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Abstract

In this paper, we consider the Cauchy problem of Nonlinear Schrödinger equa-

tion

{

iut +∆u = λ1|u|
p1u+ λ2|u|

p2u, t ∈ R, x ∈ R
N

u(0, x) = ϕ(x), x ∈ R
N ,

where N ≥ 3, 0 < p1 < p2 < 4

N−2
, λ1 and λ2 are real constants. Using the

methods in [1] and analyzing the interaction between the nonlinearity λ1|u|
p1u

and λ2|u|
p2u, we not only partly solve the open problems of Terence Tao, Monica

Visan and Xiaoyi Zhang’s [15] but also obtain other scattering properties of the

solutions.

Keywords: Nonlinear Schrödinger equation; Global existence; Scattering prop-

erty.
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1 Introduction

In this paper, we consider the following Cauchy problem

{

iut +∆u = λ1|u|
p1u+ λ2|u|

p2u, t ∈ R, x ∈ R
N

u(0, x) = ϕ(x), x ∈ R
N ,

(1.1)

where N ≥ 3, 0 < p1 < p2 <
4

N−2 , λ1 and λ2 are real constants. We expect that

the nonlinearities in (1.1) become negligible and u(t) behaves like a solution of linear

Schrödinger equation as t → +∞ or t → −∞. The scattering theory formalizes this

∗E-mail: songxianfa2004@163.com(or songxianfa2008@sina.com)
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kind of property. In convenience, we take the same basic notions of scattering theory

as those in [1] below.

Let I be an interval containing 0, Duhamel’s formula implies that u is a solution

of (1.1) on I if and only if u satisfies

u(t) = J (t)ϕ − i

∫ t

0
J (t− s)λ1|u(s)|

p1u(s)ds− i

∫ t

0
J (t− s)λ2|u(s)|

p2u(s)ds (1.2)

for all t ∈ I, where J (t) = eit∆ is the one parameter group generated by the free

Schrödinger equation. Let X be a Banach space – X can be Σ, H1(RN ) or L2(RN ) in

this paper. Here the pseudoconformal space

Σ := {f ∈ H1(RN ); |x|f ∈ L2(RN )} with norm ‖f‖Σ = ‖f‖H1
x
+ ‖xf‖L2

x
. (1.3)

Assume that the solution uϕ(t, x) is defined for all t ≥ 0 with initial value ϕ ∈ X. We

say that u+ is the scattering state of ϕ at +∞ if the limit

u+ = lim
t→+∞

J (−t)uϕ(t) (1.4)

exists in X. Similarly, we say that u− is the scattering state of ϕ at −∞ if the limit

u− = lim
t→−∞

J (−t)uϕ(t) (1.5)

exists in X.

Set

R+ = {ϕ ∈ Σ : Tmax = +∞ and u+ = lim
t→+∞

J (−t)uϕ(t) exists}, (1.6)

R− = {ϕ ∈ Σ : Tmin = +∞ and u− = lim
t→−∞

J (−t)uϕ(t) exists}. (1.7)

For ϕ ∈ R±, we define the operators

U±(ϕ) = lim
t→±∞

J (−t)uϕ(t), (1.8)

where the limit holds in Σ. Set

U± = U±(R±). (1.9)

If the mappings U± are injective, we can define the wave operators

Ω± = U−1
± : U± → R±. (1.10)

And we also introduce the sets

O± = U±(R+ ∩R−). (1.11)
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Denote the scattering operator S by

S = U+Ω− : O− → O+. (1.12)

Since J (−t)z = J (t)z̄, we have

J (−t)uϕ(t) = J (t)uϕ(t) = J (t)uϕ(−t).

Consequently, it is easy to see that

R− = R+ = {ϕ ∈ Σ : ϕ̄ ∈ R+}, (1.13)

U− = U+ = {ψ ∈ Σ : ψ̄ ∈ U+}, (1.14)

O− = O+ = {ψ ∈ Σ : ψ̄ ∈ O+}, (1.15)

U−ϕ = U+ϕ̄, Ω−ϕ = Ω+ϕ̄ for every ϕ ∈ R−. (1.16)

Now we will give a review of some results about the scattering theory of nonlinear

Schrödinger equation. About the topic of scattering theory, there are many results on

the Cauchy problem of Schrödinger equation

{

iut +∆u = λ|u|pu, t ∈ R, x ∈ R
N

u(0, x) = ϕ(x), x ∈ R
N .

(1.17)

Different scattering theories had been constructed in many papers(see [1, 2, 3, 4, 5, 11,

16, 17]). A low energy scattering theory exists in Σ if λ > 0 and p > 4
N+2 . If λ > 0

and 2
N
< p < 4

N+2 , then every solution with initial value ϕ ∈ Σ has a scattering state

in L2(RN ). However, if λ > 0 and p ≤ 2
N
, then there are no nontrivial solution of

(1.17) has scattering states, even for L2(RN ) topology. For the case of λ < 0, there is

no low energy scattering if p < 4
N+2 . If 4

N+2 < p < 4
N
, then a low energy scattering

theory exists in Σ. However, if λ < 0 and p ≥ 4
N
, then some solutions will blow up in

finite time, some solutions with small initial data in H1(RN ) are global and bounded

in H1(RN ) (see [3, 6, 14, 18] and the references therein).

Recently, in [15], Tao et al. studied the scattering properties of (1.1) with large

initial data in the energy space H1(RN ) and in Σ. Their results are the following

theorems

Theorem 1.3 in [15] (Energy Space Scattering) Assume that u is the unique

solution to (1.1) with 4
N

≤ p1 < p2 ≤
4

N−2 and initial value ϕ ∈ H1(RN ). Suppose that

there exists a unique global solution v to the defocusing L2-critical NLS

{

ivt +∆v = |v|
4
N v, t ∈ R, x ∈ R

N

v(0, x) = v0(x) ∈ H
1(RN ), x ∈ R

N
(1.18)

and satisfies that

‖v‖
L

2(N+2)
N

t,x (R×RN )
≤ C(‖v0‖L2

x
).
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Then there exists unique u± ∈ H1(RN ) such that

‖u(t)− eit∆u±‖H1 → 0 as t→ ±∞

in each of the following two cases:

(1) λ1 > 0, λ2 > 0;

(2) λ1 < 0, λ2 > 0 with the small mass condition M ≤ c(‖∇ϕ‖2) for some suitably

small quantity c(‖∇ϕ‖2) > 0 depending only on ‖∇ϕ‖2.

Theorem 1.8 in [15] (Pseudoconformal Space Scattering) Assume that λ1 >

0, λ2 > 0, α(N) < p1 < p2 ≤ 4
N−2 with α(N) is the Strauss exponent α(N) :=

2−N+
√
N2+12N+4
2N , u is the unique global solution of (1.1) with ϕ ∈ Σ. Then there exists

unique scattering states u± ∈ Σ such that

‖e−it∆u(t)− u±‖Σ → 0 as t→ ±∞.

However, just like they summarized in Table 1 of [15], there are little results about

the scattering theory of (1.1) in the following cases:

Case (i) λ2 < 0, λ1 ∈ R, 0 < p1 < p2 <
4
N
.

Case (ii) λ2 > 0, λ1 < 0, 0 < p1 <
4
N
.

Our aim is to give some results on the scattering theory of (1.1) in the two cases

above. To do this, we need some observations. First, noticing the nonlinearities in

(1.1) and that in (1.17) are power types, it is natural to use the methods in [1] to deal

with (1.1). On the other hand, if one of λ1 and λ2 is positive and another is negative,

then one of the nonlinearities is defocusing and another is focusing, hence we need to

analyze the interaction between the nonlinearity λ1|u|
p1u and λ2|u|

p2u, which is the

complications of this problem. Under some suitable assumptions, we obtain some new

scattering properties of the solution of (1.1) and partly solve the open problems of

Terence Tao, Monica Visan and Xiaoyi Zhang’s [15]. However, we cannot deal with the

case p2 =
4

N−2 by the technical difficult.

Our main results are the following four theorems. Theorem 1 and Theorem 2 with

their proofs are similar to Theorem 7.5.7 and Theorem 7.5.9 in [1].

Theorem 1. Assume that 4
N+2 < p1 < p2 <

4
N−2 . Then

(i) The sets R± and U± are open subsets of Σ with 0 ∈ R± and 0 ∈ U±.
(ii) The operators U± : R± → U± and Ω± : U± → R± are all bicontinuous

bijections for the Σ topology.

(iii) The sets O± are open subsets of Σ with 0 ∈ O±, and the scattering operator

S is a bicontinuous bijection O− → O+ for the Σ topology.

As an immediate consequence of Theorem 1, the following corollary gives the

scattering property of the solution to (1.1) in the case of (i).

Corollary 1. Assume that λ1 ∈ R, λ2 < 0 and 4
N+2 < p1 < p2 <

4
N
. Then a low

energy scattering theory exists in Σ.
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We have further results about the wave operators Ω± which can be read as

Theorem 2. Assume that λ1 ∈ R, λ2 < 0, 4
N+2 < p1 < p2 <

4
N
. Then U± = Σ.

Hence the wave operators Ω± are bicontinuous bijections Σ → R±.

Next we will consider the scattering property of the solution to (1.1) in the case

of (ii) λ2 > 0, λ1 < 0 and 0 < p1 <
4
N
.

Theorem 3. (No Scattering Results) Assume that u(t, x) is the nontrivial solution

of (1.1) with initial value ϕ ∈ Σ. Then J (−t)u(t) does not have any strong limit in

L2(RN ) if (i) 0 < p1 < p2 ≤
2
N

or (ii) 0 < p1 ≤
2
N
< p2 <

4
N−2 with N ≥ 6.

Remark 1.1. We would like to compare Theorem 3 with Theorem 7.5.4 in [1].

In fact, Theorem 7.5.4 in [1] only gives some results on (1.17) with λ ≥ 0. If we write

(1.1) as

{

iut +∆u = −ν|u|p1u+ µ|u|p2u, t ∈ R, x ∈ R
N

u(0, x) = ϕ(x), x ∈ R
N

(1.19)

with ν = |λ1| and µ = λ2 > 0. It is a natural way to consider the roles of the

nonlinearities −ν|u|p1u and µ|u|p2u. The results of Theorem 3 show that: If p1 <
2
N
,

the role of −nu|u|p1u is prominent. Hence we can look the nonlinearity λ2|u|
p2u as a

disturbance.

Theorem 4. (Scattering in L2(RN )) Assume that u(t, x) is the nontrivial solution

of (1.1) with λ2 > 0, λ1 < 0 and initial value ϕ ∈ Σ. Then there exist u± ∈ L2(RN )

such that

J (−t)u(t) → u± in L2(RN ) as t → ±∞ (1.20)

if

(i) 2
N
< p1 <

4
N

≤ p2 <
4

N−2

or

(ii) 2
N
< p1 < p2 <

4
N

and

Cgλ2N(p2 − p1)

(p2 + 2)(4 −Np1)
4−Np1

N(p2−p1)

(

4−Np2

|λ1|ε1

)

4−Np2
N(p2−p1)

‖ϕ(x)‖
4
N

L2 <
1

2
(1.21)

with

ε1 < min{
(Np1 − 2)

2
,
(p2 + 1)(Np1 − 2) + (Np2 − 2)

(N + 2)p2
}. (1.22)

Here Cg is the best constant in Gagliardo-Nirenberg’s inequality

∫

RN

|f |
4
N
+2dx ≤ Cg

(
∫

RN

|∇f |2dx

)(
∫

RN

|f |2dx

)
4
N

. (1.23)
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Remark 1.2. We would like to compare Theorem 4 with Remark 7.5.5 (ii) in [1].

In fact, Remark 7.5.5 (ii) in [1] only gives some results on (1.17) with λ < 0. Similar

to Remark 1.1, we can write (1.1 as (1.19), we also need to consider the interaction

between µ|u|p2u and −nu|u|p1u. Theorem 4 shows that: If 2
N
< p1 < p2 < 4

N−2 ,

the role of nonlinearity λ2|u|
p2u overwhelm that of λ1|u|

p1u. Hence we can look the

nonlinearity λ1|u|
p1u as a disturbance.

This paper is organized as follows: In Section 2, we will give some preliminaries.

In Section 3, we give two lemmas and prove Theorem 1 and Theorem 2. In Section 4,

we will prove Theorem 3 and Theorem 4. In the last of this paper, we will give some

discussions on the scattering theory of (1.1).

2 Preliminaries

Similar to Section 7.5 of [1], we will study (1.1) by using pseudoconformal trans-

formation. We also use the conventional notations in [1] below.

For (s, y) ∈ R× R
N , let

s =
t

1− t
, y =

x

1− t
, or equivalently, t =

s

1 + s
, x =

y

1 + s
. (2.1)

For the function u defined on (a, b) × R
N (0 ≤ a < b < +∞ are given ), set

v(t, x) = (1− t)−
N
2 u(

t

1− t
,

x

1− t
)e

−i
|x|2

4(1−t) = (1 + s)
N
2 u(s, y)e

−i
|x|2

4(1+s) (2.2)

for x ∈ R
N and a

1+a
< t < b

1+b
. Obviously, if u is defined on (0,+∞), then v is defined

on (0, 1). And u ∈ C([a, b],Σ) if and only if v ∈ C([ a
1+a

, b
1+b

],Σ). And it is easy to

verify the following identities

‖∇v(t)‖2L2 =
1

4
‖(y + 2i(1 + s)∇)u(s)‖2L2 , (2.3)

‖∇u(s)‖2L2 =
1

4
‖(x− 2i(1 − t)∇)v(t)‖2L2 , (2.4)

‖v(t)‖p1+2
Lp1+2 = (1 + s)

Np1
2 ‖u(s)‖p1+2

Lp1+2 , (2.5)

‖v(t)‖p2+2
Lp2+2 = (1 + s)

Np2
2 ‖u(s)‖p2+2

Lp2+2 . (2.6)

Consider the Cauchy problem











ivt +∆v = λ1(1− t)
Np1−4

2 |v|p1v + λ2(1− t)
Np2−4

2 |v|p2v

:= λ1h1(t)|v|
p1v + λ2h2(t)|v|

p2v, t > 0, x ∈ R
N

v(0, x) = ψ(x), x ∈ R
N .

(2.7)
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(2.7) equals to the following integral equation

v(t) = J (t)ψ − i

∫ t

0
J (t− s)λ1h1(s)|v(s)|

p1v(s)ds

− i

∫ t

0
J (t− s)λ2h2(s)|v(s)|

p2v(s)ds. (2.8)

Set

E1(t) =
1

2
‖∇v(t)‖22 +

λ1(1− t)
Np1−4

2

p1 + 2
‖v(t)‖p1+2

Lp1+2 +
λ2(1− t)

Np2−4
2

p2 + 2
‖v(t)‖p2+2

Lp2+2 ,

E2(t) = (1− t)
4−Np1

2 E1(t)

=
(1− t)

4−Np1
2

2
‖∇v(t)‖22 +

λ1

p1 + 2
‖v(t)‖p1+2

Lp1+2 +
λ2(1− t)

N(p2−p1)

2

p2 + 2
‖v(t)‖p2+2

Lp2+2 ,

E3(t) =
1

8
‖(x− 2i(1− t)∇)v(t)‖22 +

λ1(1− t)
Np1
2

p1 + 2
‖v(t)‖p1+2

Lp1+2 +
λ2(1− t)

Np2
2

p2 + 2
‖v(t)‖p2+2

Lp2+2 .

After some elementary computations, we get

d

dt
E1(t) =

λ1(4−Np1)(1− t)
Np1−6

2

2(p1 + 2)
‖v(t)‖p1+2

Lp1+2

+
λ2(4−Np2)(1− t)

Np2−6
2

2(p2 + 2)
‖v(t)‖p2+2

Lp2+2 , (2.9)

d

dt
E2(t) =

Np1 − 4

4
(1− t)

2−Np1
2 ‖∇v(t)‖2L2

+
λ2N(p1 − p2)

2(p2 + 2)
(1− t)

N(p2−p1)−2
2 ‖v(t)‖p2+2

Lp2+2 , (2.10)

d

dt
E3(t) = 0. (2.11)

Our results in this paper are based on the following observation, its proof is similar

to that of Proposition 7.5.1 in [1], we omit the details here.

Proposition 2.1. Assume that u ∈ C([0,+∞),Σ) is the solution of (1.1) and

v ∈ C([0, 1),Σ) is the corresponding solution of (2.7) defined by (2.2). Then J (−s)u(s)

has a strong limit in Σ(respectively, in L2(RN )) as s → +∞ if and only if v(t) has a

strong limit in Σ(respectively, in L2(RN )) as t→ 1, and in that case

lim
s→+∞

J (−s)u(s) = ei
|x|2

4 J (−1)v(1) in Σ (respectively, in L2(RN )). (2.12)

Now we discuss the existence, uniqueness and the continuous dependence of the

solution on the initial value of (2.8).
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Denote 2∗ = 2N
N−2 and let

1−
2

ri
=
pi

2∗
,

2

qi
= N(

1

2
−

1

ri
), θi =

4

4− pi(N − 2)
, i = 1, 2. (2.13)

Obviously, if q′i is the conjugate of qi ∈ [1,+∞) given by 1
qi
+ 1

q′i
= 1, then

1

q′i
=

1

θi
+

1

qi
. (2.14)

The following lemma deals with the existence and uniqueness of the solution of

(2.8).

Lemma 2.2. Assume that 0 < p1 < p2 <
4

N−2 . Then for every ψ ∈ H1(RN ), there

exists a unique, maximal solution of equation (2.8) v ∈ C((−Tmin, Tmax),H
1(RN )) ∩

W
1,θ1
loc ((−Tmin, Tmax),H

−1(RN )) ∩W 1,θ2
loc ((−Tmin, Tmax),H

−1(RN )) with Tmax, Tmin >

0. Here v is the maximal solution of (2.8) means that if Tmax < +∞(or Tmin < +∞),

then

lim
t→Tmax

‖v(t, ·)‖H1 = +∞ (or lim
t→−Tmin

‖v(t, ·)‖H1 = +∞).

Moreover, v satisfies

(i) If Tmax < +∞, then

lim inf
t→Tmax

{‖v(t)‖p1
H1‖h1(t)‖Lθ1 (t,Tmax) + ‖v(t)‖p2

H1‖h2(t)‖Lθ2 (t,Tmax)} > 0.

(ii) If Tmin < +∞, then

lim inf
t→−Tmin

{‖v(t)‖p1
H1‖h1(t)‖Lθ1 (−Tmin,t)

+ ‖v(t)‖p2
H1‖h2(t)‖Lθ2 (−Tmin,t)

} > 0.

(iii) v ∈ L
q1
loc((−Tmin, Tmax),W

1,r1(RN )) ∩ Lq2
loc((−Tmin, Tmax),W

1,r2(RN )).

(iv) There exists δ > 0, depending only on N, p1, p2, θ1 and θ2, satisfies that: If

‖ψ‖p1θ1
H1

∫ τ

−τ

|h1(s)|
θ1ds + ‖ψ‖p2θ2

H1

∫ τ

−τ

|h2(s)|
θ2ds ≤ δ,

then [−τ, τ ] ⊂ (−Tmin, Tmax) and ‖v‖Lq1 ((−τ,τ),W 1,r1 ) + ‖v‖Lq2 ((−τ,τ),W 1,r2 ) ≤ K‖ψ‖H1 ,

where K depends only on N, p1, p2, q1, q2, θ1 and θ2. Furthermore, if ψ′ is another initial
value satisfies the above condition and v′ is the corresponding solution of (2.8), then

‖v − v′‖L∞((−τ,τ),L2) ≤ K‖ψ − ψ′‖L2 .

(v) If |x|ψ ∈ L2(RN ), then |x|v ∈ C((−Tmin, Tmax), L
2(RN )).

Proof: The proof is similar to that of Proposition 4.11.1 in [1]. Roughly, if we

replace h(t)|u|αu by h1(t)|u|
p1u + h2(t)|u|

p2u, we can obtain the similar results. We

omit the details here. �

The following lemma deals with the continuous dependence of the solution on the

initial value.

Lemma 2.3. Assume that v be the solution of (2.8) given by Lemma 2.2. Then

8



(i) The mappings ψ → Tmax and ψ → Tmin are lower semicontinuous H1(RN ) →

(0,+∞].

(ii) Suppose that vn is the solution of (2.8) with initial value ψn satisfying ψn →

ψ as n → ∞. Then vn → v in C([−T1, T2],H
1(RN ) for any interval [−T1, T2] ⊂

(−Tmin, Tmax). Furthermore, |x|vn → |x|v in C([−T1, T2], L
2(RN ) if |x|ψn → |x|ψ in

L2(RN ).

Proof: The proof is similar to that of Proposition 4.11.2 in [1]. Roughly, if we

replace h(t)|u|αu by h1(t)|u|
p1u + h2(t)|u|

p2u, we can obtain the similar results. We

omit the details here. �

3 Pseudoconformal Space Scattering

By the results of Lemma 2.2 and Lemma 2.3, we can obtain a proposition as follows

Proposition 3.1. Assume that 4
N+2 < p1 < p2 <

4
N−2 . Then for every t0 ∈ R

and ψ ∈ Σ, there exist Tm(t0, ϕ) < t0 < TM (t0, ψ) and a unique maximal solution v ∈

C((Tm, TM ),Σ) of equation (2.7). And the solution v satisfies the following properties:

(i) If TM = 1, then

lim
t→1

inf{

(

(1− t)
(N+2)p1−4

4p1 + (1− t)
(N+2)p2−4

4p2

)

‖v(t)‖H1} > 0.

(ii) v depends continuously on ψ in the sense of the mapping ψ → TM is lower

semicontinuous Σ → (0,+∞] and the mapping ψ → Tm is upper semicontinuous Σ →

[−∞, 0). Let vn be the solution of (2.7) with initial value ψn. If ψn → ψ in Σ as

n→ ∞ and if [T1, T2] ∈ (Tm, TM ), then vn → v in C([T1, T2],Σ).

Proof: Set

f1(t) =

{

λ1(1− t)
Np1−4

2 , if −∞ < t < 1

λ1, if t ≥ 1,
(3.1)

and

f2(t) =

{

λ2(1− t)
Np2−4

2 , if −∞ < t < 1

λ2, if t ≥ 1,
(3.2)

Applying Lemma 2.2 and Lemma 2.3 with h1(t) = f1(t− t0) and h2(t) = f2(t− t0), we

can get the results of Proposition 3.1. �

We will use Proposition 2.1 and Proposition 3.1 to prove Theorem 1 and Theorem

2.

The proof of Theorem 1: The proof is similar to that of Theorem 7.5.7 in [1],

we omit the details here. �

The proof of Theorem 2: The proof is similar to that of Theorem 7.5.9 in [1],

we omit the details here. �

9



4 The Proofs of Theorem 3 and Theorem 4

In this section, we are devoted to prove Theorem 3 and Theorem 4.

The proof of Theorem 3: We only give the proof of it for the case of t→ +∞.

The proof of the case of t→ −∞ is similar. Assume that

J (−t)u(t) → u+ in L2(RN ) as t→ +∞

by contradiction. Consequently,

‖u+‖L2 = ‖u(t)‖L2 = ‖ϕ‖L2 > 0. (4.1)

By the results of Proposition 2.1, we have

v(t) → w in L2(RN ) as t→ 1,

where

w = J (1)(e−i
|x|2

4 u+) 6= 0.

Noticing that p1 + 1 < p2 + 1 ≤ 2 under the assumptions of ours, we have

|v(t)|p1v(t) → |w|p1w 6= 0 in L
2

p1+1 (RN ),

|v(t)|p2v(t) → |w|p2w 6= 0 in L
2

p2+1 (RN )

as t→ 1. Let θ ∈ D(RN ) be the function satisfying

< i|w|p1w, θ >= 1. (4.2)

Using (2.7), we have

d

dt
< v(t), θ > =< i∆v, θ > +λ1(1− t)

Np1−4
2 < i|v|p1v, θ > +λ2(1− t)

Np2−4
2 < i|v|p2v, θ >

=< iv,∆θ > +λ1(1− t)
Np1−4

2 < i|v|p1v, θ > +λ2(1− t)
Np2−4

2 < i|v|p2v, θ > .

Noticing that v is bounded in L2(RN ) and (4.2), we can get

|
d

dt
< v(t), θ > | ≥

1

2
|λ1|(1− t)

Np1−4

2 − C(1− t)
Np2−4

2 − C

≥
1

4
|λ1|(1− t)

Np1−4
2 − C (4.3)

if t is closed to 1 enough. However, (4.3) implies that | < v(t), θ > | → +∞ as t → 1

because Np1−4
2 ≤ −1, which is absurd. �

Before the proof of Theorem 4, we will prove a lemma as follows.

Lemma 4.1. Assume that v(t, x) is the solution of (2.7) with λ1 < 0, λ2 > 0.

Then

‖v(t)‖L2 ≤ C. (4.4)
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Moreover, if 2
N
< p1 <

4
N

≤ p2 <
4

N−2 , then

‖∇v(t)‖2L2 ≤ C(1− t)
Np1−4

2 , (4.5)

‖v(t)‖p1+2
Lp1+2 ≤ C, (4.6)

‖v(t)‖p2+2
Lp2+2 ≤ C(1− t)

N(p1−p2)
4 . (4.7)

If 2
N
< p1 < p2 <

4
N

and (1.21) is true with (1.22), then

‖∇v(t)‖2L2 ≤ C(1− t)
(Np1−4)
2(1−ε1) , (4.8)

‖v(t)‖p1+2
Lp1+2 ≤ C(1− t)

ε1(Np1−4)
2(1−ε1) , (4.9)

‖v(t)‖p2+2
Lp2+2 ≤ C(1− t)

N(p1−p2)+(Np2−4)ε1
2(1−ε1) . (4.10)

Proof: Noticing that
d

dt
‖v(t)‖L2 = 0,

we can obtain

‖v(t)‖L2 ≤ C.

Multiplying the first equation of (2.7) by 2v̄t, integrating it on [0, t] × R
N and

taking the real part of the resulting expression, we have

1

2

∫

RN

|∇v(t)|2dx+
|λ1|(1− t)

Np1−4
2

p1 + 2

∫

RN

|v(t)|p1+2dx−
λ2(1− t)

Np2−4
2

p2 + 2

∫

RN

|v(t)|p2+2dx

=
1

2

∫

RN

|∇ψ|2dx+
|λ1|

p1 + 2

∫

RN

|ψ|p1+2dx−
λ2

p2 + 2

∫

RN

|ψ|p2+2dx

+
|λ1|(4−Np1)

2(p1 + 2)

∫ t

0
(1− s)

Np1−4

2
−1

∫

RN

|v(s)|p1+2dxds

+
λ2(Np2 − 4)

2(p2 + 2)

∫ t

0
(1− s)

Np2−4
2

−1

∫

RN

|v(s)|p2+2dxds. (4.11)

If ‖∇v(t)‖2
L2 ≤ C for all 0 < t < 1, then (4.5)-(4.10) are true by Gagliardo-

Nirenberg’s inequality.

Without loss of generality, we only need to prove (4.5)–(4.10) under the condition

lim
t→1−

‖∇v(t)‖2L2 = +∞. (4.12)

That is, there exists a t0 ∈ (0, 1) such that

1

4
‖∇v(t)‖2L2 ≥

1

2

∫

RN

|∇ψ|2dx+
|λ1|

p1 + 2

∫

RN

|ψ|p1+2dx+
λ2

p2 + 2

∫

RN

|ψ|p2+2dx (4.13)

for t0 ≤ t < 1. We will prove (4.5)–(4.10) in two cases.
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Case (i) 2
N
< p1 <

4
N

≤ p2 <
4

N−2 .

Using the Sobolev’s inequality

‖v(t)‖p2+2
Lp2+2 ≤ C‖∇v(t)‖2L2 + C‖v(t)‖2L2 ,

noticing that Np2 ≥ 4 and (4.4), from (4.11), we have

c

∫

RN

|∇v(t)|2dx+
|λ1|(1− t)

Np1−4
2

p1 + 2

∫

RN

|v(t)|p1+2dx

≤
|λ1|(4−Np1)

2(p1 + 2)

∫ t

t0

(1− s)
Np1−4

2
−1

∫

RN

|v(s)|p1+2dxds

+
c(4−Np1)

2

∫ t

t0

(1− s)−1

∫

RN

|∇v(s)|2dxds + C(1− t)
Np2−4

2 . (4.14)

Letting

η(t) =

∫ t

t0

|λ1|
2(p1+2)(1− s)

Np1−4
2

∫

RN |v(s)|p1+2dxds+ c
∫

RN |∇v(s)|2dx

(1− s)
ds,

(4.14) implies that

(1− t)η′(t) ≤
4−Np1

2
η(t) + C(1− t)

Np2−4
2 .

Applying Gronwall’s lemma, we obtain

η(t) ≤ C1(1− t)
(Np1−4)

2 + C2(1− t)
(Np2−4)+(Np1−4)

2 ≤ C(1− t)
(Np1−4)

2 .

Therefore, we have

‖v(t)‖p1+2
Lp1+2 ≤ C, ‖∇v(t)‖2L2 ≤ C(1− t)

Np1−4
2 . (4.15)

Case (ii) 2
N
< p1 < p2 <

4
N
.

Noticing that λ2 > 0, from (4.11), we can get

1

2

∫

RN

|∇v(t)|2dx+
|λ1|(1− t)

Np1−4
2

p1 + 2

∫

RN

|v(t)|p1+2dx

≤
|λ1|(4 −Np1)

2(p1 + 2)

∫ t

0
(1− s)

Np1−4
2

−1

∫

RN

|v(s)|p1+2dxds

+
λ2(1− t)

Np2−4
2

p2 + 2

∫

RN

|v(t)|p2+2dx+C

≤
|λ1|(4 −Np1)

2(p1 + 2)

∫ t

0
(1− s)

Np1−4
2

−1

∫

RN

|v(s)|p1+2dxds

+
ε1|λ1|(1− t)

Np1−4
2

(p1 + 2)

∫

RN

|v(t)|p1+2dx

+
λ2N(p2 − p1)

(p2 + 2)(4 −Np1)
4−Np1

N(p2−p1)

(

4−Np1

|λ1|ε1

)

4−Np2
N(p2−p1)

∫

RN

|v(t)|
4
N
+2dx+ C. (4.16)
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Using Gagliardo-Nirenberg’s inequality, we have

∫

RN

|v(t)|
4
N
+2dx ≤ Cg

(
∫

RN

|∇v(t)|2dx

)(
∫

RN

|v(t)|2dx

)
4
N

. (4.17)

Since ‖v(t)‖L2 = ‖ψ(x)‖L2 = ‖ϕ(x)‖L2 , if (1.21) is true, then (4.16) and (4.17) imply

that

(1− ε1)|λ1|(1− t)
Np1−4

2

(p1 + 2)

∫

RN

|v(t)|p1+2dx

≤ c

∫

RN

|∇v(t)|2dx+
(1− ε1)|λ1|(1− t)

Np1−4
2

(p1 + 2)

∫

RN

|v(t)|p1+2dx

≤
|λ1|(4−Np1)

2(p1 + 2)

∫ t

t0

(1− s)
Np1−4

2
−1

∫

RN

|v(s)|p1+2dxds. (4.18)

Letting

χ(t) =
|λ1|

(p1 + 2)

∫ t

t0

(1− t)
Np1−4

2
−1

∫

RN

|v(t)|p1+2dx,

from (4.18), we can obtain

(1− t)χ′(t) ≤
(4−Np1)

2(1− ε1)
χ(t). (4.19)

Applying Gronwall’s lemma, from (4.19), we have

χ(t) ≤ C(1− t)
(Np1−4)
2(1−ε1) .

Consequently,
∫

RN

|v(t)|p1+2dx ≤ C(1− t)
ε1(Np1−4)
2(1−ε1) . (4.20)

From (4.18) and (4.20), we obtain

∫

RN

|∇v(t)|2dx ≤
|λ1|(4 −Np1)

2(p1 + 2)

∫ t

t0

(1− s)
Np1−4

2
−1

∫

RN

|v(s)|p1+2dxds

≤ C(1− t)
Np1−4
2(1−ε1) . (4.21)

(4.20) and (4.21) mean that (4.8) and (4.9) are true if 2
N
< p1 < p2 <

4
N

under the

conditions of the lemma.

If λ2 > 0, we have

d

dt
E2(t) =

λ2N(p1 − p2)

2(p2 + 2)
(1− t)

N(p2−p1)−2
2 ‖v(t)‖p2+2

Lp2+2

+
Np1 − 4

4
(1− t)

2−Np1
2 ‖∇v(t)‖2L2 ≤ 0. (4.22)
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(4.22) implies that

E2(0) ≥ E(t) =
(1− t)

4−Np1
2

2
‖∇v(t)‖22 +

λ1

p1 + 2
‖v(t)‖p1+2

Lp1+2

+
λ2(1− t)

N(p2−p1)
2

p2 + 2
‖v(t)‖p2+2

Lp2+2 . (4.23)

If 2
N
< p1 <

4
N

≤ p2 <
4

N−2 , then (4.4)–(4.5) and (4.23) mean that

‖v(t)‖p2+2
Lp2+2 ≤ C(1− t)

N(p1−p2)
2

And (4.8)–(4.9) and (4.23) mean that

‖v(t)‖p2+2
Lp2+2 ≤ C(1− t)

N(p1−p2)+ε1(Np2−4)

2(1−ε1)

if 2
N
< p1 < p2 <

4
N
. �

The proof of Theorem 4. By the results of Proposition 2.1, we only need to

prove that there exits a w ∈ L2(RN ) satisfying

v(t) → w in L2(RN ) as t→ 1.

By the embedding

L
p1+2
p1+1 (RN ) →֒ H−1(RN ) →֒ H−2(RN ), L

p2+2
p2+1 (RN ) →֒ H−1(RN ) →֒ H−2(RN )

and equation (1.1), we can get

‖vt‖H−2 ≤ ‖∆v‖H−2 + C(1− t)
Np1−4

2 ‖|v|p1v‖H−2 +C(1− t)
Np2−4

2 ‖|v|p2v‖H−2

≤ C‖v‖L2 + C(1− t)
Np1−4

2 ‖v‖p1+1
Lp1+2 + C(1− t)

Np2−4
2 ‖v‖p2+1

Lp2+2 .

From (4.4)–(4.10) and the inequality above, we obtain

‖vt‖H−2 ≤ C + C(1− t)
Np1−4

2 + C(1− t)
(Np2−4)+(Np1−4)(p2+1)

2(p2+2) (4.24)

if 2
N
< p1 <

4
N

≤ p2 <
4

N−2 and

‖vt‖H−2 ≤ C +C(1− t)
(Np1−4)(p1+2−ε1)

2(1−ε1)(p1+2) + C(1− t)
[N(p1−p2)(p2+1)+(p2+2−ε1)(Np2−4)]

2(1−ε1)(p2+2) (4.25)

if 2
N
< p1 ≤ p2 <

4
N
. From (4.24), we can see that

vt ∈ L1((0, 1),H−2(RN ))

if 2
N
< p1 <

4
N

≤ p2 <
4

N−2 . Choosing

ε1 < min{
(Np1 − 2)

2
,
(p2 + 1)(Np1 − 2) + (Np2 − 2)

(N + 2)p2
},
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from (4.25), we can verify that

vt ∈ L1((0, 1),H−2(RN ))

if 2
N
< p1 ≤ p2 <

4
N
. Therefore, there exists w ∈ H−2(RN ) satisfying v(t) → w in

H−2(RN ) as t→ 1. From (4.4), we know that w ∈ L2(RN ) and

v(t)⇀ w in L2(RN ) as t→ 1. (4.26)

For any ψ ∈ H1(RN ) and 0 ≤ t ≤ τ < 1, we can get

(v(τ) − v(t), ψ)L2 =

∫ τ

t

< vt, ψ >H−1,H1 ds

=

∫ τ

t

(i∇v,∇ψ)L2ds+

∫ τ

t

(1− s)
Np1−4

2 < iλ1|v|
p1v, ψ >

L
p1+2
p1+1 ,Lp1+2

ds

+

∫ τ

t

(1− s)
Np2−4

2 < iλ1|v|
p2v, ψ >

L

p2+2
p2+1 ,Lp2+2

ds.

Consequently,

|(v(τ) − v(t), ψ)L2 | = C‖∇ψ‖L2

∫ τ

t

‖∇v‖L2ds+ C‖ψ‖Lp1+2

∫ τ

t

(1− s)
Np1−4

2 ‖v‖p1+1
Lp1+2ds

+ C‖ψ‖Lp2+2

∫ τ

t

(1− s)
Np2−4

2 ‖v‖p2+1
Lp2+2ds

≤ C‖∇ψ‖L2

∫ τ

t

(1− s)
Np1−4
4(1−ε1)ds+ C‖ψ‖Lp1+2

∫ τ

t

(1− s)
(Np1−4)(p1+2−ε1)

2(1−ε1)(p1+2) ds

+ C‖ψ‖Lp2+2

∫ τ

t

(1− s)
[N(p1−p2)(p2+1)+(p2+2−ε1)(Np2−4)]

2(1−ε1)(p2+2) ds.

Letting τ → 1 and using (4.26), we have

|(w − v(t), ψ)L2 | ≤ C‖∇ψ‖L2

∫ 1

t

(1− s)
Np1−4
4(1−ε1)ds+ C‖ψ‖Lp1+2

∫ 1

t

(1− s)
(Np1−4)(p1+2−ε1)

2(1−ε1)(p1+2) ds

+ C‖ψ‖Lp2+2

∫ 1

t

(1− s)
[N(p1−p2)(p2+1)+(p2+2−ε1)(Np2−4)]

2(1−ε1)(p2+2) ds.

Especially, if ψ = v(t), we can get

|(w − v(t), v(t))L2 | ≤ C‖∇v(t)‖L2

∫ 1

t

(1− s)
Np1−4
4(1−ε1)ds+ C‖v(t)‖Lp1+2

∫ 1

t

(1− s)
(Np1−4)(p1+2−ε1)

2(1−ε1)(p1+2) ds

+ C‖v(t)‖Lp2+2

∫ 1

t

(1− s)
[N(p1−p2)(p2+1)+(p2+2−ε1)(Np2−4)]

2(1−ε1)(p2+2) ds.

Noticing (4.4)–(4.7), we obtain

|(w − v(t), v(t))L2 |

≤ C(1− t)
(Np1−2)−2ε1

2(1−ε1) + C(1− t)
(Np1−2)−2ε1

2(1−ε1) + C(1− t)
(Np1−2)−2ε1

2(1−ε1)

≤ C(1− t)θ ≤ C. (4.27)
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Here

θ =
(Np1 − 2)− 2ε1

2(1− ε1)
≥ 0.

Now using (4.26) and (4.27), we have

‖v(t)− w‖2L2 = −(w − v(t), v(t))L2 + (w − v(t), w)L2 → 0

as t→ 1. �

5 Discussions

The proofs of Theorem 1 and Theorem 2 are still true for the case of λ1 > 0, λ2 > 0

and 4
N+2 < p1 < p2 <

4
N−2 . In fact, we have

Theorem 5. Assume that λ1 > 0, λ2 > 0 and 4
N+2 < p1 < p2 <

4
N−2 . Then a

low energy scattering theory exists in Σ.

Since there is little result for the case of λ1 > 0, λ2 > 0, 4
N+2 < p1 < α(N) in [15],

Theorem 5 extends the ranges of p1 and p2 to 4
N+2 < p1 < p2 <

4
N−2 .

By (4.22) and (4.23), the conclusions of Lemma 4.1 are also true in the case of

λ1 > 0, λ2 > 0 and 2
N
< p1 < p2 <

4
N−2 . Similar to the proof of Theorem 4, we have

Theorem 6. Assume that λ1 > 0, λ2 > 0 and 2
N
< p1 < p2 <

4
N−2 . Then a low

energy scattering theory exists in L2(RN ).

Since there is also little result for the case of λ1 > 0, λ2 > 0, 2
N
< p1 <

4
N+2

in [15], Theorem 6 establishes the scattering theory of (1.1) with λ1 > 0, λ2 > 0,
2
N

< p1 < 4
N+2 and p1 < p2 < 4

N−2 . Since the nonlinearities in Theorem 5 and

Theorem 6 are all defocusing, hence their roles are positive to each other.

We suspect that there exist initial data u0(x) of arbitrary small Σ-norm such that

the solution u of (1.1) doesn’t possess a scattering state in Σ(or even in L2(R2)) if

p1 <
4

N+2 , λ1 ∈ R and λ2 < 0. However, we cannot obtain such u0(x) in this paper.

The difficulty is the failure of the equation in (1.1) to be scale invariant. We also suspect

that the nontrivial solution of (1.1) doesn’t possess any scattering state in L2(RN ) if

0 < p1 ≤
2
N
< p2 <

4
N−2 when N = 3, 4, 5.

The methods in this paper and those of [15] can be used to deal with the following

Cauchy problem

{

iut +∆u =
∑m

i=1 λi|u|
piu, x ∈ R

N , t ∈ R

u(0, x) = ϕ(x), x ∈ R
N ,

(5.1)

where N ≥ 3, 0 < p1 < p2 < ... < pm < 4
N−2 , λi, i = 1, 2, ...,m are real constants.

In many cases, whether the solution of (5.1) possess a scattering state or not are

essentially depended on the nonlinearities λ1|u|
p1u and λm|u|pmu, because λi|u|

piu, i =

2, ..., (m− 1) can be controlled by λ1|u|
p1u and λm|u|pmu if one use Young’s inequality.
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