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SIMULTANEOUS POLYNOMIAL RECURRENCE

NEIL LYALL ÁKOS MAGYAR

Abstract. Let A ⊆ {1, . . . , N} and P1, . . . , Pℓ ∈ Z[n] with Pi(0) = 0 and degPi = k for every 1 ≤ i ≤ ℓ.
We show, using Fourier analytic techniques, that for every ε > 0, there necessarily exists n ∈ N such that

|A ∩ (A+ Pi(n))|

N
>

(

|A|

N

)

2

− ε

holds simultaneously for 1 ≤ i ≤ ℓ (in other words all of the polynomial shifts of the set A intersect A

“ε-optimally”), as long as N ≥ N1(ε, P1, . . . , Pℓ). The quantitative bounds obtained for N1 are explicit but
poor; we establish that N1 may be taken to be a constant (depending only on P1, . . . , Pℓ) times a tower of
2’s of height C∗

k,ℓ
+ Cε−2.

1. Introduction.

1.1. Background. The study of recurrence properties of dynamical systems goes back to the beginnings of
ergodic theory. If A is a measurable subset of a probability space (X,M, µ) with µ(A) > 0 and T is a measure
preserving transformation, then it was already shown by Poincaré [24] that µ(A∩T−nA) > 0 for some natural
number n (and hence for infinitely many). This result was subsequently sharpened by Khintchine [16], who
observed that for every ε > 0 there in fact exist n ∈ N such that µ(A ∩ T−nA) > µ(A)2 − ε. Note that
in general this lower bound is sharp, since µ(A ∩ T−nA) → µ(A)2 as n → ∞ whenever T is a mixing
transformation.

A polynomial version of Khintchine’s result, where the set of natural numbers n is replaced by the values
of an integral polynomial P (n) that satisfies P (0) = 0, was established by Furstenberg [10], for a proof
see also [23] or [4]. Recently, far reaching generalizations of Furstenberg’s result have been obtained in the
settings of multiple recurrence: let (X,M, µ, T ) be an invertible measure preserving system, A ∈ M and
P1, . . . , Pℓ be any linearly independent family of integral polynomials with Pi(0) = 0 for all 1 ≤ i ≤ ℓ, then
Frantzikinakis and Kra [8] have shown that for any ε > 0, there necessarily exists n ∈ N such that

(1) µ(A ∩ T−P1(n)A ∩ · · · ∩ T−Pℓ(n)A) > µ(A)ℓ+1 − ε.

We note that it follows from an earlier counterexample of Ruzsa [5] that this result cannot hold in general
for dependent polynomials when ℓ ≥ 2 nor even in the setting of ergodic systems when ℓ ≥ 4. Bergelson,
Host and Kra established in [5] that (1) does hold, under this additional assumption that T is ergodic in the
case of (dependent) linear polynomials when ℓ = 2, 3. Frantzikinakis [7] has investigated the situation for
higher degree polynomials.

These multiple recurrence results contrast sharply with the situation when one drops the requirement that
the measure of the intersections in (1) are “optimally” large: the Polynomial Szemerédi Theorem of Bergelson
and Leibman [6] states that if (X,M, µ, T ) is an invertible measure preserving system and P1, . . . , Pℓ ∈ Z[n]
with Pi(0) = 0 for all 1 ≤ i ≤ ℓ, then for any A ∈ M with µ(A) > 0 there necessarily exists n ∈ N such that

(2) µ(A ∩ T−P1(n)A ∩ · · · ∩ T−Pℓ(n)A) > 0.

Note that the case when all the polynomials are linear corresponds to Furstenberg’s Multiple Recurrence
Theorem [10], which is, via Furstenberg’s correspondence principle, equivalent to Szemerédi’s Theorem on
arithmetic progressions.

For a comprehensive survey of the impact of the Poincaré recurrence principle in ergodic theory, especially
as pertains to the field of ergodic Ramsey theory/additive combinatorics, see [9], [3] and [18].

Both authors were partially supported by NSF grants.
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1.2. Statement of Main Results. In this article we will concern ourselves with the study of simultaneous
(single) polynomial recurrence. The following result gives a full generalization of Furstenberg’s result in this
direction and can be established, as we shall see below, using current and well-known methods in ergodic
Ramsey theory.

Theorem 1.1. Let (X,M, µ, T ) be an invertible measure preserving system, P1, . . . , Pℓ ∈ Z[n] with Pi(0) = 0
for all 1 ≤ i ≤ ℓ and A ∈ M. For every ε > 0, there exists n ∈ N such that

(3) µ(A ∩ T−Pi(n)A) > µ(A)2 − ε for all 1 ≤ i ≤ ℓ.

Note that there are no assumptions that the polynomials in Theorem 1.1 are linearly independent.

In the special case when k = 1, that is when all of the polynomials are linear, this result can be established
using only combinatorial methods and the following quantitative result can be obtained.

Theorem 1.2 (Griesmer [14]). Let (X,M, µ, T ) be an invertible measure preserving system, c1, . . . , cℓ ∈
Z \ {0} with ℓ ≤ 2m for some m ∈ N and A ∈ M. For every ε > 0 and B ⊆ N with logm |B| ≥ Cε−1, there
exists a non-zero n ∈ B −B such that

(4) µ(A ∩ T−cinA) > µ(A)2 − ε for all 1 ≤ i ≤ ℓ.

It follows from a variant of Furstenberg’s correspondence principle, see Frantzikinakis and Kra [8] (in
particular the proof of Theorem 2.2), that Theorem 1.1 has the following combinatorial consequence.

Corollary 1.3. Let P1, . . . , Pℓ ∈ Z[n] with Pi(0) = 0 for all 1 ≤ i ≤ ℓ. For every ε > 0 there exists
N0 = N0(ε, P1, . . . , Pℓ) such that if N ≥ N0 and A ⊆ [1, N ], then there exists n ∈ N such that

(5)
|A ∩ (A+ Pi(n))|

N
>

( |A|
N

)2

− ε for all 1 ≤ i ≤ ℓ.

We note that this correspondence give no quantitative bounds in the finite setting of Corollary 1.3 (other
than the special case when all of the polynomials are linear). However, if we relax the requirement that
the intersections are “optimally” large and ask merely that they are non-empty then one has the following
result.

Theorem 1.4 (Lyall and Magyar [21]). Let 0 < δ < 1 and P1, . . . , Pℓ ∈ Z[n] with Pi(0) = 0 and degPi ≤ k
for all 1 ≤ i ≤ ℓ. There exists a constant C = C(P1, . . . , Pℓ) such that if N ≥ exp(Cδ−ℓ(k−1) log δ−1) and
A ⊆ [1, N ] with |A| ≥ δN , then there exists n ∈ N for which

(6) A ∩ (A+ Pi(n)) 6= ∅ for all 1 ≤ i ≤ ℓ.

While if we continue to insist on “optimally” large intersections, but restrict ourselves to the case ℓ = 1,
namely the case of a single polynomial, then we have the following result.

Theorem 1.5 (Lyall and Magyar [22]). Let A ⊆ [1, N ], P (n) ∈ Z[n] with P (0) = 0 and ε > 0. There exists
a constant C = C(P ) such that if N ≥ exp exp(Cε−1 log ε−1), then there exists n ∈ N for which

(7)
|A ∩ (A+ P (n))|

N
>

( |A|
N

)2

− ε.

The main objective of the present paper is to present the proof of a (partial) common generalization of
Theorems 1.4 and 1.5. To be more precise, our objective is to establish, using Fourier analytic methods,
Corollary 1.3 with explicit quantitative bounds, in the special case when all of the polynomials are of the
same degree. In particular we are able to establish the following.

Theorem 1.6. Let P1, . . . , Pℓ ∈ Z[n] with Pi(0) = 0 and degPi = k for all 1 ≤ i ≤ ℓ. For every ε > 0 there
exists N1 = N1(ε, P1, . . . , Pℓ) such that if N ≥ N1 and A ⊆ [1, N ], then there exist n ∈ N such that

(8)
|A ∩ (A+ Pi(n))|

N
>

( |A|
N

)2

− ε for all 1 ≤ i ≤ ℓ.

In particular, the number N1(ε, P1, . . . , Pℓ) may be taken to be a constant (depending only on P1, . . . , Pℓ)
times a tower of 2’s of height C∗

k,ℓ + Cε−2.
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As the reader will no doubt have noticed, the bounds obtained for N1(ε, P1, . . . , Pℓ), while explicit, are
rather poor. It is our belief that these are far from the best bounds possible whose dependence on ε we
would expect to be at least of exponential type.

We also note that, because of the introduction of different scales (specifically in Lemma 3.1), our current
Fourier analytic approach appears to be insufficient for the task establish a quantitative result along the lines
of Theorem 1.6 for polynomials with different degrees. In particular, we are not aware of any quantitative
result of this type even in the simplest case, namely ℓ = 2 with P1(n) = n and P2(n) = n2.

1.3. An outline of the paper. As we have been unable to find a proof of Theorem 1.1 in the literature,
we give a complete proof of this result in Section 2. We feel that the inclusion of this argument will also help
illuminate for the reader the proof of our main result, namely Theorem 1.6, which we present in Section 3.

In Section 4 we communicate an elegant combinatorial proof of Theorem 1.2, using Ramsey’s theorem,
that was shown to us by John Griesmer. We are grateful to John for both showing us this argument and
giving us his permission to include it here.

Theorem 1.4 was first established in [20], but only in the case of linearly independent polynomials. In
Section 5 we include a simple modification of the lifting argument used in [20], to extend the original result
in [20] to the case of linearly dependent polynomials, thus establishing Theorem 1.4 as stated above and in
[21].

Finally, we also include a short appendix on counting solutions to systems of polynomial diophantine
equations as well as a somewhat lengthier appendix on simultaneous polynomial diophantine approximation.

1.4. Notational convention. Throughout the paper the letters c, C will denote absolute constants. These
constants will generally satisfy 0 < c ≪ 1 ≪ C. Different instances of the notation, even on the same line,
will typically denote different constants.

2. The proof of Theorem 1.1

Let ε > 0 and Let (X,M, µ, T ) be an invertible measure preserving system.

We define UT f(x) := f(Tx) and note that UT then defines a unitary operator on the Hilbert space of all
square integrable function L2(X,µ). If we define f = 1A, then

(9) µ(A ∩ T−Pi(n)A) = 〈f, UPi(n)
T f〉

for each 1 ≤ i ≤ ℓ.

2.1. Decomposition. We now proceed by decomposing f into an almost periodic (structured) component
and a weakly-mixing (anti-structured) component, the so-called Koopman-von Neumann decomposition.

Proposition 2.1 (Koopman and von Neumann [17], see also [23]). Let H := L2(X,µ), then

(10) H = Hc ⊕Hwm

where

(11) Hc = {f ∈ H : {UT f : n ∈ Z} is pre-compact}
and

(12) Hwm =

{
f ∈ H : lim

N→∞

1

N
|{1 ≤ n ≤ N : |〈Un

T f, g〉| ≥ ε}| = 0 for all ε > 0 and g ∈ H
}
.

Moreover,
Hwm = H⊥

c .

Using Proposition 2.1 we can therefore uniquely decompose

(13) f = f1 + f2,

with f1 ∈ Hc and f2 ∈ Hwm. Moreover, it is easy to see that these functions also enjoy the property that
0 ≤ f1 ≤ 1 and 〈f2, 1〉 = 0. We note that it follows immediately from the Cauchy-Schwarz inequality that

(14) µ(A)2 = 〈f, 1〉2 = 〈f1, 1〉2 ≤ 〈f1, f1〉.
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2.2. Proof of Theorem 1.1. Inserting our decomposition f = f1 + f2 into (9) we see that

(15) µ(A ∩ T−Pi(n)A) = 〈f1, UPi(n)
T f1〉+ 〈f, UPi(n)

T f2〉+ 〈U−Pi(n)
T f2, f1〉

for each 1 ≤ i ≤ ℓ.

Our stategy to prove Theorem 1.1 will be to show that U
Pi(n)
T f1 ≈ f1 and hence

〈UPi(n)
T f1, f1〉 ≈ 〈f1, f1〉 ≥ µ(A)2

simultaneously for all 1 ≤ i ≤ ℓ for a positive proportion of 1 ≤ n ≤ N , while for any given g ∈ L2(X,µ)

and P ∈ Z[n] the proportion of 1 ≤ n ≤ N for which 〈g, UP (n)
T f2〉 ≈ 0 tends to 1 as N → ∞.

More precisely, we will establish the following two lemmas from which Theorem 1.1 follows immediately.

Lemma 2.2 (Main term estimate). There exists c0 = c0(ε, k, ℓ, f1) > 0 such that for all large N

(16)
∣∣∣
{
1 ≤ n ≤ N :

∥∥∥UPi(n)
T f1 − f1

∥∥∥ ≤ ε/2 for all 1 ≤ i ≤ ℓ
}∣∣∣ ≥ c0N.

Lemma 2.3 (Error term estimate). Let P ∈ Z[n] with P (0) = 0 and g ∈ L2(X,µ), then

(17) lim
N→∞

1

N

∣∣∣
{
1 ≤ n ≤ N : |〈UP (n)

T f2, g〉| ≥ ε/4
}∣∣∣ = 0.

Indeed, if N is large enough then from Lemma 2.2 it follows that there must exist at least c0N values of

n ∈ [1, N ] for which ‖UPi(n)
T f1 − f1‖ ≤ ε/2 and hence

〈f1, UPi(n)
T f1〉 ≥ 〈f1, f1〉 − |〈f1, UPi(n)

T f1 − f1〉| ≥ µ(A)2 − ε/2

simultaneously for all 1 ≤ i ≤ ℓ. While from Lemma 2.3 it follows that if N is taken sufficiently large then
the absolute value of the last two error terms in (15) can be made less than ε/4 for all but at most c0N/2
values of n ∈ [1, N ] simultaneously for 1 ≤ i ≤ ℓ. Thus for any ε > 0 there exists n ∈ [1, N ] (in fact a
positive proportion) for which

µ(A ∩ T−Pi(n)A) > µ(A)2 − ε

for all 1 ≤ i ≤ ℓ. This completes the proof of Theorem 1.1. �

2.3. Proof of Lemmas 2.2 and 2.3. The proof of Lemma 2.2 is based on van der Waerden’s theorem and
the magical identity

(18)

j∑

t=0

(x+ td)j
(
j

t

)
(−1)j−t = j! dj

the validity of which can be easily verified for all j ∈ N by induction. Lemma 2.2 is of course in essence a
result on simultaneous diophantine approximation and the proof we present below is essentially an adaptation
of the proof of Proposition 1.5 (on quadratic recurrence) in [25].

The proof of Lemma 2.3 follows from the Hilbert space version of van der Corput’s Lemma (for a statement
of this version see either [4] or [23]) and is well-known, but for the sake of completeness we have chosen to
also sketch its proof below.

Proof of Lemma 2.2. Let Pi(x) =
∑k

j=1 cijx
j , and let η = η(ε, k) > 0 be a small constant to be chosen later.

Cover the orbit {T nf : n ∈ Z} by balls B1, . . . , BM of diameter η and use this to define a (matrix-valued)
coloring χ : Z → [1,M ]kℓ of the integers by setting, for each 1 ≤ i ≤ ℓ and 1 ≤ j ≤ k, χij(n) = r if

U
cijn

j

T f1 ∈ Br.

By (the averaged version of) van der Waerden’s theorem there is a constant c1 = c1(M,k, ℓ) such that
the number of monochromatic (k + 1)-term arithmetic progressions in [1, N ] is at least c1N

2, provided N
is sufficiently large. Note that this implies that there will be at least c1N monochromatic (k + 1)-term
arithmetic progressions in [1, N ] with different step sizes d.

Let d be the step size of a monochromatic arithmetic progression {x + td : 0 ≤ t ≤ k} with respect to
the coloring χ in [1, N ]. Then for any fixed i, j one has

‖U cij(x+td)j

T f1 − U
cijx

j

T f1‖ ≤ η
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for all 0 ≤ t ≤ k, thus by (18) it follows that
∥∥∥U cij j!dj

T f1 − f1

∥∥∥ =

∥∥∥∥U
cij

∑j
t=0(x+td)j(jt)(−1)j−t

T f1 − f1

∥∥∥∥

=

∥∥∥∥U
cij

∑j
t=0(x+td)j(jt)(−1)j−t

T f1 − U
cij

∑j
t=0 xj(jt)(−1)j−t

T f1

∥∥∥∥

≤
j∑

t=0

(
j

t

)∥∥∥U cij(x+td)j

T f1 − U
cijx

j

T f1

∥∥∥

≤ 2jη.

Here we have used the facts that ‖Um1+m2

T f1 − Un1+n2

T f1‖ ≤ ‖Um1

T f1 − Un1

T f1‖ + ‖Um2

T f1 − Un2

T f1‖ and
‖U bn

T f1 − U bm
T f1‖ ≤ |b| ‖Un

T f1 − Um
T f1‖ which follows from the triangle inequality and the fact that UT is a

unitary operator on L2(X,µ). Thus
∥∥∥U cij(k!d)

j

T f1 − f1

∥∥∥ ≤ (k!j/j!)
∥∥∥U j!cijd

j

T f1 − f1

∥∥∥ ≤ (k!)k2kη.

Letting n = k!d it follows that for all 1 ≤ i ≤ ℓ we have

(19)
∥∥∥UPi(n)

T f1 − f1

∥∥∥ ≤ k(k!)k2kη ≤ ε/2

provided η is chosen small enough. Since the number of such d ∈ [1, N/k!] is at least (c1/k!)N , the lemma
follows. �

Proof of Lemma 2.3. We give a proof by induction, using the fact that (17) is equivalent to

(20) lim
N→∞

1

N

N∑

n=1

∣∣∣〈UP (n)
T f2, g〉

∣∣∣
2

= 0

and that when degP = 1, that is P (x) = mx for some m ∈ Z, then the conclusion of the lemma is an
immediately consequence of the weak-mixing properties of f2.

Let k ≥ 1, P ∈ Z[n] be a polynomial of degree k + 1, and assume that (20) holds for all polynomials of
degree at most k. We will show that (20) holds for all g ∈ L2(X,µ). To this end we note that

1

N

N∑

n=1

∣∣∣〈UP (n)
T f2, g〉

∣∣∣
2

=
1

N

N∑

n=1

〈
(UT × UT )

P (n)(f2 × f2), g × g
〉
X×X

and hence that it suffices to show that

lim
N→∞

∥∥∥∥∥
1

N

N∑

n=1

(UT × UT )
P (n)(f2 × f2)

∥∥∥∥∥
L2(X×X)

= 0.

Let xn := (UT × UT )
P (n)(f2 × f2) for n ∈ Z, and let h ∈ Z \ {0}. Since

〈xn+h, xn〉X×X =
〈
(UT × UT )

P (n+h)−P (n)−P (h)(f2 × f2), (UT × UT )
−P (h)(f2 × f2)

〉
X×X

=
∣∣∣
〈
U

P (n+h)−P (n)−P (h)
T f2, U

−P (h)
T f2

〉∣∣∣
2

it follows from the inductive hypothesis, since the polynomial P (n+ h)−P (n)− P (h) has degree at most k

and U
−P (h)
T f2 ∈ L2(X,µ), that

lim
N→∞

1

N

N∑

n=1

〈xn+h, xn〉X×X = 0.

The claim now follows from the Hilbert space version of van der Corput’s Lemma, see either [4] or [23]. �

3. The proof of Theorem 1.6

Let ε > 0 and P1, . . . , Pℓ ∈ Z[n] with Pi(0) = 0 and degPi = k for all 1 ≤ i ≤ ℓ.
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3.1. The Fourier transform, uniformity and polynomial shifts. Let ZN denote the group Z/NZ.

3.1.1. The Fourier transform. Given f : ZN → C we define its (discrete) Fourier transform, f̂ : ẐN → C, by

f̂(ξ) =
1

N

∑

x∈ZN

f(x)e(−xξ/N)

where e(x) = e2πix and ẐN denote the dual group of of all characters on ZN .

It is easy to see that we can identify ZN with its dual. There are two natural measures that one can
put on ZN , namely uniform probability measure and counting measure. As is customary, we shall use the
uniform probability measure on ZN and the counting measure on ZN when it is being identified with its
dual group. We then define Lp-norms and ℓp-norms as follows.

We define Lp to be the space of all functions from ZN to C, with the norm

‖f‖p =
( 1

N

∑

x∈ZN

|f(x)|p
)1/p

,

where this is interpreted as maxx∈ZN
|f(x)| when p = ∞. We define ℓp to be the space of all functions from

ẐN to C, with the norm

‖F‖p =
( ∑

ξ∈ZN

|F (ξ)|p
)1/p

,

where we again interpreted this as maxξ∈ZN
|F (ξ)| when p = ∞.

In contrast to the situation for the Fourier transform on R, the Fourier inversion formula and Plancherel’s
identity, namely

f(x) =
∑

ξ∈ZN

f̂(ξ)e(xξ/N) and ‖f‖2 = ‖f̂‖2

are, in this setting, immediate and simple consequences of the familiar orthogonality relation

1

N

∑

x∈ZN

e(xξ/N) =

{
1 if ξ = 0

0 if ξ 6= 0
.

3.1.2. Uniformity and polynomial shifts. We now fix a set A ⊆ [1, N ]. In order to use Fourier analytic
techniques we will, as is customary, identify [1, N ] with ZN and consider A as a subset of ZN . In order
to ensure that working in ZN will not, in any essential way, affect the validity of (8), we will restrict our
attention to those values of n for which

(21) 1 ≤ n ≤ M := c(εN)1/k

with c = c(P1, . . . , Pℓ) chosen sufficiently small such that |Pi(n)| ≤ εN for all 1 ≤ i ≤ ℓ. Note that doing
this we will ensure that the size of A ∩ (A + Pi(n)) will increase by at most εN , due to overlapping when
the shifts Pi(n) take place in ZN , and as such working in ZN will not affect the validity of (8) (other than
changing ε to 2ε).

Note that if we define f = 1A, then

(22)
|A ∩ (A+ Pi(n))|

N
=

1

N

∑

x∈ZN

f(x)f(x − Pi(n))

for each 1 ≤ i ≤ ℓ.

It is well-known (and easy to verify, see Lemma 2.2 in [12]) that if g, h : ZN → C with both ‖g‖2 and

‖h‖2 bounded by 1, then ‖ĥ‖∞ ≤ η is equivalent to

1

N

N∑

n=1

∣∣∣∣∣
1

N

∑

x∈ZN

h(x)g(x − n)

∣∣∣∣∣

2

≤ η
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and consequently that
∣∣∣∣∣

{
1 ≤ n ≤ N :

∣∣∣∣∣
1

N

∑

x∈ZN

h(x)g(x− n)

∣∣∣∣∣ ≥ η1/3

}∣∣∣∣∣ ≤ η1/3N

whenever h satisfies the uniformity assumption that ‖ĥ‖∞ ≤ η.

The main aim of this section is to show that this phenomenon continues to hold for each of the polynomial
shifts Pi(n) for almost all n satisfying (21). In particular we show the following.

Lemma 3.1 (Error term estimate). Let ε > 0, P ∈ Z[n] with degP = k ≥ 2 and M = c(εN)1/k.

If g, h : ZN → C with ‖g‖2 ≤ 1, ‖h‖2 ≤ 1 and ‖ĥ‖∞ ≤ η with 0 < η ≤ ε, then

(23)

∣∣∣∣∣

{
1 ≤ n ≤ M :

∣∣∣∣∣
1

N

∑

x∈ZN

h(x)g(x− P (n))

∣∣∣∣∣ ≥ η1/K

}∣∣∣∣∣ ≤ C1 η
1/KM

for any positive integer K ≥ C k2 log k, where then C1 is a large constant depending only on P .

3.1.3. Theorem 1.6 for uniform sets. We quickly remark that from Lemma 3.1 we can immediately deduce
Theorem 1.6 in the special case of (suitably) uniform sets A. Recall that a set A is said to be η-uniform if

|1̂A(ξ)| ≤ η for all ξ ∈ ZN \ {0}, or equivalently ‖f̂A‖∞ ≤ η, where fA = 1A − |A|/N denotes the so-called
balanced function of A. Inserting the decomposition f = fA+ |A|/N into (22) and recalling that the function
fA has mean value zero, we obtain the following corollary to Lemma 3.1.

Corollary 3.2. If A ⊆ ZN is η-uniform with 0 < η ≤ εK and K ≥ C k2 log k, then there necessarily exist
at least (1− ℓC1η

1/K)M values of n ∈ [1,M ] (and hence at least one if η1/K ≤ min{ε, 1/2ℓC1}) for which
∣∣∣∣∣
|A ∩ (A+ Pi(n))|

N
−
( |A|

N

)2
∣∣∣∣∣ < ε

holds simultaneously for 1 ≤ i ≤ ℓ.

3.1.4. Proof of Lemma 3.1. We make use of the following well-known fact from number theory which we
state here, and whose proof will be given in Appendix A for the sake of completeness.

Proposition 3.3. Let P ∈ Z[n] with degP = k and K ≥ C k2 log k be a natural number. Then for any
M ∈ N, the number of 2K-tuples (n1, . . . , nK ,m1, . . . ,mK) ∈ [1,M ]2K satisfying

(24) P (n1) + · · ·+ P (nK) = P (m1) + · · ·+ P (mK)

is bounded by C0M
2K−k, where C0 is a large constant depending only on P .

In order to prove Lemma 3.1, with 4K in place of K, it is suffices to show that

(25)

M∑

n=1

∣∣∣∣∣
1

N

∑

x∈ZN

h(x)g(x− P (n))

∣∣∣∣∣ ≤ C1η
1/2KM.

In order to verify (25) we introduce a weight function w : ZN → {−1, 1} such that the left side of (25)
may be written (using Fourier inversion) as

(26)
1

N

M∑

n=1

∑

x∈ZN

h(x)g(x − P (n))w(n) =
∑

ξ∈ZN

ĥ(ξ)ĝ(ξ)Sw(ξ)

where

(27) Sw(ξ) =

M∑

n=1

w(n)e(P (n)ξ/N).
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Note that we have no control over the weight function w(n) and hence cannot hope for any non-trivial
pointwise bound on |Sw(ξ)|, nevertheless we can obtain sharp estimates for the higher moments of Sw using
Proposition 3.3. Indeed for any positive integer K ≥ C k2 log k one estimates

‖Sw‖2K2K =
∑

ξ∈ZN

|Sw(ξ)|2K

=

M∑

n1,...,nK=1
m1...,mK=1

w(n1) · · ·w(mK)
∑

ξ∈ZN

e ((P (n1) + · · ·+ P (nK)− P (m1)− · · · − P (mK)) ξ/N)

≤ N
∣∣{(n1, . . . , nK ,m1 . . . ,mK) ∈ [1,M ]2K : P (n1) + · · ·+ P (nK) = P (m1) + · · ·+ P (mK)

}∣∣ .

Since 1 ≤ ni,mi ≤ M and M = c (εN)1/k with a sufficiently small constant c, the equality

P (n1) + · · ·+ P (nK) = P (m1) + · · ·+ P (mK)

holds in ZN if and only it holds in Z.

It therefore follows from Proposition 3.3 and Hölder’s inequality that
∑

ξ∈ZN

|ĥ(ξ)||ĝ(ξ)||Sw(ξ)| ≤ ‖ĝ‖2 ‖f̂‖ 2K
K−1

‖Sw‖2K ≤ η
1
K (C0NM2K−k)1/2K ≤ C1η

1/2KM

with C1 = (C0/c
k)1/2K since ‖ĥ‖ 2K

K−1
≤ ‖ĥ‖1/K∞ ‖ĥ‖(K−1)/K

2 ≤ η
1
K and M = c(εN)1/k. �

3.2. Decomposition. In order to exploit the phenomenon exhibited in Lemma 3.1 in a proof of Theorem
1.6 one would naturally try, as we did in the proof of Theorem 1.1, to make use of a decomposition theorem
that will allow use to decompose f into a structured component and a suitably uniform (anti-structuered)
component.

It is easy to see that for any given η > 0 and f : ZN → C with ‖f‖2 ≤ 1, then the number of ξ ∈ ZN such

that |f̂(ξ)| ≥ η is at most η−2, since ‖f̂‖2 ≤ 1. Using the Fourier inversion formula together with this fact
we certainly split f = g + h, where

g(x) =
∑

ξ∈Γ

f̂(ξ)e(ξx/N) and h(x) =
∑

ξ/∈Γ

f̂(ξ)e(ξx/N)

with Γ = {ξ ∈ ZN : |f̂(ξ)| ≥ η}. It is then immediate that |ĥ(ξ)| < η, and that g is indeed “structured” in
the sense that it involves only a bounded number of characters.

As we shall see below this simple decomposition will unfortunately be insufficient for our purpose. The

problem being that we need a much stronger relationship between ‖ĥ‖∞ and the upper bound on the size
of Γ. The following result, which shows that one can indeed obtain this, modulo a small L2-error, is part of
the standard folklore of additive combinatorics (see for example [13] Proposition 2.5).

Proposition 3.4. Let f : ZN → C with ‖f‖2 ≤ 1. Write ZN = {ξ1, . . . , ξN} so that |f̂(ξ1)| ≥ · · · ≥ |f̂(ξN )|.
For every ε > 0 and η : N → R+ a positive function that decreases to 0, there exists m = m(ε, η) ∈ N and

a decomposition

f = f1 + f2 + f3,

with

f1(x) =

m∑

j=1

f̂(ξj)e(ξjx/N)

while ‖f̂2‖∞ ≤ η(m) and ‖f3‖2 ≤ ε.

We note that the proof of this result, we include below for completeness, gives us the desired decomposition
for some natural numberm that is bounded above by a number that results from starting with 1 and applying
the function t 7→ η(t)−2 at most ε−2 times.
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Proof of Proposition 3.4, [13]. Choose an increasing sequence of positive integers m1,m2, . . . with m1 = 1
and mr+1 ≥ η(mr)

−2 for every r. We now choose r and attempt to prove the result using the decomposition
f = f1 + f2 + f3 with

f1(x) =
∑

j≤mr

f̂(ξj)e(ξjx/N), f2(x) =
∑

j>mr+1

f̂(ξj)e(ξjx/N), f3(x) =
∑

mr<j≤mr+1

f̂(ξj)e(ξjx/N).

Then f1 is a linear combination of at most mr characters. Also ‖f̂2‖∞ ≤ m
−1/2
r+1 ≤ η(mr), since, by

Plancherel’s theorem, there can be at most mr+1 Fourier coefficients of f whose magnitude is at least m
−1/2
r+1 .

Therefore, we are done if ‖f3‖2 ≤ ε. But the possible functions f3 (as r varies) are disjoint parts of the
Fourier decomposition of f , so at most ε−2 of them can have norm greater then ε. Thus there exists r ≤ ε−2

such that the proposed decomposition works. �

To find the appropriate function η(m) we use the following result from the theory of diophantine approx-
imation, the proof of this result is presented in Appendix B.

Lemma 3.5 (Main term estimate). There exists a constant Ck,ℓ such that for all 0 < ε < 1/2 we have

(28) |{1 ≤ n < M : ‖Pi(n)ξj/N‖ < ε for all 1 ≤ i ≤ ℓ, 1 ≤ j ≤ m}| ≥ (ε/m)Ck,ℓm
2

M

provided M ≥ (ε/m)−Ck,ℓm
2

, where ‖α‖ denotes, for each α ∈ R, the distance from α to the nearest integer.

3.3. Proof of Theorem 1.6. Inserting the decomposition from Proposition 3.4, for say ε/8 and a positive
decreasing function η : N 7→ R+ to be chosen later (using Lemma 3.5), into (22) we obtain

|A ∩ (A+ Pi(n))|
N

=
1

N

∑

x∈ZN

f1(x)f1(x− Pi(n)) +
1

N

∑

x∈ZN

(f2 + f3)(x)g(x − Pi(n))

≥
∣∣∣∣∣
1

N

∑

x∈ZN

f1(x)f1(x− Pi(n))

∣∣∣∣∣ −
∣∣∣∣∣
1

N

∑

x∈ZN

(f2 + f3)(x)g(x − Pi(n))

∣∣∣∣∣

for each 1 ≤ i ≤ ℓ, where g : ZN 7→ R is some function that satisfies ‖g‖2 ≤ 2.

By the Cauchy-Schwarz inequality it follows that

(29)

∣∣∣∣∣
1

N

∑

x∈ZN

f3(x)g(x − Pi(n))

∣∣∣∣∣ ≤ ‖f3‖2‖g‖2 ≤ ε/4

for all n ∈ N, while from Lemma 3.1 it follows that for all but at most ℓC1η(m)1/KM values of n ∈ [1,M ]
we also have

(30)

∣∣∣∣∣
1

N

∑

x∈ZN

f2(x)g(x − Pi(n))

∣∣∣∣∣ < η(m)1/K

simultaneously for all 1 ≤ i ≤ ℓ.

Using the fact that ξ1 = 0 (a consequence of f is non-negative) one can conclude that for each 1 ≤ i ≤ ℓ
we have

∣∣∣∣∣
1

N

∑

x∈ZN

f1(x)f1(x− Pi(n))

∣∣∣∣∣ =

∣∣∣∣∣∣

m∑

j=1

|f̂(ξj)|2e(ξjPi(n)/N)

∣∣∣∣∣∣

≥
m∑

j=1

|f̂(ξj)|2 −
m∑

j=1

|f̂(ξj)|2 |e(ξjPi(n)/N)− 1|

≥ |f̂(ξ1)|2 − ε/2

=

( |A|
N

)2

− ε

2
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provided that |e(ξjPi(n)/N) − 1| ≤ ε/2 for all 1 ≤ j ≤ m. It therefore follows from Lemma 3.5, since

|e(x)− 1| ≤ 2π‖x‖, that for at least (ε/4πm)Ck,ℓm
2

M values of n ∈ [1,M ] the main terms will satisfy
∣∣∣∣∣
1

N

∑

x∈ZN

f1(x)f1(x− Pi(n))

∣∣∣∣∣ ≥
( |A|

N

)2

− ε

2

simultaneously for all 1 ≤ i ≤ ℓ, provided M ≥ (ε/4πm)−Ck,ℓm
2

.

Therefore, if we choose η(t) := (ℓC1)
−K(ε/4πt)Ck,ℓKt2/2, it follows that ℓC1η(m)1/K < (ε/4πm)Ck,ℓm

2

,
thus establishing Theorem 1.6 with

N1(ε, P1, . . . , Pℓ) = C(ε/4πm)−kCk,ℓm
2−1

where the constant C depends only on the polynomials P1, . . . , Pℓ.

Since, as we remarked above, m is bounded above by a number that results from starting with 1 and
applying the function t 7→ η(t)−2 at most ε−2 times, N1 will clearly be a tower type bound with height
proportional to ε−2. To be more precise, it is not hard to verify that

(ε/4πm)−kCk,ℓm
2−1 = T (C∗

k,ℓ + Cε−2),

where T (1) = 1, T (j + 1) = 2T (j) is the tower function.

Finally we remark that if one uses explicit Vinogradov type bounds for the Weyl sums, then one obtains
the constant Ck,ℓ = CkCℓC in Proposition 3.3 and hence C∗

k,ℓ ≤ log∗(k) + log∗(ℓ) + C∗ where log∗ denotes

the inverse of the tower function T (n). �

4. Simultaneous Linear Recurrence

In this section we will give a combinatorial proof of Theorem 1.2, shown to us by John Griesmer [14].

4.1. A combinatorial proof of Khintchine’s theorem. We first establish the result for ℓ = 1 (which
of course corresponds to the case m = 0). This is a quantitative formulation of the ε-optimal extension of
Poincaré’s recurrence theorem, due to Khintchine, that was discussed in the introduction.

Lemma 4.1 (Bergelson [3]). Let (X,M, µ, T ) be an invertible measure preserving system and A ∈ M. For
every ε > 0 and B ⊆ N with |B| ≥ ε−1, there exists a non-zero n ∈ B −B such that

(31) µ(A ∩ T−nA) > µ(A)2 − ε.

Proof. Let ε > 0 and v1, . . . , vN be distinct natural numbers with N ≥ ε−1. Since

Nµ(A) =

∫

X

N∑

j=1

1A(T
vjx) dµ

it follows from the Cauchy-Schwarz inequality that

N2µ(A)2 ≤
∫

X

( N∑

j=1

1A(T
vjx)

)2

dµ

and hence that
1

N2

∑

1≤j,k≤N

µ(T−vjA ∩ T−vkA) ≥ µ(A)2.

It then follows from the fact that there are only N diagonal terms that there must exist a pair 1 ≤ j < k ≤ N
for which

µ(A ∩ T−(vk−vj)A) ≥ µ(A)2 − ε. �
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4.2. Proof of Theorem 1.2. Let m be a non-negative integer. It clearly suffices to prove the Theorem
for ℓ = 2m. We proceed by induction on m, noting that Lemma 4.1 above covers the base case, namely
when m = 0, since we can simply apply that result to the transformation T c1 in place of T for any given
c1 ∈ Z \ {0}.

We now assume that the result holds for a given non-negative integer m, fix c1, . . . , c2m+1 ∈ Z \ {0} and
distinct natural numbers v1, . . . , vN with N ≥ 22L where logm2 L ≥ Cε−1.

We now define a coloring of the edges of the complete graph KN on the vertices v1, . . . , vN . Color the
edge between vertices vj and vk red if

µ(A ∩ T−ci(vj−vk)A) > µ(A)2 − ε

for all 1 ≤ i ≤ 2m, and color it blue if this is not the case.

Since N ≥ 22L and logm2 L ≥ Cε−1, it follows from Ramsey’s theorem and the inductive hypothesis
that KN must contain a complete red subgraph with at least L vertices. In other words, there exists a
sub-collection

{w1, . . . , wL} ⊆ {v1, . . . , vN}
such that for every 1 ≤ j, k ≤ L we have

µ(A ∩ T−ci(wj−wk)A) > µ(A)2 − ε

for all 1 ≤ i ≤ 2m. Applying the inductive hypothesis once more, this time with c2m+1, . . . , c22m to the
collection w1, . . . , wL of distinct natural numbers obtained above, it follows that there necessarily exists a
pair 1 ≤ j < k ≤ L such that

µ(A ∩ T−ci(wj−wk)A) > µ(A)2 − ε

for all 2m + 1 ≤ i ≤ 22m. This completes the proof. �

5. The proof of Theorem 1.4

It is easy to see that in order to prove Theorem 1.4 it suffices to establish the following reformulation.

Theorem 5.1. Let k ≥ 2 and P1, . . . , Pℓ ∈ Z[n] with Pi(0) = 0 and degPi ≤ k for all 1 ≤ i ≤ ℓ.

If A ⊆ [1, N ] and {P1(n), . . . , Pℓ(n)} * A−A for any n 6= 0, then we necessarily have

|A|
N

≤ C

(
log logN

logN

)1/ℓ(k−1)

for some absolute constant C = C(P1, . . . , Pℓ).

As remarked in Section 1.3, Theorem 5.1 was established for families of linearly independent polynomials
in [20]. In the case of a single polynomial (ℓ = 1), this result has originally obtained by Lucier [19] (with
slightly weaker bounds) and, to the best of our knowledge, constitutes the best bounds that are currently
known for arbitrary polynomials with integer coefficients and zero constant term.

A simple modification of the lifting argument utilized in [20] will enable us to deduce Theorem 5.1 as a
corollary of the following higher dimensional result, which was the main result in [20] (see also [21]).

Theorem 5.2 (Lyall and Magyar [20], [21]). If B ⊆ [1, N ]k and (n, n2, . . . , nk) /∈ B−B for any n 6= 0 then
we necessarily have

|B|
Nk

≤ C

(
log logN

logN

)1/(k−1)

for some absolute constant C = C(k).

As in [20], we again speculate that the methodology of Balog et al. [2] may be applied in this higher
dimensional situation to obtain far superior bounds in Theorem 5.2 and hence also in Theorem 5.1.
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5.1. Proof that Theorem 5.2 implies Theorem 5.1. Let Pi(n) = ci1n+ · · ·+ cikn
k for 1 ≤ i ≤ ℓ.

Suppose that the coefficient matrix P = {cij} has rank r with 1 ≤ r ≤ ℓ. Without loss of generality
we will make the additional assumption that it is in fact the first r polynomials P1, . . . , Pr that are linearly
independent and use R to denote the r× k matrix corresponding to the first r rows of P . As a consequence
of this assumption it follows that the remaining polynomials, Pr+i with 1 ≤ i ≤ ℓ− r, can be expressed as

Pr+i = di1P1 + · · ·+ dirPr

where D = {dij} is some (ℓ− r) × r matrix with rational coefficients. Note that

P : Zk → Zℓ

R : Zk → Zr

D : R(Zk) → Zℓ−r

and

P(b) =

(
R(b)

D(R(b))

)
.

Let Aℓ = A × · · · × A ⊆ [1, N ]ℓ and set δ = |A|/N . The full rank assumption on the matrix R ensures
that there exists an absolute constant c, depending only on the coefficients of the matrix R, such that

∣∣R(Zk) ∩ (Ar − s)
∣∣ ≥ cδrN r

for some s ∈ [1, c−1]r. Thus, if we choose N ′ to be a large enough multiple of N (again depending only the
coefficients of the matrix R) and let

B′ =
{
b ∈ [−N ′, N ′]k : R(b) ∈ Ar − s

}
,

it follows that

|B′| ≥ c δrNk.

Since
∑

t∈Zℓ−r

∑

b∈B′

1Aℓ−r(D(R(b)) + t) = |A|ℓ−r|B′|

it follows that there exists c = c(P) and t ∈ Zℓ−r such that

∣∣{b ∈ B′ : D(R(b)) ∈ Aℓ−r − t
}∣∣ ≥ cδℓ−r|B′|.

Hence, if we let

B =
{
b ∈ [−N ′, N ′]k : P(b) ∈ Aℓ −m

}
,

where m = (s, t) ∈ Zℓ, it follows that

|B| ≥ c δℓNk.

Theorem 5.1 now follows from Theorem 5.2 since if there were to exist an n 6= 0 such that

(n, n2, . . . , nk) ∈ B −B

this would immediately implies that

(P1(n), . . . , Pℓ(n)) ∈ Aℓ −Aℓ,

since P(B) ⊆ Aℓ −m. �
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Appendix A. Counting solutions to systems of polynomial diophantine equations

The aim of this section is to prove Proposition 3.3. We do this by showing that it follows easily from
counting the integer solutions 1 ≤ x1, . . . , xK , y1, . . . , yK ≤ M of the system of equations

(32) xi
1 + · · ·+ xi

K = yi1 + · · ·+ yiK

where the exponent i ranges from 1 to k, known as Tarry’s problem. An asymptotic formula for the number
of solutions JK,k(M) (as M → ∞) was originally obtained by Hua [15], see also Wooley [26]. In particular,
it follows from these results that

(33) JK,k(M) ≤ CkM
2K−k(k+1)/2

as long as K > Ck2 log k. For additional discussion of Tarry’s problem, see [1] and [26].

Proof of Proposition 3.3. Let P (x) = ckx
k + · · ·+ c1x be an integral polynomial. For given

1 ≤ x1, . . . , xK , y1, . . . , yK ≤ M

and for 1 ≤ i ≤ k, let

(34) si = xi
1 + · · ·+ xi

K − yi1 − · · · − yiK

Then x1, . . . , xK , y1, . . . , yK is a solution of equation (24) if and only if c1s1 + · · ·+ cksk = 0.

For given s1, . . . , sk, let JK,k(M ; s) denote the number of integer solutions of the system (34). Then, as
usual, one can express the number of solutions as a multiple integral of the form

JK,k(M ; s) =

∫ 1

0

. . .

∫ 1

0

|S(θ1, . . . , θk)|2K e−2πi(s1θ1+···+skθk) dθ1 . . . dθk

where

S(θ1, . . . , θk) =

M∑

m=1

e2πi(mθ1+···+mkθk).

Therefore, we have that JK,k(M ; s) ≤ JK,k(M) uniformly in s1, . . . , sk. For a solution of (24) the values
s1, . . . , sk−1 determine sk, and since |si| ≤ kN i for 1 ≤ i ≤ k − 1, one estimates the number of solutions of
(24) from above by Ck M

(k−1)k/2M2K−k(k+1)/2 = CkM
2K−k. This proves Proposition 3.3. �

Appendix B. Simultaneous polynomial diophantine approximation

The purpose of this section is to supply a proof of Lemma 3.5. We in fact establish the following more
general result.

Proposition B.1. Let P1, . . . , Pℓ ∈ Z[n] with Pi(0) = 0 and degPi ≤ k for all 1 ≤ i ≤ ℓ and θ1, . . . , θm ∈ R.
Then for any 0 < ε ≤ 1/2 and N ∈ N we have that

(35) |{1 ≤ n ≤ N : ‖Pi(n)θi′‖ < ε for all 1 ≤ i ≤ ℓ, 1 ≤ i′ ≤ m}| ≥ (ε/d)Ckd
2

where d = kℓm and Ck > 0 is a constant depending only on k.

It is easy to see that Proposition B.1 is an immediate corollary of the following result.

Proposition B.2. Let d1, . . . , dk ∈ N and αj ∈ Rdj for 1 ≤ j ≤ k. There exists Ck > 0 such that for any
0 < ε ≤ 1/2 and N ∈ N we have

(36) |{1 ≤ n ≤ N : ‖njαj‖ < ε for all 1 ≤ j ≤ k}| ≥ (ε/d)Ckd
2

where d = d1 + · · ·+ dk and ‖αj‖ denotes, for all αj ∈ Rdj , the distance from αj to the nearest integer point
in Zdj

.

Proof of Proposition B.1. Let Pi(n) =
∑k

j=1 cijn
j for 1 ≤ i ≤ k. For any given 1 ≤ i ≤ ℓ and 1 ≤ i′ ≤ m

we of course have ‖Pi(n)θi′‖ < ε whenever ‖njcijθi′‖ < ε/k for all 1 ≤ j ≤ k. Thus, if we apply Proposition
B.2 to the vectors α1, . . . αk ∈ Rℓm where αj = (cijθi′)1≤i≤ℓ, 1≤i′≤m for 1 ≤ j ≤ k, then Proposition B.1
follows. �
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We are therefore reduced to the task of proving Proposition B.2. The special case k = 2 and α1 = 0
is precisely Proposition A.2. in [11]. In fact, their argument generalizes to our case in a straightforward
manner and as such we will sketch only the main steps and refer to the proofs in [11].

B.1. The proof of Proposition B.2. Let Λ = Λ1 × · · · × Λk where each Λi ⊆ Rdi is a full rank lattice.
Recall, from [11], that the theta function

(37) ΘΛ(t, x) :=
∑

m∈Λ

e−πt|x−m|2 =
1

tD/2 det(Λ)

∑

ξ∈Λ∗

e−π|ξ|2/t e(ξ · x)

where Λ∗ := {ξ ∈ Rd : ξ ·m ∈ Z for all m ∈ Λ} is the dual lattice of Λ, from which it follows that

(38) FΛ,α(N) := det(Λ)
1

N

N∑

n=1

ΘΛ(1, n ◦ α) =
∑

ξ∈Λ∗

e−π|ξ|2 1

N

N∑

n=1

e(ξ · (n ◦ α))

where α = (α1, . . . , αk) and for each n ∈ N we define n ◦ α := (nα1, n
2α2, . . . , n

kαk). As in [11] we also
define the quantity

(39) AΛ := det(Λ)
∑

m∈Λ

e−π|m|2 =
∑

ξ∈Λ∗

e−π|ξ|2 .

The crucial ingredient in the proof of Proposition B.2 is the following lower bound on FΛ,α(N), whose
proof we outline in Section B.3.

Proposition B.3. Let Λ = Λ1×· · ·×Λk where Λi ⊆ Rdi (di ≥ 0) is a full rank lattice, such that det(Λ) ≥ 1.
Then for all α = (α1, . . . , αk), with αi ∈ Rdi and N ∈ N one has

(40) FΛ,α(N) ≥ (Cd)−Ckd
2

A−Ckd
Λ

where d = d1 + · · ·+ dk ≥ 1.

Note that in the statement we allow the degenerate case di = 0, when Λi = Rdi = {0}.
Assuming Proposition B.3 we can now establish Proposition B.2 as in [11].

Proof of Proposition B.2. For simplicity of notation we set cd := (Cd)−Ckd
2

. Let ε > 0 and Λ := (RZ)d

where R := C Ckd
2ε−2 (with a suitable large constant C). Note that

(41) AΛ = Rd
∑

m∈Zd

e−πR2|m|2 ≤ (10R)d.

If ‖n ◦ α‖ ≥ ε that is |n ◦ α−m| ≥ ε for all m ∈ Zd, then for β = Rα one has that

|n ◦ β −Rm|2 ≥ R2ε2/2 + |n ◦ β −Rm|2/2
for all m ∈ Zd. Thus by (37) and the choice of R it follows that

det(Λ)ΘΛ(1, n ◦ β) ≤ e−πR2ε2/2 det(Λ)ΘΛ(1/2, n ◦ β)
≤ e−πR2ε2/22d/2

∑

ξ∈Λ∗

e−π|ξ|2

≤ cd
2
A−Ckd

Λ .

If one defines the set G := {n ∈ [1, N ] : ‖n ◦ α‖ ≤ ε}, then by (38) and (41) it follows that

1

N

∑

n∈G

det(Λ)ΘΛ(1, n ◦ β) ≥ cd
2

A−Ckd
Λ .

Also
det(Λ)ΘΛ(1, n ◦ β) ≤ AΛ ≤ (Ckd

2ε−2)d

for all n. This implies (36) since

|G|
N

≥ cd
2

A−Cd−1
Λ ≥ (Cd)−Ckd

2

(Ckd
2ε−2)−Ckd

2 ≥ (ε/d)C
′

kd
2

. �
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B.2. Three Lemmas. In order to prove Proposition B.3 we need the the following three lemmas, which
we present without proof. These lemmas correspond to Lemmas A.5, A.6 and A.7 in [11] and are proven in
essentially the same way. We leave this for the interested reader to verify.

Lemma B.4 (Properties of FΛ,α). Let Λ = Λ1 × · · · × Λk, where each Λi ⊆ Rdi is a full rank lattice. Let
α = (α1, . . . , αk), with αi ∈ Rdi and N > 20.

(i) For any c ∈ ( 1
10 , 1), we have FΛ,α(N) ≥ c

2FΛ,α(cN).

(ii) For any integer 1 ≤ q ≤ N
2 , we have FΛ,α(N) ≥ 1

2qFΛ,α(
N
q ).

(iii) Let 0 < ε ≤ 1
d . If β = (β1, . . . , βk) such that |βi − αi| ≤ εN−i for 1 ≤ i ≤ k, then for all 1 ≤ n ≤ N

we have

ΘΛ(1, n ◦ α) ≥ ck Θ(1+ε)Λ(1, n ◦ (1 + ε)β)

and hence

FΛ,α(N) ≥ ck F(1+ε)Λ,(1+ε)β(N).

Lemma B.5 (Schmidt’s alternative). Let Λ = Λ1 × · · · × Λk, where each Λi ⊆ Rdi is a full rank lattice and
let N > (4AΛ)

Ck . One of the following two alternatives holds:

(i) FΛ,α(N) ≥ 1/2;
(ii) There is a positive integer q ≤ d(4AΛ)

Ck , and a primitive ξi ∈ Λ∗
i \{0}, such that

(42) |ξi| ≤ C(
√
d+

√
logAΛ)

and

(43) ‖qξi · αi‖R/Z ≤ (4AΛ)
CkN−i

Recall that ξ ∈ Λ∗
i is primitive if ξ/n /∈ Λ∗

i for any integer n ≥ 2.

Lemma B.6 (Descent). Suppose that Λ′ ⊆ Rd−1 and Λ ⊆ Rd are full rank lattices with Λ′ ⊆ Λ, where Rd−1

is regarded as a subset of Rd. Suppose that α′ ∈ Rd−1, that α ∈ Rd and that α− α′ ∈ Λ. Then

(44) FΛ,α(N) ≥ det(Λ)

det(Λ′)
FΛ′,α′(N)

The only substantial difference from [11] in this section is in the proof of Lemma B.5, where we need
estimates for the exponential sums, defined for θ = (θ1, . . . , θk) ∈ Rk by

(45) SN (θ) =
1

N

N∑

n=1

e(nθ1 + · · ·+ nkθk).

The following is precisely what is required.

Lemma B.7 (Weyl Inequality). Let 0 < δ ≤ 1/2. There exist a positive constant Ck > 0, such that if
N ≥ δ−Ck and

(46) |SN (θ)| ≥ δ

then there exists a positive integer q ≤ δ−Ck such that

(47) ‖qθi‖ < δ−CkN−i

for all 1 ≤ i ≤ k.

This formulation follows easily form standard estimates on Weyl sums, see for example [20], Lemma 5. In
fact using the sophisticated estimates of Vinogradov, one may take Ck = C k2 log k, however for simplicity
we do not develop such bounds here.
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B.3. The proof of Proposition B.3. As in [11], the proof of Proposition B.3 will follow, via an iteration,
from the following result.

Proposition B.8 (Inductive lower bound on FΛ,α). Suppose α = (α1, . . . , αk), Λ = Λ1 × · · · ×Λk such that
αi ∈ Rdi and Λi ∈ Rdi is a full rank lattice. Let N > (4AΛ)

Ck be an integer. Then either FΛ,α(N) ≥ 1/2 or
there is an α′ ∈ Rd−1 and a full rank lattice Λ′ = Λ′

1 × · · · × Λ′
k ⊆ Rd−1 with

(48) AΛ′ ≤ C(
√
d+

√
logAΛ)AΛ

and an N ′ ≥ d−C(4AΛ)
−CkN such that

(49) FΛ,α(N) ≥ d−C(4AΛ)
−CkFΛ′,α′(N ′)

Proof of Proposition B.8. Assuming FΛ,α(N) < 1/2 and applying Lemma B.5, there exists an 1 ≤ i ≤ k, a
primitive ξi ∈ Λ∗

i \{0} and a positive integer q ≤ (4AΛ)
Ck , such that

‖ξi · qiαi‖ ≤ (4AΛ)
CkN−i

(by changing the value of the constant Ck). Fixing the lattice Λi, and arguing as in Proposition A.8 of [11],
it follows that there is a βi ∈ Rdi such that

(50) |βi − qiαi| ≤ (4AΛ)
CkN−i

and an mi ∈ Λi such that β′
i = βi −mi ∈ (Rξi)⊥ ≃ Rdi−1. Let N∗ = cd−C(4AΛ)

−CkN , then by the choice
of N∗, we have

(51) |βi − qiαi| ≤ d−1N−i
∗

and moreover by Lemma B.4 (i) and (ii) it follows that

FΛ,α(N) ≥ d−C(4AΛ)
−CkFΛ,α(N∗) ≥ d−C(4AΛ)

−CkFΛ,q◦α(N∗/q)

If β = (β1, . . . , βk) with βi satisfying (50), and βj := qjαj for each j 6= i, then by Lemma B.4 (iii) with
ε = 1/d we have

(52) FΛ,α(N) ≥ d−C(4AΛ)
−CkFΛ,q◦α(N∗/q) ≥ d−C(4AΛ)

−CkF(1+ε)Λ,(1+ε)β(N
′)

where N ′ = N∗/q. Note that by the choice of N and the upper bound on q, N ′ satisfies the claimed
lower bound. Finally let α′ = (1 + ε)β′, where β′

j = βj for j 6= i, and let Λ′ = Λ′
1 × · · · × Λ′

k such

that Λ′
i = (1 + ε)Λi ∩ (Rξi)⊥ and Λ′

j := (1 + ε)Λj for j 6= i. From Lemma B.6 using the facts that

det(Λ) =
∏

i det(Λi) and (1 + 1/d)d ≤ e, one obtains

FΛ,α(N) ≥ d−C(4AΛ)
Ck

det(Λi)

det(Λi ∩ (Rξi)⊥)
FΛ′,α′(N ′).

The rest of the argument goes exactly as in [11], one estimates

det(Λi)

det(Λi ∩ (Rξi)⊥)
=

AΛi

AΛi∩(Rξi)⊥)

≤ |ξi|−1 ≤ C(
√
d+

√
logAΛi

).

Since AΛ =
∏

iAΛi
and in particular AΛi

≤ AΛ, the claimed bounds (48) and (49) follow. �

Note that if di = 1 the (Rξi)⊥ = {0}, thus Λ′
i = {0}, d′i = 0 and ΘΛ′

i
(t, x) ≡ 1. We allow this to avoid

the need to discuss separate cases. Iterating this proposition leads to the claimed lower bound on FΛ,α(N)
in Proposition B.3, in a straightforward manner, as in the proof of Proposition A.9 in [11].

Proof of Proposition B.3. By the trivial lower bound

FΛ,α(N) ≥ det(Λ)/N ≥ 1/N

one may assume N > dCd2

(4AΛ)
Ckd for some suitably large constants C and Ck. Set Λ0 = Λ, α0 = α,

N0 = N . Applying Proposition B.8 repeatedly one obtains vectors α(j) ∈ Rd−j , lattices Λ(j) ⊆ Rd−j and
integers N (j). Thus there must exist a j ≤ d such that Fj := FΛ(j) ,α(j)(N (j)) ≥ 1/2 (if j = d, then Λ(j) = {0}
hence Fj = 1).

To check the validity of the iteration, since AΛ ≥ 1, one may use the crude bound
√
d+

√
logX ≤ CdA

1/d
Λ
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for X ≥ 1, thus by (48) one has
AΛ(j) ≤ (Cd)dAC

Λ

for all 1 ≤ j ≤ d. This implies

N (j) ≥ d−C(4AΛ(j) )−CkN (j−1) ≥ (Cd)−CkdA−Ck

Λ

thus by the choice of N , we have that N (j) ≥ (4AΛ(j))Ck for all 1 ≤ j ≤ d, and hence by (49)

Fj+1 ≥ d−C(4AΛ(j) )−CkFj ≥ (Cd)−CkdA−Ck

Λ Fj

which gives the desired lower bound for FΛ,α(N). �
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[20] N. Lyall and Á. Magyar, Polynomial configurations in difference sets, J. Num. Theory, v. 129/2, pp. 439-450, 2009.
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