INSTANTON FLOER HOMOLOGY FOR LENS SPACES

HIROFUMI SASAHIRA

Abstract

We construct instanton Floer homology for lens spaces $L(p, q)$. As an application, we prove that $X=\mathbb{C P}^{2} \# \mathbb{C P}^{2}$ does not admits a decomposition $X=X_{1} \cup X_{2}$. Here X_{1} and X_{2} are oriented, simply connected, non-spin 4-manifolds with $b^{+}=1$ and with boundary $L(7,3)$.

1. Introduction

Instanton Floer homology $H F_{*}(Y)$ was constructed in 10 for oriented homology 3 -spheres Y. This invariant is defined using flat connections over Y and moduli spaces of instantons over $Y \times \mathbb{R}$. As is well known, instanton Floer homology has an important role in calculations of Donaldson invariants for closed 4-manifolds. Let X be an oriented closed 4 -manifold with $b^{+}(X)>1$ and fix a cohomology class $c \in H^{2}(X ; \mathbb{Z})$. Donaldson invariant $\Psi_{X, c}$ for X is defined as a \mathbb{Q}-valued function on $A(X)=\oplus_{d \geq 0} H_{2}(X ; \mathbb{Z})^{\otimes d}$, using moduli spaces M_{P} of instantons on principal $U(2)$-bundles P with $c_{1}(P)=c$. Suppose that X has a decomposition $X=X_{1} \cup X_{2}$, where X_{1} and X_{2} are compact 4-manifolds with $b^{+}>0$ and with boundary Y and $-Y$ respectively. Here $-Y$ is Y with opposite orientation. We can define relative Donaldson invariants $\Psi_{X_{1}, c_{1}}: A\left(X_{1}\right)=\otimes H_{2}\left(X_{1} ; \mathbb{Z}\right) \rightarrow H F_{*}(Y)$, $\Psi_{X_{2}, c_{2}}: A\left(X_{2}\right)=\otimes H_{2}\left(X_{2} ; \mathbb{Z}\right) \rightarrow H F_{*}(-Y)$ where $c_{1}=\left.c\right|_{X_{1}}, c_{2}=\left.c\right|_{X_{2}}$. There is a natural pairing $<\cdot, \cdot>: H F_{*}(Y) \otimes H F_{*}(-Y) \rightarrow \mathbb{Q}$, and we have a gluing formula $\Psi_{X, c}=<\Psi_{X_{1}, c_{1}}, \Psi_{X_{2}, c_{2}}>$. Note that $A(X)=A\left(X_{1}\right) \otimes A\left(X_{2}\right)$ since Y is a homology 3 -sphere. We can completely determine $\Psi_{X, c}$ in terms of the relative invariants from the gluing formula.

There is a variant $\Psi_{X}^{u_{1}}$ of Donaldson invariants [9, [17] defined using a cohomology class $u_{1} \in$ $H^{1}\left(M_{P} ; \mathbb{Z}_{2}\right)$. The cohomology class u_{1} is the first Stiefel-Whitney class of the determinant line bundle of the real part of twisted Dirac operators over X. This is a function on a subspace $A^{\prime}(X)$ of $A(X)$ with values in \mathbb{Z}_{2}. Variants of instanton Floer homology are defined for oriented homology 3 -spheres in [12] and [18], and there is a similar gluing formula for $\Psi_{X}^{u_{1}}$.

A natural problem is how to define instanton Floer homology for more general 3-manifolds Y, which enable us to construct gluing formulas for more general decompositions of X. Mainly there are two difficulties when we try to generalize instanton Floer homology:
(i) The existence of reducible (projectively) flat connections on 3-manifolds.
(ii) $H_{2}(X ; \mathbb{Z})$ is not isomorphic to the direct sum $H_{2}\left(X_{1} ; \mathbb{Z}\right) \oplus H_{2}\left(X_{2} ; \mathbb{Z}\right)$.
(i) implies that moduli spaces of instantons over $Y \times \mathbb{R}$ can be singular. Even if the moduli spaces are smooth, the usual proof that the square of the boundary map is zero breaks down. (ii) implies that we must consider the situation where a surface in X representing an element in $H_{2}(X ; \mathbb{Z})$ is also decomposed by Y.

There are some partial answers to each problem. Austin-Braam [3] and Donaldson [6] introduced equivalent versions of instanton Floer homology under some assumptions in order to overcome the problem of reducible flat connections. The equivalent Floer homologies enable us to generalize the gluing formula for Donaldson invariants $\Psi_{X, c}$. Furuta [13] defined an analog $I_{*}(L(p, q))$ of instanton Floer homology for lens spaces $L(p, q)$, making use of Dirac operators over $L(p, q) \times \mathbb{R}$. Note that all flat connections on $L(p, q)$ are reducible since the fundamental group of $L(p, q)$ is abelian. Using this analog we can construct a gluing formula for the variant $\Psi_{X}^{u_{1}}$ of Donaldson invariants. However these gluing formulas can not be applied to the problem (ii). That is, these gluing formulas calculate only
the restrictions of the invariants $\Psi_{X, c}, \Psi_{X}^{u_{1}}$ to the images of the natural maps $A\left(X_{1}\right) \otimes A\left(X_{2}\right) \rightarrow A(X)$, $A^{\prime}\left(X_{1}\right) \otimes A^{\prime}\left(X_{2}\right) \rightarrow A^{\prime}(X)$.

On the other hand, Fukaya [11] introduced a generalization $H F F_{*}(Y, Q ; \gamma)$ of instanton Floer homology for general 3-manifolds $Y, U(2)$-bundles Q over Y and a loop γ in Y, provided that all (projectively) flat connections on Q are irreducible. This generalization gives a complete answer to (ii). That is, we can show a gluing formula which completely calculate Donaldson invariants in terms of relative invariants of X_{1}, X_{2}. See [4]. But it seems that the assumption on reducible flat connections has not been removed. Thus the problem (i) and (ii) have been separately dealt with.

In this paper, we deal with both (i) and (ii) at the same time for lens spaces. We apply FukayaFloer type construction to lens spaces with some modifications. We will define an analog $I_{*}(L(p, q) ; \gamma)$ of Fukaya-Floer homology for an odd prime integer p and a loop γ in $L(p, q)$. In the construction, we make use of Dirac operators as in [13]. Moreover we construct a gluing formula for $\Psi_{X}^{u_{1}}$ along $L(p, q)$.

As an application, we will prove that $X=\mathbb{C P}^{2} \# \mathbb{C P}^{2}$ does not admit a decomposition $X=$ $X_{1} \cup X_{2}$. Here X_{1} and X_{2} are simply connected, non-spin 4 -manifolds with $b^{+}=1$ and with boundary $L(7,3)$ and $-L(7,3)$ respectively. See Theorem 4.10. This is based on a calculation of $I_{*}(L(7,3)), I_{*}(L(7,3) ; \gamma)$ and a non-vanishing result of $\Psi_{X}^{u_{1}}$. The calculation of $I_{*}(L(7,3)), I_{*}(L(7,3), \gamma)$ requires counting the number of instantons over $L(7,3) \times \mathbb{R}$. This was done in [2], [14, [13]. The non-vanishing result of $\Psi_{X}^{u_{1}}$ was proved in [18].

We give a remark which is related to Seiberg-Witten theory. In [19, Witten introduced SeibergWitten equations and defined Seiberg-Witten invariants using the moduli spaces of solutions of the equations. Witten also conjectured that Seiberg-Witten invariants are equivalent to Donaldson invariants and that Donaldson invariants can be calculated in terms of Seiberg-Witten invariants through a formula. This formula has been proved for many 4 -manifolds. (See 8 and [15].) Moreover SeibergWitten theory gives us simpler proofs of many results obtained by Donaldson theory and new stronger results. Theorem 4.10 is in contrast to such things. We should not expect that Theorem 4.10 can be proved by Seiberg-Witten theory, because $\mathbb{C P}^{2} \# \mathbb{C P}^{2}$ has a metric of positive scalar curvature and any invariants from Seiberg-Witten equations (Seiberg-Witten invariants and a refinement due to Bauer and Furuta [5]) are trivial.

Acknowledgments . The author would like to thank Mikio Furuta for useful conversations.

2. Constructions of instanton homology

2.1. Preliminaries. Let p, q be relatively prime integers with $0<q<p$, and denote by $L(p, q)$ the lens space S^{3} / \mathbb{Z}_{p}. Here the action of $\mathbb{Z}_{p}=\left\{\zeta \in \mathbb{C} \mid \zeta^{p}=1\right\}$ on $S^{3}=\left\{\left.\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}| | z_{1}\right|^{2}+\left|z_{2}\right|^{2}=1\right\}$ is defined by

$$
\zeta \cdot\left(z_{1}, z_{2}\right)=\left(\zeta z_{1}, \zeta^{q} z_{2}\right)
$$

Throughout this paper, we consider only the Riemannian metric on $L(p, q)$ induced by the standard Riemannian metric on S^{3}. In this subsection, we take up some basic facts about $S U(2)$-flat connections over $L(p, q)$ and moduli spaces of instantons over $L(p, q) \times \mathbb{R}$.

We consider $L(p, q)$ as an oriented manifold with the orientation induced by the standard orientation of S^{3}. We write $-L(p, q)$ for $L(p, q)$ with the opposite orientation. Let Y be $L(p, q)$ or $-L(p, q)$. The moduli space $R(Y)$ of flat connections on the trivial $S U(2)$-bundle $Q=Y \times S U(2)$ is identified with $\operatorname{Hom}\left(\pi_{1}(Y), S U(2)\right) /$ conj. Since $\pi_{1}(Y)$ is abelian, all flat connections are reducible. That is, the stabilizer Γ_{ρ} of any flat connection ρ in the gauge group is isomorphic to $U(1)$ or $S U(2)$. For each class $[\rho] \in R(Y)$ represented by a flat connection ρ, we define an index $\delta_{Y}([\rho]) \in \mathbb{Z}_{8}=\mathbb{Z} / 8 \mathbb{Z}$ as follows. Let A be an $S U(2)$-connection over $Y \times \mathbb{R}$ such that

$$
A= \begin{cases}\pi^{*} \rho & \text { on } Y \times(-\infty,-1) \\ \pi^{*} \theta & \text { on } Y \times(1, \infty)\end{cases}
$$

Here $\pi: Y \times \mathbb{R} \rightarrow Y$ is the projection and θ is the trivial flat connection of Q. Take a small positive number $\epsilon>0$ and define the function $W^{-+}: Y \times \mathbb{R} \rightarrow \mathbb{R}_{>0}$ by

$$
W^{-+}(y, t)=e^{\epsilon t}
$$

We define a weighted L^{2} norm $\|\cdot\|_{L^{2,(-\epsilon, \epsilon)}}$ on the sections of $\left(\Lambda_{Y \times \mathbb{R}}^{0} \oplus \Lambda_{Y \times \mathbb{R}}^{+}\right) \otimes \pi^{*} \mathfrak{g}_{P}$ by

$$
\|f\|_{L^{2,(-\epsilon, \epsilon)}}:=\left\|W^{-+} f\right\|_{L^{2}} .
$$

Similarly, we define a weighted L_{1}^{2} norm $\|\cdot\|_{L_{1}^{2,(-\epsilon, \epsilon)}}$ on the sections of $\Lambda_{Y \times \mathbb{R}}^{1} \otimes \pi^{*} \mathfrak{g}_{P}$ by

$$
\|f\|_{L_{1}^{2,(-\epsilon, \epsilon)}}:=\left\|W^{-+} f\right\|_{L_{1}^{2}} .
$$

We consider the operator

$$
D_{A}=d_{A}^{*}+d_{A}^{+}: L_{1}^{2,(-\epsilon, \epsilon)}\left(\Lambda_{Y \times \mathbb{R}}^{1} \otimes \pi^{*} \mathfrak{g}_{P}\right) \longrightarrow L^{2,(-\epsilon, \epsilon)}\left(\left(\Lambda_{Y \times \mathbb{R}}^{0} \oplus \Lambda_{Y \times \mathbb{R}}^{+}\right) \otimes \mathfrak{g}_{P}\right)
$$

We define $\delta_{Y}([\rho]) \in \mathbb{Z}_{8}$ to be ind ${ }^{-+} D_{A} \bmod 8$. Here ind ${ }^{-+} D_{A}:=\operatorname{dim} \operatorname{Ker} D_{A}-\operatorname{dim} \operatorname{Coker} D_{A}$. We can easily see that $\delta_{Y}([\rho])$ depends only on the class $[\rho]$.

For each flat connection ρ over Y, we have the complex:

$$
\Omega_{Y}^{0}\left(\mathfrak{g}_{P}\right) \xrightarrow{d_{\rho}} \Omega_{Y}^{1}\left(\mathfrak{g}_{P}\right) \xrightarrow{d_{\rho}} \Omega_{Y}^{2}\left(\mathfrak{g}_{P}\right)
$$

Let $H^{i}(Y ; \operatorname{ad} \rho)$ be the i-th cohomology group of this complex.
Lemma 2.1. $H^{1}(Y ; \operatorname{ad} \rho)$ is trivial.
To prove this, consider the pull-back $\tilde{\rho}$ of ρ by the projection $S^{3} \rightarrow Y=S^{3} / \mathbb{Z}_{p}$. Then $H^{1}(Y ; \operatorname{ad} \rho)$ is identified with the invariant subspace of the natural action of \mathbb{Z}_{p} on $H^{1}\left(S^{3} ; \operatorname{ad} \tilde{\rho}\right)$. Since S^{3} is simply connected, $\tilde{\rho}$ is gauge equivalent to the trivial connection. This means that $H^{1}\left(S^{3} ; \operatorname{ad} \tilde{\rho}\right)$ is isomorphic to $H^{1}\left(S^{3} ; \mathbb{R}\right) \otimes \mathfrak{s u}(2)$. But $H^{1}\left(S^{3} ; \mathbb{R}\right)$ is trivial. Hence we have obtained the statement.

Lemma 2.1 implies that if the curvature of an instanton over $Y \times \mathbb{R}$ is L^{2}-integrable, then the instanton exponentially converges to some flat connections at $\pm \infty$ with respect to any Sobolev norms. (See [6, Section 4.1].) We consider moduli spaces of instantons whose curvatures are L^{2}-integrable. Let $\tilde{M}_{\rho \sigma}$ denote the framed moduli space of instantons with limits ρ, σ. That is, $\tilde{M}_{\rho \sigma}$ is the quotient of the space of instantons with limits ρ at $-\infty$ and σ at $+\infty$ by the group of gauge transformations with limit 1 at $\pm \infty$. The group $\Gamma_{\rho} \times \Gamma_{\sigma}$ naturally acts on $\tilde{M}_{\rho \sigma}$, and put $M_{\rho \sigma}:=\tilde{M}_{\rho \sigma} / \Gamma_{\rho} \times \Gamma_{\sigma}$. (As stated above, Γ_{ρ} is the stabilizer of ρ in the gauge group.)
Lemma 2.2. Let ρ, σ be flat connections over Y which represent deferent classes in $R(Y)$. Then the moduli space $M_{\rho \sigma}$ is a smooth manifold, and

$$
\operatorname{dim} M_{\rho \sigma} \equiv \delta_{Y}([\rho])-\delta_{Y}([\sigma])-\operatorname{dim} \Gamma_{\rho} \bmod 8
$$

First we consider the deformation complex of the framed moduli space $\tilde{M}_{\rho \sigma}$ at $[A]$:

$$
\begin{equation*}
L_{2}^{2,(\epsilon, \epsilon)}\left(\Lambda_{Y \times \mathbb{R}}^{0} \otimes \mathfrak{s u}(2)\right) \xrightarrow{d_{A}} L_{1}^{2,(\epsilon, \epsilon)}\left(\Lambda_{Y \times \mathbb{R}}^{1} \otimes \mathfrak{s u}(2)\right) \xrightarrow{d_{A}^{+}} L^{2,(\epsilon, \epsilon)}\left(\Lambda_{Y \times \mathbb{R}}^{+} \otimes \mathfrak{s u}(2)\right) \tag{1}
\end{equation*}
$$

Here $L^{2,(\epsilon, \epsilon)}$ is the completion of the space of compact supported sections by a weighted L^{2} norm defined by a function $W^{++}: Y \times \mathbb{R} \rightarrow \mathbb{R}_{>0}$ with

$$
W^{++}(y, t)= \begin{cases}e^{-\epsilon t} & \text { if } t<-1 \\ e^{\epsilon t} & \text { if } t>1\end{cases}
$$

Similarly for $L_{1}^{2,(\epsilon, \epsilon)}, L_{2}^{2,(\epsilon, \epsilon)}$. We can show that the second cohomology of the complex is trivial by using Weitzenböck formula for $d_{A}^{*, \epsilon}+d_{A}^{+}$, since the Riemannian metric of $Y \times \mathbb{R}$ is self-dual and the scalar curvature is positive. (See [1] for the case when the 4 -manifold is closed.) Here $d^{*, \epsilon}$ is the formal adjoint of d_{A} with respect to the wighted Sobolev norms. This implies that $\tilde{M}_{\rho \sigma}$ is a smooth manifold.

Next we show that all instantons A with limits ρ, σ are irreducible. Suppose that A is reducible. Then we can write

$$
A=a \oplus-a
$$

for some $U(1)$-connection a. Since $* F_{a}=-F_{a}$ and F_{a} is closed, we have

$$
d^{*} F_{a}=* d * F_{a}=-* d F_{a}=0 .
$$

Hence F_{a} is a harmonic 2 -form over $Y \times \mathbb{R}$. Moreover F_{a} decays exponentially as $t \rightarrow \pm \infty$. Thus we have

$$
F_{a} \in \operatorname{ker}\left(d^{*}+d\right) \cap L^{2} \cong \operatorname{Im}\left(H^{2}\left(X_{T}, \partial X_{T} ; \mathbb{R}\right) \rightarrow H^{2}\left(X_{T} ; \mathbb{R}\right)\right)
$$

Here $T>0$ is a positive number and $X_{T}=Y \times[-T, T]$. Note that $H^{2}\left(X_{T} ; \mathbb{R}\right)=0$ since Y is a lens space. This means that a (and hence A) is a flat connection over $Y \times \mathbb{R}$.

Let A^{\prime} be a connection which is gauge equivalent to A and is in temporal gauge. Then by the instanton equation we have

$$
\frac{\partial A^{\prime}}{\partial t}=-*_{Y} F_{A^{\prime}}=0
$$

where $*_{Y}$ is Hodge $*$-operator over Y and we have used $F_{A^{\prime}}=0$. Therefore the restriction A_{t}^{\prime} of A^{\prime} to $Y \times\{t\}$ is independent of t, and especially $[\rho]=[\sigma]$ in $R(Y)$. This is a contradiction since we assumed $[\rho] \neq[\sigma]$. Thus A is irreducible.

The fact that A is irreducible implies that the stabilizer of $[A] \in \tilde{M}_{\rho \sigma}$ in $\Gamma_{\rho} \times \Gamma_{\sigma}$ is $\{ \pm(1,1)\}$ and that the action of $\Gamma_{\rho} \times \Gamma_{\sigma} /\{ \pm(1,1)\}$ on $\tilde{M}_{\rho \sigma}$ is free. Hence the quotient $M_{\rho \sigma}=\tilde{M}_{\rho \sigma} / \Gamma_{\rho} \times \Gamma_{\sigma}$ is also smooth.

We show the second part of the lemma. The dimension of the framed moduli space $\tilde{M}_{\rho \sigma}$ is the index ind ${ }^{++}\left(d_{A}^{*, \epsilon}+d_{A}^{+}\right)$of the complex (11). This is equal to

$$
\operatorname{ind}^{-+}\left(d_{A}^{*}+d_{A}^{+}\right)+\operatorname{dim} \Gamma_{\sigma} .
$$

(See [6, Proposition 3.10, Proposition 3.19].) Hence we have

$$
\begin{aligned}
\operatorname{dim} M_{\rho \sigma} & =\operatorname{dim} \tilde{M}_{\rho \sigma}-\operatorname{dim} \Gamma_{\rho}-\operatorname{dim} \Gamma_{\sigma} \\
& =\operatorname{ind}^{-+}\left(d_{A}^{*}+d_{A}^{+}\right)-\operatorname{dim} \Gamma_{\rho} \\
& \equiv \delta_{Y}([\rho])-\delta_{Y}([\sigma])-\operatorname{dim} \Gamma_{\rho} \quad \bmod 8 .
\end{aligned}
$$

Here we used the additivity of the index in the last equality.
2.2. Analog of Floer homology. In this subsection, we will construct an analog of Floer homology [10] for lens spaces. The construction in this subsection is originally due to M. Furuta [13]. Floer homology for a homology 3 -sphere $Z[10]$ is defined to be the homology of the chain complex generated by gauge equivalence classes of flat connections over Z. The boundary operator is defined by counting number of points of 0 -dimensional moduli spaces of instantons over $Z \times \mathbb{R}$ (with signs). If we apply this construction to a lens space Y, as explained in [13], we will face the problem that the square of the boundary operator is not zero. The idea to overcome this problem is that we modify the definition of the boundary operator using twisted Dirac operators over $Y \times \mathbb{R}$.

For each $i \in \mathbb{Z}$, let $C F_{i}(Y)$ be the vector space over \mathbb{Z}_{2} spanned by

$$
\left\{[\rho] \in R(Y) \mid \Gamma_{\rho} \cong U(1), \delta_{Y}([\rho]) \equiv i \bmod 8\right\} .
$$

Then we put

$$
C_{i}^{(0)}(Y):=C F_{2 i}(Y), \quad C_{i}^{(1)}(Y):=C F_{2 i+1}(Y)
$$

We will define the boundary operator $\partial^{(0)}: C_{*}^{(0)} \rightarrow C_{*-1}^{(0)}$ as follows. (The definition of $\partial^{(1)}: C_{*}^{(1)} \rightarrow$ $C_{*-1}^{(1)}$ is similar.)

Take generators $[\rho] \in C_{i}^{(0)}(Y),[\sigma] \in C_{i-1}^{(0)}(Y)$. By the dimension formula in Lemma 2.2, we have

$$
\operatorname{dim} M_{\rho \sigma} \equiv 2-1 \equiv 1 \quad \bmod 8
$$

We can take representatives ρ, σ of the classes such that

$$
\operatorname{dim} M_{\rho \sigma}=1
$$

We define $M_{\rho \sigma}^{\prime} \subset M_{\rho \sigma}$ to be the moduli space of instantons with center of mass 0 . Here the center of mass of A is defined by

$$
\int_{Y \times \mathbb{R}} t\left|F_{A}\right|^{2} d \mu_{Y \times \mathbb{R}} \in \mathbb{R}
$$

Standard arguments, which can be found in [6], show that $M_{\rho \sigma}^{\prime}$ is a compact smooth manifold of dimension 0 . That is, $M_{\rho \sigma}^{\prime}$ is a finite set.

Fix a spin structure \mathfrak{s} of Y and a connection A with limit ρ, σ. Then we have the twisted Dirac operator over $Y \times \mathbb{R}$:

$$
\mathscr{P}_{A}: L_{1}^{2,(-\epsilon, \epsilon)}\left(S^{+} \otimes E\right) \longrightarrow L^{2,(-\epsilon, \epsilon)}\left(S^{-} \otimes E\right) .
$$

Here E is the rank 2 complex vector bundle over $Y \times \mathbb{R}$ associated with $\pi^{*} Q$ and $S^{ \pm}$are the spinor bundle of the spin structure. We denote ind ${ }^{-+} \mathscr{P}_{A} \in \mathbb{Z}$ by $i_{\rho \sigma}$. We put

$$
<\partial^{(0)}([\rho]),[\sigma]>:=\left\{\begin{array}{cll}
\# M_{\rho \sigma}^{\prime} & \bmod 2 & \text { if } i_{\rho \sigma} \equiv 1 \bmod 2, \\
0 & \bmod 2 & \text { otherwise. }
\end{array}\right.
$$

These matrix elements define the map $\partial^{(0)}: C_{i}^{(0)} \rightarrow C_{i-1}^{(0)}$.
Lemma 2.3. $\partial^{(0)} \circ \partial^{(0)}=0$.
For generators $[\rho] \in C_{i}^{(0)}=C F_{2 i}$ and $[\tau] \in C_{i-2}^{(0)}=C F_{2 i-4}$, we have

$$
<\partial^{(0)} \circ \partial^{(0)}([\rho]),[\tau]>=\sum_{[\sigma]}<\partial^{(0)}([\rho]),[\sigma]><\partial^{(0)}([\sigma]),[\tau]>.
$$

Here $[\sigma]$ runs over the set of generators of $C_{i-1}^{(0)}$.
If $i_{\rho \tau} \equiv 1 \bmod 2$, then $i_{\rho \sigma}$ or $i_{\sigma \tau}$ is even by the additivity of the index. By definition, $<$ $\partial^{(0)}([\rho]),[\sigma]>$ or $\left\langle\partial^{(0)}([\sigma]),[\tau]>\right.$ is trivial, and hence $\left\langle\partial^{(0)} \circ \partial^{(0)}([\rho]),[\tau]>\equiv 0 \bmod 2\right.$.

To prove the lemma in the case when $i_{\rho \tau} \equiv 0 \bmod 2$, we consider the moduli space $M_{\rho \tau}^{\prime}$. By the formula in Lemma 2.2,

$$
\operatorname{dim} M_{\rho \tau} \equiv \delta_{Y}([\rho])-\delta_{Y}([\tau])-1 \equiv 4-1 \equiv 3 \quad \bmod 8
$$

Hence we have the 2-dimensional moduli space $M_{\rho \tau}^{\prime}$ of instantons with center of mass 0 . We need a real line bundle Λ over the moduli space $M_{\rho \tau}^{\prime}$, which is defined as in [7] for closed 4-manifolds. There is the universal bundle $\tilde{\mathbb{E}}$ over $(Y \times \mathbb{R}) \times \tilde{M}_{\rho \tau}$:

$$
\tilde{\mathbb{E}}:=E \times \times_{\mathcal{G}_{0}} \mathcal{A}_{\rho \tau}^{\text {inst }} \longrightarrow(Y \times \mathbb{R}) \times \tilde{M}_{\rho \tau} .
$$

Here $\mathcal{A}_{\rho \tau}^{\text {inst }}$ is the space of instantons with limits ρ, τ and \mathcal{G}_{0} is the group of gauge transformations with limit 1 at $\pm \infty$. For each $A \in \mathcal{A}_{\rho \tau}^{\text {inst }}$, we have the real part of the twisted Dirac operator \mathscr{P}_{A} :

$$
\left(\mathscr{D}_{A}\right)_{\mathbb{R}}: L_{1}^{2,(-\alpha, \alpha)}\left(\left(S^{+} \otimes E\right)_{\mathbb{R}}\right) \longrightarrow L^{2,(-\alpha, \alpha)}\left(\left(S^{-} \otimes E\right)_{\mathbb{R}}\right)
$$

The universal bundle and the family of the real operators define the determinant line bundle over the framed moduli space:

$$
\tilde{\Lambda} \xrightarrow{\mathbb{R}} \tilde{M}_{\rho \tau} .
$$

We have a natural action of $\Gamma_{\rho} \times \Gamma_{\tau}$ on $\tilde{\Lambda}$ which is a lift of the action on $\tilde{M}_{\rho \tau}$. The subgroup $\{ \pm(1,1)\}$ acts on $\tilde{M}_{\rho \tau}$ trivially and on the fiber of $\tilde{\Lambda}$ with weight ind $\mathscr{P}_{A}=i_{\rho \tau}$. Since we assumed that $i_{\rho \tau}$ is
even, the action on the fiber is also trivial. Hence $\tilde{\Lambda}$ descends to a line bundle over $M_{\rho \tau}$. We denote the restriction to $M_{\rho \tau}^{\prime}$ by Λ.

Take a generic section s of Λ. We consider the end of the zero locus $s^{-1}(0)$. A standard argument, which can be found in [6], shows the following:

Lemma 2.4. Any sequence $\left\{\left[A_{\alpha}\right]\right\}_{\alpha}$ in $M_{\rho \tau}^{\prime}$ has a subsequence $\left\{\left[A_{\alpha^{\prime}}\right]\right\}_{\alpha^{\prime}}$ which is chain-convergent to some $\left(\left[A_{1}\right],\left[A_{2}\right]\right) \in M_{\rho \sigma}^{\prime} \times M_{\sigma \tau}^{\prime}$. Here σ is a flat connection with $\Gamma_{\sigma} \cong U(1)$ and $\operatorname{dim} M_{\rho \sigma}^{\prime}=$ $\operatorname{dim} M_{\sigma \tau}^{\prime}=0$.

As is well known, gluing instantons gives the map

$$
G l: \coprod_{[\sigma]} M_{\rho \sigma}^{\prime} \times M_{\sigma \tau}^{\prime} \times\left(\Gamma_{\sigma} /\{ \pm 1\}\right) \times\left(T_{0}, \infty\right) \longrightarrow M_{\rho \tau}^{\prime},
$$

where $[\sigma]$ runs over the set of generators of $C_{i-1}^{(0)}$, and T_{0} is a large positive number. The gluing map $G l$ is a homeomorphism to an open set in $M_{\rho \tau}^{\prime}$ and the complement of the image of $G l$ is compact.

Fix $T_{1}>T_{0}$ and put $M_{\rho \tau}^{\prime \prime}:=M_{\rho \tau}^{\prime} \backslash \operatorname{im} G l_{>T_{1}}$. Here $G l_{>T_{1}}$ is the restriction of $G l$ to the domain where the parameter T is larger than T_{1}. For a generic section s of $\Lambda, N_{\rho \tau}^{\prime \prime}:=s^{-1}(0) \cap M_{\rho \tau}^{\prime \prime}$ is a smooth compact 1-dimensional manifold with boundary

$$
\coprod_{[\sigma]}\left(M_{\rho \sigma}^{\prime} \times M_{\sigma \tau}^{\prime} \times\left(\Gamma_{\sigma} /\{ \pm 1\}\right) \times\left\{T_{1}\right\}\right) \cap s^{-1}(0)
$$

For $\mathfrak{a} \in M_{\rho \sigma}^{\prime} \times M_{\sigma \tau}^{\prime}$, we denote by $U(1)_{\mathfrak{a}}$ the corresponding gluing parameter. That is, $U(1)_{\mathfrak{a}}:=$ $\{\mathfrak{a}\} \times\left(\Gamma_{\sigma} /\{ \pm 1\}\right) \times\left\{T_{1}\right\} \cong U(1)$.
Lemma 2.5. The line bundle Λ is non-trivial on $U(1)_{\mathfrak{a}}$ if and only if

$$
i_{\rho \sigma} \equiv 1 \bmod 2 .
$$

Note that $i_{\rho \sigma} \equiv i_{\sigma \tau} \bmod 2$ since we assumed $i_{\rho \tau} \equiv 0 \bmod 2$.
This lemma can be proved in the same way as [18, Lemma 3.14]. We give outline of the proof. Let $p: \Gamma_{\sigma} \rightarrow U(1)_{\mathfrak{a}}$ be the projection. The gluing theory gives a natural trivialization

$$
\hat{\Lambda}:=\left.p^{*} \Lambda\right|_{U(1)_{\mathrm{a}}} \cong \underline{R} .
$$

We have the natural action of \mathbb{Z}_{2} on $\hat{\Lambda}$ and $\hat{\Lambda} / \mathbb{Z}_{2}=\left.\Lambda\right|_{U(1) \mathfrak{a}}$. Through the trivialization, the action of $-1 \in \mathbb{Z}_{2}$ on the fiber is $(-1)^{i_{\rho \sigma}}$. (See (3) below.) Hence we have obtained the statement.

By this lemma, we have

$$
\begin{aligned}
\# \partial N_{\rho \tau}^{\prime \prime} & \equiv \sum_{[\sigma] ; i_{\rho \sigma} \equiv i_{\sigma \tau} \equiv 1} \# \bmod 2 \\
& \equiv M_{\rho \sigma}^{\prime} \cdot \# M_{\sigma \tau}^{\prime} \bmod 2 \\
& <\partial^{(0)}([\rho]),[\sigma]><\partial^{(0)}([\sigma]),[\tau]>\bmod 2 \\
& \equiv<\partial^{(0)} \circ \partial^{(0)}([\rho]),[\tau]>\bmod 2 .
\end{aligned}
$$

On the the hand, the number of the boundaries of a 1-dimensional compact manifold is even. Hence we have obtained the required identity

$$
<\partial^{(0)} \circ \partial^{(0)}([\rho]),[\tau]>\equiv 0 \quad \bmod 2 .
$$

We can also show $\partial^{(1)} \circ \partial^{(1)}=0$ by the same arguments.
Definition 2.6. $I^{(0)}(Y ; \mathfrak{s}):=H_{*}\left(C_{*}^{(0)}(Y), \partial^{(0)}\right), I^{(1)}(Y ; \mathfrak{s}):=H_{*}\left(C_{*}^{(1)}(Y), \partial^{(1)}\right)$.
2.3. Analog of Fukaya-Floer homology. The aim of this subsection is to construct analog of Fukaya-Floer homology 11 for lens spaces. Fukaya-Floer homology is defined for a triple of a 3manifold Z, a $U(2)$-bundle Q over Z and a loop γ in Z, provided that all (projectively) flat connections on Q are irreducible. The boundary operator is defined using not only 0 -dimensional moduli spaces over $Z \times \mathbb{R}$ but also 2-dimensional moduli spaces. As in the previous case, to extend this construction to lens spaces Y, we must change the definition of the boundary using twisted Dirac operators over $Y \times \mathbb{R}$. Furthermore, as we will see later, we need to look out the contribution of the trivial connection differently from [11], [4] and the previous subsection. The discussion which involves the trivial flat connection is similar to that in [18.

Throughout this subsection, we assume p is an odd prime integer. The assumption that p is odd implies that Y has an unique spin structure (up to isomorphism), and we have

$$
\delta_{Y}([\rho]) \equiv 0 \quad \bmod 2
$$

for all flat connections. See Corollary 4.4. Moreover the only trivial flat connection has $S U(2)$ as the stabilizer in the gauge group.

Let γ be a simple closed curve in Y. Put

$$
C_{i}(Y ; \gamma):=\left\{\begin{array}{cl}
C F_{2 i}(Y) \oplus C F_{2 i-2}(Y) & \text { if } i \not \equiv 0 \bmod 8, \\
C F_{0}(Y) \oplus C F_{-2}(Y) \oplus \mathbb{Z}_{2}<[\theta]> & \text { if } i \equiv 0 \bmod 8 .
\end{array}\right.
$$

We will define the boundary operator $\partial_{\gamma}: C_{*}(Y ; \gamma) \rightarrow C_{*-1}(Y ; \gamma)$ as follows.
As before, we define the matrix elements

$$
<\partial_{\gamma}([\rho]),[\sigma]>\in \mathbb{Z}_{2}
$$

for generators $[\rho] \in C_{i}(Y ; \gamma),[\sigma] \in C_{i-1}(Y ; \gamma)$ using moduli spaces over $Y \times \mathbb{R}$. First assume that

$$
[\rho],[\sigma] \neq[\theta], \quad \delta_{Y}([\rho])-\delta_{Y}([\sigma]) \equiv 2 \quad \bmod 8
$$

In this case, we have the moduli space $M_{\rho \sigma}^{\prime}$ of dimension 0 . As before we define

$$
<\partial_{\gamma}([\rho]),[\sigma]>:=\left\{\begin{array}{ccc}
\# M_{\rho \sigma}^{\prime} & \bmod 2 & \text { if } i_{\rho \sigma} \equiv 1 \\
0 & \bmod 2 & \text { otherwise } 2
\end{array}\right.
$$

Next we consider the case where

$$
[\rho],[\sigma] \neq[\theta], \quad \delta_{Y}([\rho])-\delta_{Y}([\sigma]) \equiv 4 \quad \bmod 8
$$

In this case we have the moduli space $M_{\rho \sigma}^{\prime}$ of dimension 2. To define the matrix element, we use the determinant line bundle of twisted $\bar{\partial}$-operators over $\gamma \times \mathbb{R}$. Take a spin structure of γ which represent the trivial spin bordism class. (See [18, Remark 2.3] for the reason why we choose the spin structure.) The spin structure induces a spin structure of $\gamma \times \mathbb{R}$ (i.e. a square root $K_{\gamma \times \mathbb{R}}^{\frac{1}{2}}$ of the canonical line bundle $K_{\gamma \times \mathbb{R}}$) and we have twisted $\bar{\partial}$-operators

$$
\bar{\partial}_{A}: \Gamma\left(K_{\gamma \times \mathbb{R}}^{\frac{1}{2}} \otimes E\right) \longrightarrow \Gamma\left(K_{\gamma \times \mathbb{R}}^{\frac{1}{2}} \otimes E \otimes \Lambda_{\gamma \times \mathbb{R}}^{0,1}\right)
$$

Here E is the rank 2 complex vector bundle over $Y \times \mathbb{R}$ associated with $\pi^{*} Q$ and A is a connection on $\pi^{*} Q$ with limit ρ, σ. As in the previous subsection, the family of twisted $\bar{\partial}$ operators defines the determinant line bundle $\tilde{\mathcal{L}}_{\gamma ; \rho \sigma}$ over the framed moduli space $\tilde{M}_{\rho \sigma}^{\prime}$. We show that this line bundle descends to a line bundle over $M_{\rho \sigma}^{\prime}$. It is sufficient to prove that the index of $\bar{\partial}_{A}$ is even.
Lemma 2.7. When p is prime, we have:
(1) Assume that $[\gamma] \in H_{1}(Y ; \mathbb{Z})$ is trivial. Then for any flat connections ρ, σ connections A with limits ρ, σ, the index ind $^{-+} \bar{\partial}_{A}$ is even.
(2) Assume that $[\gamma] \in H_{1}(Y ; \mathbb{Z})$ is non-trivial. Take flat connections ρ, σ with $\Gamma_{\rho}, \Gamma_{\sigma} \cong U(1)$. For any connection A over $Y \times \mathbb{R}$ with limits ρ, σ, the index ind $^{-+} \bar{\partial}_{A}$ is even.

We can see (11) in this lemma as follows. Since $[\gamma] \in H_{1}(Y ; \mathbb{Z})$ is trivial, the restrictions $\left.\left.\rho\right|_{\gamma, \sigma}\right|_{\gamma}$ are gauge equivalent to the trivial flat connection over γ. In particular, $\left.\rho\right|_{\gamma}$ is gauge equivalent to $\left.\sigma\right|_{\gamma}$. By additivity of the index, ind ${ }^{-+} \bar{\partial}_{A}$ is equal to the index of $\bar{\partial}$-operator over $\gamma \times S^{1}$ twisted by the $S U(2)$-bundle. This index is zero by the index theorem.

The second part of Lemma 2.7 follows from:
Lemma 2.8. Assume that $[\gamma] \in H_{1}(Y ; \mathbb{Z})$ is non-trivial and that p is prime. Take flat connections ρ, σ with $\Gamma_{\rho}, \Gamma_{\sigma} \cong U(1)$. For any connection A with limits θ and ρ or with limits σ and θ, the index ind $^{-+} \bar{\partial}_{A}$ is odd.

Assuming Lemma 2.8, we give the proof of Lemma 2.7. By the additivity of the index, we have

$$
\operatorname{ind}^{-+} \bar{\partial}_{A_{\theta \rho}}+\operatorname{ind}^{-+} \bar{\partial}_{A_{\rho \sigma}}=\operatorname{ind}^{-+} \bar{\partial}_{A_{\theta \sigma}} .
$$

Here $A_{\theta \rho}$ is a connection with limits θ, ρ. Similarly for $A_{\rho \sigma}, A_{\theta \sigma}$. By Lemma 2.8, both ind ${ }^{-+} \bar{\partial}_{A_{\theta \rho}}$ and ind ${ }^{-+} \bar{\partial}_{A_{\theta \sigma}}$ are odd. Therefore ind ${ }^{-+} \bar{\partial}_{A_{\rho \sigma}}$ is even.

We will give the proof of Lemma 2.8 at the end of this subsection.
We go back to the definition of ∂_{γ}. As before suppose that $\delta_{Y}([\rho])-\delta_{Y}([\sigma]) \equiv 4 \bmod 8$ and that $[\rho],[\sigma] \neq[\theta]$. By Lemma [2.7, we have the determinant line bundle

$$
\mathcal{L}_{\gamma ; \rho \sigma}:=\tilde{\mathcal{L}}_{\gamma ; \rho \sigma} / \Gamma_{\rho} \times \Gamma_{\sigma} \xrightarrow{\mathbb{C}} M_{\rho \sigma}^{\prime} .
$$

We want to define the matrix element $<\partial_{\gamma}([\rho]),[\sigma]>$ to be $\# s_{\gamma}^{-1}(0) \bmod 2$ for a generic section $s_{\gamma}: M_{\rho \sigma}^{\prime} \rightarrow \mathcal{L}_{\gamma ; \rho \sigma}$ if $i_{\rho \sigma} \equiv 1 \bmod 2$ and zero otherwise. However $M_{\rho \sigma}^{\prime}$ is not compact in general. We need a section of $\mathcal{L}_{\gamma ; \rho \sigma}$ which is non-vanishing on the end of $M_{\rho \sigma}^{\prime}$ and transverse to the zero section. The end can be described as in the proof of Lemma 2.3. The end is the image of the gluing map

$$
G l: \coprod_{[\mu]} M_{\rho \mu}^{\prime} \times M_{\mu \sigma}^{\prime} \times\left(\Gamma_{\mu} /\{ \pm 1\}\right) \times\left(T_{0}, \infty\right) \longrightarrow M_{\rho \sigma}^{\prime} .
$$

Here $[\mu]$ runs over the the set of gauge equivalence of flat connections with $\delta_{Y}([\rho])-\delta_{Y}([\mu]) \equiv 2$ $\bmod 8$ and with $\Gamma_{\mu} \cong U(1)$. We can take a desired section s_{γ} as follows.

First for each $[\mu]$ fix generic sections $s_{\gamma: \rho \mu}$ and $s_{\gamma ; \mu \sigma}$ of the determinant line bundles over $M_{\rho \mu}^{\prime}$ and $M_{\mu \sigma}^{\prime}$. The zero loci of these sections are empty.

Next we consider the end of $M_{\rho \sigma}^{\prime}$ described by gluing instantons $\left[A_{1}\right] \in M_{\rho \mu}^{\prime}$ and $\left[A_{2}\right] \in M_{\mu \sigma}^{\prime}$, which is identified with $E=\left(\Gamma_{\mu} /\{ \pm 1\}\right) \times\left(T_{0}, \infty\right)$. Let $\hat{\mathcal{L}}$ be the pull-back of the restriction $\left.\mathcal{L}_{\gamma: \rho \sigma}\right|_{E}$ by the projection

$$
\Gamma_{\mu} \times\left(T_{0}, \infty\right) \longrightarrow E=\left(\Gamma_{\mu} /\{ \pm 1\}\right) \times\left(T_{0}, \infty\right)
$$

On $\Gamma_{\mu} \times\left(T_{0}, \infty\right)$, the additivity of the index gives an isomorphism

$$
\begin{equation*}
\hat{G l}:\left(\mathcal{L}_{\gamma: \rho \mu}\right)_{\left[A_{1}\right]} \boxtimes\left(\mathcal{L}_{\gamma: \mu \sigma}\right)_{\left[A_{2}\right]} \xrightarrow{\cong} \hat{\mathcal{L}} . \tag{2}
\end{equation*}
$$

For $(g, T) \in \Gamma_{\mu} \times\left(T_{0}, \infty\right)$, we have

$$
\begin{equation*}
\left.\hat{G} l\right|_{(g, T)}=\left.(-1)^{\mathrm{ind}^{-+} \bar{\partial}_{A_{1}}} \cdot \hat{G} l\right|_{(-g, T)} \tag{3}
\end{equation*}
$$

Here $\left.\hat{G}\right|_{(g, T)}$ is the restriction of $\hat{G l}$ to the fiber over (g, T). This can be seen as follows. The gauge equivalence class of instanton corresponding to (g, T) is obtained by gluing instantons $u\left(A_{1}\right)$ and A_{2}, where u is a gauge transformation over $Y \times \mathbb{R}$ with limit g at $+\infty$. On the other hand, the gauge equivalence class corresponding to $(-g, T)$ is obtained by gluing $-u\left(A_{1}\right)$ and A_{2}. The action of -1 on the fiber $\left(\mathcal{L}_{\gamma ; \rho \mu}\right)_{\left[A_{1}\right]}$ is $(-1)^{\text {ind }}{ }^{-+} \bar{\partial}_{A_{1}}$. Hence we have obtained (3).

By Lemma 2.7, ind $^{-+} \bar{\partial}_{A_{1}} \equiv 0 \bmod 2$. Thus we obtain:

Lemma 2．9．The above isomorphism（⿴囗⿱一兀 ）descends to an isomorphism

$$
\left.\mathcal{L}_{\gamma: \rho \sigma}\right|_{E} \cong\left(\mathcal{L}_{\gamma: \rho \mu}\right)_{\left[A_{1}\right]} \boxtimes\left(\mathcal{L}_{\gamma: \mu \sigma}\right)_{\left[A_{2}\right]}
$$

over $E=\left(\Gamma_{\mu} /\{ \pm 1\}\right) \times\left(T_{0}, \infty\right)$ ．
As in［18，Section 2］，we can construct a section $s_{\gamma}: M_{\rho \sigma}^{\prime} \rightarrow \mathcal{L}_{\rho \sigma}$ which is compatible with the identification of Lemma［2．9．That is，if $\left[A^{\alpha}\right]$ be a sequence of points in $M_{\rho \sigma}^{\prime}$ converging to some $\left(\left[A_{1}\right],\left[A_{2}\right]\right) \in M_{\rho \mu}^{\prime} \times M_{\mu \sigma}^{\prime}$ then $s_{\gamma}\left(\left[A_{\alpha}\right]\right) \rightarrow s_{\gamma ; \rho \mu}\left(\left[A_{1}\right]\right) \otimes s_{\gamma ; \mu \sigma}\left(\left[A_{2}\right]\right)$ in the sense of［18，Definition 2．7］． The section s_{γ} does not vanish on the ends of the moduli space，since $s_{\gamma ; \rho \mu}$ and $s_{\gamma ; \mu \sigma}$ are non－vanishing sections．Thus the zero locus $s_{\gamma}^{-1}(0)$ is compact．Perturbing s_{γ} over a compact set in $M_{\rho \sigma}^{\prime}$ ，we may assume that s_{γ} is transverse to the zero section．Therefore $s_{\gamma}^{-1}(0)$ is a finite set．We define the matrix element by

$$
<\partial_{\gamma}([\rho]),[\sigma]>:=\left\{\begin{array}{cll}
\# s_{\gamma}^{-1}(0) & \bmod 2 & \text { if } i_{\rho \sigma} \equiv 1 \bmod 2 \\
0 & \bmod 2 & \text { otherwise }
\end{array}\right.
$$

Next we define the terms which involve the trivial connection．Let $[\rho] \in C F_{2}(Y) \subset C_{1}(Y ; \gamma)$ ， $[\sigma]=[\theta] \in C_{0}(Y ; \gamma)$ ．Then we have a 0 －dimensional moduli space $M_{\rho \theta}^{\prime}$ ．We define

$$
<\partial_{\gamma}([\rho]),[\theta]>:=\left\{\begin{array}{ccl}
\# M_{\rho \theta}^{\prime} & \bmod 2 & \text { if } i_{\rho \theta} \equiv 1 \quad \bmod 2,[\gamma] \neq 0 \text { in } H_{1}(Y ; \mathbb{Z}), \\
0 & \bmod 2 & \text { otherwise. }
\end{array}\right.
$$

Let $[\rho]=[\theta] \in C_{0}(Y ; \gamma),[\sigma] \in C F_{-4}(Y) \subset C F_{-1}(Y ; \gamma)$ ．Then

$$
\operatorname{dim} M_{\theta \sigma} \equiv \delta_{Y}([\theta])-\delta_{Y}([\sigma])-\operatorname{dim} \Gamma_{\theta} \equiv 0-(-4)-3 \equiv 1 \bmod 8 .
$$

We have a 0 －dimensional moduli space $M_{\theta \sigma}^{\prime}$ ．We put

$$
<\partial_{\gamma}([\theta]),[\sigma]>:=\left\{\begin{array}{ccc}
\# M_{\theta \sigma}^{\prime} & \bmod 2 & \text { if } i_{\theta \sigma} \equiv 1 \\
0 & \bmod 2 & \text { otherwise }
\end{array}\right.
$$

We define other matrix elements to be zero．
The part of the boundary map which does not involve the trivial flat connection is as the following diagram：

The horizontal maps are defined using 0－dimensional moduli spaces，and the diagonal maps are defined using 2－dimensional moduli spaces and the determinant line bundles of $\gamma \times \mathbb{R}$ ．

The part of the boundary map which involves the trivial flat connection is as the following diagram：

The a, c and e are maps from $C F_{2}(Y)$, and the b, d and f are maps into $C F_{-4}(Y)$. (These notations will be used later.)

Lemma 2.10. $\partial_{\gamma} \circ \partial_{\gamma}=0$.
We must show $<\partial_{\gamma} \circ \partial_{\gamma}([\rho]),[\tau]>\equiv 0 \bmod 2$ for all generators $[\rho] \in C_{i}(Y ; \gamma),[\tau] \in C_{i-2}(Y ; \gamma)$. We give the proof in the case where $[\rho] \in C F_{2 i}(Y) \subset C_{i}(Y ; \gamma),[\tau] \in C F_{2 i-6}(Y) \subset C_{i-2}(Y ; \gamma)$. The proof for the other cases is the same as that of Lemma 2.3,

If $i_{\rho \tau} \equiv 1 \bmod 2$, then we have $i_{\rho \sigma} \equiv 1 \bmod 2$ or $i_{\sigma \tau} \equiv 1 \bmod 2$ for generators $[\sigma]$ of $C_{i-1}(Y ; \gamma)$. Hence $\left\langle\partial_{\gamma}([\rho]),[\sigma]>\equiv 0 \bmod 2\right.$ or $\left\langle\partial_{\gamma}([\sigma]) .[\tau]>\equiv 0 \bmod 2\right.$ by definition. Since $<\partial_{\gamma}([\rho]),[\tau]>=$ $\sum_{[\sigma]}<\partial_{\gamma}([\rho]),[\sigma]><\partial_{\gamma}([\sigma]),[\tau]>$, we have $<\partial_{\gamma} \circ \partial_{\gamma}([\rho]),[\tau]>\equiv 0 \bmod 2$.

Suppose that $i_{\rho \tau} \equiv 0 \bmod 2$. We consider the moduli space $M_{\rho \tau}^{\prime}$ of dimension 4. We analyse the end of a 1-dimensional moduli space

$$
N=M_{\rho \tau}^{\prime} \cap s_{\gamma ; \rho \tau}^{-1}(0) \cap s_{\Lambda ; \rho \tau}^{-1}(0)
$$

where $s_{\gamma ; \rho \tau}$ and $s_{\Lambda ; \rho \tau}$ are sections of $\mathcal{L}_{\gamma ; \rho \tau} \rightarrow M_{\rho \tau}^{\prime}$ and $\Lambda \rightarrow M_{\rho \tau}^{\prime}$ respectively.
A dimension counting argument shows the following:
Lemma 2.11. Let $\left\{\left[A^{\alpha}\right]\right\}_{\alpha}$ be a sequence in $M_{\rho \tau}^{\prime}$. Then we can find a subsequence $\left\{\left[A^{\alpha^{\prime}}\right]\right\}_{\alpha^{\prime}}$ such that
(i) $\left[A^{\alpha^{\prime}}\right] \longrightarrow\left(\left[A_{1}\right],\left[A_{2}\right]\right) \in M_{\rho \sigma}^{\prime} \times M_{\sigma \tau}^{\prime}$, where σ is a flat connection with $\Gamma_{\sigma} \cong U(1)$, and $\operatorname{dim} M_{\rho \sigma}^{\prime}=$ 2 , $\operatorname{dim} M_{\sigma \tau}^{\prime}=0$, (i.e. $[\sigma] \in C F_{2 i-4}$) or
(ii) $\left[A^{\alpha^{\prime}}\right] \longrightarrow\left(\left[A_{1}\right],\left[A_{2}\right]\right) \in M_{\rho \sigma}^{\prime} \times M_{\sigma \tau}^{\prime}$, where σ is a flat connection with $\Gamma_{\sigma} \cong U(1)$, and $\operatorname{dim} M_{\rho \sigma}^{\prime}=$ 0 , $\operatorname{dim} M_{\sigma \tau}^{\prime}=2$, (i.e. $[\sigma] \in C F_{2 i-2}$) or
(iii) $\left[A^{\alpha^{\prime}}\right] \longrightarrow\left(\left[A_{1}\right],\left[A_{2}\right]\right) \in M_{\rho \theta}^{\prime} \times M_{\theta \sigma}^{\prime}$, and $\operatorname{dim} M_{\rho \theta}^{\prime}=0, \operatorname{dim} M_{\theta \sigma}^{\prime}=0$.

Note that (iiii) occurs only if $[\rho] \in C F_{2}(Y) \subset C F_{1}(Y ; \gamma),[\tau] \in C F_{-4}(Y) \subset C F_{-1}(Y ; \gamma)$, and that the case where $\operatorname{dim} M_{\rho \sigma}^{\prime}=\operatorname{dim} M_{\sigma \tau}^{\prime}=1$ does not occur since $\delta_{Y}([\rho])-\delta_{Y}([\sigma]) \equiv 0 \bmod 2$ for all ρ, σ as we will prove in subsection 4.1, (Corollary 4.4)

We consider the case where (iiii) may occur. That is, $[\rho] \in C F_{2}(Y),[\tau] \in C F_{-4}(Y)$. As usual, we take a section $s_{\gamma: \rho \tau}$ of $\mathcal{L}_{\gamma ; \rho \tau} \rightarrow M_{\rho \tau}^{\prime}$ such that if $\left[A^{\alpha}\right] \rightarrow\left(\left[A_{1}\right],\left[A_{2}\right]\right) \in M_{\rho \sigma}^{\prime} \times M_{\sigma \tau}^{\prime}$ and $\Gamma_{\sigma} \cong U(1)$, then $s_{\gamma ; \rho \tau}\left(\left[A^{\alpha}\right]\right) \rightarrow s_{\gamma ; \rho \sigma}\left(\left[A_{1}\right]\right) \otimes s_{\gamma ; \sigma \tau}\left(\left[A_{2}\right]\right)$. By Lemma [2.11] the end of N is identified with

$$
\begin{aligned}
& \coprod_{\mathfrak{c}}\left(S O(3)_{\mathfrak{c}} \cap s_{\gamma: \rho \tau}^{-1}(0) \cap s_{\Lambda ; \rho \tau}^{-1}(0)\right) .
\end{aligned}
$$

Here $\mathfrak{a}, \mathfrak{b}$ and \mathfrak{c} run over

$$
\left(M_{\rho \sigma}^{\prime} \cap s_{\gamma ; \rho \sigma}^{-1}(0)\right) \times M_{\sigma \tau}^{\prime}, M_{\rho \sigma}^{\prime} \times\left(M_{\sigma \tau}^{\prime} \cap s_{\gamma ; \sigma \tau}^{-1}(0)\right), \text { and } M_{\rho \theta}^{\prime} \times M_{\theta \tau}^{\prime}
$$

respectively. For $\mathfrak{a}=\left(\left[A_{1}\right],\left[A_{2}\right]\right), U(1)_{\mathfrak{a}}$ is the gluing parameter used to glue instantons $\left[A_{1}\right]$ and $\left[A_{2}\right]$. Similarly for $U(1)_{\mathfrak{b}}$ and $S O(3)_{\mathfrak{c}}$. We denote the first term in (5) by $\partial_{1} N$, and the second and third terms by $\partial_{2} N$ and $\partial_{3} N$. From Lemma 2.5 we have

$$
\#\left(U(1)_{\mathfrak{a}} \cap s_{\Lambda ; \rho \tau}^{-1}(0)\right)=\left\{\begin{array}{lll}
1 & \bmod 2 & \text { if } i_{\rho \sigma} \equiv i_{\sigma \tau} \equiv 1 \\
0 & \bmod 2 & \text { otherwise }
\end{array}\right.
$$

Therefore we obtain

$$
\begin{aligned}
& \# \partial_{1} N \equiv \sum_{\substack{\delta_{Y}([\sigma])=\equiv-2 \\
i_{\rho \sigma} \equiv i_{\sigma \tau} \equiv 1}} \# \bmod 8<\left(M_{\rho \sigma}^{\prime} \cap s_{\gamma ; \rho \sigma}^{-1}(0)\right) \times M_{\sigma \tau}^{\prime} \\
& \equiv \sum_{\substack{[\sigma]: \\
\delta_{Y}([\sigma]) \equiv-2}}<\partial_{\gamma}([\rho]),[\sigma]><\partial_{\gamma}([\sigma]),[\tau]> \\
& \equiv \sum_{[\sigma]}<a([\rho]),[\sigma]><b([\sigma]),[\tau]>\bmod 2 .
\end{aligned}
$$

Here a, b are the maps in the diagram (4). Similarly we have

$$
\begin{aligned}
\# \partial_{2} N & \equiv \sum_{\substack{[\sigma]: \\
\delta_{Y}([\sigma]) \equiv 0 \\
\Gamma_{\sigma} \cong U(1)}}<\partial_{\gamma}([\rho]),[\sigma]><\partial_{\gamma}([\sigma]),[\tau]> \\
& \equiv \sum_{[\sigma]}<c([\rho]),[\sigma]><d([\sigma]),[\tau]>\bmod 2 .
\end{aligned}
$$

Here c, d are also the maps in (4).
To compute $\# \partial_{3} N_{3} \bmod 2$, we must know whether $\left.\Lambda\right|_{S O(3)_{c}}$ and $\left.\mathcal{L}_{\rho \tau}\right|_{S O(3)_{c}}$ are trivial or not. As [18, Lemma 3.14], we can show that $\Lambda_{S_{S O(3) c}}$ is non-trivial if and only if

$$
i_{\rho \theta} \equiv i_{\theta \tau} \equiv 1 \quad \bmod 2
$$

Similarly $\left.\mathcal{L}_{\gamma ; \rho \tau}\right|_{S O(3) \mathrm{c}}$ is non-trivial if and only if

$$
\operatorname{ind}^{-+} \bar{\partial}_{A_{1}} \equiv \operatorname{ind}^{-+} \bar{\partial}_{A_{2}} \equiv 1 \quad \bmod 2
$$

Here $\mathfrak{c}=\left(\left[A_{1}\right],\left[A_{2}\right]\right) \in M_{\rho \theta}^{\prime} \times M_{\theta \tau}^{\prime}$. By Lemma 2.7 and 2.8, we obtain:
Lemma 2.12. The line bundle $\mathcal{L}_{\gamma: \rho \tau}$ is non-trivial over $S O(3)_{\mathrm{c}}$ if and only if $[\gamma] \in H_{1}(Y ; \mathbb{Z})$ is non-trivial.

Therefore it follows that

$$
\begin{aligned}
\# \partial_{3} N & \equiv\left\{\begin{array}{cll}
\# M_{\rho \theta}^{\prime} \cdot \# M_{\theta \tau}^{\prime} & \bmod 2 & \text { if } i_{\rho \theta} \equiv i_{\theta \tau} \equiv 1 \\
0 & \bmod 2 & \text { otherwise } 2,[\gamma] \neq 0 \in H_{1}(Y ; \mathbb{Z}), \\
& \equiv<e([\rho]),[\theta]><f([\theta]),[\tau]> & \bmod 2
\end{array}\right.
\end{aligned}
$$

Here e and f are the maps in (4). Thus we have

$$
\begin{gathered}
\# \partial_{1} N+\# \partial_{2} N+\# \partial_{3} N \equiv \sum_{[\sigma]}<a([\rho]),[\sigma]><b([\sigma]),[\tau]>+\sum_{[\sigma]}<c([\rho]),[\sigma]><d([\sigma]),[\tau]> \\
\\
\quad+<e([\rho]),[\theta]><f([\theta]),[\tau]> \\
\equiv
\end{gathered}
$$

Since the number of the ends of a 1-dimensional manifold is even, the left hand side is even. Thus we have obtained $<\partial_{\gamma} \circ \partial_{\gamma}([\rho]),[\tau]>\equiv 0 \bmod 2$ as required.

The proof for the other cases is similar and we omit the proof.
Definition 2.13. Let p be an odd, prime integer and Y be $L(p, q)$ or $-L(p, q)$. Define $I_{*}(Y ; \gamma):=$ $H_{*}\left(C_{*}(Y ; \gamma), \partial_{\gamma}\right)$.

We can show that $I_{*}(Y ; \gamma)$ is independent of the choice of sections of $\mathcal{L}_{\gamma ; \rho \sigma}$, up to canonical isomorphism, using standard arguments.

It remains to prove Lemma 2.8,
Proof of Lemma 2.8
Let ρ be a flat connection over Y with $\Gamma_{\rho} \cong U(1)$ and take a connection A over $Y \times \mathbb{R}$ with limits θ, ρ. We can take a gauge transformation g over γ such that

$$
g^{*}(\rho)=\rho_{l} \oplus-\rho_{l}
$$

over γ. Here l is a positive integer with $1 \leq l \leq p-1, \rho_{l}=\frac{2 \pi l \sqrt{-1}}{p} d \varphi$, and φ is a coordinate of γ such that the restriction of the Riemannian metric of Y to γ is written as $d \varphi^{\otimes 2}$. Note that the restriction $\left.\rho\right|_{\gamma}$ is not gauge equivalent to the trivial connection because $[\gamma] \neq 0$ in $H_{1}(Y ; \mathbb{Z})=\mathbb{Z}_{p}$ and we assumed that p is prime. Hence l is not zero. Since $S U(2)$ is simply connected, we can take a gauge transformation \tilde{g} over $\gamma \times \mathbb{R}$ such that

$$
\left.\tilde{g}\right|_{\gamma \times(-\infty,-1)}=1,\left.\quad \tilde{g}\right|_{\gamma \times(1, \infty)}=g .
$$

Since ind ${ }^{-+} \bar{\partial}_{A}$ depends only on the limits of the restriction $\left.A\right|_{\gamma \times \mathbb{R}}$, it is sufficient to consider a connection A of the form

$$
A=a \oplus-a .
$$

Here a is a $\mathrm{U}(1)$-connection such that

$$
a= \begin{cases}\theta & \text { on } \gamma \times(-\infty,-1), \\ \rho_{l} & \text { on } \gamma \times(1, \infty) .\end{cases}
$$

The index ind ${ }^{-+} \bar{\partial}_{A}$ is the sum $\operatorname{ind}^{-+} \bar{\partial}_{a}+\operatorname{ind}^{-+} \bar{\partial}_{-a}$. We compute ind ${ }^{-+} \bar{\partial}_{a}$ and $\operatorname{ind}^{-+} \bar{\partial}_{-a}$.
For $t \in[0,1]$, put

$$
a_{t}=\frac{2 \pi l \sqrt{-1} t}{p} d \varphi .
$$

We give the complex structure $\gamma \times \mathbb{R}$ using the coordinate

$$
z=t+\sqrt{-1} \varphi
$$

where t is the coordinate of \mathbb{R} and φ is the coordinate of γ. We trivialize the line bundles $K_{\gamma \times \mathbb{R}}=\Lambda_{\gamma \times \mathbb{R}}^{1,0}$ and $\Lambda_{\gamma \times \mathbb{R}}^{0,1}$ using $e^{\sqrt{-1} \varphi} d z=e^{\sqrt{-1} \varphi}(d t+\sqrt{-1} d \varphi)$ and $d \bar{z}=d t-\sqrt{-1} d \varphi$ respectively. (The factor $e^{\sqrt{-1} \varphi}$ makes the trivialization of $K_{\gamma \times \mathbb{R}}$ be compatible with the spin structure of $\gamma \times \mathbb{R}$ chosen before.) Through these trivializations, the twisted $\bar{\partial}$-operator $\bar{\partial}_{a_{t}}$ is written as

$$
\bar{\partial}_{a_{t}}=\frac{1}{2}\left(\frac{\partial}{\partial t}+\sqrt{-1} \frac{\partial}{\partial \varphi}-\frac{2 \pi l t}{p}\right) .
$$

The index ind ${ }^{-+} \bar{\partial}_{a}$ is equal to the spectral flow of the family

$$
\sqrt{-1} \frac{\partial}{\partial \varphi}-\frac{2 \pi l t}{p}+\epsilon \quad(0 \leq t \leq 1)
$$

where $\epsilon>0$ is the small number used to define the weighted Sobolev spaces $L^{2,(-\epsilon, \epsilon)}, L_{1}^{2,(-\epsilon, \epsilon)}$. The spectra of this family are

$$
\lambda_{n}(t)=-\frac{2 \pi l t}{p}+\epsilon+2 \pi n \quad(n \in \mathbb{Z}) .
$$

From this, we have ind ${ }^{-+} \bar{\partial}_{a}=-1$.
Similarly, the index ind ${ }^{-+} \bar{\partial}_{-a}$ is equal to the spectral flow of

$$
\sqrt{-1} \frac{\partial}{\partial \varphi}+\frac{2 \pi l t}{p}+\epsilon \quad(0 \leq t \leq 1)
$$

It is easy to see that ind ${ }^{-+} \bar{\partial}_{-a_{t}}=0$. Therefore we have ind ${ }^{-+} \bar{\partial}_{A}=-1$.

The proof for connections A with limits σ, θ is similar.

3. Gluing formula

3.1. 2-torsion invariant for closed 4 -manifolds. We show a gluing formula for an invariant $\Psi_{X}^{u_{1}}$ of non-spin closed 4-manifolds X introduced in [17]. We recall the definition of $\Psi_{X}^{u_{1}}$ briefly.(See also [9] for the case when X is spin.) This invariant is defined to be a function on a subspace of $\oplus_{d \geq 0} H_{2}(X ; \mathbb{Z})^{\otimes d}$ as follows.

Let X be a closed, non-spin, simply connected 4 -manifold with $b^{+}>1$ and even. Take a principal $S O(3)$-bundle P over X with $w_{2}(P)=w_{2}(X)$ and with $p_{1}(P) \equiv \sigma(X) \bmod 8$. Here $\sigma(X)$ is the signature of X. Fix a Riemannian metric on X. Then we have the moduli space $M_{P}=M_{P}(g)$ of instantons on P. For generic g, M_{P} is a smooth manifold of dimension

$$
-2 p_{1}(P)-3\left(1+b^{+}(X)\right)
$$

Since we assumed $b^{+}(X)$ is even, the dimension is odd, and we can write $\operatorname{dim} M_{P}=2 d+1$ for some integer d.

Suppose $d \geq 0$ and take d homology classes $\left[\Sigma_{1}\right], \ldots,\left[\Sigma_{d}\right] \in H_{2}(X ; \mathbb{Z})$ with self-intersection number even. Then we have the determinant line bundles $\mathcal{L}_{\Sigma_{i}} \rightarrow M_{P}$ of the twisted $\bar{\partial}$-operator over Σ_{i}. We can take sections $s \Sigma_{i}$ of $\mathcal{L}_{\Sigma_{i}}$ such that

$$
N=M_{P} \cap V_{\Sigma_{1}} \cap \cdots \cap V_{\Sigma_{d}}
$$

is a compact smooth manifold of dimension 1. (See [17].) Here $V_{\Sigma_{i}}$ is the zero locus of $s_{\Sigma_{i}}$.
Take a $U(2)$-bundle Q over X with $Q / U(1)=P$ and a spin-c structure \mathfrak{s}_{X} of X with $c_{1}(\operatorname{det} \mathfrak{s})=$ $-c_{1}(Q)$. Then we have the real part

$$
\left(\mathscr{D}_{A}\right)_{\mathbb{R}}: \Gamma\left(\left(S^{+} \otimes E\right)_{\mathbb{R}}\right) \longrightarrow \Gamma\left(\left(S^{-} \otimes E\right)_{\mathbb{R}}\right)
$$

of the twisted Dirac operator \mathfrak{D}_{A}. Here A is a connection on Q, E is the rank 2 complex vector bundle associated with Q, and $S^{ \pm}$is the spinor bundles of \mathfrak{s}. We denote by Λ the determinant line bundle over M_{P} of the family $\left\{\left(\mathscr{P}_{A}\right)_{\mathbb{R}}\right\}_{[A]}$. We define $\Psi_{X}^{u_{1}}\left(\left[\Sigma_{1}\right], \ldots,\left[\Sigma_{d}\right]\right) \in \mathbb{Z}_{2}$ to be

$$
\Psi_{X}^{u_{1}}\left(\left[\Sigma_{1}\right], \ldots,\left[\Sigma_{d}\right]\right)=\# N \cap s_{\Lambda}^{-1}(0) \quad \bmod 2
$$

for a generic section s_{Λ} of Λ. We can see that this is independent of the choices of the Riemannian metric and the sections of the line bundles.
3.2. Relative invariants. In this subsection, we generalize $\Psi_{X}^{u_{1}}$ to compact manifolds with boundary Y. Here Y denote $L(p, q)$ or $-L(p, q)$ as usual. Throughout this subsection we assume that p is odd.

Let X_{1} be a compact, connected, simply connected, non-spin 4-manifold with boundary Y. Assume that $b^{+}\left(X_{1}\right)>0$. We take a Riemannian metric on X_{1} whose restriction to Y coincides with the standard metric. Before we define the relative invariant of X_{1}, we discuss the dimension of moduli spaces of instantons over $\hat{X}_{1}=X_{1} \cup\left(Y \times \mathbb{R}_{\geq 0}\right)$. To calculate the dimension, we need the following:
Lemma 3.1. Let P_{1} be an $S O(3)$-bundle over X_{1}. There exists a cohomology class $\alpha \in H^{2}\left(X_{1} ; \mathbb{Z}\right)$ with the following properties:
(i) $\alpha \equiv w_{2}\left(P_{1}\right) \bmod 2$,
(ii) $\left.\alpha\right|_{Y}=0$ in $H^{2}(Y ; \mathbb{Z})$.

We will give the proof later. Fix a cohomology class $\alpha \in H^{2}\left(X_{1} ; \mathbb{Z}\right)$ with the above properties. From the exact sequence

$$
H^{1}(Y ; \mathbb{Z})=0 \rightarrow H^{2}\left(X_{1}, Y ; \mathbb{Z}\right) \rightarrow H^{2}\left(X_{1} ; \mathbb{Z}\right) \rightarrow H^{2}(Y ; \mathbb{Z}) \rightarrow \cdots
$$

and the property that $\left.\alpha\right|_{Y}=0$, there is the unique lift $\tilde{\alpha} \in H^{2}\left(X_{1}, Y ; \mathbb{Z}\right)$ of α. We define

$$
\alpha^{2}:=<\alpha \cup \tilde{\alpha},\left[X_{1}, Y\right]>\in \mathbb{Z}
$$

Proposition 3.2. We denote by \hat{P}_{1} the extension of P_{1} to $\hat{X}_{1}=X_{1} \cup\left(Y \times \mathbb{R}_{\geq 0}\right)$. For any flat connection ρ over Y, we have

$$
\operatorname{dim} M_{\hat{P}_{1}, \rho} \equiv-\delta_{Y}([\rho])-2 \alpha^{2}-3\left(1+b^{+}\left(X_{1}\right)\right) \quad \bmod 8
$$

Here $M_{\hat{P}_{1}, \rho}$ is the moduli space of instantons on \hat{P}_{1} with limit ρ.
We prove Lemma 3.1 and Proposition 3.2. Lemma 3.1 follows from:
Lemma 3.3. The maps $H^{2}\left(X_{1} ; \mathbb{Z}\right) \rightarrow H^{2}\left(X_{1} ; \mathbb{Z}_{2}\right)$ and $H^{2}\left(X_{1} ; \mathbb{Z}\right) \rightarrow H^{2}(Y ; \mathbb{Z})$ are surjective.
Assuming this lemma, we prove Lemma 3.1. By Lemma 3.3, we can find a lift $\alpha^{\prime} \in H_{2}\left(X_{1} ; \mathbb{Z}\right)$ of $w_{2}\left(P_{1}\right) \in H^{2}\left(X_{1} ; \mathbb{Z}_{2}\right)$. By Bockstein exact sequence

$$
H^{2}(Y ; \mathbb{Z}) \xrightarrow{\times 2} H^{2}(Y ; \mathbb{Z}) \rightarrow H^{2}\left(Y ; \mathbb{Z}_{2}\right)=0
$$

there is an element $\beta^{\prime} \in H^{2}(Y ; \mathbb{Z})$ such that $\left.\alpha^{\prime}\right|_{Y}=2 \beta^{\prime}$. (Recall that we assumed that p is odd.) By Lemma 3.3, we have an extension $\alpha^{\prime \prime} \in H^{2}\left(X_{1} ; \mathbb{Z}\right)$ of $\beta^{\prime} \in H^{2}(Y ; \mathbb{Z})$. Putting $\alpha:=\alpha^{\prime}-2 \alpha^{\prime \prime}$, we obtain a cohomology class with the required properties.

To prove Lemma 3.3, we consider the exact sequences:

$$
\begin{aligned}
\cdots & \rightarrow H_{1}(Y ; \mathbb{Z}) \rightarrow H_{1}\left(X_{1} ; \mathbb{Z}\right) \rightarrow H_{1}\left(X_{1}, Y ; \mathbb{Z}\right) \rightarrow 0 \\
\cdots \rightarrow H^{1}\left(X_{1} ; \mathbb{Z}_{2}\right) & \rightarrow H^{2}\left(X_{1} ; \mathbb{Z}\right) \xrightarrow{\times 2} H^{2}\left(X_{1} ; \mathbb{Z}\right) \rightarrow H^{2}\left(X_{1} ; \mathbb{Z}_{2}\right) \rightarrow H^{3}\left(X_{1} ; \mathbb{Z}\right) \rightarrow \cdots
\end{aligned}
$$

From the first sequence and the fact that $H_{1}\left(X_{1} ; \mathbb{Z}\right)=0$ we see that $H_{1}\left(X_{1}, Y ; \mathbb{Z}\right)=0$. (We assumed that X_{1} is simply connected.) By Poincare duality, we also have $H^{3}\left(X_{1} ; \mathbb{Z}\right)=0$. From the second sequence, it follows that $H^{2}\left(X_{1} ; \mathbb{Z}\right) \rightarrow H^{2}\left(X_{1} ; \mathbb{Z}_{2}\right)$ is surjective.

We also see that $H^{2}\left(X_{1} ; \mathbb{Z}\right) \rightarrow H^{2}(Y ; \mathbb{Z})$ is surjective from the exact sequence

$$
H^{2}\left(X_{1}, Y ; \mathbb{Z}\right) \rightarrow H^{2}\left(X_{1} ; \mathbb{Z}\right) \rightarrow H^{2}(Y ; \mathbb{Z}) \rightarrow H^{3}\left(X_{1}, Y ; \mathbb{Z}\right) \cong H_{1}\left(X_{1} ; \mathbb{Z}\right)=0
$$

Proof of Proposition 3.2

Choose a cohomology class $\alpha \in H^{2}\left(X_{1} ; \mathbb{Z}\right)$ with the properties in Lemma 3.1, Let $Q_{1} \rightarrow X_{1}$ be a $U(2)$-bundle with $c_{1}\left(Q_{1}\right)=\alpha$ and fix an identification $Q_{1} / U(1)=P_{1}$. Since $\left.\alpha\right|_{Y}=0$, we can take a trivialization φ of $\left.Q_{1}\right|_{Y}$. We write η for the trivial connection with respect to φ. The fact that $H^{1}\left(X_{1} ; \mathbb{Z}_{2}\right)=0$ implies that the moduli space $M_{\hat{Q}_{1, \eta}}$ of instantons on \hat{Q}_{1} with fixed determinant is naturally identified with $M_{\hat{P}_{1}, \theta}$. Here θ is the trivial flat connection on $\left.P_{1}\right|_{Y}$ with respect to the trivialization induced by φ.

Take a compact oriented 4 -manifold X_{2} with boundary $-Y$. Then we have a closed 4-manifold $X=X_{1} \cup_{Y} X_{2}$. Using the trivialization φ, we extend Q_{1} to X in the obvious way. We write Q_{X} for the $U(2)$-bundle over X. By the index formula, we have

$$
\begin{equation*}
\operatorname{dim} M_{Q_{X}}=8 c_{2}\left(Q_{X}\right)-2 \alpha^{2}-3\left(1-b_{1}(X)+b^{+}(X)\right) \tag{6}
\end{equation*}
$$

Here we used the fact that $c_{1}\left(Q_{X}\right)^{2}=\alpha^{2}$. By the additivity of the index, we can also write

$$
\begin{equation*}
\operatorname{dim} M_{Q_{X}}=\operatorname{dim} M_{\hat{Q}_{1}, \eta}+\operatorname{dim} M_{\hat{Q}_{2}, \eta}+3 \tag{7}
\end{equation*}
$$

Here \hat{Q}_{2} is the trivial $U(2)$-bundle over \hat{X}_{2}. The formal dimension $\operatorname{dim} M_{\hat{Q}_{2}, \eta}$ is equal to the index of

$$
d^{*}+d^{+}: L_{1}^{2, \epsilon}\left(\Lambda_{\hat{X}_{2}}^{1} \otimes \mathfrak{s u}(2)\right) \longrightarrow L^{2, \epsilon}\left(\left(\Lambda_{\hat{X}_{2}}^{0} \oplus \Lambda_{\hat{X}_{2}}^{+}\right) \otimes \mathfrak{s u}(2)\right) .
$$

It is easy to see that the index is

$$
\begin{equation*}
-3\left(1-b_{1}\left(X_{2}\right)+b^{+}\left(X_{2}\right)\right) . \tag{8}
\end{equation*}
$$

From (6), (77) and (8), we obtain

$$
\operatorname{dim} M_{\hat{P}_{1}, \theta}=\operatorname{dim} M_{\hat{Q}_{1}, \eta}=8 c_{2}\left(Q_{X}\right)-2 \alpha^{2}-3\left(1+b^{+}\left(X_{1}\right)\right) \equiv-2 \alpha^{2}-3\left(1+b^{+}\left(X_{1}\right)\right) \quad \bmod 8 .
$$

It follows from the additivity of the index that

$$
\operatorname{dim} M_{\hat{P}_{1}, \rho} \equiv \operatorname{dim} M_{\hat{P}_{1}, \theta}-\delta_{Y}([\rho]) \equiv-\delta_{Y}([\rho])-2 \alpha^{2}-3\left(1+b^{+}\left(X_{1}\right)\right) \bmod 8
$$

for any flat connection ρ.
From now on, we suppose that $w_{2}\left(P_{1}\right) \equiv w_{2}\left(X_{1}\right) \bmod 2$, and fix a cohomology class $\alpha \in H^{2}\left(X_{1} ; \mathbb{Z}\right)$ with the properties in Lemma 3.1, Take a $U(2)$-bundle Q_{1} on X_{1} as in the proof of Proposition 3.2, As before, we identify the moduli spaces of instantons on \hat{P}_{1} with the moduli spaces of instantons on \hat{Q}_{1} with fixed determinant $a_{\text {det }}$. Here $a_{\text {det }}$ is a fixed connection on the $U(1)$-bundle over \hat{X}_{1} induced by \hat{Q}_{1}. Suppose that the limit of a_{det} at ∞ is the trivial connection.

Since we supposed p is odd, $H^{1}\left(Y ; \mathbb{Z}_{2}\right)=0$. Hence the moduli space of $S O(3)$-flat connections over Y and the moduli spaces of $S O(3)$-instantons over $Y \times \mathbb{R}$ are also naturally identified with the moduli spaces of the $S U(2)$-bundle. Hence we can regard Floer homologies in the previous section as those defined by using the $S O(3)$-bundle $\left.P_{1}\right|_{Y}$.

Suppose that $b^{+}\left(X_{1}\right)$ is odd. Then $-2 \alpha^{2}-3\left(1+b^{+}\left(X_{1}\right)\right)$ is even. Put

$$
d:=-\frac{2 \alpha^{2}+3\left(1+b^{+}\left(X_{1}\right)\right)}{2}
$$

We define relative invariants of X_{1} in this situation. We consider three cases. In the first case, we will define $\Psi_{X_{1}}^{u_{1}} \in I_{d}(Y)$ using 0-dimensional moduli spaces over \hat{X}_{1}. (Since $\delta_{Y} \equiv 0 \bmod 2, I_{*}^{(1)}(Y)=0$. Hence we write $I_{*}(Y)$ for $I_{*}^{(0)}(Y)$.) In the second case, we consider a homology class [$\left.\Sigma_{1}\right] \in H_{2}\left(X_{1} ; \mathbb{Z}\right)$ with $\left[\Sigma_{1}\right] \cdot\left[\Sigma_{1}\right] \equiv 0 \bmod 2$. Here Σ_{1} is a closed oriented surface embedded in X_{1}. Using 2-dimensional moduli spaces over \hat{X}_{1}, we will define $\Psi_{X_{1}}^{u_{1}}\left(\left[\Sigma_{1}\right]\right) \in I_{d-1}(Y)$. In the last case, we consider a relative homology class $\left[\Sigma_{1}\right] \in H_{2}\left(X_{1}, Y ; \mathbb{Z}\right)$. Here Σ_{1} is an embedded surface X_{1} with $\partial \Sigma_{1}=\gamma \subset Y$. We will define a relative invariant $\Psi_{X_{1}}^{u_{1}}\left(\left[\Sigma_{1}\right]\right) \in I_{d}(Y, \gamma)$ using 0 -dimensional and 2-dimensional moduli spaces, provided the class $\left[\Sigma_{1}\right]$ satisfies some conditions.

As in the definition of the invariant $\Psi_{X}^{u_{1}}$ for closed manifolds X, we need Dirac operators on \hat{X}_{1} to define the relative invariant. Take a spin-c structure $\hat{\mathfrak{s}}_{1}$ of \hat{X}_{1} with $c_{1}\left(\operatorname{det} \hat{\mathfrak{s}}_{1}\right)=-c_{1}\left(\hat{Q}_{1}\right)$. Let \hat{E}_{1} be the rank 2 complex vector bundle over \hat{X}_{1} associated with \hat{Q}_{1}. For any connection A on \hat{Q}_{1}, we have the twisted Dirac operator

$$
\mathscr{P}_{A}: L_{1}^{2}\left(\hat{S}_{1}^{+} \otimes \hat{E}_{1}\right) \longrightarrow L^{2}\left(\hat{S}_{1}^{-} \otimes \hat{E}_{1}\right) .
$$

Here $\hat{S}_{1}^{ \pm}$are the spinor bundle associated with $\hat{\mathfrak{s}}_{1}$. For a connection A with limit ρ, put

$$
i_{\rho}:=\operatorname{ind} \mathscr{P}_{A} \in \mathbb{Z}
$$

For flat connections ρ over Y with $\delta_{Y}([\rho]) \equiv 2 d \bmod 8$, we have 0 -dimensional moduli spaces $M_{\hat{P}_{1}, \rho}$. We define

$$
<\psi_{X_{1}}^{u_{1}},[\rho]>:=\left\{\begin{array}{cll}
\# M_{\hat{P}_{1}, \rho} & \bmod 2 & \text { if } i_{\rho} \equiv 1 \bmod 2 \\
0 & \bmod 2 & \text { otherwise }
\end{array}\right.
$$

These numbers define an element $\psi_{X_{1}}^{u_{1}} \in C_{d}(Y)$.
Lemma 3.4. $\partial \psi_{X_{1}}^{u_{1}}=0$.
This is proved by counting the number of the ends of 1-dimensional moduli spaces. The proof is similar to that of Lemma 2.3 and we omit the proof.
Definition 3.5. $\Psi_{X_{1}}^{u_{1}}=\left[\psi_{X_{1}}^{u_{1}}\right] \in I_{d}(Y)$.
Next consider a class $\left[\Sigma_{1}\right] \in H_{2}\left(X_{1} ; \mathbb{Z}\right)$ represented by a closed, oriented surface Σ_{1} in X_{1}. Suppose that the self-intersection number $\left[\Sigma_{1}\right] \cdot\left[\Sigma_{1}\right]$ is even. For flat connections ρ with $\delta_{Y}([\rho]) \equiv 2 d-2 \bmod 8$, we have 2-dimensional moduli spaces $M_{\hat{P}_{1}, \rho}$. By the index theorem and the assumption $\left[\Sigma_{1}\right] \cdot\left[\Sigma_{1}\right] \equiv 0$
$\bmod 2$ we can see that the numerical index of the twisted $\bar{\partial}$ operators over Σ_{1} is even. This implies that the determinant line bundle $\tilde{\mathcal{L}}_{\hat{\Sigma}_{1}}$ over the framed moduli space $\tilde{M}_{\hat{P}_{1}, \rho}$ descends to the line bundle $\mathcal{L}_{\hat{\Sigma}_{1}}$ over $M_{\hat{P}_{1}, \rho}$ as in subsection [2.3. As in [17], we can take a section s_{Σ} such that the zero locus $M_{\hat{P}_{1}, \rho} \cap s_{\Sigma_{1}}^{-1}(0)$ is compact, smooth manifold of dimension 0 , i.e., a finite set. We put

$$
<\psi_{X_{1}}^{u_{1}}\left(\left[\Sigma_{1}\right]\right),[\rho]>:=\left\{\begin{array}{cll}
\# M_{X_{1}, \rho} \cap s_{\Sigma_{1}}^{-1}(0) & \bmod 2 & \text { if } i_{\rho} \equiv 1 \bmod 2, \\
0 & \bmod 2 & \text { otherwise } .
\end{array}\right.
$$

These numbers define the element $\psi_{X_{1}}^{u_{1}}\left(\left[\Sigma_{1}\right]\right) \in C_{d-1}(Y)$. As before, this element is a cycle and gives an element of $I_{d-1}(Y)$.
Definition 3.6. $\Psi_{X_{1}}^{u_{1}}\left(\left[\Sigma_{1}\right]\right)=\left[\psi_{X_{1}}\left(\left[\Sigma_{1}\right]\right)\right] \in I_{d-1}(Y)$.
Lastly consider a relative homology class $\left[\Sigma_{1}\right] \in H_{2}\left(X_{1}, Y ; \mathbb{Z}\right)$. Here Σ_{1} is a compact oriented surface in X_{1} with boundary γ, and γ is a simple closed curve as in the previous section. Suppose that

$$
\begin{align*}
& \left\langle c_{1}\left(Q_{1} ; \varphi\right),\left[\Sigma_{1}\right]>\equiv 1 \quad \bmod 2 \text { and }[\gamma] \neq 0 \text { in } H_{1}(Y ; \mathbb{Z}),\right. \text { or } \tag{9}\\
& \left\langle c_{1}\left(Q_{1} ; \varphi\right),\left[\Sigma_{1}\right]>\equiv 0\right. \tag{10}
\end{align*} \quad \bmod 2 \text { and }[\gamma]=0 \text { in } H_{1}(Y: \mathbb{Z}) . ~ . ~ \$
$$

Here $c_{1}\left(Q_{1} ; \varphi\right) \in H^{2}\left(X_{1}, Y ; \mathbb{Z}\right)$ is the relative Chern class of Q_{1} defined by the fixed trivialization φ over Y. The conditions above will be needed to obtain the determinant line bundle $\mathcal{L}_{\hat{\Sigma}_{1}}$ over $M_{\hat{X}_{1}, \rho}$. It is easy to see that $\left\langle c_{1}\left(Q_{1} ; \varphi\right) ;\left[\Sigma_{1}\right]>\right.$ is independent of the choices of φ.

First we consider the case when $d \not \equiv 0 \bmod 4$. For generators $[\rho] \in C F_{2 d}(Y) \subset C_{d}(Y ; \gamma)$, we have 0 -dimensional moduli spaces $M_{\hat{P}_{1}, \rho}$. Put

$$
<\psi_{X_{1}}^{u_{1}}\left(\left[\Sigma_{1}\right]\right),[\rho]>:=\left\{\begin{array}{cll}
\# M_{\hat{P}_{1}, \rho} & \bmod 2 & \text { if } i_{\rho} \equiv 1 \bmod 2, \\
0 & \bmod 2 & \text { otherwise } .
\end{array}\right.
$$

For generators $[\rho] \in C F_{2 d-2}(Y) \subset C_{d}(Y ; \gamma)$, we have 2-dimensional moduli spaces $M_{\hat{P}_{1}, \rho}$. We want to define $<\psi_{X_{1}}\left(\left[\Sigma_{1}\right]\right),[\rho]>\in \mathbb{Z}_{2}$ using the determinant line bundle of $\hat{\Sigma}_{1}$ over $M_{\hat{P}_{1}, \rho}$. To do this, we must check that the determinant line bundle over $\tilde{M}_{\hat{P}_{1}, \rho}$ descends to a line bundle over $M_{\hat{P}_{1}, \rho}$ as usual. Here $\tilde{M}_{\hat{P}_{1}, \rho}$ is the quotient of the space of instantons over \hat{X} by the group of gauge transformations with limit 1 . It is sufficient to show that the index ind ${ }^{+} \bar{\partial}_{A}$ of twisted $\bar{\partial}$-operator over $\hat{\Sigma}_{1}$ is even for connections A with limit ρ.

Lemma 3.7. Let η be the trivial flat connection on $\left.Q_{1}\right|_{Y}$ with respect to the fixed trivialization φ. For connections \tilde{A} on \hat{Q}_{1} with limit η, we have $\operatorname{ind}^{+} \bar{\partial}_{\tilde{A}} \equiv<c_{1}\left(Q_{1} ; \varphi\right),\left[\Sigma_{1}\right]>\bmod 2$.

The proof of this lemma will be given at the end of this subsection. By this lemma and Lemma 2.7. we obtain

Lemma 3.8. Let ρ be a flat connection on $\left.P_{1}\right|_{Y}$ with $\Gamma_{\rho} \cong U(1)$ and A be a connection on \hat{P}_{1} with limit ρ. We denote by \tilde{A} the lift of A to \hat{Q}_{1} with the fixed determinant $a_{\text {det }}$. Under the condition (9) or (10)), the index $\operatorname{ind}^{+} \bar{\partial}_{\tilde{A}}$ is even.

By this lemma, we have the determinant line bundle $\mathcal{L}_{\hat{\Sigma}_{1}} \rightarrow M_{\hat{P}_{1}, \rho}$, provided that (9) or (10) holds.
For generators $[\rho] \in C F_{2 d}(Y) \subset C_{d}(Y ; \gamma)$, we can take a section $s_{\hat{\Sigma}_{1}}$ of $\mathcal{L}_{\hat{\Sigma}_{1}} \rightarrow M_{\hat{P}_{1}, \rho}$ compatible with gluing maps as before. The zero locus $M_{\hat{P}_{1}, \rho} \cap s_{\hat{\Sigma}_{1}}^{-1}(0)$ is a compact smooth 0-dimensional manifold, i.e. a finite set. We define

$$
<\psi_{X_{1}}^{u_{1}}\left(\left[\Sigma_{1}\right]\right),[\rho]>:=\left\{\begin{array}{cll}
\# M_{\hat{P}_{1}, \rho} \cap s_{\hat{\Sigma}_{1}}^{-1}(0) & \bmod 2 & \text { if } i_{\rho} \equiv 1 \bmod 2, \\
0 & \bmod 2 & \text { otherwise } .
\end{array}\right.
$$

Put $\psi_{X_{1}}^{u_{1}}\left(\left[\Sigma_{1}\right]\right):=\sum<\psi_{X_{1}}^{u_{1}}\left(\left[\Sigma_{1}\right]\right),[\rho]>[\rho] \in C_{d}(Y ; \gamma)$. As usual we have:

Lemma 3.9. $\partial_{\gamma}\left(\psi_{X_{1}}^{u_{1}}\left(\left[\Sigma_{1}\right]\right)\right)=0$.
Definition 3.10. $\Psi_{X_{1}}^{u_{1}}\left(\left[\Sigma_{1}\right]\right):=\left[\psi_{X_{1}}^{u_{1}}\left(\left[\Sigma_{1}\right]\right)\right] \in I_{d}(Y ; \gamma)$.
Next we consider the case $d \equiv 0 \bmod 4$. Continuously we suppose (9) or (10) holds. The only difference from the previous case is the term of the trivial connections. We have the 0-dimensional moduli space $M_{\hat{P}_{1}, \theta}$. We define

$$
<\psi_{X_{1}}^{u_{1}}\left(\left[\Sigma_{1}\right]\right),[\theta]>:=\left\{\begin{array}{clll}
\# M_{\hat{P}_{1}, \theta} & \bmod 2 & \text { if } i_{\theta} \equiv 1 \quad \bmod 2,<c_{1}\left(Q_{1} ; \varphi\right),\left[\Sigma_{1}\right]>\equiv 1 & \bmod 2 \\
0 & \bmod 2 & \text { otherwise }
\end{array}\right.
$$

The other terms are defined as before. We can show that $\psi_{X_{1}}^{u_{1}}\left(\left[\Sigma_{1}\right]\right) \in C_{0}(Y ; \gamma)$ is a cycle and we obtain the relative invariant $\Psi_{X_{1}}^{u_{1}}\left(\left[\Sigma_{1}\right]\right) \in I_{0}(Y ; \gamma)$.
Proof of Lemma 3.7
To prove Lemma 3.7, take a compact, oriented surface Σ_{2} with boundary γ. Using the restriction $\left.\varphi\right|_{\gamma}$ of the trivialization, extend $\left.Q_{1}\right|_{\Sigma_{1}}$ to $\Sigma=\Sigma_{1} \cup_{\gamma} \Sigma_{2}$. We denote it by Q_{Σ}. Let η_{2} be the trivial connection on the trivial $U(2)$-bundle over $\hat{\Sigma}_{2}=\Sigma_{2} \cup\left(\gamma \times \mathbb{R}_{\geq 0}\right)$. Since $\bar{\partial}_{\eta_{2}}$ is the direct sum of two copies of the usual $\bar{\partial}$-operator, ind ${ }^{-} \bar{\partial}_{\eta_{2}}$ is even. Hence

$$
\operatorname{ind}^{+} \bar{\partial}_{A_{\eta}} \equiv \operatorname{ind}^{+} \bar{\partial}_{A_{\eta}}+\operatorname{ind}^{-} \bar{\partial}_{\eta_{2}} \quad \bmod 2
$$

Here A_{η} is a connection on \hat{Q}_{1} with limit η. Moreover we have

$$
\operatorname{ind}^{+} \bar{\partial}_{A_{\eta}}+\text { ind }^{-} \bar{\partial}_{\eta_{2}}=\text { ind } \bar{\partial}_{A_{\Sigma}}
$$

Here A_{Σ} is the connection over Σ obtained by gluing A_{η} and θ_{2}. By index formula we have

$$
\text { ind } \bar{\partial}_{A_{\Sigma}}=<c_{1}\left(Q_{\Sigma}\right),[\Sigma]>
$$

The right hand side is equal to $<c_{1}\left(Q_{1} ; \varphi\right),\left[\Sigma_{1}\right]>$, since there is no contribution from Σ_{2}. Thus we have obtained

$$
\text { ind }^{+} \bar{\partial}_{A_{\theta}} \equiv<c_{1}\left(Q_{1} ; \varphi\right),\left[\Sigma_{1}\right]>\bmod 2
$$

as required.
3.3. Gluing formula. In this subsection, we construct gluing formulas for $\Psi_{X}^{u_{1}}$. To do this, we need pairings on Floer homologies.
Lemma 3.11. Let ρ be a flat connection over Y with $\Gamma_{\rho} \cong U(1)$. Then we have

$$
\delta_{-Y}([\rho]) \equiv-\delta_{Y}([\rho])-2 \quad \bmod 8
$$

The proof is standard and we omit the proof. By this lemma, we have the natural pairing

$$
<\cdot, \cdot>: C F_{2 i}(Y) \otimes C F_{-2 i-2}(-Y) \rightarrow \mathbb{Z}_{2}
$$

This paring induces the pairings

$$
C_{i}(Y) \otimes C_{-i-1}(-Y) \rightarrow \mathbb{Z}_{2}, \quad C_{i}(Y ; \gamma) \otimes C_{-i}(-Y ; \gamma) \rightarrow \mathbb{Z}_{2}
$$

which give the identifications $C_{i}(Y)^{*}=C_{-i-1}(-Y), C_{i}(Y ; \gamma)^{*}=C F F_{-i}(-Y ; \gamma)$.

It is easy to see that the pairings induce pairings

$$
<,>: I_{i}(Y) \otimes I_{-i-1}(-Y) \rightarrow \mathbb{Z}_{2}, \quad<,>: I_{i}(Y ; \gamma) \otimes I_{-i}(-Y ; \gamma) \rightarrow \mathbb{Z}_{2}
$$

Let X be a simply connected, non-spin, closed 4-manifold with a decomposition $X=X_{1} \cup_{Y} X_{2}$. Here X_{1} and X_{2} are simply connected, non-spin 4-manifolds with $b^{+}>0$ and with boundaries Y and $-Y$ respectively. Take a homology class $[\Sigma] \in H_{2}(X ; \mathbb{Z})$ with $[\Sigma] \cdot[\Sigma] \equiv 0 \bmod 2$. Here Σ is an embedded surface in X.

Theorem 3.12. If $\Sigma \subset X_{1}$ or $\Sigma \subset X_{2}$, then

$$
\Psi_{X}^{u_{1}}([\Sigma])=<\Psi_{X_{1}}^{u_{1}}([\Sigma]), \Psi_{X_{2}}^{u_{1}}>\text { or } \Psi_{X}^{u_{1}}([\Sigma])=<\Psi_{X_{1}}^{u_{1}}, \Psi_{X_{2}}^{u_{1}}([\Sigma])>
$$

Suppose that Σ and Y intersect transversely and the intersection $\gamma:=Y \cap \Sigma$ is diffeomorphic to S^{1}. We denote $\Sigma \cap X_{1}$ and $\Sigma \cap X_{2}$ by Σ_{1} and Σ_{2} respectively. Assume that [Σ_{1}] satisfies (9) or (10). (We can easily see that $\left[\Sigma_{2}\right]$ also satisfies (9) or (10).). We have the relative invariants $\Psi_{X_{1}}^{u_{1}}\left(\left[\Sigma_{1}\right]\right), \Psi_{X_{2}}^{u_{1}}\left(\left[\Sigma_{2}\right]\right)$.
Theorem 3.13. Under the above situation,

$$
\Psi_{X}^{u_{1}}([\Sigma])=<\Psi_{X_{1}}^{u_{1}}\left(\left[\Sigma_{1}\right]\right), \Psi_{X_{2}}^{u_{1}}\left(\left[\Sigma_{2}\right]\right)>.
$$

We give outline of the proof of Theorem 3.13 in the case when $d \equiv 0 \bmod 4$.
Suppose that $d \equiv 0 \bmod 4$. Take a sequence $\left\{T^{\alpha}\right\}_{\alpha}$ of positive numbers with $T^{\alpha} \rightarrow \infty$ and a sequence $\left\{g^{\alpha}\right\}_{\alpha}$ of Riemannian metrics on X such that a neighborhood of Y in X is isometric to $\left(Y \times\left[-T^{\alpha}, T^{\alpha}\right], g_{Y}+d t^{2}\right)$. Here g_{Y} is the standard metric on Y and t is the coordinate of $\left[-T^{\alpha}, T^{\alpha}\right]$. Let $M_{P}\left(g^{\alpha}\right)$ be the moduli space of instantons over the Riemannian manifold (X, g^{α}) of dimension 3, where P is an $S O(3)$-bundle with $w_{2}(P)=w_{2}(X)$. Take sections $s_{\Sigma}^{\alpha}: M_{P}\left(g^{\alpha}\right) \rightarrow \mathcal{L}_{\Sigma}$ compatible with the gluing maps as usual. Then we have
Lemma 3.14. Any sequence $\left[A^{\alpha}\right] \in M_{P}\left(g^{\alpha}\right) \cap\left(s_{\Sigma}^{\alpha}\right)^{-1}(0)$ has a subsequence $\left[A^{\alpha^{\prime}}\right]$ such that

$$
\left[A^{\alpha^{\prime}}\right] \longrightarrow\left(\left[A_{1}\right],\left[A_{2}\right]\right),
$$

and one of the following occurs:
(1) $\left[A_{1}\right] \in M_{\hat{P}_{1}, \rho} \cap s_{\hat{\Sigma}_{1}}^{-1}(0),\left[A_{2}\right] \in M_{\hat{P}_{2}, \rho}, \Gamma_{\rho} \cong U(1), \operatorname{dim} M_{\hat{P}_{1}, \rho}=2, \operatorname{dim} M_{\hat{P}_{2}, \rho}=0 \quad$ (i.e. $[\rho] \in$ $\left.C F_{-2}(Y)\right)$.
(2) $\left[A_{1}\right] \in M_{\hat{P}_{1}, \rho},\left[A_{2}\right] \in M_{\hat{P}_{2}, \rho} \cap s_{\hat{\Sigma}_{2}}^{-1}(0), \Gamma_{\rho} \cong U(1), \operatorname{dim} M_{\hat{P}_{1}, \rho}=0, \operatorname{dim} M_{\hat{P}_{2}, \rho}=2$ (i.e. $[\rho] \in$ $\left.C F_{0}(Y)\right)$.
(3) $\left[A_{1}\right] \in M_{\hat{P}_{1}, \theta},\left[A_{2}\right] \in M_{\hat{P}_{2}, \theta}, \operatorname{dim} M_{\hat{P}_{1}, \theta}=\operatorname{dim} M_{\hat{P}_{2}, \theta}=0$.

Take generic sections $s_{\Lambda}^{\alpha}: M_{P}\left(g^{\alpha}\right) \rightarrow \Lambda$. For α sufficiently large, $M_{P}\left(g^{\alpha}\right) \cap\left(s_{\Sigma}^{\alpha}\right)^{-1}(0) \cap\left(s_{\Lambda}^{\alpha}\right)^{-1}(0)$ is identified with

$$
\begin{aligned}
& \coprod_{\substack{[\rho]:}}^{\left.\delta_{Y}(\rho \rho]\right) \equiv-2} \coprod_{\mathfrak{a}}\left(U(1)_{\mathfrak{a}} \cap\left(s_{\Lambda}^{\alpha}\right)^{-1}(0)\right) \cup \\
& \coprod_{\substack{[\rho]: \\
\bmod 8}} \coprod_{\mathfrak{b}}\left(U(1)_{\mathfrak{b}} \cap\left(s_{\Lambda}^{\alpha}\right)^{-1}(0)\right) \cup \\
& \delta_{Y}([\rho]) \equiv 0 \bmod 8 \\
& \coprod_{\mathfrak{c}} S O(3)_{\mathfrak{c}} \cap\left(s_{\Sigma}^{\alpha}\right)^{-1}(0) \cap\left(s_{\Lambda}^{\alpha}\right)^{-1}(0) \text {. }
\end{aligned}
$$

Here $\mathfrak{a}, \mathfrak{b}$ and \mathfrak{c} run over

$$
\left(M_{\hat{P}_{1}, \rho} \cap s_{\hat{\Sigma}_{1}}^{-1}(0)\right) \times M_{\hat{P}_{2}, \rho}, M_{\hat{P}_{1}, \rho} \times\left(M_{\hat{P}_{2}, \rho} \cap s_{\hat{\Sigma}_{2}}^{-1}(0)\right), \text { and } M_{\hat{P}_{1}, \theta} \times M_{\hat{P}_{2}, \theta}
$$

respectively, and $U(1)_{\mathfrak{a}}, U(1)_{\mathfrak{b}}$ and $S O(3)_{\mathfrak{c}}$ are the gluing parameters as before.

Lemma 3.15. The restrictions $\left.\Lambda\right|_{U(1)_{\mathfrak{a}}}$ and $\left.\Lambda\right|_{U(1)_{\mathfrak{b}}}$ are non-trivial if and only if $i_{\rho} \equiv 1 \bmod 2$, and $\left.\Lambda\right|_{S O(3) \text { c }}$ and $\left.\mathcal{L}_{\Sigma}\right|_{S O(3) \text { c }}$ are non-trivial if and only if $i_{\theta} \equiv 1 \bmod 2$ and $<c_{1}\left(Q_{1} ; \varphi\right),\left[\Sigma_{1}\right]>\equiv 1 \bmod 2$ respectively.

This can be proved as [18, Lemma 3.30]. Note that the condition that $\left\langle c_{1}\left(Q_{1} ; \varphi\right),\left[\Sigma_{1}\right]>\equiv 1\right.$ $\bmod 2$ implies that the index of twisted $\bar{\partial}$-operator of $\hat{\Sigma}_{1}$ is odd by Lemma 3.7. By Lemma 3.15 we obtain

$$
\begin{aligned}
\Psi_{X}^{u_{1}}([\Sigma]) \equiv & \sum_{\substack{[\rho]: \\
\delta_{Y}([\rho])=-2 \bmod 8 \\
i_{\rho} \equiv 1 \bmod 2}} \#\left(M_{\hat{P}_{1}, \rho} \cap s_{\hat{\Sigma}_{1}}^{-1}(0)\right) \cdot \# M_{\hat{P}_{2}, \rho}+\sum_{\substack{[\rho \rho]: \\
\delta_{Y}([\rho])=0 \bmod 8 \\
i_{\rho}=1 \bmod 2}} \# M_{\hat{P}_{1}, \rho} \cdot \#\left(M_{\hat{P}_{2}, \rho} \cap s_{\hat{\Sigma}_{2}}^{-1}(0)\right) \\
& +\left\{\begin{array}{clll}
\# M_{\hat{P}_{1}, \theta} \cdot \# M_{\hat{P}_{2}, \theta} & \bmod 2 & \text { if } i_{\theta} \equiv 1 \bmod 2 \operatorname{and}<c_{1}\left(Q_{1} ; \varphi\right),\left[\Sigma_{1}\right]>\equiv 1 \bmod 2, \\
0 & \bmod 2 & \text { otherwise } .
\end{array}\right.
\end{aligned}
$$

The right hand side is $<\Psi_{X_{1}}^{u_{1}}\left(\left[\Sigma_{1}\right]\right), \Psi_{X_{2}}^{u_{1}}\left(\left[\Sigma_{2}\right]\right)>$ by definition. Thus we have proved Theorem 3.13,

4. Calculation and Application

4.1. Moduli space. In this section, we calculate Floer homology, making use of the results of Austin [2] and Furuta-Hashimoto [14, [13].

Throughout this section we assume that p is an odd positive integer. Instantons on $L(p, q) \times \mathbb{R}$ correspond to \mathbb{Z}_{p}-invariant instantons on S^{4}. Let \tilde{P} be the principal $S U(2)$-bundle over S^{4} with $c_{2}=k$ and M_{k} be the moduli space of instantons on \tilde{P}. The moduli space of instantons over $L(p, q) \times \mathbb{R}$ is identified with the fixed point set of a \mathbb{Z}_{p}-action on M_{k}.

First we consider the action of $T=S^{1} \times S^{1}$ on $S^{4}=\mathbb{C}^{2} \cup\{\infty\}$ defined by

$$
\left(t_{1}, t_{2}\right) \cdot\left(z_{1}, z_{2}\right)=\left(t_{1} z_{1}, t_{2} z_{2}\right)
$$

The set of the isomorphism classes of $S O(3)$-bundles P over S^{4} with a lift of the T^{2}-action and with $p_{1}(P)<0$ is isomorphic to $\mathbb{Z}_{>0} \times \mathbb{Z}_{>0}$. We denote the bundle corresponding to $\left(k_{1}, k_{2}\right) \in \mathbb{Z}_{>0} \times \mathbb{Z}_{>0}$ by $P\left(k_{1}, k_{2}\right)$. The bundle is characterized by the following:
(i) The isotropy representation of $t=\left(t_{1}, t_{2}\right) \in T$ at $\infty \in S^{4}$ is

$$
\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)
$$

up to conjugate. Here $t_{1}^{k_{1}} t_{2}^{k_{2}}=e^{i \theta}$.
(ii) The isotropy representation of $t \in T$ at $0 \in S^{4}$ is

$$
\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)
$$

up to conjugate. Here $t_{1}^{k_{1}} t_{2}^{-k_{2}}=e^{i \theta}$.
(iii) $p_{1}\left(P\left(k_{1}, k_{2}\right)\right)=-4 k_{1} k_{2}$.

Let $\tilde{P}\left(k_{1}, k_{2}\right)$ be the $S U(2)$-bundle with $\tilde{P}\left(k_{1}, k_{2}\right) /\{ \pm 1\}=P\left(k_{1}, k_{2}\right)$. The second Chern class of $\tilde{P}\left(k_{1}, k_{2}\right)$ is $k_{1} k_{2}$. A double cover \tilde{T} of T naturally acts on \tilde{P} and we have the induced action of \tilde{T} on the moduli space $M_{k}=M\left(\tilde{P}\left(k_{1}, k_{2}\right)\right)$. Here $k=k_{1} k_{2}$.

By Atiyah-Bott-Lefschetz fixed point formula, we obtain:
Lemma 4.1 ([13]). Let $[A] \in M_{k}$ be a \tilde{T}-invariant instanton and $\tilde{t} \in \tilde{T}$. Then we have

$$
\operatorname{Tr}\left(\tilde{t} \mid T_{[A]} M\left(\tilde{P}\left(k_{1}, k_{2}\right)\right)\right)=-1+\sum_{i, j} a_{i j} t_{1}^{i} t_{2}^{j}
$$

Here $t=\left(t_{1}, t_{2}\right) \in T$ is the image of $\tilde{t} \in \tilde{T}$ under the projection and

$$
a_{i j}= \begin{cases}2 & \text { if }|i|<k_{1},|j|<k_{2}, \\ 1 & \text { if }|i|=k_{1},|j|<k_{2} \text { or }|i|<k_{1},|j|=k_{2}, \\ 0 & \text { otherwise. }\end{cases}
$$

We have a natural inclusion $\mathbb{Z}_{p} \hookrightarrow T$ defined by $\zeta \mapsto\left(\zeta, \zeta^{q}\right)$. Since we assumed p is odd, there is a unique lift $\mathbb{Z}_{p} \hookrightarrow \tilde{T}$. Restricting the above formula to $\mathbb{Z}_{p} \subset \tilde{T}$, we obtain the following:
Corollary 4.2. The dimension of the fixed points set $M\left(\tilde{P}\left(k_{1}, k_{2}\right)\right)^{\mathbb{Z}_{p}}$ is given by

$$
\operatorname{dim} M\left(\tilde{P}\left(k_{1}, k_{2}\right)\right)^{\mathbb{Z}_{p}}=-1+2 N_{1}\left(k_{1}, k_{2} ; p, q\right)+N_{2}\left(k_{1}, k_{2} ; p, q\right)
$$

Here

$$
\begin{align*}
& N_{1}\left(k_{1}, k_{2} ; p, q\right)=\#\left\{(i, j) \in \mathbb{Z}^{2}\left|i+q j \equiv 0 \quad \bmod p,|i|<k_{1},|j|<k_{2}\right\}\right. \\
& N_{2}\left(k_{1}, k_{2} ; p, q\right)=\#\left\{(i, j) \in \mathbb{Z}^{2}\left|i+q j \equiv 0 \quad \bmod p,|i|=k_{1},|j|<k_{2}, \text { or }\right| i\left|<k_{1},|j|=k_{2}\right\} .\right. \tag{11}
\end{align*}
$$

For flat connections ρ over $Y=L(p, q)$ with $\Gamma_{\rho} \cong U(1)$,

$$
\delta_{Y}([\rho]) \equiv \operatorname{dim} M_{\rho \theta}+1 \quad \bmod 8
$$

On the other hand, the dimension of the moduli space $M_{\rho \theta}$ is congruent to $\operatorname{dim} M\left(\tilde{P}\left(k_{1}, k_{2}\right)\right)^{\mathbb{Z}_{p}}$ modulo 8. Here k_{1}, k_{2} are positive integers such that the restriction of the isotropy representation of $\tilde{P}\left(k_{1}, k_{2}\right)$ at $\infty \in S^{4}$ to \mathbb{Z}_{p} is isomorphic to the holonomy representation of ρ and that at $0 \in S^{4}$ is trivial. We can find such k_{1}, k_{2} as follows. Suppose that the holonomy representation of ρ is given by

$$
1 \longmapsto\left(\begin{array}{cc}
\zeta^{l} & 0 \\
0 & \zeta^{l}
\end{array}\right)
$$

up to conjugation. Here l is a positive integer with $0<l<p$. Take a positive integer r with $q r \equiv 1$ $\bmod p$. Then k_{1}, k_{2} are any positive integers satisfying

$$
k_{1} \equiv l \quad \bmod p, \quad k_{2} \equiv-r l \quad \bmod p
$$

By Corollary 4.2, we have:
Corollary 4.3. Take a flat connection ρ over $Y=L(p, q)$ with $\Gamma_{\rho} \cong U(1)$. Then we have

$$
\delta_{Y}([\rho]) \equiv 2 N_{1}\left(k_{1}, k_{2} ; p, q\right)+N_{2}\left(k_{1}, k_{2} ; p, q\right) \quad \bmod 8
$$

where $k_{1}, k_{2}>0$ are determined as above.
If (i, j) is a solution to the equation defining $N_{2}\left(k_{1}, k_{2} ; p, q\right)$, then $(-i,-j)$ is also a solution and $(i, j) \neq(0,0)$. Therefore $N_{2}\left(k_{1}, k_{2} ; p, q\right)$ is even. Thus we have:
Corollary 4.4. When p is odd, $\delta_{Y}([\rho]) \equiv 0 \bmod 2$.
The boundary map of Floer homology $I_{*}(L(p, q))$ was defined using the moduli spaces $M_{\rho \sigma}$ of dimension 1. Such moduli spaces are completely determined as follows:
Theorem 4.5 ([2, 14, [13]). (1) For any $k_{1}, k_{2}>0, M\left(\tilde{P}\left(k_{1}, k_{2}\right)\right)^{\tilde{T}}=\mathbb{R}_{>0}$.
(2) Let $\tilde{P} \rightarrow S^{4}$ be an $S U(2)$-bundle with $c_{2}=k$. Suppose that the action of \mathbb{Z}_{p} on S^{4} lifts to an action on \tilde{P}. If the fixed point set $M_{k_{\tilde{P}}}^{\mathbb{Z}_{p}}$ is not empty and 1-dimensional, then there exists $k_{1}, k_{2}>0$ such that the action of \mathbb{Z}_{p} on \tilde{P} is the restriction of the action of \tilde{T} on $\tilde{P}\left(k_{1}, k_{2}\right)$. Furthermore we have an identification $M_{k}^{\mathbb{Z}_{p}}=M\left(\tilde{P}\left(k_{1}, k_{2}\right)\right)^{\tilde{T}}$.
Corollary 4.6. Let ρ, σ be flat connections over $Y=L(p, q)$ such that the formal dimension of $M_{\rho \sigma}$ is 1 . If there exists $k_{1}, k_{2}>0$ such that
(i) the isotropy representation of $\tilde{P}\left(k_{1}, k_{2}\right)$ at $0 \in S^{4}$ is isomorphic to the holonomy representation of ρ,
(ii) the isotropy representation of $\tilde{P}\left(k_{1}, k_{2}\right)$ at $\infty \in S^{4}$ is isomorphic to the holonomy representation of σ, and
(iii) $\operatorname{dim} M\left(\tilde{P}\left(k_{1}, k_{2}\right)\right)^{\mathbb{Z}_{p}}=1$,
then we have an identification $M_{\rho \sigma}=\mathbb{R}$. If such k_{1} and k_{2} do not exist, then $M_{\rho \sigma}=\emptyset$.
4.2. Index of Dirac operator. Take flat connections ρ and σ on the trivial $S U(2)$-bundle $Q=$ $Y \times S U(2)$ with $\Gamma_{\rho}, \Gamma_{\sigma} \cong U(1)$. Assume that $M_{\rho \sigma}$ is not empty and that $M_{\rho \sigma}$ is 1-dimensional. We will compute the index ind \mathscr{P}_{A} of the twisted Dirac operator. We write A^{\prime} for the pull-back of A by the projection $S^{3} \times \mathbb{R} \rightarrow Y \times \mathbb{R}$. We have the virtual representation space Ind $\mathscr{P}_{A^{\prime}}$ of \mathbb{Z}_{p}. We can write

$$
\operatorname{Ind} \mathscr{P}_{A^{\prime}}=\sum_{n} b_{n} \chi_{n}
$$

where χ_{n} is the 1-dimensional representation space of \mathbb{Z}_{p} of weight n. Then we have

$$
\text { ind } \mathscr{P}_{A}=b_{0}
$$

For the lifts $\rho^{\prime}, \sigma^{\prime}$ of ρ, σ, we may take trivializations φ_{1}, φ_{2} of the trivial $S U(2)$-bundle $Q^{\prime}=S^{3} \times$ $S U(2)$ such that $\rho^{\prime}, \sigma^{\prime}$ are trivial with respect to φ_{1}, φ_{2}. Using φ_{1} and φ_{2}, we extend $\pi^{*} Q^{\prime}$ to $S^{4}=D^{4} \cup S^{3} \times \mathbb{R} \cup D^{4}$. Here π is the projection $S^{3} \times \mathbb{R} \rightarrow S^{3}$. We have the extension B of A^{\prime} to S^{4}. That is, B is equal to A^{\prime} over $S^{3} \times \mathbb{R}$ and trivial on the Discs.

Lemma 4.7. We have

$$
\operatorname{Ind} \mathscr{P}_{B}=\operatorname{Ind} \mathscr{P}_{\theta_{D^{4}}}+\operatorname{Ind} \mathscr{P}_{A^{\prime}}+\operatorname{Ind} \mathscr{P}_{\theta_{D^{4}}}
$$

as virtual representation spaces of \mathbb{Z}_{p}.
This lemma will be proved later.
By the Weizenbäck formula and the facts that D^{4} has a metric of positive scalar curvature which restrict to the standard metric on $\partial D^{4}=S^{3}$ and $\theta_{D^{4}}$ is flat, we have

$$
\text { ind } \mathscr{P}_{\theta_{D^{4}}}=0
$$

Therefore we obtain

$$
\text { Ind } \mathscr{P}_{A^{\prime}}=\operatorname{Ind} \mathscr{P}_{B}
$$

as representation spaces of \mathbb{Z}_{p}. Theorem 4.5 implies that B is a \tilde{T}-invariant connection on $\tilde{P}\left(k_{1}, k_{2}\right)$ for some $\left(k_{1}, k_{2}\right) \in \mathbb{Z}_{>0} \times \mathbb{Z}_{>0}$ and we can regard Ind \mathcal{D}_{B} as a representation space of \tilde{T}. By Atiyah-Bott-Lefschetz fixed point formula we obtain

$$
\begin{aligned}
\operatorname{ind}\left(\mathscr{P}_{B}, \tilde{t}\right) & =\frac{t_{1}^{\frac{k_{1}}{2}} t_{2}^{-\frac{k_{2}}{2}}+t_{1}^{-\frac{k_{1}}{2}} t_{2}^{\frac{k_{2}}{2}}-t_{1}^{\frac{k_{1}}{2}} t_{2}^{\frac{k_{2}}{2}}-t_{1}^{-\frac{k_{1}}{2}} t_{2}^{-\frac{k_{2}}{2}}}{\left(t_{1}^{\frac{1}{2}}-t_{1}^{-\frac{1}{2}}\right)\left(t_{2}^{\frac{1}{2}}-t_{2}^{-\frac{1}{2}}\right)} \\
& =-\left(t_{1}^{\frac{-k_{1}+1}{2}}+t_{1}^{\frac{-k_{1}+3}{2}}+\cdots+t_{1}^{\frac{k_{1}-1}{2}}\right)\left(t_{2}^{\frac{-k_{2}+1}{2}}+t_{2}^{\frac{-k_{2}+3}{2}}+\cdots+t_{2}^{\frac{k_{2}-1}{2}}\right)
\end{aligned}
$$

Restricting to $\mathbb{Z}_{p} \subset \tilde{T}$, we have

$$
\begin{aligned}
\operatorname{ind}\left(\mathscr{D}_{B}, \zeta\right) & =-\left(\zeta^{\frac{-k_{1}+1}{2}}+\zeta^{\frac{-k_{1}+3}{2}}+\cdots+\zeta^{\frac{k_{1}-1}{2}}\right)\left(\zeta^{\frac{q\left(-k_{2}+1\right)}{2}}+\zeta^{\frac{q\left(-k_{2}+3\right)}{2}}+\cdots \zeta^{\frac{q\left(k_{2}-1\right)}{2}}\right) \\
& =-\sum_{a=0}^{k_{1}-1} \sum_{b=0}^{k_{2}-1} \zeta^{\frac{-k_{1}+2 a+1+q\left(-k_{2}+2 b+1\right)}{2}}
\end{aligned}
$$

The index ind $\mathscr{P}_{A} \in \mathbb{Z}$ is the constant term of the right hand side. Thus we have obtained:
Proposition 4.8. The index ind $\mathscr{P}_{A} \in \mathbb{Z}$ is equal to minus the number of solutions of the following equation for (a, b) :

$$
-k_{1}+2 a+q\left(-k_{2}+2 b+1\right) \equiv 0 \quad \bmod 2 p \quad\left(0 \leq a \leq k_{1}-1,0 \leq b \leq k_{2}-1\right)
$$

It remains to determine $\left(k_{1}, k_{2}\right)$. Suppose that the holonomy representations of ρ, σ are given by

$$
\left(\begin{array}{cc}
\zeta^{l} & 0 \\
0 & \zeta^{-l}
\end{array}\right), \quad\left(\begin{array}{cc}
\zeta^{m} & 0 \\
0 & \zeta^{-m}
\end{array}\right)
$$

where $0<l<p, 0<m<p$. From the fact that the restriction of the isotropy representations of $\tilde{P}\left(k_{1}, k_{2}\right)$ to $\mathbb{Z}_{p} \subset \tilde{T}$ are given by these matrix (up to conjugation), k_{1} and k_{2} must satisfy one of the following four equalities:

$$
k_{1} \equiv \pm l+ \pm m \quad \bmod p, \quad k_{2} \equiv r(\pm m- \pm l) \quad \bmod p
$$

Here r is a positive integer with $r q \equiv 1 \bmod p$. Note that we must consider both of l and $-l$ since the matrixes

$$
\left(\begin{array}{cc}
\zeta^{l} & 0 \\
0 & \zeta^{-l}
\end{array}\right) \text { and }\left(\begin{array}{cc}
\zeta^{-l} & 0 \\
0 & \zeta^{l}
\end{array}\right)
$$

are conjugate. Similarly for m and $-m$. Since $\operatorname{dim} M_{\rho \sigma}$ is 1 and $\operatorname{dim} M_{\rho \sigma}$ is given by the formula in Corollary 4.2, k_{1} and k_{2} also satisfy the condition that the set of the solutions (i, j) to the equation

$$
i+q j \equiv 0 \quad \bmod p, \quad|i| \leq k_{1},|j| \leq k_{2}
$$

is a subset of $\left\{(0,0), \pm\left(k_{1}, k_{2}\right), \pm\left(k_{1},-k_{2}\right)\right\}$. If $M_{\rho \sigma}$ is not empty, we can find such a pair $\left(k_{1}, k_{2}\right)$ by Theorem 4.5.

The discussions of the previous subsection and this subsection give us a way to compute $I_{*}(Y)$. Here we summarize the way to compute $I_{*}(Y)$. Fix a positive integer r with $q r \equiv 1 \bmod p$.
(i) $\delta_{Y}([\rho])$.

For an integer l with $0<l<p$, let ρ_{l} be a flat connection whose holonomy representation is given by

$$
\left(\begin{array}{cc}
\zeta^{l} & 0 \\
0 & \zeta^{-l}
\end{array}\right)
$$

where $\zeta=e^{\frac{2 \pi \sqrt{ }-1}{p}}$. Choose positive integers k_{1}, k_{2} with

$$
\begin{equation*}
k_{1} \equiv l \quad \bmod p, \quad k_{2} \equiv-r l \quad \bmod p \tag{12}
\end{equation*}
$$

Consider the equation for $(i, j) \in \mathbb{Z} \times \mathbb{Z}$:

$$
\begin{equation*}
i+q j \equiv 0 \quad \bmod p, \quad|i| \leq k_{1},|j| \leq k_{2} \tag{13}
\end{equation*}
$$

Define $N_{1}\left(k_{1}, k_{2} ; p, q\right)$ to be the number of solutions (i, j) with $|i|<k_{1},|j|<k_{2}$, and define $N_{2}\left(k_{1}, k_{2} ; p, q\right)$ to be the number of solutions (i, j) with $|i|=k_{1},|j|<k_{2}$ or with $|i|<k_{1},|j|=k_{2}$. Then the degree $\delta_{Y}\left(\left[\rho_{l}\right]\right)$ is

$$
2 N_{1}\left(k_{1}, k_{2} ; p, q\right)+N_{2}\left(k_{1}, k_{2} ; p, q\right) \quad \bmod 8 .
$$

The vector space $C_{i}(Y)$ is spanned by the gauge equivalence classes $\left[\rho_{l}\right]$ such that $2 N_{1}+N_{2}$ is congruent to $2 i$ modulo 8 .
(ii) $\langle\partial([\rho]),[\sigma]>$.

Take generators $\left[\rho_{l}\right] \in C_{i}(Y),\left[\rho_{m}\right] \in C_{i-1}(Y)$. Here $0<l<p, 0<m<p$.
(a) If there exists $k_{1}, k_{2}>0$ such that k_{1} and k_{2} satisfy one of the following four equations

$$
k_{1} \equiv \pm l+ \pm m \quad \bmod p, \quad k_{2} \equiv r(\pm m- \pm l) \quad \bmod p
$$

and the set of solutions to (13) is a subset of $\left\{(0,0), \pm\left(k_{1}, k_{2}\right), \pm\left(k_{1},-k_{2}\right)\right\}$, then
$<\partial\left(\left[\rho_{l}\right]\right),\left[\rho_{m}\right]>\equiv \#\left\{(a, b) \in \mathbb{Z} \times \mathbb{Z} \left\lvert\, \begin{array}{c}0 \leq a \leq k_{1}-1,0 \leq b \leq k_{2}-1, \\ -k_{1}+2 a+q\left(-k_{2}+2 b+1\right) \equiv 0 \bmod 2 p\end{array}\right.\right\} \quad \bmod 2$.
(b) Otherwise $<\partial\left(\left[\rho_{l}\right],\left[\rho_{m}\right]>\equiv 0 \bmod 2\right.$.

Proof of Lemma 4.7
In the proof of the usual addition property of the index, three data are used. These are cut off functions, stabilizations $S_{0}: \mathbb{R}^{N} \rightarrow \Gamma\left(F_{1}\right)$ of differential operators $D: \Gamma\left(F_{0}\right) \rightarrow \Gamma\left(F_{1}\right)$ (i.e. $D \oplus S_{0}$ is surjective) and right inverses of the stabilized operators $D \oplus S_{0}$. (See [6] for details.) In our setting, F_{0}, F_{1} and D are defined over $S^{3} \times \mathbb{R}$ or D^{4}. Moreover \mathbb{Z}_{p} acts on F_{0}, F_{1} and D is \mathbb{Z}_{p}-equivalent. It is sufficient to prove that we can make these data be \mathbb{Z}_{p}-equivalent.

It easy to see that we can choose \mathbb{Z}_{p}-invariant cut off functions. To take a \mathbb{Z}_{p}-equivalent stabilization, put $S_{j}:=\zeta^{j} S_{0}$ for $j=1,2, \ldots, p-1$. Here $S_{0}: \mathbb{C}^{N} \rightarrow \Gamma\left(F_{1}\right)$ is a fixed stabilization of D and $\zeta=\exp (2 \pi \sqrt{-1} / p)$. Define a \mathbb{Z}_{p}-action on $\mathbb{C}^{p N}=\mathbb{C}^{N} \oplus \cdots \oplus \mathbb{C}^{N}$ by

$$
\zeta \cdot\left(v_{0}, v_{1}, \ldots, v_{p-1}\right)=\left(v_{p-1}, v_{0}, v_{1}, \ldots, v_{p-2}\right) .
$$

Then

$$
S:=S_{0} \oplus S_{1} \oplus \cdots \oplus S_{p-1}: \mathbb{C}^{p N} \rightarrow \Gamma\left(F_{1}\right)
$$

is a stabilization of D and \mathbb{Z}_{p}-equivalent. Choose any right inverse Q^{\prime} of $D \oplus S$ and define

$$
Q:=\frac{1}{p} \sum_{j=0}^{p-1} \zeta^{j} Q^{\prime} \zeta^{-j}
$$

Then this operator is also a right inverse of $D \oplus S$ and \mathbb{Z}_{p}-equivalent.
4.3. $L(7,3)$. In this subsection Y is $L(7,3)$. The complex $C_{*}(Y)$ is generated by $\left[\rho_{1}\right],\left[\rho_{2}\right],\left[\rho_{3}\right]$. Note that $\left[\rho_{l}\right]=\left[\rho_{7-l}\right]$. Put $r=5$. Then $3 \cdot r=1 \bmod 7$.

- $\delta_{Y}\left(\left[\rho_{l}\right]\right)$.

Let $l=1, k_{1}=1, k_{2}=2$. Then (12) is satisfied.
The equation (13) has the solutions $(i, j)=(0,0), \pm(1,2)$. By (11), $N_{1}=1, N_{2}=0$. Thus we have

$$
\delta_{Y}\left(\left[\rho_{1}\right]\right) \equiv 2 N_{1}+N_{2} \equiv 2 \quad \bmod 2 .
$$

Let $l=2, k_{1}=2, k_{2}=4$. The equation (13) has the solutions $(0,0), \pm(1,2), \pm(-2,3), \pm(2,4)$. By (11), we have $N_{1}=3, N_{2}=2$. Therefore

$$
\delta_{Y}\left(\left[\rho_{2}\right]\right) \equiv 2 N_{1}+N_{2} \equiv 0 \quad \bmod 8
$$

Let $l=3, k_{1}=3, k_{2}=6$. The equation (13) has the solutions $(0,0), \pm(1,2), \pm(2,4), \pm(3,6), \pm(1,-5)$, $\pm(2,-3), \pm(3,-1)$, and $N_{1}=9, N_{2}=2$. Hence

$$
\delta_{Y}\left(\left[\rho_{3}\right]\right) \equiv 2 N_{1}+N_{2} \equiv 4 \bmod 8
$$

Thus we have obtained

$$
C_{i}(L(7,3))=\left\{\begin{array}{ccc}
\mathbb{Z}_{2}<\left[\rho_{2}\right]> & i \equiv 0 & \bmod 4, \\
\mathbb{Z}_{2}<\left[\rho_{1}\right]> & i \equiv 1 & \bmod 4, \\
\mathbb{Z}_{2}<\left[\rho_{3}\right]> & i \equiv 2 & \bmod 4, \\
0 & i \equiv 3 & \bmod 4 .
\end{array}\right.
$$

- $\left\langle\partial\left(\left[\rho_{l}\right]\right),\left[\rho_{m}\right]>\right.$.

We consider the case $l=3, m=1$. Put $\left(k_{1}, k_{2}\right)=(2,1)$. Then

$$
k_{1} \equiv 3+(-1) \quad \bmod 7, \quad k_{2} \equiv 5(-1-3) \quad \bmod 7 .
$$

Thus k_{1} and k_{2} satisfy one of the equations (14). The equation (13) has the unique solution $(0,0)$. Hence $M_{\rho_{3}, \rho_{1}}$ is 1-dimensional and isomorphic to \mathbb{R}. The equation

$$
-2+2 a+3(-1+2 b+1) \equiv 0 \quad \bmod 14, \quad(0 \leq a \leq 1, b=0)
$$

for (a, b) has the unique solution $(1,0)$. Thus

$$
<\partial\left(\left[\rho_{3}\right]\right),\left[\rho_{1}\right]>\equiv 1 \quad \bmod 2
$$

Since $\partial \circ \partial=0$,

$$
<\partial\left(\left[\rho_{1}\right]\right),\left[\rho_{2}\right]>\equiv 0 \quad \bmod 2
$$

Therefore we have obtained:

$$
I_{i}(L(7,3))=\left\{\begin{array}{cl}
\mathbb{Z}_{2}<\left[\rho_{2}\right]> & i \equiv 0 \bmod 4 \\
0 & i \equiv 1,2,3 \bmod 4 .
\end{array}\right.
$$

Let γ be a loop in $L(7,3)$. We can compute $I_{2}(L(7,3) ; \gamma)$.

Although we have not computed $<\partial_{\gamma}\left(\left[\rho_{3}\right]\right),\left[\rho_{2}\right]>$, which is defined using the 2 -dimensional moduli space $M_{\rho_{3}, \rho_{2}}^{\prime}$, we can compute the kernel of $\partial_{\gamma}: C_{2}(Y ; \gamma) \rightarrow C_{1}(Y ; \gamma)$.
Lemma 4.9. $\operatorname{ker}\left(\partial_{\gamma}: C_{2}(Y ; \gamma) \rightarrow C_{1}(Y ; \gamma)\right)=\mathbb{Z}_{2}<\left[\rho_{1}\right]>$.
To see this, take an element $\psi \in \operatorname{ker} \partial_{\gamma}$. If $<\psi,\left[\rho_{3}\right]>\not \equiv 0 \bmod 2$, then $<\partial_{\gamma}(\psi),\left[\rho_{1}\right]>\not \equiv 0 \bmod 2$. (See the above diagram.) Thus $<\psi,\left[\rho_{3}\right]>$ must be trivial. Since $<\partial_{\gamma}\left(\left[\rho_{1}\right]\right),\left[\rho_{2}\right]>\equiv 0 \bmod 2$, we obtain the required statement.

From the above diagram, we can see that

$$
\operatorname{im}\left(\partial_{\gamma}: C_{3}(Y ; \gamma) \rightarrow C_{2}(Y ; \gamma)\right)=\mathbb{Z}_{2}<\left[\rho_{1}\right]>
$$

Therefore we obtain

$$
I_{2}(L(7,3) ; \gamma)=0
$$

4.4. Application. The aim of this subsection is to prove the following:

Theorem 4.10. Let $X=\mathbb{C P}^{2} \# \mathbb{C P}^{2}$ and $Y=L(7,3)$. Then X does not admit a decomposition $X=X_{1} \cup_{Y} X_{2}$, where X_{1} and X_{2} are simply connected, non-spin 4-manifolds with $b^{+}=1$ and with $\partial X_{1}=Y, \partial X_{2}=-Y$.

It is easy to see the following.
Lemma 4.11. Put $Y=L(p, q)$. Assume that $X=\mathbb{C P}^{2} \# \mathbb{C P}^{2}$ has a decomposition $X=X_{1} \cup_{Y} X_{2}$ for some compact, oriented, simply connected, non-spin 4 -manifolds X_{1}, X_{2} with $b^{+}=1$ and with $\partial X_{1}=Y, \partial X_{2}=-Y$. Then we have

$$
H^{2}\left(X_{i} ; \mathbb{Z}\right)=\mathbb{Z}, \quad H^{2}\left(X_{i} ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}
$$

We show the following lemma making use of Proposition 3.2.
Lemma 4.12. Let Y be $L(p, q)$ and X_{1} be an oriented, compact, non-spin, simply connected 4manifold with $b^{+}\left(X_{1}\right)=1, H^{2}\left(X_{1} ; \mathbb{Z}\right)=\mathbb{Z}, \partial X_{1}=Y$. Take an $S O(3)$-bundle P_{1} over X_{1} with $w_{2}\left(P_{1}\right)=w_{2}\left(X_{1}\right)$. Then we have

$$
\operatorname{dim} M_{\hat{P}_{1}, \rho} \equiv-\delta_{Y}([\rho])-2 p-6 \quad \bmod 8
$$

Take a cohomology class $\alpha \in H^{2}\left(X_{1} ; \mathbb{Z}\right)$ with the properties in Lemma 3.1. We have only to show that $\alpha^{2} \equiv p \bmod 8$.

Since X_{1} is non-spin and $\alpha \equiv w_{2}\left(X_{1}\right) \bmod 2$, we can take $p \beta$ as α. Here $\beta \in H^{2}\left(X_{1} ; \mathbb{Z}\right)=\mathbb{Z}$ is a generator. (Recall that we assumed p is odd.) By the exact sequence

$$
H^{1}(Y ; \mathbb{Z})=0 \rightarrow H^{2}\left(X_{1}, Y ; \mathbb{Z}\right) \xrightarrow{\dot{j}^{*}} H^{2}\left(X_{1} ; \mathbb{Z}\right)=\mathbb{Z} \rightarrow H^{2}(Y ; \mathbb{Z})=\mathbb{Z}_{p} \rightarrow H^{3}\left(X_{1}, Y ; \mathbb{Z}\right)=0
$$

we see that $H^{2}\left(X_{1}, Y ; \mathbb{Z}\right)=\mathbb{Z}$ and that $j^{*}(\tilde{\alpha})=p \beta=\alpha$ for some generator $\tilde{\alpha} \in H^{2}\left(X_{1}, Y ; \mathbb{Z}\right)$. Since the pairing

$$
H^{2}\left(X_{1}, Y ; \mathbb{Z}\right) \otimes H^{2}\left(X_{1} ; \mathbb{Z}\right) \longrightarrow \mathbb{Z}
$$

induces an identification $H^{2}\left(X_{1}, Y ; \mathbb{Z}\right)=H^{2}\left(X_{1} ; \mathbb{Z}\right)^{*}$, we have

$$
<\tilde{\alpha} \cup \beta,\left[X_{1}, Y\right]>= \pm 1
$$

Thus

$$
\alpha^{2}=<\tilde{\alpha} \cup \alpha,\left[X_{1}, Y\right]>= \pm p
$$

From the conditions that $H^{2}\left(X_{1} ; \mathbb{Z}\right)=\mathbb{Z}$ and that $b^{+}\left(X_{1}\right)=1$, the sign in the above equality must be plus and hence $\alpha^{2}=p$.

We give the proof of Theorem4.10. From now on, we put $Y=L(7,3)$. Assume that $X=\mathbb{C P}^{2} \# \mathbb{C P}^{2}$ admits a decomposition $X=X_{1} \cup_{Y} X_{2}$ as in Lemma 4.11. It follows from Lemma 4.11 and Lemma 4.12 that

$$
\begin{equation*}
\operatorname{dim} M_{X_{1}, \rho} \equiv-\delta_{Y}([\rho])-20 \equiv-\delta_{Y}([\rho])+4 \bmod 8 \tag{15}
\end{equation*}
$$

By [18, Theorem 3.29], we can take a cohomology class $h_{0} \in H_{2}(X ; \mathbb{Z})$ with $h_{0} \cdot h_{0} \equiv 0 \bmod 2$ such that

$$
\Psi_{X}^{u_{1}}\left(h_{0}\right) \equiv 1 \quad \bmod 2 .
$$

Let Σ be a closed surface embedded in X which represent the homology class h_{0}. We have the following three cases: (i) $\Sigma \subset X_{1}$, (ii) $\Sigma \subset X_{2}$, (iii) $\Sigma \cap Y \neq \emptyset$.
(i) Suppose that $\Sigma \subset X_{1}$. By Theorem 3.12, we have

$$
\Psi_{X}^{u_{1}}\left(h_{0}\right)=<\Psi_{X_{1}}^{u_{1}}([\Sigma]), \Psi_{X_{2}}^{u_{1}}>.
$$

It follows from (15) that the relative invariant $\Psi_{X_{1}}^{u_{1}}([\Sigma])$ lives in $I_{1}(Y)$. But as shown in the previous subsection, $I_{1}(Y)=0$ and hence $\Psi_{X_{1}}^{u_{1}}([\Sigma])=0$. By the gluing formula, $\Psi_{X}^{u_{1}}\left(h_{0}\right) \equiv 0 \bmod 2$. This is a contradiction.
(ii) Suppose that $\Sigma \subset X_{2}$. Then

$$
\Psi_{X}^{u_{1}}\left(h_{0}\right)=<\Psi_{X_{1}}^{u_{1}}, \Psi_{X_{2}}^{u_{1}}([\Sigma])>\text { and } \Psi_{X_{1}}^{u_{1}} \in I_{2}(Y) .
$$

By the calculation in the previous subsection, $I_{2}(Y)=0$. We obtain a contradiction.
(iii) Suppose that $\Sigma \cap Y \neq \emptyset$. We may assume that the intersection $\Sigma \cap Y$ is transverse and the number of connected components of $\Sigma \cap Y$ is 1 . (If the number of connected components is larger than 1, join the connected components of $\Sigma \cap Y$ in X by thin tubes without change of the homology class $[\Sigma] \in H_{2}(X ; \mathbb{Z})$.) Thus we can suppose $\gamma:=\Sigma \cap Y$ is diffeomorphic to S^{1}. Put $\Sigma_{1}:=X_{1} \cap \Sigma$ and $\Sigma_{2}:=\Sigma \cap X_{2}$. Suppose that Σ_{1} (and hence Σ_{2}) satisfies (9) or (10). Then by Theorem 3.13) and (15) we have

$$
\Psi_{X}^{u_{1}}\left(h_{0}\right)=<\Psi_{X_{1}}^{u_{1}}\left(\left[\Sigma_{1}\right]\right), \Psi_{X_{2}}^{u_{1}}\left(\left[\Sigma_{2}\right]\right)>, \text { and } \Psi_{X_{1}}^{u_{1}}\left(\left[\Sigma_{1}\right]\right) \in I_{2}(Y ; \gamma) .
$$

But by the calculation in the previous subsection again, $I_{2}(Y ; \gamma)=0$ for any loop γ. Therefore we have a contradiction.

If Σ_{1} does not satisfy both of (9) and (10), then

$$
\begin{array}{ll}
\left\langle c_{1}\left(Q_{1} ; \varphi\right) ;\left[\Sigma_{1}\right]>\equiv 0\right. & \bmod 2 \text { and }[\gamma] \neq 0 \text { in } H_{1}(Y ; \mathbb{Z}), \text { or } \\
\left\langle c_{1}\left(Q_{2} ; \varphi\right),\left[\Sigma_{1}\right]>\equiv 1\right. & \bmod 2 \text { and }[\gamma]=0 \text { in } H_{1}(Y ; \mathbb{Z}) . \tag{17}
\end{array}
$$

Assume that (16) holds. Since $\Psi_{X_{1}}^{u_{1}}$ is a homomorphism, $\Psi_{X_{1}}^{u_{1}}\left(7 h_{0}\right)$ is also non-trivial. Let Σ^{\prime} be an embedded surface in X representing $7 h_{0}$. Then we can easily see that $\Sigma_{1}^{\prime}=X_{1} \cap \Sigma^{\prime}$ and $\Sigma_{2}^{\prime}=X_{2} \cap \Sigma^{\prime}$ satisfy (10). Assume that (17) holds. In this case, we consider the class $h_{0}+2 h_{1}$. Here $h_{1} \in H_{2}(X ; \mathbb{Z})$ is defined as follows. Fix a loop γ_{1} in Y such that the class $\left[\gamma_{1}\right] \in H_{1}(Y ; \mathbb{Z})$ is a generator. Take relative homology classes $\left[\Sigma_{1}^{\prime \prime}\right] \in H_{2}\left(X_{1}, Y ; \mathbb{Z}\right),\left[\Sigma_{2}^{\prime \prime}\right] \in H_{2}\left(X_{2}, Y ; \mathbb{Z}\right)$ such that $\partial \Sigma_{1}^{\prime \prime}=\gamma_{1}, \partial \Sigma_{2}^{\prime \prime}=\gamma_{1}$. We can see that there are such surfaces from the exact sequences

$$
H_{2}\left(X_{i}, Y\right) \longrightarrow H_{1}(Y) \longrightarrow H_{1}\left(X_{i}\right)=0 .
$$

Define $h_{1}=2\left[\Sigma_{1}^{\prime \prime} \cup \Sigma_{2}^{\prime \prime}\right]$. Then $h_{1} \cdot h_{1} \equiv 0 \bmod 2$ and $\Psi_{X}^{u_{1}}\left(h_{0}+2 h_{1}\right) \equiv 1 \bmod 2$. Take a surface $\Sigma^{\prime \prime \prime}$ in X which represents the class $h_{0}+2 h_{1}$, and put $\Sigma_{1}^{\prime \prime \prime}:=X_{1} \cap \Sigma^{\prime \prime \prime}, \Sigma_{2}^{\prime \prime \prime}=X_{2} \cap \Sigma^{\prime \prime \prime}$. We can see that $\left[\Sigma_{1}^{\prime \prime \prime}\right]$ and $\left[\Sigma_{2}^{\prime \prime \prime}\right]$ satisfy (9). The same argument as above gives a contradiction in each case.

Thus in any case we have a contradiction. Therefore we have proved the statement.

References

[1] M. F. Atiyah, N. J. Hitchin, I. M. Singer, Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A 362 (1978), 425-461.
[2] D. Austin, SO(3)-instantons on $L(p, q) \times R$, J. Differential Geom. 32 (1990), 383-413.
[3] D. M. Austin and P. J. Braam, Equivariant Floer theory and gluing Donaldson polynomials, Topology 35 (1996), 167-200.
[4] P. J. Braam and S. K. Donaldson, Fukaya-Floer homology and gluing formulae for polynomial invariants, The Floer memorial volume, 257-281, Progr. Math., 133, Birkh?user, Basel, 1995.
[5] S. Bauer and M. Furuta, A stable cohomotopy refinement of Seiberg-Witten invariants. I, Invent. Math. 155 (2004), 1-19.
[6] S. K. Donaldson, Floer homology groups in Yang-Mills theory, With the assistance of M. Furuta and D. Kotschick. Cambridge Tracts in Mathematics, 147. Cambridge University Press, Cambridge, 2002.
[7] S. K. Donaldson and P. B. Kronheimer, The geometry of four-manifolds, Oxford University Press 1990.
[8] P. M. N. Feehan and T. G. Leness, Witten's conjecture for many four-manifolds of simple type, preprint, ArXiv:math/0609530
[9] R. Fintushel and R. Stern, 2-torsion instanton invariants, J. Amer. Math. Soc. 6 (1993), 299-339.
[10] A. Floer, An instanton-invariant for 3-manifolds, Comm. Math. Phys. 118 (1988), 215-240.
[11] K. Fukaya, Floer homology for oriented 3-manifolds, Aspects of low-dimensional manifolds, 1-92, Adv. Stud. Pure Math., 20, Kinokuniya, Tokyo, 1992.
[12] K. Fukaya, M. Furuta and H. Ohta, unpublished manuscript.
[13] M. Furuta, \mathbb{Z}_{a}-invariant $\mathrm{SU}(2)$ instantons over the four sphere, Geometry of low-dimensional manifolds, 1 (Durham, 1989), 161-174, London Math. Soc. Lecture Note Ser., 150, Cambridge Univ. Press, Cambridge, 1990.
[14] M. Furuta and Y. Hashimoto, Invariant instantons on S^{4}, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 37 (1990), 585-600.
[15] L. Gottsche, H. Nakajima and Y. Kota, Donaldson $=$ Seiberg-Witten from Mochizuki's formula and instanton counting, preprint, arXiv:1001.5024.
[16] D. Kotschick, SO(3)-invariants for 4-manifolds with $b_{2}^{+}=1$, Proc. London Math. Soc. (3) 63 (1991), 426-448.
[17] H. Sasahira, An $S O(3)$-version of 2-torsion instanton invariants, J. Math. Sci. Univ. Tokyo 15 (2008), 257-289.
[18] H. Sasahira, Floer homology for 2-torsion instanton invariant, preprint, arXiv:0811.0644
[19] E. Witten, Monopoles and four-manifolds, Math. Res. Lett. 1 (1994), 769-796.

