A NOTE ON SCHRÖDINGER EQUATION WITH LINEAR POTENTIAL AND HITTING TIMES

GERARDO HERNÁNDEZ-DEL-VALLE

Abstract

In this note we derive a solution to the Schrödingertype backward equation which satisfies a necessary boundary condition used in hitting-time problems [as described in Hernández-del-Valle (2010a)]. We do so by using an idea introduced by Bluman and Shtelen (1996) which is worked out in Hernández-delValle (2010b). This example is interesting since it is independent of the parameter λ, namely: $$
\kappa(s, x)=\frac{x}{\sqrt{2 \pi s}} \exp \left\{-\frac{\left(x+\int_{0}^{s} f^{\prime}(u)\right)^{2}}{2 s}\right\} .
$$ and suggest a procedure to generating more vanishing solutions and $x=0$.

1. The Example.

In Hernández-del-Valle (2010b) the author finds solutions to a Schrö-dinger-type backward equation which satisfy some necessary boundary condition used in hitting-time problems [see Hernandez-del-Valle (2010a)]. Namely, the PDE of interest is

$$
\begin{equation*}
-\frac{\partial w}{\partial t}(t, x)+x f^{\prime \prime}(t) w(t, x)=\frac{1}{2} \frac{\partial^{2} w}{\partial x^{2}}(t, x) \tag{1}
\end{equation*}
$$

which alternatively is related to the following expectation:

$$
w(t, x)=\tilde{\mathbb{E}}\left[\exp \left\{-\int_{t}^{s} f^{\prime \prime}(u) \tilde{X}_{u} d u\right\} \mid \tilde{X}_{t}=x\right]
$$

where process \tilde{X} is the so-called three-dimensional Bessel bridge and f corresponds to a moving boundary. Furthermore it was shown in Hernandez-del-Valle (2010a) that w should satisfy the following inequality

$$
\begin{equation*}
0 \leq w(t, x) \leq h(s-t, x) \quad \forall 0 \leq t<s, x \geq 0 \tag{2}
\end{equation*}
$$

where h is the so-called derived heat source solution defined as

$$
h(s, x):=\frac{x}{\sqrt{2 \pi s^{3}}} \exp \left\{-\frac{x^{2}}{2 s}\right\}
$$

(Which is also the density of the first hitting time of one-dimensional standard Brownian motion to the fixed boundary x.) Thus, for all time t it follows that w should satisfy the following boundary condition:

$$
\begin{equation*}
\lim _{x \rightarrow 0} w(t, x)=0 . \tag{3}
\end{equation*}
$$

Yet, for the specific problem of finding the density of hitting a moving boundary we only need the previous inequality (2) and boundary condition (3) to hold at $t=0$:

$$
\begin{equation*}
w(0, x)=\tilde{\mathbb{E}}\left[\exp \left\{-\int_{0}^{s} f^{\prime \prime}(u) \tilde{X}_{u} d u\right\} \mid \tilde{X}_{0}=x\right] . \tag{4}
\end{equation*}
$$

This is accomplished by using an idea introduced in Bluman and Shtelen (1996) which relates the following PDE

$$
-\frac{\partial u}{\partial t}(t, x)+V_{1}(t, x) u(t, x)=\frac{1}{2} \frac{\partial^{2} u}{\partial x^{2}}(t, x)
$$

and its adjoint

$$
\begin{equation*}
\frac{\partial \Phi}{\partial t}(t, x)+V_{1}(t, x) \Phi(t, x)=\frac{1}{2} \frac{\partial^{2} \Phi}{\partial x^{2}}(t, x) \tag{5}
\end{equation*}
$$

with the following backward equation

$$
-\frac{\partial w}{\partial t}(t, x)+V_{2}(t, x) w(t, x)=\frac{1}{2} \frac{\partial^{2} w}{\partial x^{2}}(t, x)
$$

where

$$
V_{2}(t, x)=V_{1}(t, x)-\frac{\partial^{2}}{\partial x^{2}} \log \Phi
$$

It is done so through the following expression:

$$
\begin{equation*}
w(t, x)=\frac{1}{\Phi(t, x)}\left[\int_{0}^{x} u(t, \xi) \Phi(t, \xi) d \xi+B_{2}(t)\right] \tag{6}
\end{equation*}
$$

with $B_{2}(t)$ satisfying the condition

$$
\begin{equation*}
\frac{d B_{2}}{d t}=\frac{1}{2}\left(\frac{\partial \Phi}{\partial x}(t, 0) u(t, 0)-\Phi(t, 0) \frac{\partial u}{\partial x}(t, 0)\right) \tag{7}
\end{equation*}
$$

Thus at $t=0$, see equation (4),

$$
w(0, x)=\frac{1}{\Phi(0, x)}\left[\int_{0}^{x} u(0, \xi) \Phi(0, \xi) d \xi\right]
$$

and hence

$$
\lim _{x \rightarrow 0} w(0, x)=0
$$

as long as

$$
\lim _{x \rightarrow 0} \Phi(0, x) \neq 0
$$

Of course, in general we will not be solving the same PDE unless

$$
\begin{equation*}
\frac{\partial^{2}}{\partial x^{2}} \log \Phi=0 \tag{8}
\end{equation*}
$$

in which case $V_{2}(t, x)=V_{1}(t, x)$, that is the form of the PDE is preserved. The reader may check [or consult at Hernandez-del-Valle (2010a) and (2010b)] that given $V_{1}(t, x)=x f^{\prime \prime}(t)$ a solution to (5) which also satisfies condition (8) is for instance:

$$
\begin{aligned}
& \Phi(t, x) \\
& \quad=\exp \left\{\frac{1}{2} \int_{0}^{t}\left(f^{\prime}(u)\right)^{2} d u-x f^{\prime}(t)-\frac{1}{2} \lambda^{2} t-i \lambda\left(x-\int_{0}^{t} f^{\prime}(u) d u\right)\right\}
\end{aligned}
$$

where $i=\sqrt{-1}$ and λ is some scalar.
In the remainder of this note we derive a solution to (11), which is independent of λ, and also satisfies boundary condition (3) at $t=0$. We do so by using Bluman and Shtelen's representation, equations (6) and (7), and a solution to (5) given by:
$(9) u(t, x)=\exp \left\{\frac{1}{2} \int_{t}^{s}\left(f^{\prime}(u)\right)^{2} d u+x f^{\prime}(t)\right\}$

$$
\begin{equation*}
\times \exp \left\{-\frac{1}{2} \lambda^{2}(s-t)+i \lambda\left(x+\int_{t}^{s} f^{\prime}(u) d u\right)\right\} \tag{10}
\end{equation*}
$$

[The reader may consult Hernández-del-Valle (2007).] It follows that:

$$
\Phi(t, x) u(t, x)=\exp \left\{\frac{1}{2} \int_{0}^{s}\left(f^{\prime}(u)\right)^{2} d u-\frac{1}{2} \lambda^{2} s+i \lambda \int_{0}^{s} f^{\prime}(u) d u\right\}
$$

and

$$
\begin{aligned}
\frac{d B_{2}}{d t}(t) & =\frac{1}{2} \Phi u\left(\frac{\Phi_{x}}{\Phi}-\frac{u_{x}}{u}\right) \\
& =-\left(f^{\prime}(t)+i \lambda\right) u \Phi
\end{aligned}
$$

Hence, B_{2} might be written in the two following ways

$$
\begin{equation*}
B_{2}(t)=-\left(\int_{0}^{t} f^{\prime}(u) d u+i \lambda t\right) u \Phi \tag{11}
\end{equation*}
$$

or

$$
\begin{equation*}
B_{2}^{\prime}(t)=\left(\int_{t}^{s} f^{\prime}(u) d u+i \lambda(s-t)\right) u \Phi \tag{12}
\end{equation*}
$$

From (6) w satisfies

$$
\begin{aligned}
w(t, x) & =\frac{1}{\Phi}\left[\int_{0}^{x} u \Phi d y+B_{2}(t)\right] \\
& =x \frac{u \Phi}{\Phi}+\frac{B_{2}(t)}{\Phi}
\end{aligned}
$$

and hence for B_{2} as in (11)

$$
\begin{equation*}
w=\left(\left\{x-\int_{0}^{t} f^{\prime}(u) d u\right\}-i \lambda t\right) u \tag{13}
\end{equation*}
$$

and for B_{2}^{\prime} as in (12)

$$
\begin{equation*}
w=\left(\left\{x+\int_{t}^{s} f^{\prime}(u) d u\right\}+i \lambda(s-t)\right) u \tag{14}
\end{equation*}
$$

Finally, recall the following Fourier representations:

$$
\begin{align*}
k(t, x) & :=\frac{1}{\sqrt{2 \pi t}} e^{-\frac{x^{2}}{2 t}} \tag{15}\\
& =\frac{1}{2 \pi} \int_{-\infty}^{+\infty} e^{-\frac{1}{2} \lambda^{2} t+i \lambda x} d \lambda \\
h(t, x) & :=\frac{x}{\sqrt{2 \pi t^{3}}} e^{-\frac{x^{2}}{2 t}} \tag{16}\\
& =\frac{1}{2 \pi} \int_{-\infty}^{+\infty}(-i \lambda) e^{-\frac{1}{2} \lambda^{2} t+i \lambda x} d \lambda
\end{align*}
$$

also known as the source and derived source heat equations respectively.
After contour integration with respect to λ, (13) becomes:

$$
\begin{aligned}
w(t, x)= & \exp \left\{\frac{1}{2} \int_{t}^{s}\left(f^{\prime}(u)\right)^{2} d u+x f^{\prime}(t)\right\} \\
& \times\left\{\left(x-\int_{0}^{t} f^{\prime}(u) d u\right) k\left(s-t, x+\int_{t}^{s} f^{\prime}(u) d u\right)\right. \\
& \left.+t \cdot \frac{\left(x+\int_{t}^{s} f^{\prime}(u) d u\right)}{(s-t)} k\left(s-t, x+\int_{t}^{s} f^{\prime}(u) d u\right)\right\}
\end{aligned}
$$

and for B_{2}^{\prime} or equation (14)

$$
\begin{aligned}
w(t, x)= & \exp \left\{\frac{1}{2} \int_{t}^{s}\left(f^{\prime}(u)\right)^{2} d u+x f^{\prime}(t)\right\} \\
& \times\left\{\left(x+\int_{t}^{s} f^{\prime}(u) d u\right) k\left(s-t, x+\int_{t}^{s} f^{\prime}(u) d u\right)\right. \\
& \left.-\left(x+\int_{t}^{s} f^{\prime}(u) d u\right) k\left(s-t, x+\int_{t}^{s} f^{\prime}(u) d u\right)\right\} \\
\equiv & 0
\end{aligned}
$$

The second solution is identically zero, and the first evaluated at $t=0$ is

$$
w(0, x)=\exp \left\{\frac{1}{2} \int_{0}^{s}\left(f^{\prime}(u)\right)^{2} d u+x f^{\prime}(0)\right\} x \cdot k\left(s, x+\int_{0}^{s} f^{\prime}(u) d u\right)
$$

This alternatively implies that an approximation to the first hitting time density is given by:

$$
\frac{x}{\sqrt{2 \pi s}} \exp \left\{-\frac{\left(x+\int_{0}^{s} f^{\prime}(u) d u\right)^{2}}{2 s}\right\}
$$

1.1. More vanishing solutions at $x=0$ and $t=0$. Observe that if u is as in (9) which alternatively solves (5) then

$$
u^{\prime}(t, x)=\Gamma(\lambda, s) u(t, x)
$$

is also a solution to (5) for an arbitrary function Γ. For instance, suppose that $\Gamma(\lambda, s)=(-i \lambda)$ then equation (13) becomes:

$$
\begin{aligned}
w^{\prime} & =\left(\left\{x-\int_{0}^{t} f^{\prime}(u) d u\right\}-i \lambda t\right)(-i \lambda) u \\
& =\left(\left\{x-\int_{0}^{t} f^{\prime}(u) d u\right\}(-i \lambda)+(-i \lambda)^{2} t\right) u
\end{aligned}
$$

After contour integration and observing that

$$
\frac{1}{2 \pi} \int_{-\infty}^{+\infty}(-i \lambda)^{2} e^{-\frac{1}{2} \lambda^{2} t+i \lambda x} d \lambda=\left(\frac{x^{2}}{t^{2}}-\frac{1}{t}\right) k(t, x)
$$

it follows that the new solution w^{\prime} is given by

$$
\begin{aligned}
& w^{\prime}(t, x) \\
& =\exp \left\{\frac{1}{2} \int_{t}^{s}\left(f^{\prime}(u)\right)^{2} d u+x f^{\prime}(t)\right\} \\
& \times\left\{\left(x-\int_{0}^{t} f^{\prime}(u) d u\right) h\left(s-t, x+\int_{t}^{s} f^{\prime}(u) d u\right)\right. \\
& \left.\quad+t \cdot\left[\frac{\left(x+\int_{t}^{s} f^{\prime}(u) d u\right)^{2}}{(s-t)^{2}}-\frac{1}{(s-t)}\right] k\left(s-t, x+\int_{t}^{s} f^{\prime}(u) d u\right)\right\}
\end{aligned}
$$

or
$w^{\prime}(0, x)=\exp \left\{\frac{1}{2} \int_{0}^{s}\left(f^{\prime}(u)\right)^{2} d u+x f^{\prime}(0)\right\} x \cdot h\left(s, x+\int_{0}^{s} f^{\prime}(u) d u\right)$
and h is as in (16).

References

[1] Bluman, G. and V. Shtelen (1996). New Classes of Schrödinger equations equivalent to the free particle equation through non-local transformations. J. Phys. A: Math Gen. 29 4473-4480.
[2] Hernández-del-Valle, G. (2007). On Schrödinger's equation, 3-dimensional Bessel Bridges, and Passage Time Problems. submitted.
[3] Hernández-del-Valle, G. (2010a). On Schrödinger's equation, 3-dimensional Bessel Bridges, and Passage Time Problems (with heat polynomials). submitted.
[4] Hernández-del-Valle, G. (2010b). Schrödinger equation with linear potential and hitting times. submitted.

