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Abstract

In this paper, we consider the Cauchy problem of Nonlinear Schrédinger equa-
tion

iug + Au = M uPru+ Ao|ulP?u, teR, xeRN
u(0,2) = p(z), = €RV,

where N > 3, 0 < p1 < p2 < ﬁ, A1 and Ao are real constants. Using the
methods in [I] and analyzing the interaction between the nonlinearity A;|u|Ptu
and Az|u[P2u, we not only partly solve the open problems of Terence Tao, Monica
Visan and Xiaoyi Zhang’s [I5] but also obtain other scattering properties of the
solutions.
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1 Introduction

In this paper, we consider the following Cauchy problem

{ iug + Au = A\ |ulPlu + XolulP2u, teR, zeRY (11)

u(0,2) = p(x), x€RY,

where N > 3, 0 < p1 < p2 < ﬁ, A1 and Ao are real constants. We expect that
the nonlinearities in (1) become negligible and u(t) behaves like a solution of linear
Schrodinger equation as ¢ — +o0o or t — —oo. The scattering theory formalizes this
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kind of property. In convenience, we take the same basic notions of scattering theory
as those in [I] below.

Let I be an interval containing 0, Duhamel’s formula implies that « is a solution
of (L)) on I if and only if u satisfies

w(t) = Tt — i /O Tt — )M [u(s)Pru(s)ds — i /O T(t = $)olu(s)PPuls)ds  (1.2)

for all ¢t € I, where J(t) = 2 is the one parameter group generated by the free
Schrédinger equation. Let X be a Banach space — X can be X, HY(RY) or L2(RY) in
this paper. Here the pseudoconformal space

S={f € H'RY);Jz[f € L*(R™)}  with norm ||fl|s = | fllms + o fllez. (1.3)

Assume that the solution wu,(t,z) is defined for all ¢ > 0 with initial value p € X. We
say that u, is the scattering state of ¢ at 4oo if the limit

uy = lim J(—t)uy(t) (1.4)

t——+o0

exists in X. Similarly, we say that u_ is the scattering state of ¢ at —oo if the limit

us = lim_J(~Hug(t (15)
exists in X.
Set
Ry ={p € X : Thax = too and uy = t_l}gloo T (—t)u,(t) exists}, (1.6)
R-={p €Y : T = +oo and u_ = lim J(—t)u,(t) exists}. (1.7)

For ¢ € R4, we define the operators
Usle) = Jim_ T (~tpuylt), (18)
where the limit holds in ¥. Set
Ur = UL (Ry). (1.9)
If the mappings Uy are injective, we can define the wave operators
Qe =U;' U — Ry (1.10)
And we also introduce the sets

Or =Us(RyNR-). (1.11)



Denote the scattering operator S by
S = U+Q_ . O_ — O+. (112)

Since J(—t)z = J(t)z, we have

T (—up(t) = T (t)ue(t) = T (H)up(—1).

Consequently, it is easy to see that

R.=Ri={peX:peR}, (1.13)
U-=Us ={p e eldy}, (1.14)
O_=0;={pen:ecO,}, (1.15)
U.o=U;p, Q@=Q,¢ forevery pcR_. (1.16)

Now we will give a review of some results about the scattering theory of nonlinear
Schrédinger equation. About the topic of scattering theory, there are many results on
the Cauchy problem of Schriodinger equation

{ iug + Au = MulPu, t€R, xecRN (1.17)

u(0,2) = (x), = €RN,

Different scattering theories had been constructed in many papers(see [1}, 2] 3], [4] 5] 1T,
16l [17]). A low energy scattering theory exists in ¥ if A > 0 and p > Ni+2' IfA>0
and % <p< Ni+2= then every solution with initial value ¢ € ¥ has a scattering state
in L2(]RN ). However, if A > 0 and p < %, then there are no nontrivial solution of
(LI7) has scattering states, even for L?(R™) topology. For the case of A\ < 0, there is
no low energy scattering if p < Niﬂ. If Niﬂ <p< %, then a low energy scattering
theory exists in 3. However, if A < 0 and p > %, then some solutions will blow up in
finite time, some solutions with small initial data in H'(R") are global and bounded
in HY(RY) (see [3, 6 14} 18] and the references therein).

Recently, in [I5], Tao et al. studied the scattering properties of (ILI]) with large
initial data in the energy space H'(R™) and in ¥. Their results are the following
theorems

Theorem 1.3 in [15] (Energy Space Scattering) Assume that u is the unique
solution to (1) with + < p1 < pa < 1 and initial value ¢ € H'(RY). Suppose that
there exists a unique global solution v to the defocusing L?-critical NLS

. s N
{ ivg+Av=|vu, teR, zeR (1.18)

v(0,z) = vo(z) € HY(RY), xRN

and satisfies that

o]l 20vi2) < C(llvollzz2)-
LmN (RxRN)



Then there exists unique ux € H'(RY) such that
u(t) — e ui]gn — 0 ast — +oo

in each of the following two cases:

(1) A1 >0, Ag > 0;

(2) A1 < 0, Ao > 0 with the small mass condition M < c(||V||2) for some suitably
small quantity c(|[Ve|l2) > 0 depending only on ||Ve||2.

Theorem 1.8 in [15] (Pseudoconformal Space Scattering) Assume that Ay >
0, A2 > 0, a(N) < p1 < p2 < x5 with a(N) is the Strauss exponent a(N) :=
2Nty 12\7;,+12N+4, u is the unique global solution of (I1l) with ¢ € ¥.. Then there exists
unique scattering states uy € 3 such that

le”® P u(t) —us|y — 0 ast — +oo.

However, just like they summarized in Table 1 of [15], there are little results about
the scattering theory of (LI]) in the following cases:

Case (i) A2 <0, \1 ER, 0<p; <p2 < +.

Case (ii)) A2 >0, A\ <0,0<p; < %.

Our aim is to give some results on the scattering theory of (II]) in the two cases
above. To do this, we need some observations. First, noticing the nonlinearities in
(CI) and that in (II7)) are power types, it is natural to use the methods in [I] to deal
with (II). On the other hand, if one of A\; and Ay is positive and another is negative,
then one of the nonlinearities is defocusing and another is focusing, hence we need to
analyze the interaction between the nonlinearity A\j|u[P*u and Ag|u|P2u, which is the
complications of this problem. Under some suitable assumptions, we obtain some new
scattering properties of the solution of (L) and partly solve the open problems of
Terence Tao, Monica Visan and Xiaoyi Zhang’s [15]. However, we cannot deal with the
case po = ﬁ by the technical difficult.

Our main results are the following four theorems. Theorem 1 and Theorem 2 with
their proofs are similar to Theorem 7.5.7 and Theorem 7.5.9 in [1].

Theorem 1. Assume that Niﬂ <pp <p2< ﬁ. Then

(i) The sets R+ and Uy are open subsets of ¥ with 0 € Ry and 0 € Us..

(ii) The operators Uy : Ry — Ux and Qi : Ur — Ry are all bicontinuous
bijections for the X topology.

(iii) The sets Oy are open subsets of ¥ with 0 € Oy, and the scattering operator
S is a bicontinuous bijection O_ — O for the X topology.

As an immediate consequence of Theorem 1, the following corollary gives the
scattering property of the solution to (1)) in the case of (i).

Corollary 1. Assume that Ay € R, Ay < 0 and NLH <pp < pg < %. Then a low
energy scattering theory exists in 3.



We have further results about the wave operators 2o which can be read as

Theorem 2. Assume that A\ € R, Ay < 0, Niﬂ <pr < p2 < %. Then Uy = 3.
Hence the wave operators 04 are bicontinuous bijections ¥ — R.

Next we will consider the scattering property of the solution to (II]) in the case
of (i) A2 >0, A <0and 0 < p; < 4.

Theorem 3. (No Scattering Results) Assume that u(t, x) is the nontrivial solution
of (I1) with initial value ¢ € X. Then J(—t)u(t) does not have any strong limit in
L2RN) if (i) 0 <p1 <pa < % or (i) 0 < py < % < py < 525 with N > 6.

Remark 1.1. We would like to compare Theorem 3 with Theorem 7.5.4 in [1].
In fact, Theorem 7.5.4 in [I] only gives some results on (LI7) with A > 0. If we write

(T as

iug + Au = —v|ufPlu + plufP?u, teR, zeRY (1.19)
u(0,7) = p(z), =eRY '
with v = |A1| and p = A2 > 0. It is a natural way to consider the roles of the

nonlinearities —v|u[P*u and plulP2u. The results of Theorem 3 show that: If p; < %,
the role of —nu|u|P'u is prominent. Hence we can look the nonlinearity Aa|u[P?u as a
disturbance.

Theorem 4. (Scattering in L2(RY)) Assume that u(t,x) is the nontrivial solution
of (I1) with Ay > 0, \; < 0 and initial value ¢ € . Then there exist ux € L*(RY)
such that

J(—tut) — usr in L*(RY) ast — +oo (1.20)
if
(i) 2 <p1 <+ <ps< 35
or
(z’z’)%<p1<p2<% and
4—Npo
CyAaN(p2 —p1) 4 — Npo \ Nez—r1) 4 1
! 4—Npy |/\ | ”(,D(LZ')”IJYQ < 5 (121)
(p2 +2)(4 — Npy)Nw2-r1) 111
with

(Np1 —2) (p2+1)(Np1 —2) + (Npa — 2)
2 ' (N +2)p2

3. (1.22)

£1 < min{

Here Cy is the best constant in Gagliardo-Nirenberg’s inequality

42 2 2
[ <e, ([ wita) ([ 1) (123

2|s



Remark 1.2. We would like to compare Theorem 4 with Remark 7.5.5 (ii) in [1].
In fact, Remark 7.5.5 (ii) in [I] only gives some results on (LI7)) with A < 0. Similar
to Remark 1.1, we can write (LI as (LI9), we also need to consider the interaction
between piulP?u and —nulu[P'u. Theorem 4 shows that: If £ < p; < ps < 2,
the role of nonlinearity Ao|u[P2u overwhelm that of Aj|u|P'u. Hence we can look the
nonlinearity Aj|u|Plu as a disturbance.

This paper is organized as follows: In Section 2, we will give some preliminaries.
In Section 3, we give two lemmas and prove Theorem 1 and Theorem 2. In Section 4,
we will prove Theorem 3 and Theorem 4. In the last of this paper, we will give some
discussions on the scattering theory of (L.I]).

2 Preliminaries

Similar to Section 7.5 of [I], we will study (I.I]) by using pseudoconformal trans-
formation. We also use the conventional notations in [I] below.
For (s,y) € R x RV, let

t x

s=E1—p V=T or equivalently, t:1+8, le—ks (2.1)
For the function v defined on (a,b) x RV (0 < a < b < 400 are given ), set
t ET el

o(t,2) = (1= ) Fu(r— 7=p)e 00 = (L+9)Tuls,ye W (22)

for z € RN and T <t< %b Obviously, if u is defined on (0, +00), then v is defined

n (0,1). And u € C([a,8],%) if and only if v € C([1f5, 1ib] Y). And it is easy to
verify the following identities
1 .
IVo@)lIZe = 71y + 21 + 5)V)u(s)|72, (2.3)
1 .
IVu(s)llZe = 3l = 2i(1 = ) V)u(B)lIZe, (2.4)
JoIE2: = (14 5) 2 luls) 12572, (2.5)
loIEE2, = (1 + 8) 2 [lus) 12252 (2.6)
Consider the Cauchy problem
vy + Av = A (1 —t) \U\plfu—i—)\g(l —t) 4\@\”%
= Ahy(t )]v[f”lv + Aoho(t)v[P2v, t>0, z€RN (2.7)

v(0,z) =v(z), xRV



[217) equals to the following integral equation

v(t) = T () — z'/o J(t — s)A1hi(s)|v(s)[Prv(s)ds

t
i / T(t = $)haha(s)|o(s)[Pv(s)ds. (2.8)
0
Set
Np174 Npg—4
1 o, Ml —t) +2  A(l—t) +2
Ey(t) = §va(t)”2 + IHT” o) + pzT” O 5ates
4—Np1
Ey(t)=(1-1) (t)
4—Npq N(pa—r1)
(1—t) = 2 A1 +2  Ao(l—t) +2
= fHVv(t)HQ + SN2 + oy 2 ()55 +2s
IR ) A1<1 —HTE i (L=
E3(t) = gH(m —2i(1 = )V)v(@®)[z + W” ()| 2 + W”U(t)HLPQ+2’
After some elementary computations, we get
d MA=Np)(1 =T
%El( ) 2(]71 n 2) Hv(t)”Lp1+2
o= Npo) (1=
e O, (2.9
d Np1 —4 2-Npg
Dy =M=t 013
AN (p1 — p2) Nipa—p1)=2 a2
W(l —1) o) 5 +2s (2.10)
d
L)~ 0. (2.11)

Our results in this paper are based on the following observation, its proof is similar
to that of Proposition 7.5.1 in [I], we omit the details here.

Proposition 2.1. Assume that v € C([0,4+00),%) is the solution of (I1) and
v e C([0,1),%) is the corresponding solution of (2.7) defined by (Z3). Then J(—s)u(s)
has a strong limit in X (respectively, in L>(RN)) as s — 400 if and only if v(t) has a
strong limit in ¥ (respectively, in L>(RN)) as t — 1, and in that case

lim J(—s)u(s) = ei%j(—l)v(l) in X (respectively, in L?(RY)). (2.12)

s—+00

Now we discuss the existence, uniqueness and the continuous dependence of the
solution on the initial value of (2.8]).



Denote 2* = N 2 and let
2 i 2 1 1 4 ]
l-—==—=, —=N(=-—-— 0= ——M— =1,2. 2.13
i 2*7 ql (2 Ti)’ 1 4_pZ(N_2)7 ? ) ( )

Obviously, if ¢} is the conjugate of ¢; € [1,400) given by % i, 1, then

1 1 1
==+ 2.14
@ b @ (2.14)

The following lemma deals with the existence and uniqueness of the solution of
@3).

Lemma 2.2. Assume that 0 < p1 < py < N4 5. Then for every ¢ € HY(RN), there
exists a unique, mazimal solution of equation (2.8) v € C((—Tmin, Tmaz), H'(RY)) N
Wit (= Tomins Trnaar)s H-HRY)) O Wi (= Toins Trnaz ), HH(RY)) with T, Trnin >
0. Here v is the mazimal solution of (2.8) means that if Tyax < +00 (01 Tiin < +00),
then

Jim ot )l = +o0 (or _lim ot ) = +00).

Moreover, v satisfies
(i) If Trax < +00, then

lim it o 171 Ol o ¢ 1m0 + I0OIE A2 (O] 202 (173000} > O-

max

(i) If Tinin < +00, then

lim inf {[lo(@®)l3 1 @l o~ 15,0 + 10O P2 o2 (<700} > O-

mln7

loc((_TmiH7 Tmax)y VVLT2 (RN))
(iv) There exists § > 0, depending only on N, p1,p2,01 and s, satisfies that: If

(iit) v € LE (= Tmin, Tmax), W™ (RV)) N LT

T

ol [ (o) ds + 0l [ ha(o)l*ds <
then [—7,7] C (=Tmin, Tmax) and ||U||Lf11((——r,r),W1v’"1) + ||U||L‘12((—T,T),W1'7"2) < K¢l
where K depends only on N, p1,p2, q1,q2,01 and 0. Furthermore, if 1)’ is another initial
value satisfies the above condition and v' is the corresponding solution of (2.8), then
[0 =V | Loo((rm)22) < Kl — 4|2

(v) If |z € L2RYN), then |z|v € C((=Thmin, Tmax), L2(RY)).

Proof: The proof is similar to that of Proposition 4.11.1 in [I]. Roughly, if we
replace h(t)|u|“u by hi(t)|u[P*u + ha(t)|u|P?u, we can obtain the similar results. We
omit the details here. O

The following lemma deals with the continuous dependence of the solution on the
initial value.

Lemma 2.3. Assume that v be the solution of (2.8) given by Lemma 2.2. Then



(i) The mappings V¥ — Tmax and ¥ — T are lower semicontinuous H'(RN) —
(0, +o0].

(7i) Suppose that vy, is the solution of (Z:8) with initial value 1, satisfying ¥y, —
Y as n — oo. Then v, — v in C([~T1, Tz, H (RN) for any interval [~Ty,Ts] C
(—Tmins Tmax). Furthermore, |z|v, — |z|v in C([=Ty, To], L2(RY) if ||, — |z in
L2(RM).

Proof: The proof is similar to that of Proposition 4.11.2 in [I]. Roughly, if we
replace h(t)|u|“u by hi(t)|u[P*u + ha(t)|u|P?u, we can obtain the similar results. We
omit the details here. (]

3 Pseudoconformal Space Scattering

By the results of Lemma 2.2 and Lemma 2.3, we can obtain a proposition as follows
Proposition 3.1. Assume that Ni+2 <pr <p2 < ﬁ. Then for every ty € R
and ¢ € X, there exist T, (to, ) < to < Tar(to,v) and a unique mazximal solution v €
C((Tn, T ), X) of equation (27). And the solution v satisfies the following properties:
(i) If Tpy = 1, then

(N+2)py —4 (N+2)pg—4
%E)I} inf{<(1 —t) W1 4+ (1—t) 2 > lo®)]| g1} > 0.

(ii) v depends continuously on 1 in the sense of the mapping v — Thr is lower
semicontinuous 3 — (0,+00] and the mapping ¥ — T,, is upper semicontinuous ¥ —
[—00,0). Let v, be the solution of (2.7) with initial value ¢y,. If ¥, — ¥ in X as
n — oo and if [T1,T5] € (T, Thr), then v, — v in C([T1, T3], X).

Proof: Set
M- )Tt t<1
t) = =t 2, b moo<i< 3.1
fi() { A, ift>1, (3.1
and
No(l— )3, it t<1
t) = e 3.2
f2(1) { Ao, if > 1, (32)
Applying Lemma 2.2 and Lemma 2.3 with hi(t) = fi(t —to) and ha(t) = fao(t —to), we
can get the results of Proposition 3.1. O
We will use Proposition 2.1 and Proposition 3.1 to prove Theorem 1 and Theorem
2.
The proof of Theorem 1: The proof is similar to that of Theorem 7.5.7 in [1],
we omit the details here. O
The proof of Theorem 2: The proof is similar to that of Theorem 7.5.9 in [I],
we omit the details here. O



4 The Proofs of Theorem 3 and Theorem 4

In this section, we are devoted to prove Theorem 3 and Theorem 4.
The proof of Theorem 3: We only give the proof of it for the case of t — +o0.
The proof of the case of t - —oc is similar. Assume that

TJ(—t)u(t) = uy in L2(RY) ast — 400
by contradiction. Consequently,
lugllrz = [lu(®)llz2 = llellz2 > 0. (4.1)
By the results of Proposition 2.1, we have
v(t) »w in L2RY) ast—1,

where )
lz|

w=J(1)(e T uy) £0.
Noticing that p; +1 < ps + 1 < 2 under the assumptions of ours, we have
P o(t) = [wPro £0 i Lne (RY),
() [P20(t) — [w]PPw £0  in Ly (RY)
ast — 1. Let € D(RY) be the function satisfying
<idlw|P'w,d >=1. (4.2)

Using (2.7), we have

d . Npj—4 . Npy—4 .
7 < v(t),0 > =<iAv,0 >+ (1 —t)" 2 <i[vPrv,0 >4+ (1 —t)" 2 <ijv[f?v,0 >

=<iv,A0 >+ (1 — t)w < ivPrv,0 > +Xa(1 — t)% < ilv[P*v,0 > .
Noticing that v is bounded in L?(R") and (&2, we can get
\% <o(t),0> > gl -0 —ca - e
> 1l -n™ o (43)

if ¢ is closed to 1 enough. However, (£3)) implies that | < v(¢),0 > | — +oc ast — 1
because W < —1, which is absurd. O
Before the proof of Theorem 4, we will prove a lemma as follows.
Lemma 4.1. Assume that v(t,x) is the solution of (2.7) with Ay < 0, Ag > 0.
Then

[o(®)|z2 < C. (4.4)

10



Moreover, if % <pp < % <p2 < ﬁ, then

IVo(t)][2 < 0(1 —TE, (4.5)
lo(t)|PF2, < (4.6)
lo@IEE?, < o -6 (4.7)

If 2 <p1 <ps < + and (LZ1) is true with (L22), then

(Np1—4)
IVo(®)]7: < C(1—1t) ey U, (4.8)
e1(Np1—4)
lo(®)[[21%, < 01— ) 2 (4.9)
42 N(p1—p2)+(Npo—4)eq
o) <CA—t) 2= : (4.10)
Proof: Noticing that
d
Sl =0,
we can obtain
[v@)lz2 < C.

Multiplying the first equation of (Z7) by 27, integrating it on [0,¢] x RY and
taking the real part of the resulting expression, we have

Npo

5 [, 9+ PC f)QW |, o as - % [ oria
:%/ ’V"L/J‘ dr + |_,1_|2/ ‘ ’p1+2dx_]%/ﬂw \¢’p2+2dx
P PO [ o [ oty s
+ )\22((];;131—2)4) /Ot(l e /RN lo(s) P>+ 2dads. (4.11)
If [|[Vou(t)|[2; < C for all 0 < t < 1, then (&E)-@I0O) are true by Gagliardo-

Nirenberg’s inequality.
Without loss of generality, we only need to prove (4.3)—(410) under the condition

lim ||[Vo(t)||3s = +oo. (4.12)
t—1—

That is, there exists a tg € (0,1) such that

1 9 1 |1l
- > p1+2
4HV’U(t)HL2 > 2/ IV Pdx + +2/ [P dr +

242
+2/ P2y (4.13)

for tg <t < 1. We will prove ([£5)—(4.10) in two cases.

11



Case (i) £ <p1 < + <p2 < 7os.
Using the Sobolev’s inequality

lo()17s22 < CIVO@)IZ: + Cllo®)]17,

LPp2 +2 =

noticing that Npy > 4 and (4.4)), from (4.I1]), we have

Npj—4
2

IA|(1—1) /
Vo(t)?d t) P24
C/RN\ v(t)|“dr + P RN!’U()\ x

4—N t -
< [A]( pl)/(l—s)Np% 4—1/ \U(S)’p1+2dxds
to RN

2(p1 +2)
4—N t -
+ 6(71’1)/ (1- s)—l/ Vo(s)2dads + C(1— )3
2 to RN
Letting
A Npy1—4
0= [ s (1= ) o I 2dids + ¢ o (V9P
to (1 - S) ’
(#14) implies that
4— N -
(1=t (1) < =t + C(1— 1)
Applying Gronwall’s lemma, we obtain
( —4) ( —4)+( —4) ( —4)
M) <Cl—t) 3 £ G- T <o)
Therefore, we have
2 Npy—4
lo@ 75 < C, [Vo®)]7: <CL—1) 2 .
Case (ii) % <pr <p2 < %.
Noticing that Ay > 0, from (4.I1]), we can get
5 [ veopa+ 0= DR IR
2 JrN p1+2 RN
AM|(4—N t -
< Al = Npy) 12|((p1 - ;l) /0 (1—5) 31 /RN lu(s) [P 2dwds
No(1— )5
— 2
M/ o(#)[P2+2dz + C
p2 +2 RN
4—N t -
< —|A12|(( 2p1) / (1—s)" 4—1/ [o(s)["1 2 dads
pi+2) Jo RN
Npj—4
erlM|(1—¢t)" 2
o) » o (t) [P 2da
4—Npo
AN (p2 — p1) 4 — Npy | Ne2=p1) 4
1-Npy NE N lo(t)| ¥ P dx + C.
(p2 +2)(4 — Npy) N2=r1) He R

12
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Using Gagliardo-Nirenberg’s inequality, we have

/RN ()| ¥ 2da < C, </RN \Vv(t)]%ix) </RN \v(t)]zda;>% : (4.17)

Since ||v(t)[|g2 = [[¥(@)lz2 = lle(z)|lz2, if (LZI) is true, then (A.I6) and (@IT) imply
that

Npp

(1- 51)|(21|$2_) )2 /RN |v(7§)|p1+2d:p

2, (—e)M|( -~ pi
< C/RN Vo(t) Pz + oy / ()P 2da

|)‘1|(1 l'pl) /t p14—1/ +2
< 1—s 2 V(S P dﬂjds 4.18
= 2( 1 2) to( ) N| ( )| ( )

Letting

\(t) = (pﬁ’m /t0<1 " [ e,

from (ZI8]), we can obtain

4 — Npl)
1—t)X/(t <(7 t). 4.19
( )X()_Q(l—sl)X() (4.19)
Applying Gronwall’s lemma, from (4.19]), we have

(Npy—4)

\(t) < C(1 -ty 2

Consequently,

g1 (Npy—4)
/ ()P 2de < C(1 — ¢) 2050 (4.20)
RN
From (4.18]) and ([@.20), we obtain

M4 - N t -
/ IVo(t)2dz < ’1‘(—’”)/ (1—s) % 4—1/ lo(s)|P 2 dads
RN t RN

2(]71 + 2) 0
Npi1—4
< C(1 - t)ien, (4.21)

(@20) and (£ZI) mean that (@) and (LJ) are true if & < p; < p2 < 7 under the
conditions of the lemma.

If Ao > 0, we have

d _ A N(p1 —p2) Nipp—p1)=2 pa+2
a(t) = 2L ) S,

dt
M=l =2 e <o (1.22)
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(#22)) implies that

4—Npq

(1—t) = 2 A1 p1+2
B(0) > Bt = 0 ol + A ool
N(p2—p1)
)‘2(1 — t) p2+2
Dy 12 o) a2 (4.23)
If 2 <p1 <+ <p2 < 57, then (@4)-(&E) and [@23) mean that
N(p1—p2)
@) 2r2, <c—t)~ 2

And ([A8)-@9) and ([A23]) mean that
N(p1—pg)+e1 (Npop—4)

)22 <o —n A

Lpr2 +2 =

if%<p1<p2<%. O
The proof of Theorem 4. By the results of Proposition 2.1, we only need to
prove that there exits a w € L?(RY) satisfying

v(t) »w in L2RY) ast— 1.

By the embedding

po+2

Ln T (RY) — HTYRY) — H*(RY), Le(RY) = H'(RY) < H*(RY)

and equation (L], we can get

Nyt P1 Npg—4 P2
[vellr—= < [Avllg-=2+C(L =) 2 [[[v[*vllg—=2 +C1 —t) 2 [[|[v["*v] g2
Npi—4 1 Npg—4 1
SClollz+CL—t) = || +C(L—t) 2 |2l
From (4.4)—(4I0) and the inequality above, we obtain
Npi—4 (Npa—4)+(Npj —4)(pa+1)
loglg—2 <C+CA—-t)" 2z +C(1—1t) 2(pa+2) (4.24)
if%<p1<%§p2<ﬁand
(Np1—4)(p1+2—¢1) [N(p1—p2)(p2+1)+(p2+2—21)(Npy—4)]
ol -2 < C +C(1—t) 200+ + (1 —t) S0=e)(p22) (4.25)

if 2 <p1 <po< 4. From ([@24), we can see that
ve € LY(0,1), H2(RY))
if %< 1< ~=. Choosi
N <Pnm<y<p<y=s 0osIng

(Np1 —2) (p2+1)(Np1 —2) + (Np2 — 2)
2 ’ (N +2)p2

2

£1 < min{

14



from (4.25]), we can verify that

v € LH((0,1), H(RY))
if 2 < p1 < ps < +. Therefore, there exists w € H~2(RY) satisfying v(t) — w in
H~2(RN) as t — 1. From (&4)), we know that w € L?>(R") and
v(t) ~w in L*(RY) ast — 1. (4.26)

For any v € H'(RY) and 0 <t < 7 < 1, we can get

(W(F) — v(t), ) 2 = /t <ot o ds

Npy—4

:/ (z‘Vv,Vw)des+/ (1—-ys) e <iMuProp > e ds
t t

L1+l ’LP1+2

T Npgo—4 .
+/ (I—s5)" 2 <iA|vP2u,9) > pyto ds.
t

LP2 +TI 7Lpz +2
Consequently,

P

T T N 4
|(U(7)_U(t)a¢)L2|:CHVT/)HL?/t IIWIILstJrCII?!)IILmH/t (=)™ 7 ||l i tads

Np

2—4 1
> o]0 ds

- Cll e / (1-s)

N (Np1 —4)(p1+2—¢7)

T P —4 T
< CHVIbHLz / (1 _ 3)4(1*151)ds + C”W‘Ll’ﬁ? / (1 _ 3) 2(I—e)(P1+2) (s
t t

[N(p1—p2)(p2+1)+(pa+2—e1)(Npy—4)]

)
4 ClWlmre [ (1-5) et n
t

Letting 7 — 1 and using (£.26]), we have

N (Np1 —4)(p1+2—¢7)

1 4 1
|(w—v(t), V) 2| < C||VY| 2 / (1-— 3)4(11)151)ds + C||Y|| o1 +2 / (1—s) =D+ (s
t ¢

[N(p1—p2)(p2+1)+(pa+2—e1)(Npy—4)]

1
+ C|’¢HLPZ+2 / (1 — S) 2(1—e1)(p2+2) dS'
t

Especially, if 1) = v(t), we can get

1 (Np1—4)(p1+2—e1)

1 Npj—4
[(w—v(t),v(t)) 2| < CIVo(t)]| 2 / (1— )00 ds + CHU(t)HLm+2/ (1—s) 20=0EF) ds
t t

[N(p1—p2)(p2+1)+(p2+2—e1)(Npg—4)]

1
T Clo (@) oo / (1-s) NG is.
t

Noticing (£4)—-(4T), we obtain

|(w —w(t),v(t)) 2|

(Np1—2)—2e1 (Npy1—2)—2¢¢ (Np1—2)—2¢;
<C(l—t) 20— +C(1—t) 200 +C(1—-1t) 2021
<c@a-tf<c. (4.27)
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Here N
( P1—2)—2€1>0.
2(1 - 61) B

Now using (£26]) and (£.27), we have

lo(t) = wllF2 = —(w — v(t),0(t)) 12 + (w — v(t), w) 2 — 0

0=

ast — 1. O

5 Discussions

The proofs of Theorem 1 and Theorem 2 are still true for the case of Ay > 0, Ao >0
and Niﬂ <pp <p2 < ﬁ. In fact, we have

Theorem 5. Assume that Ay > 0, Ay > 0 and Niﬂ <pr < p2 < ﬁ. Then a
low energy scattering theory exists in X.

Since there is little result for the case of Ay > 0, Ay > 0, Niﬂ < p1 < a(N) in [15],
Theorem 5 extends the ranges of p; and psy to Niﬂ <pp <p2< ﬁ.

By (£22)) and ([@.23]), the conclusions of Lemma 4.1 are also true in the case of
A1 >0, A2 >0 and % <pp <p2 < ﬁ. Similar to the proof of Theorem 4, we have

Theorem 6. Assume that Ay > 0, Ao > 0 and % <pr < p2 < ﬁ. Then a low
energy scattering theory exists in L?(R™N).

Since there is also little result for the case of Ay > 0, Ay > 0, % <pr < Ni+2
n [I5], Theorem 6 establishes the scattering theory of (II) with Ay > 0, A2 > 0,
% <p < Niﬂ and p; < p2 < ﬁ. Since the nonlinearities in Theorem 5 and
Theorem 6 are all defocusing, hence their roles are positive to each other.

We suspect that there exist initial data ug(x) of arbitrary small ¥-norm such that
the solution u of (1)) doesn’t possess a scattering state in Y(or even in L?(R?)) if
p1 < Ni+2’ A1 € R and Ay < 0. However, we cannot obtain such ug(x) in this paper.
The difficulty is the failure of the equation in (ILI]) to be scale invariant. We also suspect
that the nontrivial solution of (II)) doesn’t possess any scattering state in L2(RY) if
0<p1 <% <p2< 45 when N =3,4,5.

The methods in this paper and those of [I5] can be used to deal with the following
Cauchy problem

{ iug + Au= 3" NfuPiu, zeRYN, teR (5.1)

u(0,2) = p(x), x€RY,

where N > 3,0 < p; < p3 < ... <pp < ﬁ, Ai, ¢ = 1,2, ...,m are real constants.
In many cases, whether the solution of (B.I]) possess a scattering state or not are
essentially depended on the nonlinearities A1 |u|P*u and Ay, |u|P™u, because \;|u|Piu, i =
2,...,(m —1) can be controlled by Aj|u[P*u and A, |u[P™u if one use Young’s inequality.
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