
ar
X

iv
:1

00
9.

03
42

v2
  [

m
at

h.
A

T
] 

 2
1 

Se
p 

20
10

T
2-COBORDISM OF QUASITORIC 4-MANIFOLDS

SOUMEN SARKAR

Abstract. We show the T2-cobordism group of the category of 4-dimensional quasitoric
manifolds is generated by the T

2-cobordism class of CP 2. The main tool is the theory of
quasitoric manifolds.

1. Introduction

Cobordism was explicitly introduced by Lev Pontryagin in geometric work on manifolds.
In the early 1950’s René Thom [Tho] showed that cobordism groups could be computed
by results of homotopy theory. Thom showed that the cobordism class of G-manifolds
for a Lie group G are in one to one correspondence with the elements of the homotopy
group of the Thom space of the group G ⊆ O(n). We consider the following category: the
objects are all quasitoric manifolds and morphisms are torus equivariant maps between
quasitoric manifolds. We compute the T

2-cobordism group of 4-dimensional manifolds in
this category. We show the T2-cobordism group of the category of 4-dimensional quasitoric
manifolds is generated by the T

2-cobordism class of CP 2. The main tool is the theory of
quasitoric manifolds.

Quasitoric manifolds and small covers were introduced by Davis and Januskiewicz in
[DJ]. A manifold with quasitoric (small cover) boundary is a manifold with boundary
where the boundary is a disjoint union of some quasitoric manifolds (respectively small
covers).

We give the brief definition of some manifolds with quasitoric and small cover boundary
in a constructive way in section 3. There is a natural torus action on these manifolds
with quasitoric boundary having a simple convex polytope as the orbit space. The fixed
point set of the torus action on the manifold with quasitoric boundary corresponds to the
disjoint union of closed intervals of positive length. Interestingly, we show that such a
manifold with quasitoric boundary could be viewed as the quotient space of a quasitoric
manifold corresponding to a certain circle action on it. This is done in the subsection 3.3.

In section 4 we show these manifolds with quasitoric boundary are orientable and com-
pute their Euler characteristic.

In the subsection 5.2 we show the T2-cobordism group of 4-dimensional quasitoric man-
ifolds is generated by the T2-cobordism class of the complex projective space CP 2, see
theorem 5.4. Following [OR] we discuss the classification of 4-dimensional quasitoric man-
ifolds in subsection 5.1. This classification is needed to prove the theorem 5.4.

2. Edge-Simple Polytopes

An n-dimensional simple convex polytope is a convex polytope where exactly n bounding
hyperplanes meet at each vertex. The codimension one faces of a convex polytope are called
facets. We introduce a particular type of polytope, which we call an edge-simple polytope.

Definition 2.1. An n-dimensional convex polytope P is called an n-dimensional edge-
simple polytope if each edge of P is the intersection of exactly (n− 1) facets of P .
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2 S. SARKAR

Example 2.1. (1) An n-dimensional simple convex polytope is an n-dimensional edge-
simple polytope.

(2) The following convex polytopes are edge-simple polytopes of dimension 3.

(3) The dual polytope of a 3-dimensional simple convex polytope is a 3-dimensional
edge-simple polytope. This result is not true for higher dimensional polytopes, that
is if P is a simple convex polytope of dimension n ≥ 4 the dual polytope of P may
not be an edge-simple polytope. For example the dual of the 4-dimensional standard
cube in R4 is not an edge-simple polytope.

Proposition 2.2. (a) If P is a 2-dimensional simple convex polytope then the suspension
SP on P is an edge-simple polytope and SP is not a simple convex polytope.

(b) If P is an n-dimensional simple convex polytope then the cone CP on P is an
(n+ 1)-dimensional edge-simple polytope.

Proof. (a) Let P be a 2-dimensional simple polytope with m vertices {vi : i ∈ I =
{1, 2, . . . ,m}} and m edges {ei : i ∈ I}. Let a and b be the other two vertices of SP .
Then facets of SP are the cone (Cei)x on ei at x = a, b. Edges of SP are {xvi : x = a, b
and i ∈ I} ∪ {ei : i ∈ I}. The edge xvi is the intersection of (Cei1)x and (Cei2)x if
vi = ei1 ∩ ei2 for x = a, b and ei = (Cei)a ∩ (Cei)b. Hence SP is an edge-simple polytope.
If v is a vertex of the polytope P , v is the intersection of 4 facets of SP . So SP is not a
simple convex polytope.

(b) Let P be an n-dimensional simple convex polytope in Rn × 0 ⊆ Rn+1 with m facets
{Fi : i ∈ I = {1, 2, . . . ,m}} and k vertices {v1, v2, . . . , vk}. Assume that the cone are taken
at a fixed point a in Rn+1 − Rn lying above the centroid of P . Then facets of CP are
{(CFi) : i = 1, 2, . . . ,m} ∪ {P}. Edges of CP are {avi = C({vi}) : i = 1, 2, . . . , k} ∪ {el :
el is an edge of P}. Since P is a simple convex polytope, each vertex vi of P is the
intersection of exactly n facets of P , namely {vi} = ∩n

j=1Fij and each edge el is the

intersection of unique collection of (n−1) facets {Fl1 , . . . , Fln−1
}. Then C{vi} = ∩n

j=1CFij

and el = P ∩ CFl1 ∩ CFl2 ∩ . . . ∩ CFln−1
. That is C{vi} and {el} are the intersection of

exactly n facets of CP . Hence CP is an (n+ 1)-dimensional edge-simple polytope. �

Cut off a neighborhood of each vertex vi, i = 1, 2, . . . , k of an n-dimensional edge-simple
polytope P ⊂ R

n by an affine hyperplane Hi, i = 1, 2, . . . , k in R
n such that Hi ∩Hj ∩ P

are empty sets for i 6= j. Then the remaining subset of the convex polytope P is a simple
convex polytope of dimension n, denote it by QP . Suppose PHi

= P ∩Hi = Hi ∩QP for
i = 1, 2, . . . k. Then PHi

is a facet of QP called the facet corresponding to the vertex vi
for each i = 1, . . . , k. Since each vertex of PHi

is an interior point of an edge of P and P
is an edge-simple polytope, PHi

is an (n− 1)-dimensional simple convex polytope for each
i = 1, 2, . . . , k.

Lemma 2.3. Let F be a codimension l < n face of P . Then F is the intersection of
unique set of l facets of P .

Proof. The intersection F ∩QP is a codimension l face of QP not contained in ∪k
i=0{PHi

}.
Since QP is a simple convex polytope, F ∩QP = ∩l

j=1F
′
ij

for some facets {F ′
i1
, . . . , F ′

i1
} of



T2-COBORDISM OF QUASITORIC 4-MANIFOLDS 3

QP . Let Fij be the unique facet of P such that F ′
ij
⊆ Fij . Then F = ∩l

1Fij . Hence each

face of P of codimension l < n is the intersection of unique set of l facets of P . �

Remark 2.4. If vi is the intersection of facets {Fi1 , . . . , Fil} of P for some positive integer
l, the facets of PHi

are {PHi
∩ Fi1 , . . . , PHi

∩ Fil}.

3. Construction of Manifolds with Boundary

Let P be an edge-simple polytope of dimension n withm facets F1, . . . , Fm and k vertices
v1, . . . , vk. Let e be an edge of P . Then e is the intersection of unique collection of (n− 1)
facets {Fij : j = 1, . . . , (n− 1)}. Suppose F(P ) = {F1, . . . , Fm}.

Definition 3.1. The functions λ : F(P ) → Zn−1 and λs : F(P ) → F
n−1
2 are called the

istropy function and F2-istropy function respectively of the edge-simple polytope P if the
set of vectors {λ(Fi1), . . . , λ(Fin−1

)} and {λs(Fi1), . . . , λ
s(Fin−1

)} form a basis of Zn−1 and

F
n−1
2 respectively whenever the intersection of the facets {Fi1 , . . . , Fin−1

} is an edge of P .
The vectors λi := λ(Fi) and λs

i := λs(Fi) are called istropy vectors and F2-istropy vectors
respectively.

We define some istropy functions of the edge-simple polytopes I3 and P0 in examples
3.3 and 3.4 respectively.

Remark 3.1. It may not possible to define an istropy function on the set of facets of all
edge-simple polytopes. For example there does not exist an istropy function of the standard
n-simplex △n for each n ≥ 3.

3.1. Manifolds with Quasitoric Boundary. Let F be a face of P of codimension l < n.
Then F is the intersection of a unique collection of l facets Fi1 , Fi2 , . . . , Fil of P . Let TF be
the torus subgroup of Tn−1 corresponding to the submodule generated by λi1 , λi2 , . . . , λil

in Zn−1. Assume Tv = Tn for each vertex v of P . We define an equivalence relation ∼ on
the product Tn−1 × P as follows.

(3.1) (t, p) ∼ (u, q) if and only if p = q and tu−1 ∈ TF

where F is the unique face of P containing p in its relative interior. We denote the quotient
space (Tn−1×P )/ ∼ by X(P, λ). The space X(P, λ) is not a manifold except when P is a
2-dimensional polytope. If P is 2-dimensional polytope the space X(P, λ) is homeomorphic
to the 3-dimensional sphere.

But whenever n > 2 we can construct a manifold with boundary from the space X(P, λ).
We restrict the equivalence relation ∼ on the product (Tn−1 × QP ) where QP ⊂ P is a
simple polytope as constructed in section 2 corresponding to the edge-simple polytope P .
Let W (QP , λ) = (Tn−1 ×QP )/ ∼ ⊂ X(P, λ) be the quotient space. The natural action of
Tn−1 on W (QP , λ) is induced by the group operation in Tn−1.

Theorem 3.2. The space W (QP , λ) is a manifold with boundary. The boundary is a
disjoint union of quasitoric manifolds.

For each edge e of P , e′ = e ∩ QP is an edge of the simple convex polytope QP . Let
Ue′ be the open subset of QP obtained by deleting all facets of QP that does not contain
e′ as an edge. Then the set Ue′ is diffeomorphic to I0 × R

n−1
>0 where I0 is the open

interval (0, 1) in R. The facets of I0 ×R
n−1
>0 are I0 × {x1 = 0}, . . . , I0 ×{xn−1 = 0} where

{xj = 0, j = 1, 2, . . . , n− 1} are the coordinate hyperplanes in Rn−1. Let F ′
i1
, . . . , F ′

in−1
be

the facets of QP such that ∩n−1
j=1F

′
ij
= e′. Suppose the diffeomorphism φ : Ue′ → I0 ×R

n−1
>0

sends F ′
ij
∩ Ue′ to I0 × {xj = 0} for all j = 1, 2, . . . , n− 1. Define an isotropy function λe
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on the set of all facets of I0 × R
n−1
>0 by λe(I

0 × {xj = 0}) = λij for all j = 1, 2, . . . , n− 1.

We define an equivalence relation ∼e on (Tn−1 × I0 × R
n−1
>0 ) as follows.

(3.2) (t, b, x) ∼e (u, c, y) if and only if (b, x) = (c, y) and tu−1 ∈ Tφ(F ).

where φ(F ) is the unique face of I0 × R
n−1
>0 containing (b, x) in its relative interior, for

a unique face F of Ue′ and Tφ(F ) = TF . So for each a ∈ I0 the restriction of λe on
{({a} × {xj = 0}) : j = 1, 2, . . . , n− 1} define a characteristic function (see definition 5.1)

on the set of facets of {a} ×R
n−1
>0 . From the constructive definition of quasitoric manifold

given in [DJ] it is clear that the quotient space {a} × (Tn−1 ×R
n−1
>0 )/ ∼e is diffeomorphic

to {a} × R2(n−1). Hence the quotient space

(Tn−1 × I0 × R
n−1
>0 )/ ∼e = I0 × (Tn−1 × R

n−1
>0 )/ ∼e

∼= I0 × R
2(n−1).

Since the quotient maps π : (Tn−1×Ue′) → (Tn−1×Ue′)/ ∼ and πe : (T
n−1×I0×R

n−1
>0 ) →

(Tn−1×I0×R
n−1
>0 )/ ∼e are open maps and φ is a diffeomorphism, the following commutative

diagram ensure that the lower horizontal map φe is a homeomorphism.

(3.3)

(Tn−1 × Ue′)
id×φ

−−−−→ (Tn−1 × I0 ×R
n−1
>0 )

π

y πe

y

(Tn−1 × Ue′)/ ∼
φe

−−−−→ (Tn−1 × I0 × R
n−1
>0 )/ ∼e

∼=
−−−−→ I0 × R

2(n−1)

Let v′1 and v′2 be the vertices of the edge e
′ of QP . Suppose H1∩e′ = {v′1} and H2∩e′ =

{v′2}, where H1 and H2 are affine hyperplanes as considered in section 2 corresponding to
the vertices v1 and v2 of e respectively. Let Uv′

1
and Uv′

2
be the open subset of QP obtained

by deleting all facets of QP not containing v′1 and v′2 respectively. Hence there exist
diffeomorphism φ1 : Uv′

1
→ [0, 1) × R

n−1
>0 and φ2 : Uv′

2
→ [0, 1) × R

n−1
>0 satisfying the same

property as the map φ. We get the following commutative diagram and homeomorphisms

φj
e for j = 1, 2.

(3.4)

(Tn−1 × Uv′j
)

id×φj

−−−−→ (Tn−1 × [0, 1) × R
n−1
>0 )

π

y πe

y

(Tn−1 × Uv′j
)/ ∼

φ
j
e

−−−−→ (Tn−1 × [0, 1) × R
n−1
>0 )/ ∼e

∼=
−−−−→ [0, 1) × R2(n−1)

Hence each point of (Tn−1 × QP )/ ∼ has a neighborhood homeomorphic to an open

subset of [0, 1) × R
2(n−1). So W (QP , λ) is a manifold with boundary. From the above

discussion the interior of W (QP , λ) is

∪
e′
(Tn−1 × Ue′)/ ∼ = W (QP , λ)r {(Tn−1 ×⊔k

i=1PHi
)/ ∼}

and the boundary is ⊔k
i=1{(T

n−1×PHi
)/ ∼}. Let F (H)ij be a facet of PHi

. So there exists
a unique facet Fj of P such that F (H)ij = Fj ∩QP ∩Hi. The restriction of the function λ
on the set of all facets of PHi

( namely λ(F (H)ij ) = λj ) give a characteristic function of a

quasitoric manifold over PHi
. Hence restricting the equivalence relation ∼ on (Tn−1×PHi

)
we get that the quotient space Wi = (Tn−1 × PHi

)/ ∼ is a quasitoric manifold over PHi
.

Hence the boundary ∂W (QP , λ) = ⊔
k

i=1
Wi, where Wi is a quasitoric manifold.

Example 3.3. An isotropy function of the standard cube I3 is described in the following
figure 1. Here simple convex polytopes PH1

, . . . , PH8
are triangles. The restriction of the

isotropy function on PHi
gives that the space (T2 × PHi

)/ ∼ is the complex projective
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space CP 2 for each i ∈ {1, . . . , 8}. Hence the disjoint union ⊔8
i=1CP

2 is the boundary of
(T2 ×QI3)/ ∼.

(1, 1)

(1, 0) (0, 1)

(1, 1)

(1, 0)

(0, 1)

(I3, λ)
(1, 0)

(0, 1)

(1, 1)

v1 v2

v3v4

v5
v6

v7

v8

(1, 1)

(0, 1)
(1, 0)

(QI3, λ)

PH1

PH2

PH3

PH4

PH5

PH6

PH7

PH8

Figure 1. An isotropy function λ of the edge-simple polytope I3

Example 3.4. In the following figure 2 we define an isotropy function of the edge-simple
polytope P0. Here simple convex polytopes PH1

, PH2
, PH3

, PH4
are triangles and the simple

convex polytope PH5
is a rectangle. The restriction of the isotropy function on PHi

gives
that the space (T2×PHi

)/ ∼ is CP 2 for each i ∈ {1, 2, 3, 4} and (T2×PH5
)/ ∼ is CP 1×CP 1.

Hence the space ⊔4
i=1CP

2 ⊔ (CP 1 ×CP 1) is the boundary of (T2 ×QP0
)/ ∼.

v1 v2

v3
v4

v5

(1, 1)
(1, 0)

(0, 1)

(0, 1)

(1, 0) PH5

PH4

PH1

PH2

PH3

(P0, λ)

(QP0
, λ)

(0, 1)

(1, 0)
(1, 1)

(0, 1)

(1, 0)

Figure 2. An isotropy function λ of the edge-simple polytope P0

3.2. Manifolds with small cover boundary. We assign each face F to the subgroup
GF of Fn−1

2 determined by the vectors λs
i1
, . . . , λs

il
where F is the intersection of the facets

Fi1 , . . . , Fil . Let ∼s be an equivalence relation on (Fn−1
2 × P ) defined by the following.

(3.5) (t, p) ∼s (u, q) if and only if p = q and t− u ∈ GF
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where F is the unique face of P containing p in its relative interior. The quotient space
(Fn−1

2 ×QP )/ ∼s ⊂ (Fn−1
2 × P )/ ∼s, denoted by S(QP , λ

s), is a manifold with boundary.
This can be shown by the same arguments given in the subsection 3.1. The boundary of
this manifold is {(Fn−1

2 ×⊔k
i=1PHi

)/ ∼s} = ⊔k
i=1{(F

n−1
2 ×PHi

)/ ∼s}. Clearly the restriction
of the F2-isotropy function λs on the set of all facets of PHi

gives the characteristic function
of a small cover over PHi

. So (Fn−1
2 ×PHi

)/ ∼s is a small cover for each i = 0, . . . , k. Hence
S(QP , λ

s) is a manifold with small cover boundary.

3.3. Some observations. The set of all facets of the simple convex polytope QP are
F(QP ) = {PHj

: j = 1, 2, . . . , k} ∪ {F ′
i : i = 1, 2, . . . ,m}, where F ′

i = Fi ∩QP for a unique
facets Fi of P . We define the function η : F(QP ) → Z

n as follows.

(3.6) η(F ) =

{
(0, . . . , 0, 1) ∈ Zn if F = PHj

and j ∈ {1, . . . , k}
λi ∈ Zn−1 × {0} ⊂ Zn if F = Fi and i ∈ {1, 2, . . . ,m}

So the function η satisfies the condition for the characteristic function (see definition 5.1)
of a quasitoric manifold over the n-dimensional simple convex polytope QP . Hence from
the characteristic pair (QP , η) we can construct the quasitoric manifold M(QP , η) over
QP . There is a natural Tn action on M(QP , η). Let TH be the circle subgroup of Tn

determined by the submodule {0}×{0}× . . .×{0}×Z of Zn. Hence W (QP , λ) is the orbit
space of the circle TH action on M(QP , η). The quotient map φH : M(QP , η) → W (QP , λ)
is not a fiber bundle map.

Remark 3.5. The manifold S(Qp, λs) with small cover boundary constructed in subsection
3.2 is the orbit space of Z2 action on a small cover.

4. Orientability of W (QP , λ)

SupposeW = W (QP , λ). The boundary ∂W has a collar neighborhood in W . Hence by

the proposition 2.22 of [Hat] we get Hi(W,∂W ) = H̃i(W/∂W ) for all i. We show the space
W/∂W has a CW -structure. Realize QP as a simple convex polytope in Rn and choose
a linear functional φ : Rn → R which distinguishes the vertices of QP , as in the proof of
Theorem 3.1 in [DJ]. The vertices are linearly ordered according to ascending value of φ.
We make the 1-skeleton of QP into a directed graph by orienting each edge such that φ
increases along edges. For each vertex v of QP define its index, ind(v), as the number of
incident edges that point towards v. Suppose V(QP ) is the set of all vertices and E(QP )
is the set of edges of QP . For each j ∈ {1, 2, . . . , n}, let

Ij = {(v, ev) ∈ V(QP )× E(QP ) : ind(v) = j and ev is the incident edge that points

towards v such that ev = e ∩QP for an edge e of P}.

Suppose (v, ev) ∈ Ij. Let Fv be the unique face of QP containing ev such that ind(v) is
the dimension of Fv . Let Uev be the open subset of Fv obtain by deleting all faces of Fv

not containing the edge ev . The restriction of the equivalence relation ∼ on (Tn−1 × Uev)
gives that the quotient space (Tn−1 × Uev)/ ∼ is homeomorphic to the open disk B2j−1.
Hence the quotient space (W/∂W ) has a CW -complex structure with odd dimensional
cells and one zero dimensional cell only. The number of (2j − 1)-dimensional cell is |Ij |,
the cardinality of Ij for j = 1, 2, . . . , n. So we get the following theorem.

Theorem 4.1. Hi(W,∂W ) =





⊕

|Ij |

Z if i = 2j − 1 and j ∈ {1, . . . , n}

Z if i = 0
0 otherwise
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When j = n the cardinality of Ij is one. So H2n−1(W,∂W ) = Z. Hence W is an oriented
manifold with boundary. In [DJ] the authors showed that the odd dimensional homology
of quasitoric manifolds are zero. So H2i−1(∂W ) = 0 for all i. Hence we get the following
exact sequences for the collared pair (W,∂W ).

(4.1)

0 → H2n−1(W )
j∗

−−−−→ H2n−1(W,∂W )
∂

−−−−→ H2n−2(∂W )
i∗−−−−→ H2n−2(W ) → 0

...
...

...
...

0 → H3(W )
j∗

−−−−→ H3(W,∂W )
∂

−−−−→ H2(∂W )
i∗−−−−→ H2(W ) → 0

0 → H1(W )
j∗

−−−−→ H1(W,∂W )
∂

−−−−→ H0(∂W )
i∗−−−−→ H0(W ) ։ Z

Where Z ∼= H0(W,∂W ). Let (hi0 , . . . , hin−1
) be the h-vector of PHi

, for i = 1, 2, . . . , k.
The definition of h-vector of simple convex polytope is given in [DJ]. Hence the Euler
characteristic of the manifold W with quasitoric boundary is Σk

i=1Σ
n−1
j=0hij − Σn−1

j=1 |Ij |.

5. Torus Cobordism of Quasitoric Manifolds

5.1. Classification of 4-dimensional quasitoric manifolds.

Definition 5.1. Let Q be an n-dimensional simple convex polytope and F(Q) be the set
of all facets of Q. A map η : F(Q) → Zn is called a characteristic function if the span
of η(Fj1), . . . , η(Fjl) is a l-dimensional direct summand of Zn whenever the intersection of
the facets Fj1 , . . . , Fjl is nonempty. The vectors ηj = η(Fj) are called characteristic vectors
and the pair (Q, η) is called a characteristic pair.

In [DJ] the authors show that we can construct a quasitoric manifold from the pair (Q, η)
and given a quasitoric manifold we can define a characteristic pair. There is a bijective
correspondence between quasitoric manifolds and characteristic pairs modulo the sign of
characteristic vectors.

Example 5.1. Let Q be a triangle △2 in R
2. The possible characteristic functions are

indicated by the following figures 3. The quasitoric manifold corresponding to the first

(1, 0)

(1,1)

(1, 0)

(0, 1)
(1,−1)(0, 1)

A1

B1 C1

A2

B2 C2

Figure 3. The characteristic functions corresponding to a triangle.

characteristic pair is CP 2 with the usual T2 action and standard orientation. The second
correspond to the same T2 action with the reverse orientation on CP 2, we denote it by

CP 2.

Example 5.2. Suppose that Q is combinatorially a square in R
2. In this case there are

many possible characteristic functions. Some examples are given by the figure 4.
The first characteristic pairs may construct an infinite family of 4-dimensional qua-

sitoric manifolds, denote them by M4
k for each k ∈ Z. The manifolds {M4

k : k ∈ Z} are
equivariantly distinct. Let L(k) be the complex line bundle over CP 1 with the first Chern
class k. The associated projective bundle is the Hirzebruch surface P(L(k)⊕L(k)). In [Oda]
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(1, 0)

(0, 1)
(0, 1)

(1, 0)

(0, 1)
(−1, 1)

(1,−2)(1, k)
A

B C

D A

B C

D

Figure 4. Some characteristic functions corresponding to a square.

the author shows that with the natural action of T2 on P(L(k) ⊕ L(k)) it is equivariantly
homeomorphic to M4

k for each k.
On the other hand the second combinatorial model gives the quasitoric manifold

CP 2 # CP 2, the equivariant connected sum of CP 2.

Remark 5.3. Orlik and Raymond ( [OR], p. 553) show that any 4-dimensional quasitoric
manifold M4 over 2-dimensional simple convex polytope is an equivariant connected sum
of some copies of CP 2, CP 2 and M4

k for some k ∈ Z.

5.2. T2-cobordism of quasitoric manifolds. Let C be the following category: the ob-
jects are all quasitoric manifolds and morphisms are torus equivariant maps between qu-
asitoric manifolds. We are considering torus cobordism in this category only. Quasitoric
manifolds are orientable manifolds, see [DJ].

Definition 5.2. Two 2n-dimensional quasitoric manifolds M1 and M2 are said to be T
n-

cobordant if there exist an oriented T
n manifold W with boundary ∂W such that ∂W is Tn

equivariantly homeomorphic to M1 ⊔ (−M2) under an orientation preserving homeomor-
phism. Here −M2 represent the reverse orientation of M2.

We denote the Tn-cobordism class of quasitoric 2n-manifold M by [M ].

Definition 5.3. The n-th torus cobordism group is the group of all cobordism classes of
2n-dimensional quasitoric manifolds with the operation of disjoint union. We denote this
group by CGn.

LetM → Q be a 4-dimensional quasitoric manifold over the 2-dimensional simple convex
polytope Q with the characteristic function η : F(Q) → Z

2. Suppose the number of facets
of Q is m. We construct an oriented T2 manifold W with boundary ∂W , where ∂W is
equvariantly homeomorphic to M ⊔ ⊔k1CP

2 ⊔ ⊔k2CP
2 for some integer k1, k2. To show

this we construct a 3-dimensional edge-simple polytope PE such that PE has exactly one
vertex O which is the intersection of m facets with PE ∩HO = Q and other vertices of PE

are intersection of 3 facets. We define an isotropy function λ, extending the characteristic
function η of M , from the set of facets of PE to Z2. Then W (QPE

, λ) is the required
oriented T

2 manifold with quasitoric boundary. To compute the group CG2 we use the
induction on the number of facets of 2-dimensional simple convex polytope in R

2. We
made explicit calculation for 4-dimensional quasitoric manifold on rectangle.

Let ABCD be a rectangle ( see figure 5 ) belongs to {(x, y, z) ∈ R
3
≥0 : x + y + z = 1}.

Let η : {AB,BC,CD,DA} → Z2 be the characteristic function for a quasitoric manifold
M over ABCD such that the characteristic vectors are

η(AB) = η1, η(BC) = η2, η(CD) = η3 and η(DA) = η4.

We may assume that η1 = (0, 1) and η2 = (1, 0). From the classification results given in
subsection 5.1, it is enough to consider the following cases only.
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(5.1) η3 = (0, 1) and η4 = (1, 0)

(5.2) η3 = (0, 1) and η4 = (1, k), k = 1 or − 1

(5.3) η3 = (0, 1) and η4 = (1, k), k ∈ Z− {−1, 0, 1}

(5.4) η3 = (−1, 1) and η4 = (1,−2)

For the case 5.1: In this case the edge-simple polytope P̃1, given in figure 5, is the

required edge-simple polytope. The isotropy vectors of P̃1 are given by

λ(OGH) = η1, λ(OHI) = η2, λ(OIJ) = η3, λ(OGJ) = η4 and λ(GHIJ) = η1 + η2.

So we get an oriented T
2 manifoldW (Q

P̃1
, λ) with quasitoric boundary where the boundary

is the quasitoric manifold M ⊔ ⊔k1CP
2 ⊔ ⊔k2CP

2 for some integers k1, k2. Since [CP 2] =
−[CP 2], [M ] = k3[CP

2] for some integer k3.
For the case 5.2: In this case |det(η2, η4)| = 1. Let O be the origin of R

3. Let
CQ be the open cone on rectangle ABCD at the origin O. Let G,H, I, J be points on
extended OA,OB,OC,OD respectively. Let E and F be two points in the interior of the
open cones on AB and CD at O respectively such that |OG| < |OE|, |OH| < |OE| and
|OI| < |OF |, |OJ | < |OF |. Then the convex polytope P1 ⊂ CQ on the set of vertices
{O,G,E,H, I, F, J} is an edge-simple polytope (see figure 5) of dimension 3. Define a
function, denote by λ, on the set of facets of P1 by

(5.5)
λ(OGEH) = η1, λ(OHI) = η2, λ(OJFI) = η3, λ(OJG) = η4,
λ(HIFE) = η4 and λ(GJFE) = η2.

Hence λ is an isotropy function on the edge-simple polytope P1. The boundary of the
oriented T2 manifold W (QP1

, λ) is the quasitoric manifold M ⊔⊔k1CP
2⊔⊔k2CP

2 for some
integers k1, k2. Hence [M ] = k3[CP

2] for some integer k3.

O

B C

D
A

G

H I

J

E F

P1

η3

η4

η2

η1

η4 η2

O

A

B C

D

G

H I

J

C1
B1

I1

D1

J1

F1

A1

G1

H1

E1

P ′
1P̃1

Figure 5. The edge-simple polytope P1, P̃1 and the convex polytope P ′
1 respectively.

For the case 5.3: Suppose det(η2, η4) = k > 1. Define a function λ(1) on the set of
facets of P1 except GEFJ by
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O

A

B

C

D

E

F

G

H

I

J
O

H

I

I1

F1

J1

G1

E1
H1

I1

F1

J1

G1

H1 E1

η2

η4

η1

η3

η2 + η1

η2 + 2η1

P2

P2

Figure 6. The edge-simple polytope P2 with the function λ(2).

(5.6)
λ(1)(OGEH) = η1, λ(1)(OHI) = η2, λ(1)(OIFJ) = η3, λ(1)(OGJ) = η4,

and λ(1)(EHIF ) = η2 + η1.

So the function λ(1) satisfies the condition of an isotropy function of the edge-simple
polytope P1 along each edge except the edges of the rectangle GEFJ . The restriction of
the function λ(1) on the edges GE,EF,FJ,GJ of the rectangle GEFJ gives the following
equations,

(5.7)
|det[λ(1)(GE), λ(1)(EF )]| = 1, |det[λ(1)(EF ), λ(1)(FJ)]| = 1,

|det[λ(1)(FJ), λ(1)(GJ)]| = 1, |det[λ(1)(GJ), λ(1)(GE)]| = 1

and det[λ(1)(EF ), λ(1)(GJ)] = k − 1 < k.

Let P ′
1 be a 3-dimensional convex polytope as in the figure 5. Identifying the facet

GEFJ of P1 and A1B1C1D1 of P ′
1 through a suitable diffeomorphism of manifold with

corners such that the vertices G,E,F, J maps to the vertices A1, B1, C1,D1 respectively,
we can form a new convex polytope P2, see figure 6. After the identification following
holds.

(1) The facet of P1 containing GE and the facet of P ′
1 containing A1B1 make the facet

OHH1E1G1 of P2.
(2) The facet of P1 containing EF and the facet of P ′

1 containing B1C1 make the facet
HH1I1I of P2.

(3) The facet of P1 containing FJ and the facet of P ′
1 containing C1D1 make the facet

OII1F1J1 of P2.
(4) The facet of P1 containing JG and the facet of P ′

1 containing D1A1 make the facet
OJ1G1 of P2.

The polytope P2 is an edge-simple polytope. We define a function λ(2) on the set of
facets of P2 except G1E1F1J1 by
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(5.8)
λ(2)(OHH1E1G1) = η1, λ(2)(OIH) = η2, λ(2)(OII1F1J1) = η3,

λ(2)(OJ1G1) = η4, λ(2)(HH1I1I) = η2 + η1
and λ(2)(H1I1F1E1) = η2 + 2η1.

So the function λ(2) satisfies the condition of an isotropy function of the edge-simple
polytope P2 along each edge except the edges of the rectangle G1E1F1J1. The restriction of
the function λ(2) on the edges namely G1E1, E1F1, F1J1, G1J1 of the rectangle G1E1F1J1
gives the following equations,

(5.9)
|det[λ2(G1E1), λ

2(E1F1)]| = 1, |det[λ2(E1F1), λ
2(F1J1)]| = 1,

|det[λ2(F1J1), λ
2(G1J1)]| = 1, |det[λ2(G1J1), λ

2(G1E1)]| = 1
and det[λ2(E1F1), λ

2(G1J1)] = k − 2 < k − 1.

Proceeding in this way, at k-th step we construct an edge-simple polytope Pk with the
function λ(k), extending the function λ(k−1), on the set of facets of Pk such that

(5.10)
λ(k)(Hk−2Hk−1Ik−1Ik−2) = η2 + (k − 1)η1 = λ(k−1)(Hk−2Ik−2Fk−2Ek−2),

λ(k)(OGk−1Jk−1) = η4 = λ(k−1)(OGk−2Jk−2),

λ(k)(Hk−1Ik−1Fk−1Ek−1) = η4 and λ(k)(Gk−1Ek−1Fk−1Jk−1) = η2 + (k − 1)η1.

Observe that the function λ := λ(k) is an isotropy function of the edge-simple polytope Pk.
So we get an oriented T

2-manifold with boundary W (QPk
, λ) where the boundary is the

quasitoric manifold M ⊔⊔k1CP
2 ⊔⊔k2CP

2 for some integers k1, k2. Hence [M ] = k3[CP
2]

for some integer k3.

O

G

H I

J

E F

P ′′

A B

C
D

η1

η3

η4

η1

η3

η2

Figure 7. The edge-simple polytope P ′′ and an isotropy function λ asso-
ciated to the case 5.4.

For the case 5.4: In this case |det[η1, η3]| = 1. Following case 5.2, we can construct
an edge simple polytope P ′′ and an isotropy function λ over this edge-simple polytope,
see figure 7. Hence we can construct an oriented T2 manifold with quasitoric boundary
W (QP ′′ , λ) having the desired property.

Now consider the case of a quasitoric manifold M over a convex 2-polytope P with
m facets, where m > 4. By the classification result of 4-dimensional quasitoric manifold
which is discussed in subsection 5.1, M is one of the following equivariant connected sum.

(5.11) M = N1#CP 2
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(5.12) M = N2#CP 2

(5.13) M = N3#M4
k

The quasitoric manifolds N1, N2 and N3 are associated to the 2-polytopes Q1, Q2 and
Q3 respectively. The number of facets of Q1, Q2 and Q3 are m − 1, m − 1 and m − 2
respectively. The quasitoric manifold M4

k is defined in subsection 5.1.
Suppose for a quasitoric manifold N over a convex 2-polytope Q we have constructed a

3-dimensional edge-simple polytope PE such that

(1) PE has exactly one vertex O with PE ∩HO = Q, where HO is an affine hyperplane
corresponding to the vertex O as we considered in section 2,

(2) all other vertices of PE are intersection of 3 facets,
(3) there exists an isotropy function λ, extending the characteristic function η of N ,

from the set of facets of PE to Z2.

Definition 5.4. We call the pair (PE , λ) an isotropy pair associated to the quasitoric
manifold N .

We have already constructed an isotropy pair associated to N over a convex 2-polytope Q
with |F(Q)| = 4. Now we construct an isotropy pair associated to M for the cases 5.11,
5.12 and 5.13. We use the induction on m, the cardinality of the set of facets of 2-polytope
Q. Let for any quasitoric manifold N over a convex 2-polytope Q with |F(Q)| = j < m,
we have constructed an isotropy pair associated to N .

For the case 5.11: In this case N1#CP 2 is a quasitoric manifold over the 2-polytope
Q′

1 = Q1#A1B1C1. Here the triangle A1B1C1 is the orbit space associated to CP 2 with
the characteristic function given in the figure 3. We may assume that the characteristic
vectors of facets meeting at x ∈ Q1 are (1, 0) and (0, 1) as given in the figure 8. Suppose
the connected sum of N1 and CP 2 take place at the fixed points corresponding to the
vertices x of Q1 and B1 of A1B1C1, see figure 8.

x B1

A1

C1

# =

(1, 0)

(0, 1)

(1, 1)

(1, 0)

(0, 1) (0, 1)

(1, 1)

(1, 0)
C1

A1
Q1

Q′
1

Figure 8. Connected sum of Q1 and the triangle A1B1C1.

Let PE1 be the 3-dimensional edge-simple polytope associated to the quasitoric manifold
N1. Let λ

′ : F(PE1) → Z
2 be an isotropy function such that the oriented T

2 manifold with

boundary W (QPE1
, λ′) has the boundary N1 ⊔ ⊔k1CP

2 ⊔ ⊔k2CP
2 for some integers k1, k2.

Let OC3 be the edge of PE1 containing the vertex x of Q1 in its relative interior. Let A3

and B3 be two points belongs to the relative interior of the edges e1 and e2 respectively,
see figure 9. Let H ′

A3B3
be the closed half space of an affine hyperplane HA3B3

such that

(1) the plane HA3B3
passes through the points A3, B3 and O,

(2) the point C3 does not belongs to H ′
A3B3

.

Let

(5.14) P ′
E1 = PE1 ∩H ′

A3B3
.
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So P ′
E1

is an edge-simple polytope and FA3B3
= P ′

E1
∩HA3B3

is a facet of P ′
E1
. Let Fx1

, Fx2

and Fx3
be the facets of PE1 meeting at C3. So λ′(Fx1

) = (1, 0) and λ′(Fx2
) = (0, 1). Since

det[λ′(Fx1
), λ′(Fx2

)] = 1, we do the following.
Let D3, E3, G3 and H3 be the points in the relative interior of the edges e1 ∩ P ′

E1
, OA3,

OB3 and e2 ∩ P ′
E1

respectively, see figure 9. Let H ′
D3E3

and H ′
G3H3

be closed half space of
affine hyperplanes HD3E3

and HG3H3
respectively satisfying the following

(1) D3, E3 ∈ HD3E3
, A3 /∈ H ′

D3E3
and B3 ∈ H ′

D3E3
,

(2) G3,H3 ∈ HG3H3
, A3 ∈ H ′

G3H3
and B3 /∈ H ′

G3H3
,

(3) the intersection A3B3 ∩H ′
D3E3

∩H ′
G3H3

is empty.

OO

x

C3

B3

A3

e1

e2

A3

D3

E3

(0, 1)

(1, 0)

(1, 1)

(a1, b1)

B3

G3

H3

P ′
E1

PE1

(1, 0)

(0, 1)

Fx2

Fx1

Fx3

Figure 9. The edge-simple polytope PE1 and P ′
E1
.

Let

(5.15) PE = P ′
E1 ∩H ′

D3E3
∩H ′

G3H3
.

So the polytope PE is a 3-dimensional edge-simple polytope in R
3. Let

(5.16)
F ′
x1

= PE ∩ Fx1
, F ′

x2
= PE ∩ Fx2

, F ′
x3

= PE ∩ Fx3
,

F ′
A3B3

= PE ∩HA3B3
, F ′

D3E3
= PE ∩HD3E3

and F ′
G3H3

= PE ∩HG3H3
.

The facets of PE are

(5.17) F(PE ) = {F(PE1)− {Fx1
, Fx2

, Fx3
}} ∪ {F ′

x1
, F ′

x2
, F ′

x3
, F ′

A3B3
, F ′

D3E3
, F ′

G3H3
}.

Define a function λ : F(PE ) → Z2 as follows,

(5.18) λ(F ) =





λ′(F ) if F ∈ {F(PE1)− {Fx1
, Fx2

, Fx3
}}

λ′(Fxi
) if F = F ′

xi
, i = 1, 2, 3

(1, 1) if F = FA3B3

λ′(Fx2
) if F = FD3E3

λ′(Fx1
) if F = FG3H3

Observe that λ is an isotropy function on PE such that the restriction of λ on the set
of facets of Q′

1 = PE ∩ HO is the characteristic function for M over Q′
1. Hence we get

an oriented T2 manifold with boundary W (QPE
, λ) where the boundary is the quasitoric

manifold M ⊔ ⊔k1CP
2 ⊔ ⊔k2CP

2 for some integers k1, k2.
For the case 5.12: In this case the construction of an isotropy pair associated to

M = N2#CP 2 is similar to the case 5.11.
For the case 5.13: In this case the construction of edge-simple polytope and an

isotropy function is almost similar to the case 5.11 with some exceptions. The manifold
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M = N3#M4
k is a quasitoric manifold over the 2-polytope Q′

3 = Q3#ABCD. Here the
rectangle ABCD is the orbit space associated to M4

k with a characteristic function given
in the figure 4. Assume that the characteristic vectors of facets meeting at z are (1, 0)
and (0, 1). Suppose the connected sum of N3 and M4

k take place at the fixed points
corresponding to the vertex z of Q3 and the vertex B of ABCD, see figure 10.

#

(1, 0)

(0, 1)

B

A

C

D

(1, 0)

(0, 1)

(0, 1)

(1, k)

=
z

C

D

A

(1, 0)

(0, 1)

(1, k)

(0, 1)

Q3

Q′
3

Figure 10. Connected sum of Q3 and the rectangle ABCD.

Let PE3 be the 3-dimensional edge-simple polytope associated to the quasitoric manifold
N3. Let λ

′ : F(PE3) → Z
2 be an isotropy function such that the oriented T

2 manifold with

boundary W (QPE3
, λ′) has the boundary N3 ⊔ ⊔k1CP

2 ⊔ ⊔k2CP
2 for some integers k1, k2.

Let OC5 be the edge of PE3 containing the vertex z of Q3 in its relative interior. Let
A5 and D5 be two points that belong to the relative interior of the edges e5 and e6
respectively, see figure 11. Let B5 be a point belongs to the relative interior of the triangle
A5C5D5 ⊂ Fz2 .

Let H ′
A5B5

and H ′
B5D5

be the closed half spaces of affine hyperplanes HA5B5
and HB5D5

respectively such that

(1) the points O,A5, B5 belong to HA5B5
and the points O,B5,D5 belong to HB5D5

,
(2) the point C5 does not belongs to H ′

A5B5
and H ′

B5D5
.

Let

(5.19) P ′
E3 = PE3 ∩H ′

A5B5
∩H ′

B5D5
.

So P ′
E3

is a 3-dimensional edge-simple polytope in R
3. Let the facets Fz1 , Fz2 and Fz3 of

PE3 meet at C5, see figure 11. So λ′(Fz1) = (0, 1) and λ′(Fz3) = (1, 0). Let

(5.20)
F ′
z1

= P ′
E3

∩ Fz1 , F ′
z2

= P ′
E3

∩ Fz2 , F ′
z3

= P ′
E3

∩ Fz3 ,
F ′
A5B5

= P ′
E3

∩HA5B5
and F ′

B5D5
= P ′

E3
∩HB5D5

.

The facets of P ′
E3

are

(5.21) F(P ′
E3) = {F(PE3)− {Fz1 , Fz2 , Fz3}} ∪ {F ′

z1
, F ′

z2
, F ′

z3
, F ′

A5B5
, F ′

B5D5
}.

Define a function λ : F(P ′
E3
) → Z2 as follows,

(5.22) λ(F ) =





λ′(F ) if F ∈ {F(PE3)− {Fz1 , Fz2 , Fz3}}
λ′(Fzi) if F = F ′

zi
, i = 1, 2, 3

(0, 1) if F = F ′
A5B5

(1, k) if F = F ′
B5D5

So the function λ is an isotropy function of P ′
E3

if and only if |det[λ(Fz2), (1, k)]| = 1. If
|det[λ(Fz2), (1, k)]| 6= 1, then we do the following.

Let E5, F5, I5 be points in the relative interior of the edges e5 ∩ P ′
E3
, OA3 and e6 ∩ P ′

E3

of P ′
E3

respectively as given in the figure 11. Let HC be an affine hyperplane in R
3 passing

through the points {E5, F5, I5}. Clearly the points G5 = OB5 ∩HC and H5 = OD5 ∩HC

belong to the relative interior of OB5 and OD5 respectively. Let H ′
C be the closed half

space of HC such that the points {A5, B5,D5} does not belong to H ′
C .
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OO

A5

B5

D5

C5

E5

I5

H5

(1, k)

G5

A5

F5

B5

D5

(0, 1)(1, 0)

e6

e5

z

(1, 0)

(0, 1)

(0, 1)

Fz1

Fz2

Fz3

F ′
z1F ′

z2

F ′
z3

PE3 P ′
E3

Figure 11. The edge-simple polytope PE3 and P ′
E3
.

Let

(5.23) P ′′
E3 = P ′

E3 ∩H ′
C .

So P ′′
E3

is a 3-dimensional edge-simple polytope. Let

(5.24)
F ′′
z1

= P ′′
E3

∩ F ′
z1
, F ′′

z2
= P ′′

E3
∩ F ′

z2
, F ′′

z3
= P ′

E3
∩ F ′

z3
,

F ′′
A5B5

= P ′′
E3

∩H ′
A5B5

, F ′′
B5D5

= P ′′
E3

∩H ′
B5D5

and FC = P ′′
E3

∩HC .

The facets of P ′′
E3

are

(5.25) F(P ′′
E3) = {F(PE3)− {Fz1 , Fz2 , Fz3}} ∪ {F ′′

z1
, F ′′

z2
, F ′′

z3
, F ′′

A5B5
, F ′′

B5D5
, FC}.

The restriction ηC of λ on the set of facets of FC is given in the figure 12. Note that ηC
is the characteristic function of a quasitoric manifold NC over FC . Since the number of
facets of FC is 5, by the case 5.11 or 5.12 we can construct an edge-simple polytope PEC

and an isotropy function λC : F(PEC ) → Z
2 of PEC such that

(1) there exists a unique vertex OC of PEC with PEC ∩HOC
= F̂C

∼= FC see figure 12,
whereHOC

is an affine hyperplane corresponding to the vertex OC as we considered
in section 2,

(2) all other vertices of PEC are intersection of 3 facets,

(3) the restriction of λC on F̂C is the characteristic function ηC of NC .

E

F

G

H

I

(1, 0)

(0, 1)
(1, k)

(0, 1)
E

F

G

H

I

O(FC , ηC)

λ′(Fz2)

PEC

FO1

FO2

FO3

FO4

FO5

Figure 12. The polytope FC and the edge-simple polytope PEC .
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Let H ′
OC

be the closed half space of HOC
not containing OC ∈ PEC . Let

(5.26) P ′
EC = PEC ∩H ′

OC
and F ′

Oi
= FOi

∩ P ′
EC for i = 1, . . . , 5.

Now we construct an edge-simple polytope PE by identifying the facets FC of P ′′
E3

and F̂C

of P ′
EC

via a suitable diffeomorphism. We can define a diffeomorphism f from P ′
EC

onto

its image in R3 such that following holds,

(1) P ′′
E3

∩ f(P ′
EC

) = FC ,

(2) P ′′
E3

∪ f(P ′
EC

) = PE is an edge-simple polytope,

(3) F ′′
z3
∪ f(F ′

O1
), F ′′

A5B5
∪ f(F ′

O2
), F ′′

B5D5
∪ f(F ′

O3
), F ′

z2
∪ f(F ′

O4
) and F ′

z3
∪ f(F ′

O5
) are

facets of PE containing E5F5, F5G5, G5H5, H5I5 and I5E5 respectively.

Let F(PEC ) = {f(F ) : F ∈ {F(PEC ) − {FOi
: i = 1, . . . , 5}}}, FOZ1

= F ′′
z3

∪ f(F ′
O1

),

FOZ2
= F ′′

A5B5
∪ f(F ′

O2
), FOZ3

= F ′′
B5D5

∪ f(F ′
O3

), FOZ4
= F ′

z2
∪ f(F ′

O4
) and FOZ5

=

F ′
z3

∪ f(F ′
O5

).
Hence the facets of PE are

(5.27) F(PE ) = {F(PE3)− {Fz1 , Fz2 , Fz3}} ∪ {FOZi
: i = 1, . . . , 5} ∪ {F(PEC )}.

Define a function λ : F(PE ) → Z
2 as follows,

(5.28) λ(F ) =





λ′(F ) if F ∈ {F(PE3)− {Fz1 , Fz2 , Fz3}}
(1, 0) if F = FOZ1

(0, 1) if F ∈ {FOZ2
, FOZ4

}
(1, k) if F = FOZ3

λ′(Fz2) if F = FOZ5

λC(F ) if F = f(F ) ∈ F(PEC )

Observe that λ is an isotropy function on PE such that the restriction of λ on the set
of facets of Q′

3 = PE ∩ HO is the characteristic function for M over Q′
3. Hence we get

an oriented T
2 manifold with boundary W (QPE

, λ) where the boundary is the quasitoric

manifold M ⊔ ⊔k1CP
2 ⊔ ⊔k2CP

2 for some integers k1, k2. Hence we have proved the
following theorem.

Theorem 5.4. The oriented torus cobordism group CG2 is an infinite cyclic group gen-
erated by T2-cobordism class of complex projective space CP 2.
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