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A NOTE ON SCHRÖDINGER EQUATION WITH

LINEAR POTENTIAL AND HITTING TIMES

GERARDO HERNÁNDEZ-DEL-VALLE

Abstract. In this note we derive a solution to the Schrödinger-
type backward equation which satisfies a necessary boundary con-
dition used in hitting-time problems [as described in Hernández-
del-Valle (2010a)]. We do so by using an idea introduced by
Bluman and Shtelen (1996) which is worked out in Hernández-del-
Valle (2010b). This example is interesting since it is independent
of the parameter λ, namely:

κ(s, x) =
x√
2πs

exp

{

−
(x+

∫

s

0
f ′(u))2

2s

}

.

and suggest a procedure to generating more vanishing solutions
and x = 0.

1. The Example.

In Hernández-del-Valle (2010b) the author finds solutions to a Schrö-
dinger-type backward equation which satisfy some necessary bound-
ary condition used in hitting-time problems [see Hernandez-del-Valle
(2010a)]. Namely, the PDE of interest is

− ∂w

∂t
(t, x) + xf ′′(t)w(t, x) =

1

2

∂2w

∂x2
(t, x)(1)

which alternatively is related to the following expectation:

w(t, x) = Ẽ

[

exp

{

−
∫

s

t

f ′′(u)X̃udu

}

∣

∣

∣
X̃t = x

]

where process X̃ is the so-called three-dimensional Bessel bridge and
f corresponds to a moving boundary. Furthermore it was shown in
Hernandez-del-Valle (2010a) that w should satisfy the following in-
equality

0 ≤ w(t, x) ≤ h(s− t, x) ∀ 0 ≤ t < s, x ≥ 0,(2)

where h is the so-called derived heat source solution defined as

h(s, x) :=
x√
2πs3

exp

{

−x2

2s

}

.
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(Which is also the density of the first hitting time of one-dimensional
standard Brownian motion to the fixed boundary x.) Thus, for all time
t it follows that w should satisfy the following boundary condition:

lim
x→0

w(t, x) = 0.(3)

Yet, for the specific problem of finding the density of hitting a mov-
ing boundary we only need the previous inequality (2) and boundary
condition (3) to hold at t = 0:

w(0, x) = Ẽ

[

exp

{

−
∫

s

0

f ′′(u)X̃udu

}

∣

∣

∣
X̃0 = x

]

.(4)

This is accomplished by using an idea introduced in Bluman and Shte-
len (1996) which relates the following PDE

−∂u

∂t
(t, x) + V1(t, x)u(t, x) =

1

2

∂2u

∂x2
(t, x)

and its adjoint

∂Φ

∂t
(t, x) + V1(t, x)Φ(t, x) =

1

2

∂2Φ

∂x2
(t, x)(5)

with the following backward equation

−∂w

∂t
(t, x) + V2(t, x)w(t, x) =

1

2

∂2w

∂x2
(t, x)

where

V2(t, x) = V1(t, x)−
∂2

∂x2
log Φ.

It is done so through the following expression:

w(t, x) =
1

Φ(t, x)

[
∫

x

0

u(t, ξ)Φ(t, ξ)dξ +B2(t)

]

(6)

with B2(t) satisfying the condition

dB2

dt
=

1

2

(

∂Φ

∂x
(t, 0)u(t, 0)− Φ(t, 0)

∂u

∂x
(t, 0)

)

.(7)

Thus at t = 0, see equation (4),

w(0, x) =
1

Φ(0, x)

[
∫

x

0

u(0, ξ)Φ(0, ξ)dξ

]

and hence
lim
x→0

w(0, x) = 0

as long as
lim
x→0

Φ(0, x) 6= 0.
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Of course, in general we will not be solving the same PDE unless

∂2

∂x2
log Φ = 0,(8)

in which case V2(t, x) = V1(t, x), that is the form of the PDE is
preserved. The reader may check [or consult at Hernandez-del-Valle
(2010a) and (2010b)] that given V1(t, x) = xf ′′(t) a solution to (5)
which also satisfies condition (8) is for instance:

Φ(t, x)

= exp

{

1

2

∫

t

0

(f ′(u))2du− xf ′(t)− 1

2
λ2t− iλ

(

x−
∫

t

0

f ′(u)du

)}

where i =
√
−1 and λ is some scalar.

In the remainder of this note we derive a solution to (1), which is
independent of λ, and also satisfies boundary condition (3) at t = 0.
We do so by using Bluman and Shtelen’s representation, equations (6)
and (7), and a solution to (5) given by:

u(t, x) = exp

{

1

2

∫

s

t

(f ′(u))2du+ xf ′(t)

}

(9)

× exp

{

−1

2
λ2(s− t) + iλ

(

x+

∫

s

t

f ′(u)du

)}

.(10)

[The reader may consult Hernández-del-Valle (2007).] It follows that:

Φ(t, x)u(t, x) = exp

{

1

2

∫

s

0

(f ′(u))2du− 1

2
λ2s+ iλ

∫

s

0

f ′(u)du

}

and

dB2

dt
(t) =

1

2
Φu

(

Φx

Φ
− ux

u

)

= −(f ′(t) + iλ)uΦ.

Hence, B2 might be written in the two following ways

B2(t) = −
(
∫

t

0

f ′(u)du+ iλt

)

uΦ(11)

or

B′

2(t) =

(
∫

s

t

f ′(u)du+ iλ(s− t)

)

uΦ.(12)
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From (6) w satisfies

w(t, x) =
1

Φ

[
∫

x

0

uΦdy +B2(t)

]

= x
uΦ

Φ
+

B2(t)

Φ
,

and hence for B2 as in (11)

w =

({

x−
∫

t

0

f ′(u)du

}

− iλt

)

u,(13)

and for B′

2 as in (12)

w =

({

x+

∫

s

t

f ′(u)du

}

+ iλ(s− t)

)

u.(14)

Finally, recall the following Fourier representations:

k(t, x) :=
1√
2πt

e−
x
2

2t(15)

=
1

2π

∫

+∞

−∞

e−
1

2
λ
2
t+iλxdλ

h(t, x) :=
x√
2πt3

e−
x
2

2t(16)

=
1

2π

∫

+∞

−∞

(−iλ)e−
1

2
λ
2
t+iλxdλ

also known as the source and derived source heat equations respectively.
After contour integration with respect to λ, (13) becomes:

w(t, x) = exp

{

1

2

∫

s

t

(f ′(u))2du+ xf ′(t)

}

×
{

(

x−
∫

t

0

f ′(u)du

)

k

(

s− t, x+

∫

s

t

f ′(u)du

)

+t ·
(

x+
∫

s

t
f ′(u)du

)

(s− t)
k

(

s− t, x+

∫

s

t

f ′(u)du

)

}
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and for B′

2 or equation (14)

w(t, x) = exp

{

1

2

∫

s

t

(f ′(u))2du+ xf ′(t)

}

×
{

(

x+

∫

s

t

f ′(u)du

)

k

(

s− t, x+

∫

s

t

f ′(u)du

)

−
(

x+

∫

s

t

f ′(u)du

)

k

(

s− t, x+

∫

s

t

f ′(u)du

)

}

≡ 0.

The second solution is identically zero, and the first evaluated at
t = 0 is

w(0, x) = exp

{

1

2

∫

s

0

(f ′(u))2du+ xf ′(0)

}

x · k
(

s, x+

∫

s

0

f ′(u)du

)

This alternatively implies that an approximation to the first hitting
time density is given by:

x√
2πs

exp

{

−
(x+

∫

s

0
f ′(u)du)2

2s

}

.

1.1. More vanishing solutions at x = 0 and t = 0. Observe that
if u is as in (9) which alternatively solves (5) then

u′(t, x) = Γ(λ, s)u(t, x)

is also a solution to (5) for an arbitrary function Γ. For instance,
suppose that Γ(λ, s) = (−iλ) then equation (13) becomes:

w′ =

({

x−
∫

t

0

f ′(u)du

}

− iλt

)

(−iλ)u

=

({

x−
∫

t

0

f ′(u)du

}

(−iλ) + (−iλ)2t

)

u.

After contour integration and observing that

1

2π

∫

+∞

−∞

(−iλ)2e−
1

2
λ
2
t+iλxdλ =

(

x2

t2
− 1

t

)

k(t, x)
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it follows that the new solution w′ is given by

w′(t, x)

= exp

{

1

2

∫

s

t

(f ′(u))2du+ xf ′(t)

}

×
{

(

x−
∫

t

0

f ′(u)du

)

h

(

s− t, x+

∫

s

t

f ′(u)du

)

+t ·
[

(

x+
∫

s

t
f ′(u)du

)2

(s− t)2
− 1

(s− t)

]

k

(

s− t, x+

∫

s

t

f ′(u)du

)

}

or

w′(0, x) = exp

{

1

2

∫

s

0

(f ′(u))2du+ xf ′(0)

}

x · h
(

s, x+

∫

s

0

f ′(u)du

)

and h is as in (16).
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