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INSTANTON FLOER HOMOLOGY FOR LENS SPACES

HIROFUMI SASAHIRA

Abstract. We construct instanton Floer homology for lens spaces L(p, q). As an application, we
prove that X = CP2#CP2 does not admits a decomposition X = X1 ∪ X2. Here X1 and X2 are
oriented, simply connected, non-spin 4-manifolds with b+ = 1 and with boundary L(7, 3).

1. Introduction

Instanton Floer homology HF∗(Y ) was constructed in [10] for oriented homology 3-spheres Y .
This invariant is defined using flat connections over Y and moduli spaces of instantons over Y × R.
As is well known, instanton Floer homology has an important role in calculations of Donaldson
invariants for closed 4-manifolds. Let X be an oriented closed 4-manifold with b+(X) > 1 and fix a
cohomology class c ∈ H2(X;Z). Donaldson invariant ΨX,c for X is defined as a Q-valued function

on A(X) = ⊕d≥0H2(X;Z)⊗d, using moduli spaces MP of instantons on principal U(2)-bundles P
with c1(P ) = c. Suppose that X has a decomposition X = X1 ∪X2, where X1 and X2 are compact
4-manifolds with b+ > 0 and with boundary Y and −Y respectively. Here −Y is Y with opposite
orientation. We can define relative Donaldson invariants ΨX1,c1 : A(X1) = ⊗H2(X1;Z) → HF∗(Y ),
ΨX2,c2 : A(X2) = ⊗H2(X2;Z) → HF∗(−Y ) where c1 = c|X1 , c2 = c|X2 . There is a natural pairing
< ·, · >: HF∗(Y ) ⊗HF∗(−Y ) → Q, and we have a gluing formula ΨX,c =< ΨX1,c1 ,ΨX2,c2 >. Note
that A(X) = A(X1)⊗A(X2) since Y is a homology 3-sphere. We can completely determine ΨX,c in
terms of the relative invariants from the gluing formula.

There is a variant Ψu1
X of Donaldson invariants [9], [17] defined using a cohomology class u1 ∈

H1(MP ;Z2). The cohomology class u1 is the first Stiefel-Whitney class of the determinant line
bundle of the real part of twisted Dirac operators over X. This is a function on a subspace A′(X)
of A(X) with values in Z2. Variants of instanton Floer homology are defined for oriented homology
3-spheres in [12] and [18], and there is a similar gluing formula for Ψu1

X .
A natural problem is how to define instanton Floer homology for more general 3-manifolds Y ,

which enable us to construct gluing formulas for more general decompositions of X. Mainly there are
two difficulties when we try to generalize instanton Floer homology:

(i) The existence of reducible (projectively) flat connections on 3-manifolds.

(ii) H2(X;Z) is not isomorphic to the direct sum H2(X1;Z)⊕H2(X2;Z).

(i) implies that moduli spaces of instantons over Y ×R can be singular. Even if the moduli spaces
are smooth, the usual proof that the square of the boundary map is zero breaks down. (ii) implies
that we must consider the situation where a surface in X representing an element in H2(X;Z) is also
decomposed by Y .

There are some partial answers to each problem. Austin-Braam [3] and Donaldson [6] introduced
equivalent versions of instanton Floer homology under some assumptions in order to overcome the
problem of reducible flat connections. The equivalent Floer homologies enable us to generalize the
gluing formula for Donaldson invariants ΨX,c. Furuta [13] defined an analog I∗(L(p, q)) of instanton
Floer homology for lens spaces L(p, q), making use of Dirac operators over L(p, q)×R. Note that all
flat connections on L(p, q) are reducible since the fundamental group of L(p, q) is abelian. Using this
analog we can construct a gluing formula for the variant Ψu1

X of Donaldson invariants. However these
gluing formulas can not be applied to the problem (ii). That is, these gluing formulas calculate only
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the restrictions of the invariants ΨX,c, Ψ
u1
X to the images of the natural maps A(X1)⊗A(X2) → A(X),

A′(X1)⊗A′(X2) → A′(X).
On the other hand, Fukaya [11] introduced a generalization HFF∗(Y,Q; γ) of instanton Floer

homology for general 3-manifolds Y , U(2)-bundles Q over Y and a loop γ in Y , provided that all
(projectively) flat connections on Q are irreducible. This generalization gives a complete answer
to (ii). That is, we can show a gluing formula which completely calculate Donaldson invariants in
terms of relative invariants of X1,X2. See [4]. But it seems that the assumption on reducible flat
connections has not been removed. Thus the problem (i) and (ii) have been separately dealt with.

In this paper, we deal with both (i) and (ii) at the same time for lens spaces. We apply Fukaya-
Floer type construction to lens spaces with some modifications. We will define an analog I∗(L(p, q); γ)
of Fukaya-Floer homology for an odd prime integer p and a loop γ in L(p, q). In the construction, we
make use of Dirac operators as in [13]. Moreover we construct a gluing formula for Ψu1

X along L(p, q).

As an application, we will prove that X = CP2#CP2 does not admit a decomposition X =
X1 ∪ X2. Here X1 and X2 are simply connected, non-spin 4-manifolds with b+ = 1 and with
boundary L(7, 3) and −L(7, 3) respectively. See Theorem 4.10. This is based on a calculation of
I∗(L(7, 3)), I∗(L(7, 3); γ) and a non-vanishing result of Ψu1

X . The calculation of I∗(L(7, 3)), I∗(L(7, 3), γ)
requires counting the number of instantons over L(7, 3) × R. This was done in [2], [14], [13]. The
non-vanishing result of Ψu1

X was proved in [18].
We give a remark which is related to Seiberg-Witten theory. In [19], Witten introduced Seiberg-

Witten equations and defined Seiberg-Witten invariants using the moduli spaces of solutions of the
equations. Witten also conjectured that Seiberg-Witten invariants are equivalent to Donaldson invari-
ants and that Donaldson invariants can be calculated in terms of Seiberg-Witten invariants through
a formula. This formula has been proved for many 4-manifolds. (See [8] and [15].) Moreover Seiberg-
Witten theory gives us simpler proofs of many results obtained by Donaldson theory and new stronger
results. Theorem 4.10 is in contrast to such things. We should not expect that Theorem 4.10 can be
proved by Seiberg-Witten theory, because CP2#CP2 has a metric of positive scalar curvature and any
invariants from Seiberg-Witten equations (Seiberg-Witten invariants and a refinement due to Bauer
and Furuta [5]) are trivial.

Acknowledgments . The author would like to thank Mikio Furuta for useful conversations.

2. Constructions of instanton homology

2.1. Preliminaries. Let p, q be relatively prime integers with 0 < q < p, and denote by L(p, q) the
lens space S3/Zp. Here the action of Zp = { ζ ∈ C | ζp = 1 } on S3 = { (z1, z2) ∈ C2 | |z1|2+|z2|2 = 1 }
is defined by

ζ · (z1, z2) = (ζz1, ζ
qz2).

Throughout this paper, we consider only the Riemannian metric on L(p, q) induced by the stan-
dard Riemannian metric on S3. In this subsection, we take up some basic facts about SU(2)-flat
connections over L(p, q) and moduli spaces of instantons over L(p, q)× R.

We consider L(p, q) as an oriented manifold with the orientation induced by the standard orienta-
tion of S3. We write −L(p, q) for L(p, q) with the opposite orientation. Let Y be L(p, q) or −L(p, q).
The moduli space R(Y ) of flat connections on the trivial SU(2)-bundle Q = Y × SU(2) is identified
with Hom(π1(Y ), SU(2))/ conj. Since π1(Y ) is abelian, all flat connections are reducible. That is,
the stabilizer Γρ of any flat connection ρ in the gauge group is isomorphic to U(1) or SU(2). For
each class [ρ] ∈ R(Y ) represented by a flat connection ρ, we define an index δY ([ρ]) ∈ Z8 = Z/8Z as
follows. Let A be an SU(2)-connection over Y ×R such that

A =

{

π∗ρ on Y × (−∞,−1),
π∗θ on Y × (1,∞).
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Here π : Y × R → Y is the projection and θ is the trivial flat connection of Q. Take a small positive
number ǫ > 0 and define the function W−+ : Y × R → R>0 by

W−+(y, t) = eǫt.

We define a weighted L2 norm ‖ · ‖L2,(−ǫ,ǫ) on the sections of (Λ0
Y×R ⊕ Λ+

Y×R)⊗ π∗gP by

‖f‖L2,(−ǫ,ǫ) := ‖W−+f‖L2 .

Similarly, we define a weighted L2
1 norm ‖ · ‖

L
2,(−ǫ,ǫ)
1

on the sections of Λ1
Y×R ⊗ π∗gP by

‖f‖
L
2,(−ǫ,ǫ)
1

:= ‖W−+f‖L2
1
.

We consider the operator

DA = d∗A + d+A : L
2,(−ǫ,ǫ)
1 (Λ1

Y×R ⊗ π∗gP ) −→ L2,(−ǫ,ǫ)((Λ0
Y×R ⊕ Λ+

Y×R)⊗ gP ).

We define δY ([ρ]) ∈ Z8 to be ind−+DA mod 8. Here ind−+DA := dimKerDA − dimCokerDA. We
can easily see that δY ([ρ]) depends only on the class [ρ].

For each flat connection ρ over Y , we have the complex:

Ω0
Y (gP )

dρ−→ Ω1
Y (gP )

dρ−→ Ω2
Y (gP ).

Let H i(Y ; ad ρ) be the i-th cohomology group of this complex.

Lemma 2.1. H1(Y ; ad ρ) is trivial.

To prove this, consider the pull-back ρ̃ of ρ by the projection S3 → Y = S3/Zp. Then H
1(Y ; ad ρ)

is identified with the invariant subspace of the natural action of Zp on H1(S3; ad ρ̃). Since S3 is
simply connected, ρ̃ is gauge equivalent to the trivial connection. This means that H1(S3; ad ρ̃) is
isomorphic to H1(S3;R)⊗ su(2). But H1(S3;R) is trivial. Hence we have obtained the statement.

Lemma 2.1 implies that if the curvature of an instanton over Y × R is L2-integrable, then the
instanton exponentially converges to some flat connections at ±∞ with respect to any Sobolev norms.
(See [6, Section 4.1].) We consider moduli spaces of instantons whose curvatures are L2-integrable.

Let M̃ρσ denote the framed moduli space of instantons with limits ρ, σ. That is, M̃ρσ is the quotient
of the space of instantons with limits ρ at −∞ and σ at +∞ by the group of gauge transformations
with limit 1 at ±∞. The group Γρ × Γσ naturally acts on M̃ρσ, and put Mρσ := M̃ρσ/Γρ × Γσ. ( As
stated above, Γρ is the stabilizer of ρ in the gauge group.)

Lemma 2.2. Let ρ, σ be flat connections over Y which represent deferent classes in R(Y ). Then the
moduli space Mρσ is a smooth manifold, and

dimMρσ ≡ δY ([ρ]) − δY ([σ])− dimΓρ mod 8.

First we consider the deformation complex of the framed moduli space M̃ρσ at [A]:

(1) L
2,(ǫ,ǫ)
2 (Λ0

Y×R ⊗ su(2))
dA−→ L

2,(ǫ,ǫ)
1 (Λ1

Y×R ⊗ su(2))
d+A−→ L2,(ǫ,ǫ)(Λ+

Y×R ⊗ su(2)).

Here L2,(ǫ,ǫ) is the completion of the space of compact supported sections by a weighted L2 norm
defined by a function W++ : Y × R → R>0 with

W++(y, t) =

{

e−ǫt if t < −1
eǫt if t > 1.

Similarly for L
2,(ǫ,ǫ)
1 , L

2,(ǫ,ǫ)
2 . We can show that the second cohomology of the complex is trivial by

using Weitzenböck formula for d∗,ǫA + d+A, since the Riemannian metric of Y × R is self-dual and the
scalar curvature is positive. (See [1] for the case when the 4-manifold is closed.) Here d∗,ǫ is the

formal adjoint of dA with respect to the wighted Sobolev norms. This implies that M̃ρσ is a smooth
manifold.
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Next we show that all instantons A with limits ρ, σ are irreducible. Suppose that A is reducible.
Then we can write

A = a⊕−a
for some U(1)-connection a. Since ∗Fa = −Fa and Fa is closed, we have

d∗Fa = ∗d ∗ Fa = − ∗ dFa = 0.

Hence Fa is a harmonic 2-form over Y ×R. Moreover Fa decays exponentially as t→ ±∞. Thus we
have

Fa ∈ ker(d∗ + d) ∩ L2 ∼= Im(H2(XT , ∂XT ;R) → H2(XT ;R)).

Here T > 0 is a positive number and XT = Y × [−T, T ]. Note that H2(XT ;R) = 0 since Y is a lens
space. This means that a (and hence A) is a flat connection over Y × R.

Let A′ be a connection which is gauge equivalent to A and is in temporal gauge. Then by the
instanton equation we have

∂A′

∂t
= − ∗Y FA′ = 0,

where ∗Y is Hodge ∗-operator over Y and we have used FA′ = 0. Therefore the restriction A′
t of A

′

to Y × {t} is independent of t, and especially [ρ] = [σ] in R(Y ). This is a contradiction since we
assumed [ρ] 6= [σ]. Thus A is irreducible.

The fact that A is irreducible implies that the stabilizer of [A] ∈ M̃ρσ in Γρ × Γσ is {±(1, 1)} and

that the action of Γρ × Γσ/{±(1, 1)} on M̃ρσ is free. Hence the quotient Mρσ = M̃ρσ/Γρ × Γσ is also
smooth.

We show the second part of the lemma. The dimension of the framed moduli space M̃ρσ is the
index ind++(d∗,ǫA + d+A) of the complex (1). This is equal to

ind−+(d∗A + d+A) + dimΓσ.

(See [6, Proposition 3.10, Proposition 3.19].) Hence we have

dimMρσ = dim M̃ρσ − dimΓρ − dimΓσ

= ind−+(d∗A + d+A)− dimΓρ

≡ δY ([ρ]) − δY ([σ])− dimΓρ mod 8.

Here we used the additivity of the index in the last equality.

2.2. Analog of Floer homology. In this subsection, we will construct an analog of Floer homology
[10] for lens spaces. The construction in this subsection is originally due to M. Furuta [13]. Floer
homology for a homology 3-sphere Z [10] is defined to be the homology of the chain complex generated
by gauge equivalence classes of flat connections over Z. The boundary operator is defined by counting
number of points of 0-dimensional moduli spaces of instantons over Z × R (with signs). If we apply
this construction to a lens space Y , as explained in [13], we will face the problem that the square of
the boundary operator is not zero. The idea to overcome this problem is that we modify the definition
of the boundary operator using twisted Dirac operators over Y × R.

For each i ∈ Z, let CFi(Y ) be the vector space over Z2 spanned by

{ [ρ] ∈ R(Y ) | Γρ
∼= U(1), δY ([ρ]) ≡ i mod 8 }.

Then we put

C
(0)
i (Y ) := CF2i(Y ), C

(1)
i (Y ) := CF2i+1(Y ).

We will define the boundary operator ∂(0) : C
(0)
∗ → C

(0)
∗−1 as follows. ( The definition of ∂(1) : C

(1)
∗ →

C
(1)
∗−1 is similar.)
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Take generators [ρ] ∈ C
(0)
i (Y ), [σ] ∈ C

(0)
i−1(Y ). By the dimension formula in Lemma 2.2, we have

dimMρσ ≡ 2− 1 ≡ 1 mod 8.

We can take representatives ρ, σ of the classes such that

dimMρσ = 1.

We define M ′
ρσ ⊂Mρσ to be the moduli space of instantons with center of mass 0. Here the center of

mass of A is defined by
∫

Y×R

t|FA|2dµY×R ∈ R.

Standard arguments, which can be found in [6], show that M ′
ρσ is a compact smooth manifold of

dimension 0. That is, M ′
ρσ is a finite set.

Fix a spin structure s of Y and a connection A with limit ρ, σ. Then we have the twisted Dirac
operator over Y × R:

6DA : L
2,(−ǫ,ǫ)
1 (S+ ⊗ E) −→ L2,(−ǫ,ǫ)(S− ⊗ E).

Here E is the rank 2 complex vector bundle over Y × R associated with π∗Q and S± are the spinor
bundle of the spin structure. We denote ind−+ 6DA ∈ Z by iρσ. We put

< ∂(0)([ρ]), [σ] >:=

{

#M ′
ρσ mod 2 if iρσ ≡ 1 mod 2,

0 mod 2 otherwise.

These matrix elements define the map ∂(0) : C
(0)
i → C

(0)
i−1.

Lemma 2.3. ∂(0) ◦ ∂(0) = 0.

For generators [ρ] ∈ C
(0)
i = CF2i and [τ ] ∈ C

(0)
i−2 = CF2i−4, we have

< ∂(0) ◦ ∂(0)([ρ]), [τ ] >=
∑

[σ]

< ∂(0)([ρ]), [σ] >< ∂(0)([σ]), [τ ] > .

Here [σ] runs over the set of generators of C
(0)
i−1.

If iρτ ≡ 1 mod 2, then iρσ or iστ is even by the additivity of the index. By definition, <

∂(0)([ρ]), [σ] > or < ∂(0)([σ]), [τ ] > is trivial, and hence < ∂(0) ◦ ∂(0)([ρ]), [τ ] >≡ 0 mod 2.
To prove the lemma in the case when iρτ ≡ 0 mod 2, we consider the moduli space M ′

ρτ . By the
formula in Lemma 2.2,

dimMρτ ≡ δY ([ρ])− δY ([τ ])− 1 ≡ 4− 1 ≡ 3 mod 8.

Hence we have the 2-dimensional moduli space M ′
ρτ of instantons with center of mass 0. We need a

real line bundle Λ over the moduli space M ′
ρτ , which is defined as in [7] for closed 4-manifolds. There

is the universal bundle Ẽ over (Y × R)× M̃ρτ :

Ẽ := E ×G0 Ainst
ρτ −→ (Y × R)× M̃ρτ .

Here Ainst
ρτ is the space of instantons with limits ρ, τ and G0 is the group of gauge transformations

with limit 1 at ±∞. For each A ∈ Ainst
ρτ , we have the real part of the twisted Dirac operator 6DA:

(6DA)R : L
2,(−α,α)
1 ((S+ ⊗ E)R) −→ L2,(−α,α)((S− ⊗ E)R).

The universal bundle and the family of the real operators define the determinant line bundle over the
framed moduli space:

Λ̃
R−→ M̃ρτ .

We have a natural action of Γρ×Γτ on Λ̃ which is a lift of the action on M̃ρτ . The subgroup {±(1, 1)}
acts on M̃ρτ trivially and on the fiber of Λ̃ with weight ind 6DA = iρτ . Since we assumed that iρτ is
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even, the action on the fiber is also trivial. Hence Λ̃ descends to a line bundle over Mρτ . We denote
the restriction to M ′

ρτ by Λ.

Take a generic section s of Λ. We consider the end of the zero locus s−1(0). A standard argument,
which can be found in [6], shows the following:

Lemma 2.4. Any sequence {[Aα]}α in M ′
ρτ has a subsequence {[Aα′ ]}α′ which is chain-convergent

to some ([A1], [A2]) ∈ M ′
ρσ × M ′

στ . Here σ is a flat connection with Γσ
∼= U(1) and dimM ′

ρσ =

dimM ′
στ = 0.

As is well known, gluing instantons gives the map

Gl :
∐

[σ]

M ′
ρσ ×M ′

στ ×
(

Γσ/{±1}
)

× (T0,∞) −→M ′
ρτ ,

where [σ] runs over the set of generators of C
(0)
i−1, and T0 is a large positive number. The gluing map

Gl is a homeomorphism to an open set in M ′
ρτ and the complement of the image of Gl is compact.

Fix T1 > T0 and put M ′′
ρτ := M ′

ρτ\ imGl>T1 . Here Gl>T1 is the restriction of Gl to the domain

where the parameter T is larger than T1. For a generic section s of Λ, N ′′
ρτ := s−1(0) ∩M ′′

ρτ is a
smooth compact 1-dimensional manifold with boundary

∐

[σ]

(

M ′
ρσ ×M ′

στ ×
(

Γσ/{±1}
)

× {T1}
)

∩ s−1(0).

For a ∈ M ′
ρσ × M ′

στ , we denote by U(1)a the corresponding gluing parameter. That is, U(1)a :=

{a} ×
(

Γσ/{±1}
)

× {T1} ∼= U(1).

Lemma 2.5. The line bundle Λ is non-trivial on U(1)a if and only if

iρσ ≡ 1 mod 2.

Note that iρσ ≡ iστ mod 2 since we assumed iρτ ≡ 0 mod 2.
This lemma can be proved in the same way as [18, Lemma 3.14]. We give outline of the proof. Let

p : Γσ → U(1)a be the projection. The gluing theory gives a natural trivialization

Λ̂ := p∗Λ|U(1)a
∼= R.

We have the natural action of Z2 on Λ̂ and Λ̂/Z2 = Λ|U(1)a . Through the trivialization, the action of

−1 ∈ Z2 on the fiber is (−1)iρσ . ( See (3) below.) Hence we have obtained the statement.

By this lemma, we have

#∂N ′′
ρτ ≡

∑

[σ]; iρσ≡iστ≡1 mod 2

#M ′
ρσ ·#M ′

στ mod 2

≡
∑

[σ]

< ∂(0)([ρ]), [σ] >< ∂(0)([σ]), [τ ] > mod 2

≡< ∂(0) ◦ ∂(0)([ρ]), [τ ] > mod 2.

On the the hand, the number of the boundaries of a 1-dimensional compact manifold is even. Hence
we have obtained the required identity

< ∂(0) ◦ ∂(0)([ρ]), [τ ] >≡ 0 mod 2.

We can also show ∂(1) ◦ ∂(1) = 0 by the same arguments.

Definition 2.6. I(0)(Y ; s) := H∗(C
(0)
∗ (Y ), ∂(0)), I(1)(Y ; s) := H∗(C

(1)
∗ (Y ), ∂(1)).
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2.3. Analog of Fukaya-Floer homology. The aim of this subsection is to construct analog of
Fukaya-Floer homology [11] for lens spaces. Fukaya-Floer homology is defined for a triple of a 3-
manifold Z, a U(2)-bundle Q over Z and a loop γ in Z, provided that all (projectively) flat connections
on Q are irreducible. The boundary operator is defined using not only 0-dimensional moduli spaces
over Z×R but also 2-dimensional moduli spaces. As in the previous case, to extend this construction
to lens spaces Y , we must change the definition of the boundary using twisted Dirac operators over
Y ×R. Furthermore, as we will see later, we need to look out the contribution of the trivial connection
differently from [11], [4] and the previous subsection. The discussion which involves the trivial flat
connection is similar to that in [18].

Throughout this subsection, we assume p is an odd prime integer. The assumption that p is odd
implies that Y has an unique spin structure (up to isomorphism), and we have

δY ([ρ]) ≡ 0 mod 2

for all flat connections. See Corollary 4.4. Moreover the only trivial flat connection has SU(2) as the
stabilizer in the gauge group.

Let γ be a simple closed curve in Y . Put

Ci(Y ; γ) :=

{

CF2i(Y )⊕ CF2i−2(Y ) if i 6≡ 0 mod 8,
CF0(Y )⊕ CF−2(Y )⊕ Z2 < [θ] > if i ≡ 0 mod 8 .

We will define the boundary operator ∂γ : C∗(Y ; γ) → C∗−1(Y ; γ) as follows.
As before, we define the matrix elements

< ∂γ([ρ]), [σ] >∈ Z2

for generators [ρ] ∈ Ci(Y ; γ), [σ] ∈ Ci−1(Y ; γ) using moduli spaces over Y × R. First assume that

[ρ], [σ] 6= [θ], δY ([ρ])− δY ([σ]) ≡ 2 mod 8.

In this case, we have the moduli space M ′
ρσ of dimension 0. As before we define

< ∂γ([ρ]), [σ] >:=

{

#M ′
ρσ mod 2 if iρσ ≡ 1 mod 2,

0 mod 2 otherwise.

Next we consider the case where

[ρ], [σ] 6= [θ], δY ([ρ])− δY ([σ]) ≡ 4 mod 8.

In this case we have the moduli space M ′
ρσ of dimension 2. To define the matrix element, we use the

determinant line bundle of twisted ∂̄-operators over γ×R. Take a spin structure of γ which represent
the trivial spin bordism class. ( See [18, Remark 2.3] for the reason why we choose the spin structure.

) The spin structure induces a spin structure of γ ×R (i.e. a square root K
1
2
γ×R of the canonical line

bundle Kγ×R ) and we have twisted ∂̄-operators

∂̄A : Γ(K
1
2
γ×R ⊗ E) −→ Γ(K

1
2
γ×R ⊗ E ⊗ Λ0,1

γ×R).

Here E is the rank 2 complex vector bundle over Y × R associated with π∗Q and A is a connection
on π∗Q with limit ρ, σ. As in the previous subsection, the family of twisted ∂̄ operators defines the
determinant line bundle L̃γ;ρσ over the framed moduli space M̃ ′

ρσ. We show that this line bundle

descends to a line bundle over M ′
ρσ . It is sufficient to prove that the index of ∂̄A is even.

Lemma 2.7. When p is prime, we have:

(1) Assume that [γ] ∈ H1(Y ;Z) is trivial. Then for any flat connections ρ, σ connections A with
limits ρ, σ, the index ind−+ ∂̄A is even.

(2) Assume that [γ] ∈ H1(Y ;Z) is non-trivial. Take flat connections ρ, σ with Γρ,Γσ
∼= U(1). For

any connection A over Y × R with limits ρ, σ, the index ind−+ ∂̄A is even.
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We can see (1) in this lemma as follows. Since [γ] ∈ H1(Y ;Z) is trivial, the restrictions ρ|γ , σ|γ are
gauge equivalent to the trivial flat connection over γ. In particular, ρ|γ is gauge equivalent to σ|γ .
By additivity of the index, ind−+ ∂̄A is equal to the index of ∂̄-operator over γ × S1 twisted by the
SU(2)-bundle. This index is zero by the index theorem.

The second part of Lemma 2.7 follows from:

Lemma 2.8. Assume that [γ] ∈ H1(Y ;Z) is non-trivial and that p is prime. Take flat connections
ρ, σ with Γρ,Γσ

∼= U(1). For any connection A with limits θ and ρ or with limits σ and θ, the index
ind−+ ∂̄A is odd.

Assuming Lemma 2.8, we give the proof of Lemma 2.7. By the additivity of the index, we have

ind−+ ∂̄Aθρ
+ ind−+ ∂̄Aρσ = ind−+ ∂̄Aθσ

.

Here Aθρ is a connection with limits θ, ρ. Similarly for Aρσ, Aθσ. By Lemma 2.8, both ind−+ ∂̄Aθρ

and ind−+ ∂̄Aθσ
are odd. Therefore ind−+ ∂̄Aρσ is even.

We will give the proof of Lemma 2.8 at the end of this subsection.

We go back to the definition of ∂γ . As before suppose that δY ([ρ]) − δY ([σ]) ≡ 4 mod 8 and that
[ρ], [σ] 6= [θ]. By Lemma 2.7, we have the determinant line bundle

Lγ;ρσ := L̃γ;ρσ/Γρ × Γσ
C−→M ′

ρσ.

We want to define the matrix element < ∂γ([ρ]), [σ] > to be #s−1
γ (0) mod 2 for a generic section

sγ :M ′
ρσ → Lγ;ρσ if iρσ ≡ 1 mod 2 and zero otherwise. However M ′

ρσ is not compact in general. We
need a section of Lγ;ρσ which is non-vanishing on the end of M ′

ρσ and transverse to the zero section.
The end can be described as in the proof of Lemma 2.3. The end is the image of the gluing map

Gl :
∐

[µ]

M ′
ρµ ×M ′

µσ × (Γµ/{±1}) × (T0,∞) −→M ′
ρσ .

Here [µ] runs over the the set of gauge equivalence of flat connections with δY ([ρ]) − δY ([µ]) ≡ 2
mod 8 and with Γµ

∼= U(1). We can take a desired section sγ as follows.
First for each [µ] fix generic sections sγ:ρµ and sγ;µσ of the determinant line bundles over M ′

ρµ and
M ′

µσ . The zero loci of these sections are empty.

Next we consider the end ofM ′
ρσ described by gluing instantons [A1] ∈M ′

ρµ and [A2] ∈M ′
µσ , which

is identified with E =
(

Γµ/{±1}
)

× (T0,∞). Let L̂ be the pull-back of the restriction Lγ:ρσ|E by the
projection

Γµ × (T0,∞) −→ E =
(

Γµ/{±1}
)

× (T0,∞).

On Γµ × (T0,∞), the additivity of the index gives an isomorphism

(2) Ĝl : (Lγ:ρµ)[A1] ⊠ (Lγ:µσ)[A2]

∼=−→ L̂.

For (g, T ) ∈ Γµ × (T0,∞), we have

(3) Ĝl|(g,T ) = (−1)ind
−+ ∂̄A1 · Ĝl|(−g,T ).

Here Ĝl|(g,T ) is the restriction of Ĝl to the fiber over (g, T ). This can be seen as follows. The gauge
equivalence class of instanton corresponding to (g, T ) is obtained by gluing instantons u(A1) and A2,
where u is a gauge transformation over Y × R with limit g at +∞. On the other hand, the gauge
equivalence class corresponding to (−g, T ) is obtained by gluing −u(A1) and A2. The action of −1

on the fiber (Lγ;ρµ)[A1] is (−1)ind
−+ ∂̄A1 . Hence we have obtained (3).

By Lemma 2.7, ind−+ ∂̄A1 ≡ 0 mod 2. Thus we obtain:



INSTANTON FLOER HOMOLOGY FOR LENS SPACES 9

Lemma 2.9. The above isomorphism (2) descends to an isomorphism

Lγ:ρσ|E ∼= (Lγ:ρµ)[A1] ⊠ (Lγ:µσ)[A2]

over E =
(

Γµ/{±1}
)

× (T0,∞).

As in [18, Section 2], we can construct a section sγ : M ′
ρσ → Lρσ which is compatible with the

identification of Lemma 2.9. That is, if [Aα] be a sequence of points in M ′
ρσ converging to some

([A1], [A2]) ∈M ′
ρµ×M ′

µσ then sγ([Aα]) → sγ;ρµ([A1])⊗ sγ;µσ([A2]) in the sense of [18, Definition 2.7].
The section sγ does not vanish on the ends of the moduli space, since sγ;ρµ and sγ;µσ are non-vanishing
sections. Thus the zero locus s−1

γ (0) is compact. Perturbing sγ over a compact set in M ′
ρσ, we may

assume that sγ is transverse to the zero section. Therefore s−1
γ (0) is a finite set. We define the matrix

element by

< ∂γ([ρ]), [σ] >:=

{

#s−1
γ (0) mod 2 if iρσ ≡ 1 mod 2 ,
0 mod 2 otherwise.

Next we define the terms which involve the trivial connection. Let [ρ] ∈ CF2(Y ) ⊂ C1(Y ; γ),
[σ] = [θ] ∈ C0(Y ; γ). Then we have a 0-dimensional moduli space M ′

ρθ. We define

< ∂γ([ρ]), [θ] >:=

{

#M ′
ρθ mod 2 if iρθ ≡ 1 mod 2, [γ] 6= 0 in H1(Y ;Z),

0 mod 2 otherwise.

Let [ρ] = [θ] ∈ C0(Y ; γ), [σ] ∈ CF−4(Y ) ⊂ CF−1(Y ; γ). Then

dimMθσ ≡ δY ([θ])− δY ([σ])− dimΓθ ≡ 0− (−4)− 3 ≡ 1 mod 8.

We have a 0-dimensional moduli space M ′
θσ. We put

< ∂γ([θ]), [σ] >:=

{

#M ′
θσ mod 2 if iθσ ≡ 1 mod 2, [γ] 6= 0 in H1(Y ;Z),

0 mod 2 otherwise.

We define other matrix elements to be zero.

The part of the boundary map which does not involve the trivial flat connection is as the following
diagram:

Ci(Y ; γ)
∂γ

// Ci−1(Y ; γ)
∂γ

// Ci−2(Y ; γ)

CF2i(Y ) //

''NNNNNNNNNNNN
CF2i−2(Y ) //

''NNNNNNNNNNNN
CF2i−4(Y )

⊕ ⊕ ⊕

CF2i−2(Y ) // CF2i−4(Y ) // CF2i−6(Y )

The horizontal maps are defined using 0-dimensional moduli spaces, and the diagonal maps are defined
using 2-dimensional moduli spaces and the determinant line bundles of γ ×R.

The part of the boundary map which involves the trivial flat connection is as the following diagram:

(4) C1(Y ; γ)
∂γ

// C0(Y ; γ)
∂γ

// C−1(Y ; γ)

CF2(Y )
a //

c

&&MMMMMMMMMMM

e

��;
;

;
;

;
;

;
;

;
;

;
;

;
;

;
;

;
;

;
CF0(Y ) //

b

&&NNNNNNNNNNN
CF−2(Y )

⊕ ⊕ ⊕

CF0(Y ) // CF−2(Y )
d // CF−4(Y )

⊕

Z2 < [θ] >

f

88ppppppppppp
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The a, c and e are maps from CF2(Y ), and the b, d and f are maps into CF−4(Y ). (These notations
will be used later.)

Lemma 2.10. ∂γ ◦ ∂γ = 0.

We must show < ∂γ ◦ ∂γ([ρ]), [τ ] >≡ 0 mod 2 for all generators [ρ] ∈ Ci(Y ; γ), [τ ] ∈ Ci−2(Y ; γ).
We give the proof in the case where [ρ] ∈ CF2i(Y ) ⊂ Ci(Y ; γ), [τ ] ∈ CF2i−6(Y ) ⊂ Ci−2(Y ; γ). The
proof for the other cases is the same as that of Lemma 2.3.

If iρτ ≡ 1 mod 2, then we have iρσ ≡ 1 mod 2 or iστ ≡ 1 mod 2 for generators [σ] of Ci−1(Y ; γ).
Hence < ∂γ([ρ]), [σ] >≡ 0 mod 2 or < ∂γ([σ]).[τ ] >≡ 0 mod 2 by definition. Since < ∂γ([ρ]), [τ ] >=
∑

[σ] < ∂γ([ρ]), [σ] >< ∂γ([σ]), [τ ] >, we have < ∂γ ◦ ∂γ([ρ]), [τ ] >≡ 0 mod 2.

Suppose that iρτ ≡ 0 mod 2. We consider the moduli space M ′
ρτ of dimension 4. We analyse the

end of a 1-dimensional moduli space

N =M ′
ρτ ∩ s−1

γ;ρτ (0) ∩ s−1
Λ;ρτ (0),

where sγ;ρτ and sΛ;ρτ are sections of Lγ;ρτ →M ′
ρτ and Λ →M ′

ρτ respectively.
A dimension counting argument shows the following:

Lemma 2.11. Let {[Aα]}α be a sequence in M ′
ρτ . Then we can find a subsequence {[Aα′

]}α′ such
that

(i) [Aα′
] −→ ([A1], [A2]) ∈M ′

ρσ×M ′
στ , where σ is a flat connection with Γσ

∼= U(1),and dimM ′
ρσ =

2, dimM ′
στ = 0, (i.e. [σ] ∈ CF2i−4) or

(ii) [Aα′
] −→ ([A1], [A2]) ∈M ′

ρσ×M ′
στ , where σ is a flat connection with Γσ

∼= U(1),and dimM ′
ρσ =

0, dimM ′
στ = 2, (i.e. [σ] ∈ CF2i−2 ) or

(iii) [Aα′
] −→ ([A1], [A2]) ∈M ′

ρθ ×M ′
θσ, and dimM ′

ρθ = 0,dimM ′
θσ = 0.

Note that (iii) occurs only if [ρ] ∈ CF2(Y ) ⊂ CF1(Y ; γ), [τ ] ∈ CF−4(Y ) ⊂ CF−1(Y ; γ), and that
the case where dimM ′

ρσ = dimM ′
στ = 1 does not occur since δY ([ρ])− δY ([σ]) ≡ 0 mod 2 for all ρ, σ

as we will prove in subsection 4.1. (Corollary 4.4)

We consider the case where (iii) may occur. That is, [ρ] ∈ CF2(Y ), [τ ] ∈ CF−4(Y ). As usual, we
take a section sγ:ρτ of Lγ;ρτ → M ′

ρτ such that if [Aα] → ([A1], [A2]) ∈ M ′
ρσ ×M ′

στ and Γσ
∼= U(1),

then sγ;ρτ ([A
α]) → sγ;ρσ([A1])⊗ sγ;στ ([A2]). By Lemma 2.11, the end of N is identified with

∐

[σ]:
δY ([σ])≡−2 mod 8

∐

a

(

U(1)a ∩ s−1
Λ;ρτ (0)

)

∪

∐

[σ]:
δY ([σ])≡0 mod 8

Γσ
∼=U(1)

∐

b

(

U(1)b ∩ s−1
Λ:ρτ (0)

)

∪

∐

c

(

SO(3)c ∩ s−1
γ:ρτ (0) ∩ s−1

Λ;ρτ (0)
)

.

(5)

Here a, b and c run over
(

M ′
ρσ ∩ s−1

γ;ρσ(0)
)

×M ′
στ , M

′
ρσ ×

(

M ′
στ ∩ s−1

γ;στ (0)
)

, and M ′
ρθ ×M ′

θτ

respectively. For a = ([A1], [A2]), U(1)a is the gluing parameter used to glue instantons [A1] and [A2].
Similarly for U(1)b and SO(3)c. We denote the first term in (5) by ∂1N , and the second and third
terms by ∂2N and ∂3N . From Lemma 2.5 we have

#
(

U(1)a ∩ s−1
Λ;ρτ (0)

)

=

{

1 mod 2 if iρσ ≡ iστ ≡ 1 mod 2
0 mod 2 otherwise.
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Therefore we obtain

#∂1N ≡
∑

[σ]:
δY ([σ])≡−2 mod 8
iρσ≡iστ≡1 mod 2

#(M ′
ρσ ∩ s−1

γ;ρσ(0)) ×M ′
στ

≡
∑

[σ]:
δY ([σ])≡−2 mod 8

< ∂γ([ρ]), [σ] >< ∂γ([σ]), [τ ] >

≡
∑

[σ]

< a([ρ]), [σ] >< b([σ]), [τ ] > mod 2.

Here a, b are the maps in the diagram (4). Similarly we have

#∂2N ≡
∑

[σ]:
δY ([σ])≡0 mod 8

Γσ
∼=U(1)

< ∂γ([ρ]), [σ] >< ∂γ([σ]), [τ ] >

≡
∑

[σ]

< c([ρ]), [σ] >< d([σ]), [τ ] > mod 2.

Here c, d are also the maps in (4).
To compute #∂3N3 mod 2, we must know whether Λ|SO(3)c and Lρτ |SO(3)c are trivial or not. As

[18, Lemma 3.14], we can show that Λ|SO(3)c is non-trivial if and only if

iρθ ≡ iθτ ≡ 1 mod 2.

Similarly Lγ;ρτ |SO(3)c is non-trivial if and only if

ind−+ ∂̄A1 ≡ ind−+ ∂̄A2 ≡ 1 mod 2.

Here c = ([A1], [A2]) ∈M ′
ρθ ×M ′

θτ . By Lemma 2.7 and 2.8, we obtain:

Lemma 2.12. The line bundle Lγ:ρτ is non-trivial over SO(3)c if and only if [γ] ∈ H1(Y ;Z) is
non-trivial.

Therefore it follows that

#∂3N ≡
{

#M ′
ρθ ·#M ′

θτ mod 2 if iρθ ≡ iθτ ≡ 1 mod 2, [γ] 6= 0 ∈ H1(Y ;Z),

0 mod 2 otherwise.

≡< e([ρ]), [θ] >< f([θ]), [τ ] > mod 2.

Here e and f are the maps in (4). Thus we have

#∂1N +#∂2N +#∂3N ≡
∑

[σ]

< a([ρ]), [σ] >< b([σ]), [τ ] > +
∑

[σ]

< c([ρ]), [σ] >< d([σ]), [τ ] >

+ < e([ρ]), [θ] >< f([θ]), [τ ] >

≡< ∂γ ◦ ∂γ([ρ]), [τ ] > mod 2.

Since the number of the ends of a 1-dimensional manifold is even, the left hand side is even. Thus
we have obtained < ∂γ ◦ ∂γ([ρ]), [τ ] >≡ 0 mod 2 as required.

The proof for the other cases is similar and we omit the proof.

Definition 2.13. Let p be an odd, prime integer and Y be L(p, q) or −L(p, q). Define I∗(Y ; γ) :=
H∗(C∗(Y ; γ), ∂γ).
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We can show that I∗(Y ; γ) is independent of the choice of sections of Lγ;ρσ, up to canonical
isomorphism, using standard arguments.

It remains to prove Lemma 2.8.
Proof of Lemma 2.8

Let ρ be a flat connection over Y with Γρ
∼= U(1) and take a connection A over Y ×R with limits

θ, ρ. We can take a gauge transformation g over γ such that

g∗(ρ) = ρl ⊕−ρl
over γ. Here l is a positive integer with 1 ≤ l ≤ p − 1, ρl =

2πl
√
−1

p
dϕ, and ϕ is a coordinate of

γ such that the restriction of the Riemannian metric of Y to γ is written as dϕ⊗2. Note that the
restriction ρ|γ is not gauge equivalent to the trivial connection because [γ] 6= 0 in H1(Y ;Z) = Zp and
we assumed that p is prime. Hence l is not zero. Since SU(2) is simply connected, we can take a
gauge transformation g̃ over γ × R such that

g̃|γ×(−∞,−1) = 1, g̃|γ×(1,∞) = g.

Since ind−+ ∂̄A depends only on the limits of the restriction A|γ×R, it is sufficient to consider a
connection A of the form

A = a⊕−a.
Here a is a U(1)-connection such that

a =

{

θ on γ × (−∞,−1) ,
ρl on γ × (1,∞) .

The index ind−+ ∂̄A is the sum ind−+ ∂̄a + ind−+ ∂̄−a. We compute ind−+ ∂̄a and ind−+ ∂̄−a.
For t ∈ [0, 1], put

at =
2πl

√
−1t

p
dϕ.

We give the complex structure γ × R using the coordinate

z = t+
√
−1ϕ

where t is the coordinate of R and ϕ is the coordinate of γ. We trivialize the line bundlesKγ×R = Λ1,0
γ×R

and Λ0,1
γ×R using e

√
−1ϕdz = e

√
−1ϕ(dt+

√
−1dϕ) and dz̄ = dt−

√
−1dϕ respectively. (The factor e

√
−1ϕ

makes the trivialization of Kγ×R be compatible with the spin structure of γ × R chosen before.)
Through these trivializations, the twisted ∂̄-operator ∂̄at is written as

∂̄at =
1

2

(

∂

∂t
+

√
−1

∂

∂ϕ
− 2πlt

p

)

.

The index ind−+ ∂̄a is equal to the spectral flow of the family

√
−1

∂

∂ϕ
− 2πlt

p
+ ǫ (0 ≤ t ≤ 1),

where ǫ > 0 is the small number used to define the weighted Sobolev spaces L2,(−ǫ,ǫ), L
2,(−ǫ,ǫ)
1 . The

spectra of this family are

λn(t) = −2πlt

p
+ ǫ+ 2πn (n ∈ Z).

From this, we have ind−+ ∂̄a = −1.

Similarly, the index ind−+ ∂̄−a is equal to the spectral flow of

√
−1

∂

∂ϕ
+

2πlt

p
+ ǫ (0 ≤ t ≤ 1).

It is easy to see that ind−+ ∂̄−at = 0. Therefore we have ind−+ ∂̄A = −1.
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The proof for connections A with limits σ, θ is similar.

3. Gluing formula

3.1. 2-torsion invariant for closed 4-manifolds. We show a gluing formula for an invariant Ψu1
X

of non-spin closed 4-manifolds X introduced in [17]. We recall the definition of Ψu1
X briefly.(See

also [9] for the case when X is spin.) This invariant is defined to be a function on a subspace of
⊕d≥0H2(X;Z)⊗d as follows.

Let X be a closed, non-spin, simply connected 4-manifold with b+ > 1 and even. Take a principal
SO(3)-bundle P over X with w2(P ) = w2(X) and with p1(P ) ≡ σ(X) mod 8. Here σ(X) is the
signature of X. Fix a Riemannian metric on X. Then we have the moduli space MP = MP (g) of
instantons on P . For generic g, MP is a smooth manifold of dimension

−2p1(P )− 3(1 + b+(X)).

Since we assumed b+(X) is even, the dimension is odd, and we can write dimMP = 2d+ 1 for some
integer d.

Suppose d ≥ 0 and take d homology classes [Σ1], . . . , [Σd] ∈ H2(X;Z) with self-intersection number
even. Then we have the determinant line bundles LΣi

→MP of the twisted ∂̄-operator over Σi. We
can take sections sΣi

of LΣi
such that

N =MP ∩ VΣ1 ∩ · · · ∩ VΣd

is a compact smooth manifold of dimension 1. (See [17].) Here VΣi
is the zero locus of sΣi

.
Take a U(2)-bundle Q over X with Q/U(1) = P and a spin-c structure sX of X with c1(det s) =

−c1(Q). Then we have the real part

(6DA)R : Γ((S+ ⊗ E)R) −→ Γ((S− ⊗ E)R)

of the twisted Dirac operator 6DA. Here A is a connection on Q, E is the rank 2 complex vector
bundle associated with Q, and S± is the spinor bundles of s. We denote by Λ the determinant line
bundle over MP of the family {(6DA)R}[A]. We define Ψu1

X ([Σ1], . . . , [Σd]) ∈ Z2 to be

Ψu1
X ([Σ1], . . . , [Σd]) = #N ∩ s−1

Λ (0) mod 2

for a generic section sΛ of Λ. We can see that this is independent of the choices of the Riemannian
metric and the sections of the line bundles.

3.2. Relative invariants. In this subsection, we generalize Ψu1
X to compact manifolds with boundary

Y . Here Y denote L(p, q) or −L(p, q) as usual. Throughout this subsection we assume that p is odd.

Let X1 be a compact, connected, simply connected, non-spin 4-manifold with boundary Y . Assume
that b+(X1) > 0. We take a Riemannian metric on X1 whose restriction to Y coincides with the
standard metric. Before we define the relative invariant of X1, we discuss the dimension of moduli
spaces of instantons over X̂1 = X1 ∪ (Y × R≥0). To calculate the dimension, we need the following:

Lemma 3.1. Let P1 be an SO(3)-bundle over X1. There exists a cohomology class α ∈ H2(X1;Z)
with the following properties:

(i) α ≡ w2(P1) mod 2,
(ii) α|Y = 0 in H2(Y ;Z).

We will give the proof later. Fix a cohomology class α ∈ H2(X1;Z) with the above properties.
From the exact sequence

H1(Y ;Z) = 0 → H2(X1, Y ;Z) → H2(X1;Z) → H2(Y ;Z) → · · ·
and the property that α|Y = 0, there is the unique lift α̃ ∈ H2(X1, Y ;Z) of α. We define

α2 :=< α ∪ α̃, [X1, Y ] >∈ Z.
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Proposition 3.2. We denote by P̂1 the extension of P1 to X̂1 = X1 ∪ (Y × R≥0) . For any flat
connection ρ over Y , we have

dimM
P̂1,ρ

≡ −δY ([ρ]) − 2α2 − 3(1 + b+(X1)) mod 8.

Here M
P̂1,ρ

is the moduli space of instantons on P̂1 with limit ρ.

We prove Lemma 3.1 and Proposition 3.2. Lemma 3.1 follows from:

Lemma 3.3. The maps H2(X1;Z) → H2(X1;Z2) and H
2(X1;Z) → H2(Y ;Z) are surjective.

Assuming this lemma, we prove Lemma 3.1. By Lemma 3.3, we can find a lift α′ ∈ H2(X1;Z) of
w2(P1) ∈ H2(X1;Z2). By Bockstein exact sequence

H2(Y ;Z)
×2−→ H2(Y ;Z) → H2(Y ;Z2) = 0

there is an element β′ ∈ H2(Y ;Z) such that α′|Y = 2β′. (Recall that we assumed that p is odd.)
By Lemma 3.3, we have an extension α′′ ∈ H2(X1;Z) of β

′ ∈ H2(Y ;Z). Putting α := α′ − 2α”, we
obtain a cohomology class with the required properties.

To prove Lemma 3.3, we consider the exact sequences:

· · · → H1(Y ;Z) → H1(X1;Z) → H1(X1, Y ;Z) → 0

· · · → H1(X1;Z2) → H2(X1;Z)
×2→ H2(X1;Z) → H2(X1;Z2) → H3(X1;Z) → · · ·

From the first sequence and the fact that H1(X1;Z) = 0 we see that H1(X1, Y ;Z) = 0. (We assumed
that X1 is simply connected.) By Poincare duality, we also have H3(X1;Z) = 0. From the second
sequence, it follows that H2(X1;Z) → H2(X1;Z2) is surjective.

We also see that H2(X1;Z) → H2(Y ;Z) is surjective from the exact sequence

H2(X1, Y ;Z) → H2(X1;Z) → H2(Y ;Z) → H3(X1, Y ;Z) ∼= H1(X1;Z) = 0.

Proof of Proposition 3.2
Choose a cohomology class α ∈ H2(X1;Z) with the properties in Lemma 3.1. Let Q1 → X1 be a

U(2)-bundle with c1(Q1) = α and fix an identification Q1/U(1) = P1. Since α|Y = 0, we can take
a trivialization ϕ of Q1|Y . We write η for the trivial connection with respect to ϕ. The fact that

H1(X1;Z2) = 0 implies that the moduli space M
Q̂1,η

of instantons on Q̂1 with fixed determinant

is naturally identified with M
P̂1,θ

. Here θ is the trivial flat connection on P1|Y with respect to the

trivialization induced by ϕ.
Take a compact oriented 4-manifold X2 with boundary −Y . Then we have a closed 4-manifold

X = X1 ∪Y X2. Using the trivialization ϕ, we extend Q1 to X in the obvious way. We write QX for
the U(2)-bundle over X. By the index formula, we have

(6) dimMQX
= 8c2(QX)− 2α2 − 3(1 − b1(X) + b+(X)).

Here we used the fact that c1(QX)2 = α2. By the additivity of the index, we can also write

(7) dimMQX
= dimM

Q̂1,η
+ dimM

Q̂2,η
+ 3.

Here Q̂2 is the trivial U(2)-bundle over X̂2. The formal dimension dimM
Q̂2,η

is equal to the index of

d∗ + d+ : L2,ǫ
1 (Λ1

X̂2
⊗ su(2)) −→ L2,ǫ((Λ0

X̂2
⊕ Λ+

X̂2
)⊗ su(2)).

It is easy to see that the index is

(8) − 3(1 − b1(X2) + b+(X2)).

From (6), (7) and (8), we obtain

dimM
P̂1,θ

= dimM
Q̂1,η

= 8c2(QX)− 2α2 − 3(1 + b+(X1)) ≡ −2α2 − 3(1 + b+(X1)) mod 8.
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It follows from the additivity of the index that

dimM
P̂1,ρ

≡ dimM
P̂1,θ

− δY ([ρ]) ≡ −δY ([ρ]) − 2α2 − 3(1 + b+(X1)) mod 8

for any flat connection ρ.

From now on, we suppose that w2(P1) ≡ w2(X1) mod 2, and fix a cohomology class α ∈ H2(X1;Z)
with the properties in Lemma 3.1. Take a U(2)-bundle Q1 on X1 as in the proof of Proposition 3.2.

As before, we identify the moduli spaces of instantons on P̂1 with the moduli spaces of instantons on
Q̂1 with fixed determinant adet. Here adet is a fixed connection on the U(1)-bundle over X̂1 induced

by Q̂1. Suppose that the limit of adet at ∞ is the trivial connection.
Since we supposed p is odd, H1(Y ;Z2) = 0. Hence the moduli space of SO(3)-flat connections

over Y and the moduli spaces of SO(3)-instantons over Y × R are also naturally identified with the
moduli spaces of the SU(2)-bundle. Hence we can regard Floer homologies in the previous section as
those defined by using the SO(3)-bundle P1|Y .

Suppose that b+(X1) is odd. Then −2α2 − 3(1 + b+(X1)) is even. Put

d := −2α2 + 3(1 + b+(X1))

2
.

We define relative invariants of X1 in this situation. We consider three cases. In the first case, we will

define Ψu1
X1

∈ Id(Y ) using 0-dimensional moduli spaces over X̂1. (Since δY ≡ 0 mod 2, I
(1)
∗ (Y ) = 0.

Hence we write I∗(Y ) for I
(0)
∗ (Y ).) In the second case, we consider a homology class [Σ1] ∈ H2(X1;Z)

with [Σ1]·[Σ1] ≡ 0 mod 2. Here Σ1 is a closed oriented surface embedded in X1. Using 2-dimensional

moduli spaces over X̂1, we will define Ψu1
X1

([Σ1]) ∈ Id−1(Y ). In the last case, we consider a relative

homology class [Σ1] ∈ H2(X1, Y ;Z). Here Σ1 is an embedded surface X1 with ∂Σ1 = γ ⊂ Y . We will
define a relative invariant Ψu1

X1
([Σ1]) ∈ Id(Y, γ) using 0-dimensional and 2-dimensional moduli spaces,

provided the class [Σ1] satisfies some conditions.

As in the definition of the invariant Ψu1
X for closed manifolds X, we need Dirac operators on X̂1 to

define the relative invariant. Take a spin-c structure ŝ1 of X̂1 with c1(det ŝ1) = −c1(Q̂1). Let Ê1 be

the rank 2 complex vector bundle over X̂1 associated with Q̂1. For any connection A on Q̂1, we have
the twisted Dirac operator

6DA : L2
1(Ŝ

+
1 ⊗ Ê1) −→ L2(Ŝ−

1 ⊗ Ê1).

Here Ŝ±
1 are the spinor bundle associated with ŝ1. For a connection A with limit ρ, put

iρ := ind 6DA ∈ Z.

For flat connections ρ over Y with δY ([ρ]) ≡ 2d mod 8, we have 0-dimensional moduli spaces
M

P̂1,ρ
. We define

< ψu1
X1
, [ρ] >:=

{

#M
P̂1,ρ

mod 2 if iρ ≡ 1 mod 2,

0 mod 2 otherwise .

These numbers define an element ψu1
X1

∈ Cd(Y ).

Lemma 3.4. ∂ψu1
X1

= 0.

This is proved by counting the number of the ends of 1-dimensional moduli spaces. The proof is
similar to that of Lemma 2.3 and we omit the proof.

Definition 3.5. Ψu1
X1

= [ψu1
X1

] ∈ Id(Y ).

Next consider a class [Σ1] ∈ H2(X1;Z) represented by a closed, oriented surface Σ1 in X1. Suppose
that the self-intersection number [Σ1]·[Σ1] is even. For flat connections ρ with δY ([ρ]) ≡ 2d−2 mod 8,
we have 2-dimensional moduli spaces M

P̂1,ρ
. By the index theorem and the assumption [Σ1] · [Σ1] ≡ 0
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mod 2 we can see that the numerical index of the twisted ∂̄ operators over Σ1 is even. This implies
that the determinant line bundle L̃Σ̂1

over the framed moduli space M̃
P̂1,ρ

descends to the line bundle

LΣ̂1
over M

P̂1,ρ
as in subsection 2.3. As in [17], we can take a section sΣ such that the zero locus

M
P̂1,ρ

∩ s−1
Σ1

(0) is compact, smooth manifold of dimension 0, i.e., a finite set. We put

< ψu1
X1

([Σ1]), [ρ] >:=

{

#MX1,ρ ∩ s−1
Σ1

(0) mod 2 if iρ ≡ 1 mod 2,
0 mod 2 otherwise.

These numbers define the element ψu1
X1

([Σ1]) ∈ Cd−1(Y ). As before, this element is a cycle and gives

an element of Id−1(Y ).

Definition 3.6. Ψu1
X1

([Σ1]) = [ψX1([Σ1])] ∈ Id−1(Y ).

Lastly consider a relative homology class [Σ1] ∈ H2(X1, Y ;Z). Here Σ1 is a compact oriented
surface in X1 with boundary γ, and γ is a simple closed curve as in the previous section. Suppose
that

< c1(Q1;ϕ), [Σ1] >≡ 1 mod 2 and [γ] 6= 0 in H1(Y ;Z), or(9)

< c1(Q1;ϕ), [Σ1] >≡ 0 mod 2 and [γ] = 0 in H1(Y : Z).(10)

Here c1(Q1;ϕ) ∈ H2(X1, Y ;Z) is the relative Chern class of Q1 defined by the fixed trivialization ϕ
over Y . The conditions above will be needed to obtain the determinant line bundle LΣ̂1

over M
X̂1,ρ

.

It is easy to see that < c1(Q1;ϕ); [Σ1] > is independent of the choices of ϕ.

First we consider the case when d 6≡ 0 mod 4. For generators [ρ] ∈ CF2d(Y ) ⊂ Cd(Y ; γ), we have
0-dimensional moduli spaces M

P̂1,ρ
. Put

< ψu1
X1

([Σ1]), [ρ] >:=

{

#M
P̂1,ρ

mod 2 if iρ ≡ 1 mod 2 ,

0 mod 2 otherwise .

For generators [ρ] ∈ CF2d−2(Y ) ⊂ Cd(Y ; γ), we have 2-dimensional moduli spaces M
P̂1,ρ

. We want

to define < ψX1([Σ1]), [ρ] >∈ Z2 using the determinant line bundle of Σ̂1 over M
P̂1,ρ

. To do this, we

must check that the determinant line bundle over M̃
P̂1,ρ

descends to a line bundle overM
P̂1,ρ

as usual.

Here M̃
P̂1,ρ

is the quotient of the space of instantons over X̂ by the group of gauge transformations

with limit 1. It is sufficient to show that the index ind+ ∂̄A of twisted ∂̄-operator over Σ̂1 is even for
connections A with limit ρ.

Lemma 3.7. Let η be the trivial flat connection on Q1|Y with respect to the fixed trivialization ϕ.

For connections Ã on Q̂1 with limit η, we have ind+ ∂̄Ã ≡< c1(Q1;ϕ), [Σ1] > mod 2.

The proof of this lemma will be given at the end of this subsection. By this lemma and Lemma
2.7, we obtain

Lemma 3.8. Let ρ be a flat connection on P1|Y with Γρ
∼= U(1) and A be a connection on P̂1 with

limit ρ. We denote by Ã the lift of A to Q̂1 with the fixed determinant adet. Under the condition (9)
or (10), the index ind+ ∂̄Ã is even.

By this lemma, we have the determinant line bundle LΣ̂1
→M

P̂1,ρ
, provided that (9) or (10) holds.

For generators [ρ] ∈ CF2d(Y ) ⊂ Cd(Y ; γ), we can take a section sΣ̂1
of LΣ̂1

→ M
P̂1,ρ

compatible

with gluing maps as before. The zero locus M
P̂1,ρ

∩ s−1

Σ̂1
(0) is a compact smooth 0-dimensional

manifold, i.e. a finite set. We define

< ψu1
X1

([Σ1]), [ρ] >:=

{

#M
P̂1,ρ

∩ s−1

Σ̂1
(0) mod 2 if iρ ≡ 1 mod 2,

0 mod 2 otherwise.

Put ψu1
X1

([Σ1]) :=
∑

< ψu1
X1

([Σ1]), [ρ] > [ρ] ∈ Cd(Y ; γ). As usual we have:
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Lemma 3.9. ∂γ(ψ
u1
X1

([Σ1])) = 0.

Definition 3.10. Ψu1
X1

([Σ1]) := [ψu1
X1

([Σ1])] ∈ Id(Y ; γ).

Next we consider the case d ≡ 0 mod 4. Continuously we suppose (9) or (10) holds. The only
difference from the previous case is the term of the trivial connections. We have the 0-dimensional
moduli space M

P̂1,θ
. We define

< ψu1
X1

([Σ1]), [θ] >:=

{

#M
P̂1,θ

mod 2 if iθ ≡ 1 mod 2, < c1(Q1;ϕ), [Σ1] >≡ 1 mod 2,

0 mod 2 otherwise.

The other terms are defined as before. We can show that ψu1
X1

([Σ1]) ∈ C0(Y ; γ) is a cycle and we

obtain the relative invariant Ψu1
X1

([Σ1]) ∈ I0(Y ; γ).

Proof of Lemma 3.7
To prove Lemma 3.7, take a compact, oriented surface Σ2 with boundary γ. Using the restriction

ϕ|γ of the trivialization, extend Q1|Σ1 to Σ = Σ1 ∪γ Σ2. We denote it by QΣ. Let η2 be the trivial

connection on the trivial U(2)-bundle over Σ̂2 = Σ2 ∪ (γ × R≥0). Since ∂̄η2 is the direct sum of two
copies of the usual ∂̄-operator, ind− ∂̄η2 is even. Hence

ind+ ∂̄Aη ≡ ind+ ∂̄Aη + ind− ∂̄η2 mod 2.

Here Aη is a connection on Q̂1 with limit η. Moreover we have

ind+ ∂̄Aη + ind− ∂̄η2 = ind ∂̄AΣ
.

Here AΣ is the connection over Σ obtained by gluing Aη and θ2. By index formula we have

ind ∂̄AΣ
=< c1(QΣ), [Σ] > .

The right hand side is equal to < c1(Q1;ϕ), [Σ1] >, since there is no contribution from Σ2. Thus we
have obtained

ind+ ∂̄Aθ
≡< c1(Q1;ϕ), [Σ1] > mod 2

as required.

3.3. Gluing formula. In this subsection, we construct gluing formulas for Ψu1
X . To do this, we need

pairings on Floer homologies.

Lemma 3.11. Let ρ be a flat connection over Y with Γρ
∼= U(1). Then we have

δ−Y ([ρ]) ≡ −δY ([ρ]) − 2 mod 8.

The proof is standard and we omit the proof. By this lemma, we have the natural pairing

< ·, · >: CF2i(Y )⊗ CF−2i−2(−Y ) → Z2.

This paring induces the pairings

Ci(Y )⊗ C−i−1(−Y ) → Z2, Ci(Y ; γ)⊗ C−i(−Y ; γ) → Z2,

which give the identifications Ci(Y )∗ = C−i−1(−Y ), Ci(Y ; γ)∗ = CFF−i(−Y ; γ).

Ci(Y, γ)
dual // C−i(−Y, γ)oo C0(Y, γ)

dual // C0(−Y, γ)oo

CF2i(Y )

''PPPPPPPPPPPP
CF−2i(−Y )

wwnnnnnnnnnnnn

CF0(Y )

''NNNNNNNNNNNN
CF0(−Y )

wwpppppppppppp

⊕ ⊕ ⊕ ⊕

CF2i−2(Y )

77nnnnnnnnnnnn

CF−2i−2(−Y )

ggPPPPPPPPPPPP

CF−2(Y )

77pppppppppppp

CF−2(−Y )

ggNNNNNNNNNNNN

⊕ ⊕

Z2 < [θ] > // Z2 < [θ] >oo
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It is easy to see that the pairings induce pairings

< , >: Ii(Y )⊗ I−i−1(−Y ) → Z2, < , >: Ii(Y ; γ)⊗ I−i(−Y ; γ) → Z2.

Let X be a simply connected, non-spin, closed 4-manifold with a decomposition X = X1∪Y X2. Here
X1 and X2 are simply connected, non-spin 4-manifolds with b+ > 0 and with boundaries Y and −Y
respectively. Take a homology class [Σ] ∈ H2(X;Z) with [Σ] · [Σ] ≡ 0 mod 2. Here Σ is an embedded
surface in X.

Theorem 3.12. If Σ ⊂ X1 or Σ ⊂ X2, then

Ψu1
X ([Σ]) =< Ψu1

X1
([Σ]),Ψu1

X2
> or Ψu1

X ([Σ]) =< Ψu1
X1
,Ψu1

X2
([Σ]) > .

Suppose that Σ and Y intersect transversely and the intersection γ := Y ∩ Σ is diffeomorphic
to S1. We denote Σ ∩ X1 and Σ ∩ X2 by Σ1 and Σ2 respectively. Assume that [Σ1] satisfies (9)
or (10). ( We can easily see that [Σ2] also satisfies (9) or (10).) We have the relative invariants
Ψu1

X1
([Σ1]),Ψ

u1
X2

([Σ2]).

Theorem 3.13. Under the above situation,

Ψu1
X ([Σ]) =< Ψu1

X1
([Σ1]),Ψ

u1
X2

([Σ2]) > .

We give outline of the proof of Theorem 3.13 in the case when d ≡ 0 mod 4.
Suppose that d ≡ 0 mod 4. Take a sequence {Tα}α of positive numbers with Tα → ∞ and a

sequence {gα}α of Riemannian metrics on X such that a neighborhood of Y in X is isometric to
(Y × [−Tα, Tα], gY + dt2). Here gY is the standard metric on Y and t is the coordinate of [−Tα, Tα].
Let MP (g

α) be the moduli space of instantons over the Riemannian manifold (X, gα) of dimension
3, where P is an SO(3)-bundle with w2(P ) = w2(X). Take sections sαΣ : MP (g

α) → LΣ compatible
with the gluing maps as usual. Then we have

Lemma 3.14. Any sequence [Aα] ∈MP (g
α) ∩ (sαΣ)

−1(0) has a subsequence [Aα′
] such that

[Aα′
] −→ ([A1], [A2]),

and one of the following occurs:

(1) [A1] ∈ M
P̂1,ρ

∩ s−1

Σ̂1
(0), [A2] ∈ M

P̂2,ρ
, Γρ

∼= U(1), dimM
P̂1,ρ

= 2,dimM
P̂2,ρ

= 0 (i.e. [ρ] ∈
CF−2(Y )).

(2) [A1] ∈ M
P̂1,ρ

, [A2] ∈ M
P̂2,ρ

∩ s−1

Σ̂2
(0), Γρ

∼= U(1), dimM
P̂1,ρ

= 0,dimM
P̂2,ρ

= 2 (i.e. [ρ] ∈
CF0(Y )).

(3) [A1] ∈MP̂1,θ
, [A2] ∈M

P̂2,θ
, dimM

P̂1,θ
= dimM

P̂2,θ
= 0.

Take generic sections sαΛ : MP (g
α) → Λ. For α sufficiently large, MP (g

α) ∩ (sαΣ)
−1(0) ∩ (sαΛ)

−1(0)
is identified with

∐

[ρ]:
δY ([ρ])≡−2 mod 8

∐

a

(

U(1)a ∩ (sαΛ)
−1(0)

)

∪

∐

[ρ]:
δY ([ρ])≡0 mod 8

∐

b

(

U(1)b ∩ (sαΛ)
−1(0)

)

∪

∐

c

SO(3)c ∩ (sαΣ)
−1(0) ∩ (sαΛ)

−1(0).

Here a, b and c run over

(M
P̂1,ρ

∩ s−1

Σ̂1
(0)) ×M

P̂2,ρ
, M

P̂1,ρ
× (M

P̂2,ρ
∩ s−1

Σ̂2
(0)), and M

P̂1,θ
×M

P̂2,θ

respectively, and U(1)a, U(1)b and SO(3)c are the gluing parameters as before.
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Lemma 3.15. The restrictions Λ|U(1)a and Λ|U(1)b are non-trivial if and only if iρ ≡ 1 mod 2, and
Λ|SO(3)c and LΣ|SO(3)c are non-trivial if and only if iθ ≡ 1 mod 2 and < c1(Q1;ϕ), [Σ1] >≡ 1 mod 2
respectively.

This can be proved as [18, Lemma 3.30]. Note that the condition that < c1(Q1;ϕ), [Σ1] >≡ 1

mod 2 implies that the index of twisted ∂̄-operator of Σ̂1 is odd by Lemma 3.7. By Lemma 3.15 we
obtain

Ψu1
X ([Σ]) ≡

∑

[ρ]:
δY ([ρ])≡−2 mod 8

iρ≡1 mod 2

#
(

M
P̂1,ρ

∩ s−1

Σ̂1
(0)

)

·#M
P̂2,ρ

+
∑

[ρ]:
δY ([ρ])≡0 mod 8

iρ≡1 mod 2

#M
P̂1,ρ

·#
(

M
P̂2,ρ

∩ s−1

Σ̂2
(0)

)

+

{

#M
P̂1,θ

·#M
P̂2,θ

mod 2 if iθ ≡ 1 mod 2 and < c1(Q1;ϕ), [Σ1] >≡ 1 mod 2 ,

0 mod 2 otherwise .

The right hand side is < Ψu1
X1

([Σ1]),Ψ
u1
X2

([Σ2]) > by definition. Thus we have proved Theorem 3.13.

4. Calculation and Application

4.1. Moduli space. In this section, we calculate Floer homology, making use of the results of Austin
[2] and Furuta-Hashimoto [14], [13].

Throughout this section we assume that p is an odd positive integer. Instantons on L(p, q) × R

correspond to Zp-invariant instantons on S
4. Let P̃ be the principal SU(2)-bundle over S4 with c2 = k

and Mk be the moduli space of instantons on P̃ . The moduli space of instantons over L(p, q) × R is
identified with the fixed point set of a Zp-action on Mk.

First we consider the action of T = S1 × S1 on S4 = C2 ∪ {∞} defined by

(t1, t2) · (z1, z2) = (t1z1, t2z2).

The set of the isomorphism classes of SO(3)-bundles P over S4 with a lift of the T 2-action and with
p1(P ) < 0 is isomorphic to Z>0 × Z>0. We denote the bundle corresponding to (k1, k2) ∈ Z>0 × Z>0

by P (k1, k2). The bundle is characterized by the following:

(i) The isotropy representation of t = (t1, t2) ∈ T at ∞ ∈ S4 is




cos θ − sin θ 0
sin θ cos θ 0
0 0 1





up to conjugate. Here tk11 t
k2
2 = eiθ.

(ii) The isotropy representation of t ∈ T at 0 ∈ S4 is




cos θ − sin θ 0
sin θ cos θ 0
0 0 1





up to conjugate. Here tk11 t
−k2
2 = eiθ.

(iii) p1(P (k1, k2)) = −4k1k2.

Let P̃ (k1, k2) be the SU(2)-bundle with P̃ (k1, k2)/{±1} = P (k1, k2). The second Chern class of

P̃ (k1, k2) is k1k2. A double cover T̃ of T naturally acts on P̃ and we have the induced action of T̃ on

the moduli space Mk =M(P̃ (k1, k2)). Here k = k1k2.
By Atiyah-Bott-Lefschetz fixed point formula, we obtain:

Lemma 4.1 ([13]). Let [A] ∈Mk be a T̃ -invariant instanton and t̃ ∈ T̃ . Then we have

Tr(t̃|T[A]M(P̃ (k1, k2))) = −1 +
∑

i,j

aijt
i
1t

j
2.
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Here t = (t1, t2) ∈ T is the image of t̃ ∈ T̃ under the projection and

aij =







2 if |i| < k1, |j| < k2,
1 if |i| = k1, |j| < k2 or |i| < k1, |j| = k2,
0 otherwise.

We have a natural inclusion Zp →֒ T defined by ζ 7→ (ζ, ζq). Since we assumed p is odd, there is a

unique lift Zp →֒ T̃ . Restricting the above formula to Zp ⊂ T̃ , we obtain the following:

Corollary 4.2. The dimension of the fixed points set M(P̃ (k1, k2))
Zp is given by

dimM(P̃ (k1, k2))
Zp = −1 + 2N1(k1, k2; p, q) +N2(k1, k2; p, q).

Here

N1(k1, k2; p, q) = #{ (i, j) ∈ Z2 | i+ qj ≡ 0 mod p, |i| < k1, |j| < k2 },
N2(k1, k2; p, q) = #{ (i, j) ∈ Z2 | i+ qj ≡ 0 mod p, |i| = k1, |j| < k2, or |i| < k1, |j| = k2 }.

(11)

For flat connections ρ over Y = L(p, q) with Γρ
∼= U(1),

δY ([ρ]) ≡ dimMρθ + 1 mod 8.

On the other hand, the dimension of the moduli spaceMρθ is congruent to dimM(P̃ (k1, k2))
Zp modulo

8. Here k1, k2 are positive integers such that the restriction of the isotropy representation of P̃ (k1, k2)
at ∞ ∈ S4 to Zp is isomorphic to the holonomy representation of ρ and that at 0 ∈ S4 is trivial. We
can find such k1, k2 as follows. Suppose that the holonomy representation of ρ is given by

1 7−→
(

ζ l 0
0 ζ−l

)

up to conjugation. Here l is a positive integer with 0 < l < p. Take a positive integer r with qr ≡ 1
mod p. Then k1, k2 are any positive integers satisfying

k1 ≡ l mod p, k2 ≡ −rl mod p.

By Corollary 4.2, we have:

Corollary 4.3. Take a flat connection ρ over Y = L(p, q) with Γρ
∼= U(1). Then we have

δY ([ρ]) ≡ 2N1(k1, k2; p, q) +N2(k1, k2; p, q) mod 8,

where k1, k2 > 0 are determined as above.

If (i, j) is a solution to the equation defining N2(k1, k2; p, q), then (−i,−j) is also a solution and
(i, j) 6= (0, 0). Therefore N2(k1, k2; p, q) is even. Thus we have:

Corollary 4.4. When p is odd, δY ([ρ]) ≡ 0 mod 2.

The boundary map of Floer homology I∗(L(p, q)) was defined using the moduli spaces Mρσ of
dimension 1. Such moduli spaces are completely determined as follows:

Theorem 4.5 ([2, 14, 13]). (1) For any k1, k2 > 0, M(P̃ (k1, k2))
T̃ = R>0.

(2) Let P̃ → S4 be an SU(2)-bundle with c2 = k. Suppose that the action of Zp on S4 lifts to

an action on P̃ . If the fixed point set M
Zp

k is not empty and 1-dimensional, then there exists

k1, k2 > 0 such that the action of Zp on P̃ is the restriction of the action of T̃ on P̃ (k1, k2).

Furthermore we have an identification M
Zp

k =M(P̃ (k1, k2))
T̃ .

Corollary 4.6. Let ρ, σ be flat connections over Y = L(p, q) such that the formal dimension of Mρσ

is 1. If there exists k1, k2 > 0 such that

(i) the isotropy representation of P̃ (k1, k2) at 0 ∈ S4 is isomorphic to the holonomy representation
of ρ,



INSTANTON FLOER HOMOLOGY FOR LENS SPACES 21

(ii) the isotropy representation of P̃ (k1, k2) at ∞ ∈ S4 is isomorphic to the holonomy representation
of σ, and

(iii) dimM(P̃ (k1, k2))
Zp = 1,

then we have an identification Mρσ = R. If such k1 and k2 do not exist, then Mρσ = ∅.
4.2. Index of Dirac operator. Take flat connections ρ and σ on the trivial SU(2)-bundle Q =
Y × SU(2) with Γρ,Γσ

∼= U(1). Assume that Mρσ is not empty and that Mρσ is 1-dimensional. We
will compute the index ind 6DA of the twisted Dirac operator. We write A′ for the pull-back of A by
the projection S3 × R → Y × R. We have the virtual representation space Ind 6DA′ of Zp. We can
write

Ind 6DA′ =
∑

n

bnχn,

where χn is the 1-dimensional representation space of Zp of weight n. Then we have

ind 6DA = b0.

For the lifts ρ′, σ′ of ρ, σ, we may take trivializations ϕ1, ϕ2 of the trivial SU(2)-bundle Q′ = S3 ×
SU(2) such that ρ′, σ′ are trivial with respect to ϕ1, ϕ2. Using ϕ1 and ϕ2, we extend π∗Q′ to
S4 = D4 ∪S3×R∪D4. Here π is the projection S3 ×R → S3. We have the extension B of A′ to S4.
That is, B is equal to A′ over S3 × R and trivial on the Discs.

Lemma 4.7. We have

Ind 6DB = Ind 6DθD4 + Ind 6DA′ + Ind 6DθD4

as virtual representation spaces of Zp.

This lemma will be proved later.

By the Weizenbäck formula and the facts that D4 has a metric of positive scalar curvature which
restrict to the standard metric on ∂D4 = S3 and θD4 is flat, we have

ind 6DθD4 = 0.

Therefore we obtain

Ind 6DA′ = Ind 6DB

as representation spaces of Zp. Theorem 4.5 implies that B is a T̃ -invariant connection on P̃ (k1, k2)

for some (k1, k2) ∈ Z>0 × Z>0 and we can regard Ind 6DB as a representation space of T̃ . By
Atiyah-Bott-Lefschetz fixed point formula we obtain

ind(6DB , t̃) =
t
k1
2
1 t

− k2
2

2 + t
− k1

2
1 t

k2
2
2 − t

k1
2
1 t

k2
2
2 − t

− k1
2

1 t
− k2

2
2

(t
1
2
1 − t

− 1
2

1 )(t
1
2
2 − t

− 1
2

2 )

= −(t
−k1+1

2
1 + t

−k1+3
2

1 + · · ·+ t
k1−1

2
1 )(t

−k2+1
2

2 + t
−k2+3

2
2 + · · · + t

k2−1
2

2 ).

Restricting to Zp ⊂ T̃ , we have

ind(6DB, ζ) = −(ζ
−k1+1

2 + ζ
−k1+3

2 + · · ·+ ζ
k1−1

2 )(ζ
q(−k2+1)

2 + ζ
q(−k2+3)

2 + · · · ζ
q(k2−1)

2 )

= −
k1−1
∑

a=0

k2−1
∑

b=0

ζ
−k1+2a+1+q(−k2+2b+1)

2

The index ind 6DA ∈ Z is the constant term of the right hand side. Thus we have obtained:

Proposition 4.8. The index ind 6DA ∈ Z is equal to minus the number of solutions of the following
equation for (a, b):

−k1 + 2a+ q(−k2 + 2b+ 1) ≡ 0 mod 2p (0 ≤ a ≤ k1 − 1, 0 ≤ b ≤ k2 − 1).
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It remains to determine (k1, k2). Suppose that the holonomy representations of ρ, σ are given by
(

ζ l 0
0 ζ−l

)

,

(

ζm 0
0 ζ−m

)

where 0 < l < p, 0 < m < p. From the fact that the restriction of the isotropy representations of
P̃ (k1, k2) to Zp ⊂ T̃ are given by these matrix (up to conjugation), k1 and k2 must satisfy one of the
following four equalities:

k1 ≡ ±l +±m mod p, k2 ≡ r(±m−±l) mod p.

Here r is a positive integer with rq ≡ 1 mod p. Note that we must consider both of l and −l since
the matrixes

(

ζ l 0
0 ζ−l

)

and

(

ζ−l 0
0 ζ l

)

are conjugate. Similarly for m and −m. Since dimMρσ is 1 and dimMρσ is given by the formula in
Corollary 4.2, k1 and k2 also satisfy the condition that the set of the solutions (i, j) to the equation

i+ qj ≡ 0 mod p, |i| ≤ k1, |j| ≤ k2

is a subset of {(0, 0),±(k1, k2),±(k1,−k2)}. If Mρσ is not empty, we can find such a pair (k1, k2) by
Theorem 4.5.

The discussions of the previous subsection and this subsection give us a way to compute I∗(Y ).
Here we summarize the way to compute I∗(Y ). Fix a positive integer r with qr ≡ 1 mod p.

(i) δY ([ρ]).
For an integer l with 0 < l < p, let ρl be a flat connection whose holonomy representation is

given by
(

ζ l 0
0 ζ−l

)

where ζ = e
2π

√
−1

p . Choose positive integers k1, k2 with

(12) k1 ≡ l mod p, k2 ≡ −rl mod p.

Consider the equation for (i, j) ∈ Z× Z:

(13) i+ qj ≡ 0 mod p, |i| ≤ k1, |j| ≤ k2.

Define N1(k1, k2; p, q) to be the number of solutions (i, j) with |i| < k1, |j| < k2, and define
N2(k1, k2; p, q) to be the number of solutions (i, j) with |i| = k1, |j| < k2 or with |i| < k1, |j| = k2.
Then the degree δY ([ρl]) is

2N1(k1, k2; p, q) +N2(k1, k2; p, q) mod 8.

The vector space Ci(Y ) is spanned by the gauge equivalence classes [ρl] such that 2N1 +N2 is
congruent to 2i modulo 8.

(ii) < ∂([ρ]), [σ] >.
Take generators [ρl] ∈ Ci(Y ), [ρm] ∈ Ci−1(Y ). Here 0 < l < p, 0 < m < p.

(a) If there exists k1, k2 > 0 such that k1 and k2 satisfy one of the following four equations

(14) k1 ≡ ±l +±m mod p, k2 ≡ r(±m−±l) mod p,

and the set of solutions to (13) is a subset of {(0, 0),±(k1 , k2),±(k1,−k2)}, then

< ∂([ρl]), [ρm] >≡ #

{

(a, b) ∈ Z× Z

∣

∣

∣

∣

0 ≤ a ≤ k1 − 1, 0 ≤ b ≤ k2 − 1,
−k1 + 2a+ q(−k2 + 2b+ 1) ≡ 0 mod 2p

}

mod 2.

(b) Otherwise < ∂([ρl], [ρm] >≡ 0 mod 2.
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Proof of Lemma 4.7.
In the proof of the usual addition property of the index, three data are used. These are cut off

functions, stabilizations S0 : R
N → Γ(F1) of differential operators D : Γ(F0) → Γ(F1) (i.e. D ⊕ S0 is

surjective) and right inverses of the stabilized operators D ⊕ S0. (See [6] for details.) In our setting,
F0, F1 and D are defined overS3 × R or D4. Moreover Zp acts on F0, F1 and D is Zp-equivalent. It
is sufficient to prove that we can make these data be Zp-equivalent.

It easy to see that we can choose Zp-invariant cut off functions. To take a Zp-equivalent stabiliza-

tion, put Sj := ζjS0 for j = 1, 2, . . . , p − 1. Here S0 : CN → Γ(F1) is a fixed stabilization of D and
ζ = exp(2π

√
−1/p). Define a Zp-action on CpN = CN ⊕ · · · ⊕ CN by

ζ · (v0, v1, . . . , vp−1) = (vp−1, v0, v1, . . . , vp−2).

Then

S := S0 ⊕ S1 ⊕ · · · ⊕ Sp−1 : C
pN → Γ(F1)

is a stabilization of D and Zp-equivalent. Choose any right inverse Q′ of D ⊕ S and define

Q :=
1

p

p−1
∑

j=0

ζjQ′ζ−j.

Then this operator is also a right inverse of D ⊕ S and Zp-equivalent.

4.3. L(7, 3). In this subsection Y is L(7, 3). The complex C∗(Y ) is generated by [ρ1], [ρ2], [ρ3]. Note
that [ρl] = [ρ7−l]. Put r = 5. Then 3 · r = 1 mod 7.

• δY ([ρl]).
Let l = 1, k1 = 1, k2 = 2. Then (12) is satisfied.

The equation (13) has the solutions (i, j) = (0, 0),±(1, 2). By (11), N1 = 1, N2 = 0. Thus we have

δY ([ρ1]) ≡ 2N1 +N2 ≡ 2 mod 2.

Let l = 2, k1 = 2, k2 = 4. The equation (13) has the solutions (0, 0),±(1, 2),±(−2, 3),±(2, 4). By
(11), we have N1 = 3, N2 = 2. Therefore

δY ([ρ2]) ≡ 2N1 +N2 ≡ 0 mod 8.

Let l = 3, k1 = 3, k2 = 6. The equation (13) has the solutions (0, 0),±(1, 2),±(2, 4),±(3, 6),±(1,−5),
±(2,−3),±(3,−1), and N1 = 9, N2 = 2. Hence

δY ([ρ3]) ≡ 2N1 +N2 ≡ 4 mod 8.

Thus we have obtained

Ci(L(7, 3)) =















Z2 < [ρ2] > i ≡ 0 mod 4,
Z2 < [ρ1] > i ≡ 1 mod 4,
Z2 < [ρ3] > i ≡ 2 mod 4,

0 i ≡ 3 mod 4.

• < ∂([ρl]), [ρm] >.
We consider the case l = 3,m = 1. Put (k1, k2) = (2, 1). Then

k1 ≡ 3 + (−1) mod 7, k2 ≡ 5(−1− 3) mod 7.

Thus k1 and k2 satisfy one of the equations (14). The equation (13) has the unique solution (0, 0).
Hence Mρ3,ρ1 is 1-dimensional and isomorphic to R. The equation

−2 + 2a+ 3(−1 + 2b+ 1) ≡ 0 mod 14, (0 ≤ a ≤ 1, b = 0)

for (a, b) has the unique solution (1, 0). Thus

< ∂([ρ3]), [ρ1] >≡ 1 mod 2.
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Since ∂ ◦ ∂ = 0,

< ∂([ρ1]), [ρ2] >≡ 0 mod 2.

Therefore we have obtained:

Ii(L(7, 3)) =

{

Z2 < [ρ2] > i ≡ 0 mod 4,
0 i ≡ 1, 2, 3 mod 4.

Let γ be a loop in L(7, 3). We can compute I2(L(7, 3); γ).

C3(Y, γ)
∂γ // C2(Y, γ)

∂γ // C1(Y, γ)

CF6
//

''OOOOOOOOOOOOOO
CF4

//

''PPPPPPPPPPPPPP
CF2

⊕ ⊕ ⊕
CF4

// CF2
// CF0

0
0 //

0

''OOOOOOOOOOOOOO Z2 < [ρ3] >
1 //

?

''OOOOOOOOOOOO
Z2 < [ρ1] >

⊕ ⊕ ⊕

Z2 < [ρ3] >
1 // Z2 < [ρ1] >

0 // Z2 < [ρ2] > .

Although we have not computed < ∂γ([ρ3]), [ρ2] >, which is defined using the 2-dimensional moduli
space M ′

ρ3,ρ2
, we can compute the kernel of ∂γ : C2(Y ; γ) → C1(Y ; γ).

Lemma 4.9. ker(∂γ : C2(Y ; γ) → C1(Y ; γ)) = Z2 < [ρ1] > .

To see this, take an element ψ ∈ ker ∂γ . If < ψ, [ρ3] > 6≡ 0 mod 2, then < ∂γ(ψ), [ρ1] > 6≡ 0 mod 2.
(See the above diagram.) Thus < ψ, [ρ3] > must be trivial. Since < ∂γ([ρ1]), [ρ2] >≡ 0 mod 2, we
obtain the required statement.

From the above diagram, we can see that

im(∂γ : C3(Y ; γ) → C2(Y ; γ)) = Z2 < [ρ1] > .

Therefore we obtain

I2(L(7, 3); γ) = 0.

4.4. Application. The aim of this subsection is to prove the following:

Theorem 4.10. Let X = CP2#CP2 and Y = L(7, 3). Then X does not admit a decomposition
X = X1 ∪Y X2, where X1 and X2 are simply connected, non-spin 4-manifolds with b+ = 1 and with
∂X1 = Y , ∂X2 = −Y .

It is easy to see the following.

Lemma 4.11. Put Y = L(p, q). Assume that X = CP2#CP2 has a decomposition X = X1 ∪Y X2

for some compact, oriented, simply connected, non-spin 4-manifolds X1,X2 with b+ = 1 and with
∂X1 = Y, ∂X2 = −Y . Then we have

H2(Xi;Z) = Z, H2(Xi;Z2) = Z2.

We show the following lemma making use of Proposition 3.2.

Lemma 4.12. Let Y be L(p, q) and X1 be an oriented, compact, non-spin, simply connected 4-
manifold with b+(X1) = 1, H2(X1;Z) = Z, ∂X1 = Y . Take an SO(3)-bundle P1 over X1 with
w2(P1) = w2(X1). Then we have

dimM
P̂1,ρ

≡ −δY ([ρ])− 2p − 6 mod 8.
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Take a cohomology class α ∈ H2(X1;Z) with the properties in Lemma 3.1. We have only to show
that α2 ≡ p mod 8.

Since X1 is non-spin and α ≡ w2(X1) mod 2, we can take pβ as α. Here β ∈ H2(X1;Z) = Z is a
generator. (Recall that we assumed p is odd.) By the exact sequence

H1(Y ;Z) = 0 → H2(X1, Y ;Z)
j∗→ H2(X1;Z) = Z → H2(Y ;Z) = Zp → H3(X1, Y ;Z) = 0,

we see that H2(X1, Y ;Z) = Z and that j∗(α̃) = pβ = α for some generator α̃ ∈ H2(X1, Y ;Z). Since
the pairing

H2(X1, Y ;Z)⊗H2(X1;Z) −→ Z

induces an identification H2(X1, Y ;Z) = H2(X1;Z)
∗, we have

< α̃ ∪ β, [X1, Y ] >= ±1.

Thus
α2 =< α̃ ∪ α, [X1, Y ] >= ±p.

From the conditions that H2(X1;Z) = Z and that b+(X1) = 1, the sign in the above equality must
be plus and hence α2 = p.

We give the proof of Theorem 4.10. From now on, we put Y = L(7, 3). Assume that X = CP2#CP2

admits a decomposition X = X1 ∪Y X2 as in Lemma 4.11. It follows from Lemma 4.11 and Lemma
4.12 that

(15) dimMX1,ρ ≡ −δY ([ρ])− 20 ≡ −δY ([ρ]) + 4 mod 8.

By [18, Theorem 3.29], we can take a cohomology class h0 ∈ H2(X;Z) with h0 · h0 ≡ 0 mod 2
such that

Ψu1
X (h0) ≡ 1 mod 2.

Let Σ be a closed surface embedded in X which represent the homology class h0. We have the
following three cases: (i) Σ ⊂ X1, (ii) Σ ⊂ X2, (iii) Σ ∩ Y 6= ∅.
(i) Suppose that Σ ⊂ X1. By Theorem 3.12, we have

Ψu1
X (h0) =< Ψu1

X1
([Σ]),Ψu1

X2
> .

It follows from (15) that the relative invariant Ψu1
X1

([Σ]) lives in I1(Y ). But as shown in the previous

subsection, I1(Y ) = 0 and hence Ψu1
X1

([Σ]) = 0. By the gluing formula, Ψu1
X (h0) ≡ 0 mod 2. This is

a contradiction.

(ii) Suppose that Σ ⊂ X2. Then

Ψu1
X (h0) =< Ψu1

X1
,Ψu1

X2
([Σ]) > and Ψu1

X1
∈ I2(Y ).

By the calculation in the previous subsection, I2(Y ) = 0. We obtain a contradiction.

(iii) Suppose that Σ ∩ Y 6= ∅. We may assume that the intersection Σ ∩ Y is transverse and the
number of connected components of Σ ∩ Y is 1. (If the number of connected components is larger
than 1, join the connected components of Σ∩ Y in X by thin tubes without change of the homology
class [Σ] ∈ H2(X;Z). ) Thus we can suppose γ := Σ ∩ Y is diffeomorphic to S1. Put Σ1 := X1 ∩ Σ
and Σ2 := Σ∩X2. Suppose that Σ1 ( and hence Σ2) satisfies (9) or (10). Then by Theorem 3.13 and
(15) we have

Ψu1
X (h0) =< Ψu1

X1
([Σ1]),Ψ

u1
X2

([Σ2]) >, and Ψu1
X1

([Σ1]) ∈ I2(Y ; γ).

But by the calculation in the previous subsection again, I2(Y ; γ) = 0 for any loop γ. Therefore we
have a contradiction.

If Σ1 does not satisfy both of (9) and (10), then

< c1(Q1;ϕ); [Σ1] >≡ 0 mod 2 and [γ] 6= 0 in H1(Y ;Z), or(16)

< c1(Q2;ϕ), [Σ1] >≡ 1 mod 2 and [γ] = 0 in H1(Y ;Z).(17)
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Assume that (16) holds. Since Ψu1
X1

is a homomorphism, Ψu1
X1

(7h0) is also non-trivial. Let Σ′ be an
embedded surface in X representing 7h0. Then we can easily see that Σ′

1 = X1∩Σ′ and Σ′
2 = X2∩Σ′

satisfy (10). Assume that (17) holds. In this case, we consider the class h0+2h1. Here h1 ∈ H2(X;Z)
is defined as follows. Fix a loop γ1 in Y such that the class [γ1] ∈ H1(Y ;Z) is a generator. Take
relative homology classes [Σ′′

1] ∈ H2(X1, Y ;Z), [Σ′′
2 ] ∈ H2(X2, Y ;Z) such that ∂Σ′′

1 = γ1, ∂Σ
′′
2 = γ1.

We can see that there are such surfaces from the exact sequences

H2(Xi, Y ) −→ H1(Y ) −→ H1(Xi) = 0.

Define h1 = 2[Σ′′
1 ∪ Σ′′

2 ]. Then h1 · h1 ≡ 0 mod 2 and Ψu1
X (h0 + 2h1) ≡ 1 mod 2. Take a surface Σ′′′

in X which represents the class h0 + 2h1, and put Σ′′′
1 := X1 ∩ Σ′′′, Σ′′′

2 = X2 ∩ Σ′′′. We can see that
[Σ′′′

1 ] and [Σ′′′
2 ] satisfy (9). The same argument as above gives a contradiction in each case.

Thus in any case we have a contradiction. Therefore we have proved the statement.
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