) φπ(g) dg.

(iii) The function φπj
is an eigenvector for the character λπj

. Since the represen-

tations πj are mutually inequivalent, the homomorphisms λπj
are distinct

and hence the corresponding eigenvectors are linearly independent.

�

Now we turn to the geometric aspects of the Selberg trace formula. Let G//K

denote the collection of orbits under the action of K ×K acting on G by,

(7) (k, l)g = k−1gl k, l ∈ K, g ∈ G.

Lemma 4.1. The space C∞
c (G//K) consisting of bi-K-invariant compactly

supported smooth functions on G separate points on G//K.

Proof. The orbits of K ×K being compact are closed subsets of G. Given two

orbits KxK, KyK choose a compactly supported, smooth function which is

positive on KxK and vanishes on KyK. Then,

F (g) =

∫

K×K

f(kgl)dkdl,
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is a bi-K-invariant compactly supported smooth function on G which separates

the two orbits. �

Lemma 4.2. Let Γ be a torsion-free uniform lattice in G. For a non-trivial

element γ ∈ Γ, the conjugacy class Cγ is disjoint from K.

Proof. The group x−1γx ∩ K is discrete and contained in the compact group

K, hence finite. Consequently, x−1γx is of finite order in G and hence γ is of

finite order. Since Γ is torsion-free, γ is the identity element of G. �

Lemma 4.3. If γ 6= e, then e /∈ KCγK.

Proof. Let x ∈ G and k, l ∈ K be such that kx−1γxl = e. Then x−1γx ∈ K,

which is not possible by Lemma 4.2. �

Proposition 4.2. There exists an open set B in G such that Cγ ∩B is empty

for all γ ∈ Γ1 ∪Γ2 and B is stable under K ×K action on G given by equation

7.

Proof. Let U ′ be a relatively compact open neighborhood of e in G. Let U =

KU ′K. Then U is relatively compact and hence it intersects atmost finitely

many conjugacy classes Cγ. Since the map G → G//K is proper and the

conjugacy class Cγ is closed, the set KCγK is closed in G. Since U is K-stable,

KCγK ∩ U is non-empty if and only if Cγ ∩ U is non-empty. Hence, the set

E =
⋃
γ 6=e

[KCγK] ∩ U , being a finite union of closed sets, is a K × K-stable

closed subset of U . By Lemma 4.3, the identity element e does not belong

to E. Choose an open set V ⊆ U containing e such that E ∩ V = ∅. Let

B = KVK ∩Kc, where Kc is the complement of K in G. It can be seen that

B satisfies the desired property. �

Now we give the proof of Theorem 1.2.

Proof. By hypothesis of Theorem 1.2, there exists a finite subset S of Ĝs such

that

m(π,Γ1) = m(π,Γ2) ∀ π /∈ S.
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Let f ∈ C∞
c (G//K). Since f is bi-K-invariant, χπ(f) = 0 if π /∈ Ĝs. Using the

Selberg trace formula for f , we get :
∑

π ∈ S

tπχπ(f) =
∑

[γ] ∈ [Γ1]G ∪ [Γ2]G

(a(γ,Γ1)− a(γ,Γ2)) Oγ(f)(8)

Let φ =
∑

α ∈ S

tπφπ. By using proposition 4.1, we get :

∫

G

f(g) φ(g) dµ(g) =
∑

[γ] ∈ [Γ1]G ∪ [Γ2]G

(a(γ,Γ1)− a(γ,Γ2)) Oγ(f).

Let B be as in the proof of Proposition 4.2. The term on right hand side in

above equation vanishes for every function f in C∞
c (G//K) which is supported

on B. Hence for such functions f ,
∫

G

f(g) φ(g) dµ(g) = 0.

By Lemma 4.1, the functions f separate points on B. Hence φ must vanish on

the open subset B of G. Since φ is analytic, it vanishes on all of G. By the

linear independence of functions φπ (Proposition 4.1), we conclude that

m(π,Γ1) = m(π,Γ2) ∀ π ∈ Ĝs.

�

5. Proof of Theorem 1.3

We now proceed to derive Theorem 1.3 from Theorem 1.2. We follow the

notation given in the introduction. Let π be an irreducible, unitary, spherical

representation of G. Let eπ be a K-fixed vector of unit length in π. The associ-

ated spherical function φπ is an eigenfunction of D(G/K) with eigencharacter

λπ:

D(φπ) = λπ(D)φπ D ∈ D(G/K).

The main observation is the following proposition.

Proposition 5.1. Let Γ be a torsion-free uniform lattice in G. Let π be an

irreducible, unitary spherical representation of G. Then

m(π,Γ) = dim (V (λπ,Γ)).
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In particular, V (λπ,Γ) is finite dimensional.

Conversely, if λ is a character of D(G/K) and the dimension of V (λπ,Γ) is

positive, then λ = λπ for some spherical representation π of G.

Remark 4. When G = PSL(2,R) this is the duality theorem proved by Gelfand,

Graev and Pyatetskii-Shapiro ([GGP, p.50]), relating the spectrum of the Laplace-

Beltrami on the upper half plane and the multiplicities of spherical represen-

tations of PSL(2,R) occurring in L2(Γ\PSL(2,R)). We follow their proof.

The above fact is probably well known to the experts but we have included a

proof for sake of completeness. The proof also indicates that Theorems 1.2 and

Theorem 1.3 are equivalent.

Proof. Let g be the complexification of Lie algebra of G consisting of left invari-

ant vector fields on G. Let U(g)K be the K-invariant subspace of the universal

enveloping algebra U(g) under the right action of K on U(g). We consider the

right action of G on itself. This gives raise to a surjective map from U(g)K to

D(G/K) ([GV, page 52, Proposition 1.7.5]). Hence it can be seen that D(eπ)

is a K-fixed vector for each D ∈ D(G/K). Since the dimension of the space

of K-fixed vectors of π is one, it follows that eπ is an eigenvector of D(G/K)

with respect to the eigencharacter λπ i.e. it lies in the eigenspace in V (λπ,Γ).

Therefore, we conclude that m(π,Γ) ≤ dim (V (λπ,Γ)).

Conversely let f ∈ C∞(X) be an eigenvector of some character λ of D(G/K).

Since

L2(Γ\G) =
⊕

π ∈ Ĝ

m (π,Γ) π

we write

(9) f =
∑

π ∈ Ĝ

aπ vπ

such that vπ ∈ π is a vector of unit length. Let W be the space of K-invariants

of L2(Γ\G). Let PW be the orthogonal projection of L2(Γ\G) onto W . Since f

is right invariant under K, PW (f) = f . Hence we get :

f =
∑

π ∈ Ĝ

aπ PW (vπ)
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The algebra D(G/K) is generated by essentially self-adjoint differential op-

erators. Hence, if the character λπ is distinct from λ, there exists an essentially

self-adjoint D ∈ D(G/K) such that λπ(D) 6= λ(D). Hence the eigenvectors

vπ and f are orthogonal. If π is not a spherical representation, PW (vπ) = 0.

Hence the indexing set in equation (9) is restricted to those irreducible unitary

spherical representations with character λπ equal to λ.

Since the associated spherical functions to inequivalent representations are

linearly independent, the characters are distinct. Hence we conclude that there

is an unique irreducible unitary spherical representation π of G such that λ =

λπ. Hence,

m(π,Γ) = dim (V (λπ,Γ)).

�

Now we give the proof of Theorem 1.3. Let T be a finite subset of characters

of D(G/K) such that

dim (V (λ,Γ1)) = dim (V (λ,Γ2))

for all characters λ /∈ T . By above Proposition 5.1, we get that :

m(π,Γ1) = m(π,Γ2)

for all but finitely many irreducible, unitary spherical representations of G.

Hence using Theorem 1.2 and Proposition 5.1, we get a proof of Theorem 1.3.
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