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Abstract

In this paper, we study the joint source-channel coding problem of transmitting a discrete-time analog source over an AWGN
channel with interference known at transmitter. We consider the case when the source and the interference may not be uncorrelated.
We first derive an outer bound on the achievable distortion and then, we propose two joint source-channel coding schemes to make
use of the correlation between the source and the interference. The first scheme is the superposition of the uncoded signal and a
digital part which is the concatenation of a Wyner-Ziv encoder and a dirty paper encoder. In the second scheme, the digital part
is replaced by a hybrid digital and analog scheme so that the proposed scheme can provide graceful degradation in the presence
of SNR mismatch. We then extend this coding scheme to the generalized cognitive radio channels and analyze the achievable
distortion regions for several cases.

Index Terms

Distortion region, joint source-channel coding, cognitive radios.

I. I NTRODUCTION AND PROBLEM STATEMENT

In this paper, we consider transmitting a length-n i.i.d. zero-mean Gaussian sourceV n = (V (1), V (2), . . . , V (n)) over n
uses of an AWGN channel with noiseZn ∼ N (0, N · I) in the presence of Gaussian interferenceSn which is known at
the transmitter as shown in Fig. 1. Throughout the paper, we only focus on the bandwidth-matched case, i.e., the number
of channel uses is equal to the source’s length. The transmitted signalXn = (X(1), X(2), . . . , X(n)) is subject to a power
constraint

1

n

n∑

i=1

E[X(i)2] ≤ P, (1)

whereE[·] represents the expectation operation. The received signalY n is given by

Y n = Xn + Sn + Zn. (2)

We are interested in the expected distortion between the source and the estimatêV n at the output of the decoder given by

d = E[d(V n, g(f(V n, Sn) + Sn + Zn))], (3)

wheref and g are a pair of source-channel coding encoder and decoder, respectively, andd(., .) is the mean squared error
distortion measure given by

d(vn, v̂n) =
1

n

n∑

i=1

(v(i)− v̂(i))2. (4)

Here the lower case letters represent realizations of random variables denoted by upper case letters. As in [1], a distortion D
is achievable under power constraintP if for any ε > 0 and sufficiently largen, there exists a source-channel code such that
d ≤ D + ε.

WhenV andS are uncorrelated, it is known that an optimal quantizer followed by a Costa’s dirty paper coding (DPC) [2]
is optimal and the corresponding joint source-channel coding problem is fully discussed in [3]. However, different from the
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Fig. 1. Joint source-channel coding with interference known at transmitter.
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typical writing on dirty paper problem, in this paper, we consider the case that the source and the interference may not be
uncorrelated to each other. The covariance matrix is described as follows,

ΛV S =

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
(5)

andρ may not be0.
Under this assumption separate source and channel coding using DPC naively may not be a good candidate for encoding

V n in general. It is due to the fact that the DPC tries to completely avoid the interference without signal to noise ratio
(SNR) penalty so that it cannot take advantage of the it correlation between the source and the interference. In this paper,
we first derive an outer bound on the achievable distortion region and then, we propose two joint source-channel coding
schemes which exploit the correlation betweenV n andSn thereby outperforming the naive DPC scheme. The first scheme
is a superposition of the uncoded scheme and a digital part formed by a Wyner-Ziv coding [4] followed by a DPC, which
we refer to as a separation-based scheme. The second scheme is obtained by replacing the digital part by a hybrid digital and
analog (HDA) scheme given in [3] that has been shown to provide graceful degradation under an SNR mismatch. We then
analyze the performance of these two proposed schemes for SNR mismatch cases. It is shown that both the HDA scheme and
the separation-based digital scheme benefit from a higher SNR; however, interestingly, their performances are different.

One interesting application of this problem is to derive theachievable distortion region for the generalized cognitive radio
channels considered in [5] (also in [6]). This channel can bemodeled as a typical two-user interference channel except that one
of them knows exactly what the other plans to transmit. We canregard the informed user’s channel as the setup we consider
in this section and then analyze achievable distortion regions for several different cases.

The rest of the paper is organized as follows. In section II, we present some prior works which are closely related to ours.
The outer bound is given in section III and two proposed schemes are given in section IV. In section V, we analyze the
performance of the proposed schemes under SNR mismatch. These proposed schemes are then extended to the generalized
cognitive radio channels in section VI. Some conclusions are given in VII.

II. RELATED WORKS ONJSCCWITH INTERFERENCEKNOWN AT TRANSMITTER

In [7], Lapidoth et al. consider the2 × 1 multiple access channel in which two transmitters wish to communicate their
sources, which are drawn from a bi-variate Gaussian distribution, to a receiver which is interested in reconstructing both
sources. This setup looks somewhat similar to ours if the receiver is only interested in one part of the sources. However,an
important difference in their setup is that the transmitters are not allowed to cooperate with each other, i.e., for the particular
transmitter, the interference is not known.

In [8], Tian et al. consider transmitting a bi-variate Gaussian source over1× 2 Gaussian Broadcast Channel. In their setup,
the source consisting of two componentsV n

1 and V n
2 memoryless and stationary bi-variate Gaussian distributed and each

receiver is only interested in one part of the sources. They proposed a HDA scheme which performs optimally in terms of
distortion region under all SNRs. At first glance, this problem is again similar to ours if we ignore receiver 2 and focus onthe
other. Then this problem reduces to communicatingV n

1 with correlated side-informationV n
2 given at the transmitter. A crucial

difference is that this side-information does not appear inthe received signal. Therefore, the side-information is completely
useless.

Joint source-channel coding for point to point communications over Gaussian channels has been widely discussed. e.g. [3],
[9], [10]. However, they either don’t consider interference ([9], [10]) or assume independence of source and interference ([3]).
In [3], Wilson et al. proposed a HDA coding scheme for the typical writing on dirtypaper problem in which the source is
independent to the interference. This HDA scheme is originally proposed to perform well in the case of a SNR mismatch. In
[3], the authors showed that their HDA scheme not only achieves the optimal distortion in the absence of SNR mismatch but
also provides gracefully degradation in the presence of SNRmismatch. In the following section, we will discuss this scheme
in detail and then propose a coding scheme based on this one.

From now on, since all the random variables we consider are i.i.d. in time, i.e.V (i) is independent ofV (j) for i 6= j, we
will drop the indexi for the sake of convenience.

III. O UTER BOUNDS

A. Outer Bound 1

For comparison, we first present a genie-aided outer bound. This outer bound is derived in a similar way to the one in [11]
in which we assume thatS is revealed to the decoder by a genie. Thus, we have

1

2
log

σ2
1(1− ρ2)

Dob

(a)

≤ I(V ; V̂ |S)
(b)

≤ I(V ;Y |S)
= h(Y |S)− h(Y |S, V )
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= h(X + Z|S)− h(Z)

(c)

≤ h(X + Z)− h(Z)

(d)

≤ 1

2
log

(
1 +

P

N

)
, (6)

where (a) follows from the rate-distortion theory [1], (b) is from the data processing inequality, (c) is due from that conditioning
reduces differential entropy and (d) comes from the fact that Gaussian density maximizes the differential entropy. Therefore,
we have the outer bound as

Dob,1 =
σ2
1(1− ρ2)

1 + P/N
. (7)

Note that this outer bound is in general not tight for our setup since in the presence of correlation, givingS to the decoder
also offers a correlated version of the source that we wish toestimate. For example, in the case ofρ = 1, giving S to the
decoder implies that the outer bound isDob = 0 no matter what the received signalY is. On the other hand, ifρ = 0, the
setup reduces to the one with uncorrelated interference andwe know that this outer bound is tight. Now, we present another
outer bound that improves this outer bound for some values ofρ.

B. Outer Bound 2

SinceS andV are drawn from a jointly Gaussian distribution with covariance matrix given in (5), we can write

S = ρ
σ2

σ1
V +Nρ, (8)

whereNρ ∼ N
(
0, (1− ρ2)σ2

2

)
and is independent toV . Now, suppose a genie reveals onlyNρ to the decoder, we have

1

2
log

σ2
1

Dob,2
=

1

2
log

var(V |Nρ)

Dob

(a)

≤ I(V ; V̂ |Nρ)

(b)

≤ I(V ;Y |Nρ)

= h(Y |Nρ)− h(Y |Nρ, V )

= h(X + ρ
σ2

σ1
V + Z|Nρ)− h(Z)

(c)

≤ h(X + ρ
σ2

σ1
V + Z)− h(Z)

(d)

≤ 1

2
log



var

(
X + ρσ2

σ1

V
)

N




(e)

≤ 1

2
log

(
1 +

(
√
P + ρ

√
σ2
2)

2

N

)
, (9)

where (a)-(d) follows from the same reasons with those in theprevious outer bound and (e) is due from that the maximum
occurs when we letX to be a scaled version ofV . Thus, we have

Dob,2 =
σ2
1

1 + (
√
P + ρ

√
σ2
2)

2/N
. (10)

Note that although the encoder knows the interferenceS exactly instead of justNρ, the outer bound is valid sinceS is a
function ofV andNρ.

Remark 1: If ρ = 0, this outer bound reduces to the previous one and is tight. Ifρ = 1, the genie actually reveals nothing
to the decoder and the setup reduces to the one considered in [12] that the encoder is interested in revealing the interference
to the decoder. For this case, we know that this outer bound istight. However, this outer bound is in general optimistic except
for two extremes. It is due to the fact that in derivations, weassume that we can simultaneously ignore theNρ and use all
the power to take advantage of the coherent part. Despite this, the outer bound still provides an insight into building a good
coding scheme that one should try to use a portion of power to make use of the correlation and then use the remaining power
to avoidNρ.

Further, it is natural to come up with an outer bound which is the maximum of the above two as

Dob = max{Dob,1, Dob,2}. (11)
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IV. PROPOSEDSCHEMES

A. Uncoded Scheme

We first analyze the distortion of the uncoded scheme where the transmitted signal is simply the scaled version of the source

X =

√
P

σ2
1

V. (12)

Thus, (2) becomes

Y =

√
P

σ2
1

V + S + Z. (13)

The receiver forms the linear MMSE estimate ofV from Y as V̂ = βY , where

β =
σ2
1(
√
P/σ2

1 + ρσ2/σ1)

P + σ2
2 +N + 2

√
P/σ2

1ρσ1σ2

. (14)

The corresponding distortion is then given as

Dunc = σ2
1

(
1− β(

√
P

σ2
1

+ ρ
σ2

σ1
)

)
. (15)

Remark 2: If ρ = 1 and σ2
1 = σ2

2 , the source and the interference are exactly the same and theproblem reduces to
transmittingV over an AWGN channelZ with power constraint(

√
P +

√
σ2
1)

2. From [13] [14], we know that the uncoded
scheme is optimal for this case. One can also think of this scenario as that the transmitter is only interested in revealing the
channel stateS to the receiver. In [12], the authors have shown that the pureamplification (uncoded) scheme is optimal for
this problem. Therefore, we can expect that the uncoded scheme will eventually achieve the optimal distortion whenρ = 1.

B. Naive DPC Scheme

Another existing scheme is the concatenation of a optimal source code and a DPC. The optimal source code quantizes the
analog source with a rate arbitrarily close to the channel capacity 1/2 log(1 + P/N). Then, the DPC ignores the correlation
between the source and interference (this can be done by a randomization and de-randomization pair) and encodes the
quantization output accordingly. Since the DPC achieves the rate equal to that when there is no interference at all, the receiver
can correctly decode these digital bits with high probability. By the rate-distortion theory, we have the corresponding distortion
as

DDPC =
σ2
1

1 + P/N
. (16)

Remark 3: In the absence of correlation, i.e.,ρ = 0, the problem reduces to the typical writing on dirty paper setup and it
is known that this scheme is optimal but the uncoded scheme isstrictly suboptimal. Therefore, we can expect that when the
correlation is small, this naive DPC scheme will outperformthe uncoded scheme.

C. Separation-Based Scheme

We now propose a separation-based scheme which retains the advantages of the above two schemes. This scheme can be
regarded as an extended version of the coding scheme in [10] to the setup we consider. As shown in Fig. 2, the transmitted
signal of this scheme is the superposition of the analog partXa with powerPa and the digital partXd with powerP − Pa.
The motivation here is to allocate larger power for the analog part to make use of the interference which is somewhat coherent
to the source for largeρ’s and to assign more power to the digital part to avoid the interference whenρ is small. The analog
part is the scaled version of linear combination of source and interference as

Xa =
√
a (γV + (1 − γ)S) , (17)

wherePa ∈ [0, P ], a = Pa/σ
2
a, γ ∈ [0, 1] and

σ2
a = γ2σ2

1 + (1− γ)2σ2
2 + 2γ(1− γ)ρσ1σ2. (18)

The received signal is given by

Y = Xd +Xa + S + Z

= Xd +
√
a (γV + (1 − γ)S) + S + Z

= Xd +
√
aγV +

(
1 +

√
a(1 − γ)

)
S + Z

= Xd + S′ + Z, (19)
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Fig. 2. Separation-based scheme.

whereXd is chosen to be orthogonal toS andV . The receiver first makes an estimate fromY only asV ′ = βY with

β =

√
a(γσ2

1 + (1− γ)ρσ1σ2) + ρσ1σ2

P +N + σ2
2 + 2

√
a ((1− γ)σ2

2 + γρσ1σ2)
. (20)

The corresponding MSE is

D∗ = σ2
1

[
1− β

(√
a(γ + (1− γ)ρ

σ2

σ1
) + ρ

σ2

σ1

)]
. (21)

Thus, we can writeV = V ′ +W with W ∼ N (0, D∗).
We now refine the estimate through the digital part, which is the concatenation of a Wyner-Ziv coding and a DPC. Since

the DPC achieves the rate equal to that when there is no interference at all, the encoder can use the remaining powerP −Pa

to reliably transmit the refining bitsT with a rate arbitrarily close to

R =
1

2
log

(
1 +

P − Pa

N

)
. (22)

The resulting distortion after refinement is then given as

Dsep = inf
γ, Pa

D∗

1 + P−Pa

N

. (23)

In Appendix A, for self-containedness, we briefly summarizethe digital Wyner-Ziv scheme to illustrate how to achieve the
above distortion.

It is worth noting that settingγ = 1 gives us the lowest distortion always. i.e., super-imposing S onto the transmitted signal
is completely unnecessary. However, it is in general not true for the cognitive radio setup. We will discuss this in detail in
section VI.

Remark 4: Different from the setup considered by [10] that the optimaldistortion can be achieved by any power allocation
between coded and uncoded transmissions, in our setup the optimal distortion is in general achieved by a particular power
allocation which is a function ofρ. For example, in the absence of correlation, i.e.,S is completely independent toV , one
can simply setPa = 0 and this scheme reduces to the naive DPC which is optimal in this case. On the other hand, ifρ = 1,
the optimal distortion is achieved by settingPa = P . Moreover, forρ > 0, it is beneficial to have a non-zeroPa making use
of the correlation between the source and the interference.

Remark 5: Although this scheme contains the pure analog signals in part, we refer to this scheme as separation-based scheme
in order to distinguish it from the HDA scheme introduced in the following. However, one should realize that this scheme is
different from the typical separation-based scheme.

D. HDA Scheme

Now, let us focus on the HDA scheme shown in Fig. 3 in which we replace the digital part by the HDA scheme given in
[3]. The analog signal remains the same as (17) and the HDA output is referred to asXh. Therefore, we have

Y = Xh +
√
aγV +

(
1 +

√
a(1 − γ)

)
S + Z

= Xh + S′ + Z. (24)

Again, the HDA scheme regardsS′ as interference andV ′ described previously as side-information. The encoding and decoding
procedures are listed below and the coefficients are re-derived to fit our setup (the reader is referred to [3] for details).

Let the auxiliary random variableU be
U = Xh + αS′ + κV, (25)
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Fig. 3. HDA scheme.

whereXh ∼ N (0, P ) independent toS′ andV and the covariance matrix ofS′ andV can be computed by (5).
Codebook Generation: Generate a random i.i.d. codebookU with 2nR1 codewords, reveal this codebook to both transmitter

and receiver.
Encoding: Given anS′ andV , find aU which is jointly typical with (S′, V ). If such anU can be found, transmitXh =

U − αS′ − κV . Otherwise, an encoding failure is declared.
Decoding: The decoder looks for aU which is jointly typical with the received signalY and V ′. A decoding failure is

declared if none or more than one suchU are found.
Estimation: After decodingU , the receiver forms a linear MMSE estimate ofV from Y and U . The distortion is then

obtained as
Dhda = inf

γ, Pa

[
σ2
1 − ΓTΛ−1

UY Γ
]
, (26)

whereΛUY is the covariance matrix ofU andY , and

Γ = [E[V U ],E[V Y ]]
T
. (27)

In the encoding step, to make sure the probability of encoding failure vanishes with increasingn, we require

R1 > I(U ;S′, V )

= h(U)− h(U |S′, V )

= h(U)− h(Xh + αS′ + κV |S′, V )

(a)
= h(U)− h(Xh)

=
1

2
log

E[U2]

Ph

. (28)

where (a) follows becauseXh is independent ofS′ andV .
Further, to guarantee the decodability ofU in the decoding step, one requires

R1 < I(U ;Y, V ′)

= h(U)− h(U |Y, V ′)

= h(U)− h(U − αY − κV ′|Y, V ′)

(a)
= h(U)− h(κW + (1− α)Xh − αZ|Y ), (29)

where (a) follows fromV ′ = βY . By choosing

α =
Ph

Ph +N
(30)

and

κ2 =
P 2
h

(Ph +N)D∗
, (31)

one can verify that (28) and (29) are satisfied. Note that in (28) what we really need isR1 ≥ I(U ;S′, V ) + ε and in (29) it
is R1 ≤ I(U ;Y, V ′)− δ. However, sinceε andδ can be made arbitrarily small, these are omitted for the sakeof convenience
and to maintain clarity.

Remark 6: It can be verified that the distortions in (23) and (26) are exactly the same. However, it has been shown in [3]
that the HDA scheme can provide graceful degradation in the SNR mismatch case.
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E. Numerical Results

Here, we compare the outer bounds and achievable distortions of schemes previously discussed. In Fig. 4, we compare the
distortions (in−10 log10(D)) for different SNRs. In this figure, we setσ2

1 = σ2
2 = 1 and the correlation isρ = 0.3. As we

expected, two proposed schemes have exactly the same performance. Moreover, for this case, these two schemes not only
outperform others but also approach the outer bound (maximum of two) very well.

We then compare the distortions for a fixed SNR but differentρ in Fig. 5. The parameters are set to beσ2
1 = σ2

2 = 1 and
P/N = 1. It can be seen that the proposed schemes outperform the naive DPC scheme and the uncoded scheme and performs
close to the outer bound over a wide range ofρ’s. The outer bound and the inner bound do not coincide however, leaving
room for improvement either of the outer bound or the schemes. As we discussed inRemark 2 and Remark 3, the naive
DPC scheme performs optimally whenρ = 0 and performs better than the uncoded scheme at smallρ regime. However, the
uncoded scheme outperforms the naive DPC scheme at largeρ regime and eventually achieves optimum whenρ = 1. Further,
the separation-based scheme and the HDA scheme achieve optimal distortion at bothρ = 0 andρ = 1 and clearly outperform
others forρ ∈ (0, 1).

V. PERFORMANCEANALYSIS IN THE PRESENCE OFSNR MISMATCH

In this section, we study the distortions for the proposed schemes in the presence of SNR mismatch i.e., we consider
the scenario where instead of knowing the exact channel SNR,the transmitter only knows a lower bound of channel SNR.
Specifically, we assume that the actual channel noise to beZa ∼ N (0, Na) but the transmitter only knows thatNa ≤ N
so that it designs the coefficients for thisN . Different from typical separation-based schemes, the proposed separation-based
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scheme may be able to take advantage of SNR mismatch althoughit quantizes the source explicitly. It is due to the fact
that the proposed separation-based scheme contains the pure source in part. Furthermore, for the HDA scheme, the ability of
combating SNR mismatch has been discussed in [3]. Therefore, we expect that both two schemes will benefit from a better
SNR they experience.

A. Separation-Based Scheme

Since the transmitter designs its coefficients forN , it aims to achieve the distortionDsep given in (23). It first quantizes
the source toT by a Wyner-Ziv coding with side-informationD∗ given in (21) and then encodes the quantization output by
a DPC with a rate

R =
1

2
log

(
1 +

P − P̃a

N

)
, (32)

whereP̃a is the power allotted toXa such that the distortion in the absence of SNR mismatch is minimized. i.e.,

P̃a = arg inf
Pa

D∗

1 + P−Pa

N

. (33)

At receiver, sinceNa ≤ N , the DPC decoder can correctly decodeT with high probability. Moreover, the receiver forms
the MMSE ofV from Y asV ′

a = βaY with

βa =

√
a(γσ2

1 + (1− γ)ρσ1σ2) + ρσ1σ2

P +Na + σ2
2 + 2

√
a ((1 − γ)σ2

2 + γρσ1σ2)
, (34)

D∗
a = σ2

1

[
1− βa

(√
a(γ + (1 − γ)ρ

σ2

σ1
) + ρ

σ2

σ1

)]
. (35)

Thus, the problem reduces to the Wyner-Ziv problem with mismatch side-information. In Appendix B, we show that for this
problem, one can achieve

Dsep,mis =
D∗D∗

a

D∗D∗
a + (D∗ −D∗

a)Dsep

Dsep. (36)

Different from typical separation-based schemes that we have seen in [3], the proposed separation-based scheme can still
take advantage of better channels through mismatched side-information. i.e., this scheme does not suffer from the pronounced
”threshold effect”.

B. HDA Scheme

Although it is shown in Appendix B that the performance of theHDA scheme is exactly the same with the digital Wyner-Ziv
scheme under side-information mismatch, this problem withHDA scheme cannot be reduced to the Wyner-Ziv problem with
mismatch side-information as we did for the separation-based scheme. It is due from that the HDA scheme still makes an
estimate ofV from U which is a function ofS. Fortunately, as shown in [3], the HDA scheme is capable of making use of
SNR mismatch.

Similar to the separation-based scheme, we design the coefficients for channel parameterN . The HDA scheme regards
D∗ as side-information andS′ as interference. It generates the auxiliary random variable U given by (25) with coefficients
described by (30) and (31). SinceNa ≤ N , the receiver can correctly decodeU with high probability. The receiver then forms
the MMSE as described in (26) and (27). Note thatE[Y 2] in ΛUY should be modified appropriately to address the fact that
the actual noise variance isNa in this case.

Remark 7: In [12], the optimal tradeoff between the achievable rate and the error in estimating the interference at the
designed SNR is studied. In [3], the authors also studied a somewhat similar problem. They compare the distortions of the
digital scheme and the HDA scheme in estimating the sourceV and the interferenceS as we move away from the designed
SNR. One important observation is that the HDA scheme outperforms the digital scheme in estimating the source; however,
the digital scheme is better than the HDA scheme if one is interested in estimating the interference. Here, since theeffective
interferenceS′ includes the uncoded signal

√
aV in part and the source is assumed to be correlated to the interference,

estimating the sourceV is equivalent to estimating a part ofS′. Thus, one can expect that if thePa we choose and the
correlationρ are large enough, the benefit coming from using the HDA schemeto estimate the source may be less than
that from adopting the separation-based scheme to estimatea part ofS′. Consequently, for a sufficiently largePa andρ, the
separation-based scheme may be better than the HDA scheme inthe presence of SNR mismatch.
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C. Numerical Results

Now, we compare the performance of the above two schemes and the scheme that knows the actual SNR. The parameters
are set to beσ2

1 = σ2
2 = 1. We plot the−10 log10(D) as we move away from the designed SNR for both small (ρ = 0.1) and

large (ρ = 0.5) correlations. Two examples for designed SNR = 0 dB and 10 dB are given in Fig. 6 and Fig. 7, respectively.
In Fig. 6, we consider the case that the designed SNR is 0 dB which is relatively small compared to the variance of

interference. For this case, we can see that which scheme performs better in the presence of SNR mismatch really depends
on ρ. It can be explained by the observations made inRemark 7 and the power allocation strategy. For this case the optimal
power allocationP̃a is proportional toρ. For ρ = 0.1 case, since the correlation is small and the assignedP̃a is also small,
the HDA scheme is better than the separation-based scheme. On the other hand, forρ = 0.5 case, we allot a relatively large
power toP̃a so that one may get a better estimate if we try to use the separation-based scheme to estimate a part ofS′. This
property is further discussed in the Appendix C.

In Fig. 7, we design the coefficients for SNR= 10 dB which can be regarded as relatively large SNR compared to the
variance of interference. For this case, the optimal power allocation P̃a for both ρ = 0.1 and ρ = 0.5 are relatively small.
Therefore, the performance improvement provided by the HDAscheme is larger than that provided by the separation-based
scheme for both cases.

VI. JSCCFOR GENERALIZED COGNITIVE RADIO CHANNELS

There has been a lot of interest in cognitive radio since it has been proposed in [15] for flexible communication devices
and higher spectral efficiency. In a conventional cognitiveradio setup, the lower priority user (usually referred to assecondary
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Fig. 8. Setup of cognitive radio channels.

user) listens to the wireless channel and transmits the signal only through the spectrum not used by the higher priority user
(referred to as primary user).

In [5], Devroye et al. define the generalized cognitive radio channels in which simultaneous transmission over the same
time or frequency is allowed. This channel can be modeled as atypical two-user interference channel except that one of users
knows exactly what the other plans to transmit.The authors then provide inner and outer bounds on how much rate two users
can transmit simultaneously for such generalized cognitive radio channel. Their achievable scheme is based on the DPC and
the Han-Kobayashi scheme [16].

In this section, we consider the same generalized cognitiveradio channels as in [5] and focus on the case when both two
users have analog information. We are interested in the distortion region which describes how much distortion two users
can achieve simultaneously. In particular, we consider thecase that two sources may not be uncorrelated to each other. As
we mentioned before, we first look at the distortion of the secondary user only and regard it as the setup in section II. An
achievable distortion region is obtained by forcing the primary user to use the uncoded scheme and using the HDA given in
section IV for the secondary user. It can be shown that when the correlation is large, adopting the proposed scheme at the
secondary user not only takes advantage of this correlationbut also benefits the primary user. On the other hand, whenρ is
small, the proposed scheme helps the secondary user to avoidthe interference introduced by the primary user.

As shown in Fig. 8, in a generalized cognitive radio channel,two users wish to transmit their own sourcesV1 andV2 to the
corresponding receiver through an interference channel with direct channel gain1 and cross channelsh1 andh2 representing
the real-valued channel gains from user1 to user2 and vice versa, respectively. The power constraints imposed on the outputs
of user 1 and 2 areP1 andP2, respectively. Different from interference channels, in cognitive radio channels, we assume that
the secondary user knowsV1 non-causally. Here, we also assume that the channel coefficient h1 is known by the secondary
user. The received signals are (

Y1

Y2

)
=

(
1 h1

h2 1

)(
X1

X2

)
+

(
Z1

Z2

)
. (37)

Further, we consider the case that two sources may have correlation with each other. The covariance matrix is then given as

ΛV1V2
=

(
σ2
V1

ρσV1
σV2

ρσV1
σV2

σ2
V2

)
. (38)

We now apply the proposed HDA scheme to this scenario. Let theprimary user simply transmit the scaled version of the
uncoded source

X1 =

√
P1

σ2
V1

V1. (39)

Therefore, the bottom channel in Fig. 8 reduces to the situation we considered in the previous section with sourceV = V2

and interferenceS = h1X1. The covariance matrix becomes (5) with

σ2
1 = σ2

V2
, (40)

σ2
2 = h2

1P1. (41)

The secondary user then encodes its source toX2 by the HDA scheme described previously in section IV-D with powerP2

and coefficients according to (30) and (31). With these coefficients, the corresponding distortionD2 is computed by (26) and
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(27). At the receiver 1, the received signal is

Y1 = X1 + h2X2 + Z1

=
(
1 + (1− γ)

√
ah1h2

)
X1 + h2Xh + h2

√
aγV2 + Z1. (42)

The decoder 1 then forms a linear MMSE estimate fromY1 given by V̂1 = βY1, where

β =
E[V1Y1]

E[Y 2
1 ]

(43)

with

E[V1Y1] =
(
1 + (1 − γ)

√
ah1h2

)√
P1σ2

V1
+ h2

√
aγρσV1

σV2
(44)

E[Y 2
1 ] =

(
1 + (1 − γ)

√
ah1h2

)2
P1 + ah2

2γ
2σ2

V2
+

h2
2Ph + 2

√
ah2γρ

√
P1σ2

V2

(
1 + (1 − γ)

√
ah1h2

)
. (45)

Therefore, the corresponding distortion is
D1 = σ2

V1
− βE[V1Y1] (46)

It can be shown that assigningγ = 1 leads to a suboptimalD1 in general. Thus, as we mentioned before, one may want to
assign non-zero power to transmitS in order to achieve a larger distortion region.

We can then optimize the power allocation for particular performance criteria. For instance, if one desires achieving the
minimum distortion for the secondary user,γ should be set to be1. However, if the target is to obtain the largest achievable
distortion region under a total power constraintP , one should optimize overP1 ∈ [0, P ], Pa ∈ [0, 1− P1], andγ ∈ [0, 1]. We
briefly discuss these examples below.

1. Greedy Case: We first consider the greedy case where the secondary user focus on reducing its own distortion. As we
mentioned before, the proposed scheme should always setγ = 1 for this case. For comparison, an outer bound on distortion
region for this case is given as follows. We assume there is a genie that revealsV1 to the decoder 2 andV2 to both the encoder
1 and the decoder 1. Similar to the derivation in section III,one obtains

D1ob =
σ2
V1
(1 − ρ2)

1 + P1/N
. (47)

D2ob =
σ2
V2
(1 − ρ2)

1 + P2/N
. (48)

From now on, we only present the outer bound 1 since in the numerical results we consider in the following, this outer bound
is tighter than the outer bound 2. However, one can also derive the outer bound 2 for these cases and take the maximum of
two by a similar way given in section III.

Numerical examples are given in Fig. 9 and 10, in which we setσ2
V1

= σ2
V2

= N1 = N2 = 1, h1 = h2 = 0.5, and the total
powerP = 2. The correlation between sources areρ = 0 and ρ = 0.3, respectively. In both examples, we do not perform
optimization overPh andPa with respect to particular criteria. Instead, we plot many choices ofPh andPa which satisfy
P2 = Ph + Pa.

In Fig. 9, we observe that the proposed scheme achieves the outer bound at two corners in the absence of correlation. The
left corner point can be achieved by assigningP2 = P and the right corner point can be achieved by settingP1 = P . For other
points except for two corner points, since the genie-aided outer bound may not be tight for the primary user (genie needs to
reveal theV2 to both the encoder and the decoder of the primary user), the outer bound is in general not tight. Despite this,
the inner bound is close to the outer bound. In Fig. 10, we givean example whereρ = 0.3. One can observe that compared
to the result in Fig. 9, the correlation helps both users in terms of distortion. And again, although the outer bound is nottight,
the gap is reasonably small.

2. Non-Greedy Case: We now consider the case that the secondary user is willing to help the primary user. i.e., theγ ∈ [0, 1].
For this case, the outer bounds must be modified to address thefact that the secondary user uses a part of its power to transmit
V1. For the primary user, suppose there is a genie that revealsV2 and the HDA encoder to both encoder 1 and decoder 1, i.e.,
Xh is also known at both sides. We have

n

2
log

σ2
V1
(1− ρ2)

D1ob
≤ I(V1; V̂1|V2) ≤ I(V1;Y1|V2)

= h (X1 + h1X2 + Z1|V2, Xh)− h(Z1)

≤ h
((
1 + (1− γ)

√
ah1h2

)
X1 + Z1)

)
− h(Z1)

=
n

2
log(1 + snr1), (49)
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Fig. 9. Greedy case,ρ = 0.

0.4 0.5 0.6 0.7 0.8 0.9 1

0.4

0.5

0.6

0.7

0.8

0.9

1

D
2

D
1

P = 2, N
1
 = N

2
 = 1, ρ = 0.3

outer bound

Fig. 10. Greedy case,ρ = 0.3.

where

snr1 =
P1 (1 + (1 − γ)

√
ah1h2)

2

N1
. (50)

Similarly, we assume a genie gives awayV1 to decoder 2 so that we have

n

2
log

σ2
V2
(1− ρ2)

D2ob
≤ I(V2; V̂2|V1) ≤ I(V2;Y2|V1)

= h (X2 + h2X1 + Z2|V1)− h(Z2)

≤ h
(
Xh + γ

√
aV2 + Z2)

)
− h(Z2)

=
n

2
log(1 + snr2), (51)

where

snr2 =
Ph + aγ2σ2

V2

N2
. (52)

Thus, for each choice ofP1, Pa, andγ we have the outer bound as

D̃1ob =
σ2
V1
(1− ρ2)

1 + snr1
(53)

D̃2ob =
σ2
V2
(1 − ρ2)

1 + snr2
. (54)
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Fig. 11. Non-Greedy case,ρ = 0.
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Fig. 12. Non-Greedy case,ρ = 0.3.

The outer bound of this case is obtained by taking the lower convex envelope over all
(
D̃1ob, D̃2ob

)
.

The numerical results forρ = 0 andρ = 0.3 are given in Fig. 11 and Fig. 12, respectively. In both figures, all the parameters
are set to be the same as those in the previous two examples. Weobserve that if the secondary user is willing to help the
primary user, the achievable distortion region is larger than that of greedy case.

3. Coexistence Conditions: In [6], the coexistence conditions are introduced to understand the system-wise benefits of
cognitive radio. The authors study the largest rate that thecognitive radio can achieve under these coexistence constraint
described as follows,

1. the presence of cognitive radio should not create rate degradation for the primary user, and
2. the primary user does not need to use a more sophisticated decoder than it would use in the absence of the cognitive

radio. i.e, a single-user decoder is enough.
Similar to this idea, we study the distortion of the secondary user under the modified coexistence constraint as
1. the presence of cognitive radio should not increase distortion for the primary user, and
2. the primary user uses a single-user decoder.
Let the power constraints beP1 andP2 for the primary and secondary user, respectively, andP1 + P2 = P . In the absence

of the cognitive radio, the distortion of the primary user is

D∗
1 =

σ2
V1

1 + P1/N1
. (55)
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The outer bound on the secondary user under the coexistence conditions is given as

Dcoexist,ob = inf
Pa, γ, D̃1ob≤D∗

1

D̃2ob, (56)

whereD̃1ob and D̃2ob are given by (53) and (54), respectively. An example is shownin Fig. 13. All the parameters in this
figure are the same with those in Fig. 9-12.

VII. C ONCLUSIONS

In this paper, we have discussed the joint source-channel coding problem with interference known at transmitter. In particular,
we considered the case that the source and the interference may have correlation with each other. According to the observations
on the uncoded scheme and the naive DPC scheme, we proposed a separation-based scheme and a HDA scheme which can adapt
with ρ. The performance of these two schemes under SNR mismatch arealso discussed. Different from typical separation-based
schemes suffering from the pronounced threshold effect in the presence of SNR mismatch, both the proposed schemes can
benefit from a better side-information acquired at the decoder and thus, provide a graceful degradation under SNR mismatch.
However, there is a difference between the performance of the two proposed schemes under a SNR mismatch and which
scheme is better depends on the designed SNR andρ.

These two schemes are then applied to cognitive radio channels and achievable distortion regions are discussed for different
cases. To the best of our knowledge, this is the first joint source-channel coding scheme for cognitive radio channels. Wehave
also provided outer bounds on these distortion regions. Despite the fact that the outer bounds are not tight in general, the
numerical results have shown that the gap between the inner bound and the outer bound is reasonably small.

APPENDIX A
DIGITAL WYNER-ZIV SCHEME

In this appendix, we summarize the digital Wyner-Ziv schemefor lossy source coding with side-informationV ′ (V = V ′+W
with W ∼ N (0, D∗)) at receiver. Suppose this side-information is available at both sides, the least required rateRWZ for
achieving a desired distortionD is [4]

RWZ =
1

2
log

D∗

D
. (57)

Let us set this rate to be arbitrarily close to the rate given in (22), the rate that the channel can support with arbitrarily small
error probability. The best possible distortion one can achieve for this setup is then given as

D =
D∗

1 + P−Pa

N

. (58)

This distortion can be achieved as follows,
1. Let T be the auxiliary random variable given by

T = αsepV +B, (59)
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where

αsep =

√
D∗ −D

D∗
(60)

andB ∼ N (0, D).
2. The decoder first decodes toT (the decodability is guaranteed by the rate we chose) and then forms the MMSE fromT

andV ′ as V̂ = V ′ + Ŵ with

Ŵ =
αsepD

∗

α2
sepD

∗ +D
(T − αsepV

′). (61)

The corresponding distortion is given as

E[(V − V̂ )2] = E[(W − Ŵ )2]

= D∗

(
1−

α2
sepD

∗

α2
sepD

∗ +D

)
= D. (62)

APPENDIX B
WYNER-ZIV WITH M ISMATCHED SIDE-INFORMATION

In this appendix, we calculate the expected distortion of the digital Wyner-Ziv scheme in the presence of side-information
mismatch. Specifically, we consider the Wyner-Ziv problem with an i.i.d. Gaussian source and the MSE distortion measure.
Let us assume that the best achievable distortion in the absence of side-information mismatch to beD. The encoder believes
that the side-information isV ′, andV = V ′ + W with W ∼ N(0, D∗). However, the side-information turns out to beV ′

a

and has the relationV = V ′
a +Wa with Wa ∼ N(0, D∗

a). Under the same rate, we want to calculate the actual distortion Da

suffered by the decoder .
Since the encoder has been fixed to deal with the side-information, V ′, at decoder, the auxiliary random variable is as in

(59) with the coefficient given in (60).
Since the decoder knows the actual side-information,V ′

a, perfectly, it only has to estimateWa. By the orthogonality principle,
the MMSE estimatêWa can be obtained as

Ŵa =
αsepD

∗
a

α2
sepD

∗
a +D

(T − αsepV
′
a) (63)

Therefore, the estimate of the source isV̂ = V ′
a + Ŵa. The corresponding distortion is given as

Da = E[(V − V̂ )2] = E[(Wa − Ŵa)
2]

=
D∗D∗

a

D∗D∗
a + (D∗ −D∗

a)D
D (64)

Here, we give an example in Fig. 14 to see the performance improvement through having the access of a better side-
information. In this figure, we plot the−10 log10 Da as−10 log10 D

∗
a increases, i.e., as the actual side-information improves.

The outer bound is obtained by assuming the transmitter always knows the distribution of actual side-information at decoder
and the distortion of the HDA scheme is computed through derivations in [3] with a fixed coefficient

κ2 =
P 2

(P +N)D∗
(65)

at transmitter. The parameters are set to beP = N = 1 andD∗ = 0.1. Therefore, without mismatch, the best achievable
distortion is given as

D =
D∗

1 + P/N
= 0.05 ≈ −13dB. (66)

We can observe that both the digital Wyner-Ziv scheme and theHDA scheme benefit from a better side-information at decoder.
Moreover, it can be seen that these two schemes provide the same performance under side-information mismatch.

APPENDIX C
DISCUSSIONS FORSNR MISMATCH CASES

As discussed previously, both the separation-based schemeand the HDA scheme benefit from a better SNR. Here, we wish
to analyze and compare the performance for these two schemesunder SNR mismatch. Since the separation-based scheme
makes estimate fromT (see Appendix A) andV ′ (which is a function ofY ) and the HDA scheme makes estimate fromU
andY , it suffices to compareI(V ;T, Y ) with I(V ;U, Y ). By the chain rule of mutual information, we have

I(V ;T, Y ) = I(V ;Y ) + I(V ;T |Y ), (67)
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and
I(V ;U, Y ) = I(V ;Y ) + I(V ;U |Y ). (68)

Thus, we only have to compareI(V ;T |Y ) to I(V ;U |Y ). Let us considerρ = 0 case for example,

I(V ;T |Y ) = h(T |Y )− h(T |V, Y )

= h(αsepV +B|Y )− h(αsepV +B|V, Y )

= h(αsepV − αsepβaY +B|Y )− h(αsepB|V, Y )

= h(αsepWa +B|Y )− h(B)

(a)
= h(αsepWa +B)− h(B)

=
1

2
log

α2
sepD

∗
a +D

D
, (69)

whereαsep andWa are defined in Appendix B and (a) follows from the orthogonality principle.

I(V ;U |Y ) = h(U |Y )− h(U |V, Y )

= h(U |Y )− h(Xh + αS′ + κV |V, Y )

= h(U |Y )− h(Xh + αS + (κ+ α
√
a)V |V, Y )

= h(U |Y )− h ((1− α)Xh − αZa|V, Y )

(a)

≥ h(U |Y )− h ((1− α)Xh − αZa)

=
1

2
log

E[U2]− E[UY ]2/E[Y 2]

(1− α)2Ph + α2Na

. (70)

where (a) follows from that conditioning reduces entropy and the equality occurs if there is no SNR mismatch.
Two examples are given here to compare these two quantities with and without SNR mismatch for a small and a large

designed SNR, respectively. In both Fig. 15 and 16, without SNR mismatch, these two quantities coincide with each other
for all choices ofPa. This implies the result in section IV that without mismatchthe separation-based scheme and the HDA
scheme provide exactly the same distortion. However, for the small designed SNR case shown in Fig. 15, one observes that
with SNR mismatch which quantity is larger really depends onPa. On the other hand, for designed SNR = 10 dB case
shown in Fig. 16, we see that with SNR mismatch,I(V ;U |Y ) > I(V ;T |Y ) for a wide range ofPa (except for somePa

close to 1). This explains the results in section V that, for large designed SNRs, the HDA scheme has better results than the
separation-based scheme does while for small designed SNRswe cannot make this conclusion easily.
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